000175341 001__ 175341
000175341 005__ 20190316235319.0
000175341 020__ $$a978-1-4673-0183-1
000175341 02470 $$2ISI$$a000309943200034
000175341 037__ $$aCONF
000175341 245__ $$aA Windowed Graph Fourier Transform
000175341 269__ $$a2012
000175341 260__ $$aNew York$$bIeee$$c2012
000175341 300__ $$a4
000175341 336__ $$aConference Papers
000175341 520__ $$aThe prevalence of signals on weighted graphs is increasing; however, because of the irregular structure of weighted graphs, classical signal processing techniques cannot be directly applied to signals on graphs. In this paper, we define generalized translation and modulation operators for signals on graphs, and use these operators to adapt the classical windowed Fourier transform to the graph setting, enabling vertex-frequency analysis. When we apply this transform to a signal with frequency components that vary along a path graph, the resulting spectrogram matches our intuition from classical discrete-time signal processing. Yet, our construction is fully generalized and can be applied to analyze signals on any undirected, connected, weighted graph.
000175341 6531_ $$aSignal processing on graphs
000175341 6531_ $$aTime-frequency analysis
000175341 6531_ $$aGeneralized translation and modulation
000175341 6531_ $$aSpectral graph theory
000175341 700__ $$0242930$$aShuman, David$$g201233
000175341 700__ $$0246772$$aRicaud, Benjamin$$g229699
000175341 700__ $$0240428$$aVandergheynst, Pierre$$g120906
000175341 7112_ $$aStatistical Signal Processing Workshop$$cAnn Arbor, Michigan, USA$$dAugust 5-8, 2012
000175341 773__ $$q133-136$$t2012 Ieee Statistical Signal Processing Workshop (Ssp)
000175341 8564_ $$s1419404$$uhttps://infoscience.epfl.ch/record/175341/files/WGFT_SSP_2012.pdf$$yPreprint$$zPreprint
000175341 909C0 $$0252392$$pLTS2$$xU10380
000175341 909CO $$ooai:infoscience.tind.io:175341$$pconf$$pSTI$$qGLOBAL_SET
000175341 917Z8 $$x201233
000175341 917Z8 $$x120906
000175341 937__ $$aEPFL-CONF-175341
000175341 973__ $$aEPFL$$rNON-REVIEWED$$sPUBLISHED
000175341 980__ $$aCONF