000175273 001__ 175273
000175273 005__ 20190331192701.0
000175273 020__ $$a978-1-4673-1404-6
000175273 0247_ $$2doi$$a10.1109/ICRA.2012.6225011
000175273 02470 $$2ISI$$a000309406703158
000175273 037__ $$aCONF
000175273 245__ $$aAutomatically calibrating the viewing direction of optic-flow sensors
000175273 269__ $$a2012
000175273 260__ $$bIEEE$$c2012$$aNew York
000175273 300__ $$a6
000175273 336__ $$aConference Papers
000175273 500__ $$aairburr
000175273 520__ $$aBecause of their low weight, cost and energy consumption, optic-flow sensors attract growing interest in robotics for tasks such as self-motion estimation or depth measurement. Most applications require a large number of these sensors, which involves a fair amount of calibration work for each setup. In particular, the viewing direction of each sensor has to be measured for proper operation. This task is often cumbersome and prone to errors, and has to be carried out every time the setup is slightly modified. This paper proposes an algorithm for viewing direction calibration relying on rate gyroscope readings and a recursive weighted linear least square estimation of the rotation matrix elements. The method only requires the user to realize random rotational motions of its setup by hand. The algorithm provides hints about the current precision of the estimation and what motions should be performed to improve it. To assess the validity of the method, tests were performed on an experimental setup and the results compared to a precise manual calibration. The repeatability of the gyroscope-based calibration process reached ±1.7° per axis.
000175273 6531_ $$aAerial Robotics
000175273 6531_ $$aOptic-flow Sensor
000175273 6531_ $$aCalibration
000175273 6531_ $$aViewing Direction
000175273 6531_ $$aFlying Robots
000175273 700__ $$0243231$$g166588$$aBriod, Adrien
000175273 700__ $$0240674$$g104340$$aZufferey, Jean-Christophe
000175273 700__ $$aFloreano, Dario$$g111729$$0240742
000175273 7112_ $$dMay 14-18, 2012$$cSt-Paul, Minnesota, USA$$aRobotics and Automation (ICRA), 2012 IEEE International Conference on
000175273 773__ $$tProceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2012$$q3956-3961
000175273 8564_ $$uhttps://infoscience.epfl.ch/record/175273/files/ICRA2012_paper_final.pdf$$zPublisher's version$$s1794016$$yPublisher's version
000175273 909C0 $$xU10370$$0252161$$pLIS
000175273 909CO $$qGLOBAL_SET$$pconf$$ooai:infoscience.tind.io:175273$$pSTI
000175273 917Z8 $$x166588
000175273 917Z8 $$x166588
000175273 917Z8 $$x166588
000175273 917Z8 $$x166588
000175273 917Z8 $$x255330
000175273 917Z8 $$x255330
000175273 937__ $$aEPFL-CONF-175273
000175273 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000175273 980__ $$aCONF