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Abstract

It is generally accepted that filtering microRNA (miRNA) target predictions by conservation or by accessibility can reduce the
false discovery rate. However, these two strategies are usually not exploited in a combined and flexible manner. Here, we
introduce PACCMIT, a flexible method that filters miRNA binding sites by their conservation, accessibility, or both. The
improvement in performance obtained with each of these three filters is demonstrated on the prediction of targets for both
i) highly and ii) weakly conserved miRNAs, i.e., in two scenarios in which the miRNA-target interactions are subjected to
different evolutionary pressures. We show that in the first scenario conservation is a better filter than accessibility (as both
sensitivity and precision are higher among the top predictions) and that the combined filter improves performance of
PACCMIT even further. In the second scenario, on the other hand, the accessibility filter performs better than both the
conservation and combined filters, suggesting that the site conservation is not equally effective in rejecting false positive
predictions for all miRNAs. Regarding the quality of the ranking criterion proposed by Robins and Press and used in
PACCMIT, it is shown that top ranking interactions correspond to more downregulated proteins than do the lower ranking
interactions. Comparison with several other target prediction algorithms shows that the ranking of predictions provided by
PACCMIT is at least as good as the ranking generated by other conservation-based methods and considerably better than
the energy-based ranking used in other accessibility-based methods.

Citation: Marı́n RM, Vanı́ček J (2012) Optimal Use of Conservation and Accessibility Filters in MicroRNA Target Prediction. PLoS ONE 7(2): e32208. doi:10.1371/
journal.pone.0032208

Editor: Sebastien Pfeffer, French National Center for Scientific Research - Institut de Biologie Moléculaire et Cellulaire, France
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Introduction

MicroRNAs (miRNAs) are endogenous small single stranded

RNAs that modulate mRNA levels and/or translation in the cell.

Recognition of the messenger by the miRNA is followed by either

mRNA cleavage or translational repression, leading to a reduction

in protein synthesis [1,2]. Hundreds of targets involved in cell

differentiation, development, cancer, cardiovascular disease,

antiviral defense, and metabolism have been experimentally

identified [1,3,4,5], while thousands of genes are predicted to be

under miRNA regulation in mammals [6]. For these reasons,

uncovering the complex network of miRNA-mediated gene

regulation plays a key role in understanding many biological

processes taking place in the cell, and computational prediction of

miRNA targets is an essential part of this challenge.

Due to the low cost of computational algorithms in comparison

with the cost of experimental high throughput methods

[7,8,9,10,11], computational prediction of miRNA targets be-

comes increasingly popular for whole genome searches. Consid-

erable effort has been devoted to developing bioinformatic tools

with high precision and sensitivity [12,13,14,15]. Since the most

difficult task is achieving high precision [16], different methods try

to reduce false positives by requiring long exact matches to the

miRNA seed (i.e., 7 or 8 consecutive nucleotides in the 59 end)

[6,17,18,19] or by demanding conservation [6,18,20,21,22,23,

24,25] or accessibility of the binding sites [17,19,23,26,27,28,29].

Comparative genomics has been used in miRNA target

predictions since the first algorithms were proposed [24,30]. Early

observation of seed matches in conserved blocks of orthologous

39UTRs in worms and flies [24] reinforced the assumption that

looking for binding sites with conserved seed matches should

increase the confidence in target predictions in animals in general.

This assumption has been extrapolated successfully to herpes

viruses. Murphy et al. [18] used conservation among viral strains

in combination with over-representation of seed matches as a

ranking criterion [25] to find functional targets of miRNAs in the

human cytomegalovirus.

Methods considering the accessibility of the binding site instead

of its conservation provided an alternative way of increasing

precision [27]. Most of these methods rely less on the seed

complementarity and more on the free energy differences

[26,27,28,29]. Although higher sensitivity is obtained by not

rejecting binding sites with mismatches or wobble pairs in the seed

region, precision is not always increased [19]. Other methods

require perfect seed matches and employ different quantities than

free energy differences to evaluate accessibility of the binding sites

and to score predictions [17,19]. One such method, PACMIT

[19], uses the probability to find accessible stretches of four

nucleotides in the seed matches instead of favorable free energy

differences, and scores the likelihood of an interaction to be

functional by estimating the over-representation of sites comple-

mentary to the seed. Ranking predictions by over-representation
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of seed matches results in a much higher precision than that

obtained by other free-energy based methods. In addition,

systematic comparisons in Ref. [19] showed explicitly that

considering accessibility can in fact increase the precision of

miRNA target predictions.

Although both conservation and accessibility restrictions

improve the predictive power of miRNA target prediction

[31,32,33], they are rarely used together in current methods.

The first attempts to combine the two filters consisted in

intersecting the predictions obtained using conservation-based

methods with predictions obtained using accessibility-based

methods [13,34]. Although this procedure increased precision, it

also drastically reduced sensitivity, suggesting that more efficient

approaches to combine the two filters were needed. Several recent

prediction algorithms consider both conservation and secondary

structure of the target [15,33,35], however, these methods have

been optimized for a single filter configuration that might not be

the most appropriate in all biological contexts. For instance, since

binding sites of highly conserved miRNAs are expected to be

conserved, a conservation filter should be useful. On the other

hand, the same reasoning might not apply for weakly conserved

miRNAs. Due to the lack of flexibility of current methods, we

know very little about how their performance is affected by using

the two filters independently or together. Moreover, it is not clear

if the performance of different filters depends on whether one

predicts targets of highly or weakly conserved miRNAs.

Here we address these limitations by introducing a prediction

method allowing the use of three different criteria (conservation,

accessibility, or both) to filter putative binding sites while ranking

the miRNA-39UTR pairs according to the same score [25] in all

three cases. The method, which we call PACCMIT (Prediction of

ACcessible and/or Conserved MIcroRNA Targets), was obtained

by generalizing the conservation filter from Refs. [18,25] and

integrating it into the accessibility-based method PACMIT. Effects

that the three filters have on precision and sensitivity were

compared on a dataset of validated targets obtained from

photoactivatable-ribonucleoside-enhanced crosslinking and immu-

noprecipitation (PAR-CLIP) experiments [9]. Our results show

that while the conservation filter is more effective than the

accessibility filter to predict targets of highly conserved miRNAs,

accessibility performs better than conservation in the case of

weakly conserved miRNAs. Moreover, in the case of highly

conserved microRNAs, the performance was improved even

further, especially among the top predictions, by using the

combined filter. For reference, we compare results of PACCMIT

and nine other target prediction methods, and show that the

ranking of targets obtained with PACCMIT is not only consistent

with the downregulation of protein levels of targets but also

comparable to or better than the ranking obtained with other

available target prediction tools.

Methods

39UTR sequence alignments and miRNA sequences
Genomic coordinates of Ensembl human genes (hg18) were

used to extract the human 39UTR sequences and the correspond-

ing aligned sequences from the 28-species alignment (MAF file)

available at the UCSC Table browser (http://genome.ucsc.edu)

[36,37]. Only protein coding genes were included in the database

and when several mRNA isoforms were reported for the same

Ensembl gene ID, only the one with the longest 39UTR sequence

was used in the analysis. Mature human miRNA sequences were

obtained from the miRBase website (http://www.mirbase.org)

[38]. Following the classification on TargetScan website (http://

www.targetscan.org) [6], miRNAs are considered to be conserved

if they share the same seed sequence (positions 2–8) in different

species. Specifically, miRNAs are said to be ‘highly conserved’ if

they are classified as such in TargetScan classification. On the

other hand, miRNAs considered as ‘conserved’ and ‘poorly

conserved’ in TargetScan classification are grouped in a single

set of ‘weakly conserved’ miRNAs.

Training dataset
In order to find an optimal choice for the conservation filter in

PACCMIT we used the proteomics dataset reported by Baek et al.

[8]. This dataset covers three highly conserved miRNAs. For the

sake of statistical analysis, an arbitrary classification of the

miRNA-gene pairs between functional and non-functional was

performed based on the log2 fold changes (log2FC) in protein

expression, with the same cutoff as in other studies [8,13,19].

Specifically, miRNA-gene pairs with log2FC#20.2 were labeled

as functional targets while the remaining pairs were labeled as

non-functional targets.

Test datasets
In order to test the effect of different filters on sensitivity and

precision of target predictions for highly and weakly conserved

miRNAs, we constructed positive and negative datasets using the

binding sites reported in the PAR-CLIP experiments [9]. Similarly

as the authors of the PAR-CLIP paper, we only focused on the 100

most abundant miRNAs since these account for 96% of the

miRNA sequence reads. The set of 100 most abundant miRNAs

was divided into two groups containing 74 highly conserved and

26 weakly conserved miRNAs (Table S1). In each group,

functional miRNA-gene pairs were defined as those pairs in

which at least one 7-mer matching miRNA positions 2–8 was

found between positions 21 and 30 of the cluster-centered regions

(CCR) that were mapped to the 39UTRs (human assembly hg18).

This particular location in the CCR was used because according to

the PAR-CLIP validation, a majority of the perfect miRNA seed

matches are found in that region of the CCR [9].

As for the negative datasets, we first selected all unbound genes,

i.e., all genes for which no CCR could be mapped to any region of

the whole transcript. Then, for each group of miRNAs (i.e., for

either highly or weakly conserved miRNAs), we generated all

possible combinations between the miRNAs and the unbound

genes. Finally, the negative datasets of non-functional pairs were

constructed by randomly selecting N pairs from the previously

generated combinations, where N was chosen to be equal to the

number of functional pairs found for the same group of miRNAs.

Thus, the number of generated non-functional pairs was equal to

the number of functional pairs found for each group. We

intentionally constructed the negative dataset of the same size as

the positive dataset in order that the values of precision achieved

by various methods were well distributed between 0 and 1 and not

concentrated at either of the extremes, as could happen if the

proportion of negatives in the dataset were too high or too low. In

the case of highly conserved miRNAs, N = 3,586, while in the case

of weakly conserved miRNAs, N = 112. We called these the ‘large’

datasets.

On average, only 0.6 miRNAs are matching a given CCR in the

indicated positions (if we consider all the CCR regions in the

39UTRs). If we only consider the CCRs that contain at least one

seed match, this number increases to 3.1 miRNAs per CCR.

In order to analyze the statistical significance of the precision

and sensitivity values of the different methods, each dataset of 2N

validated pairs (N functional and N non-functional) was further

divided into three smaller sets that we refer to as ‘small’ datasets.

Conservation and Accessibility of MicroRNA Targets
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This partition was done by dividing each group of miRNAs into

three subgroups of similar size and dividing the ‘large’ dataset

accordingly. The subgroups of highly conserved miRNAs

contained 25, 25, and 24 miRNAs. The subgroups of weakly

conserved miRNAs contained 9, 9, and 8 miRNAs. Number of

‘targets per miRNA’ and ‘precision’, which are discussed in the Results

section and displayed in the figures below, are the mean values

obtained by averaging over the three ‘small’ datasets. The

corresponding error bars are the standard errors of the mean

obtained from the three ‘small’ datasets. Statistical significance of

the difference between various methods was evaluated with the

one-sided t test. The P-values can be found in Tables S3 and S4.

To evaluate the quality of the ranking of targets by PACCMIT,

we used the proteomics data of Selbach et al. [7] which provides

the protein log2 fold changes measured after over-expression of

five highly conserved miRNAs.

Computation of accessibility in PACCMIT
Accessibility was evaluated in the same way as in Ref. [19]. Any

7-mer in the 39UTR sequence (including seed matches) was

catalogued as accessible if it contained at least one 4-mer unpaired

with a probability Pfree$Pcutoff, where Pcutoff had an optimized

value of 0.2. Calculation of Pfree values for all 4-mers in all the

human 39UTR sequences was performed with the program

RNAplfold [39] using a window W = 80 and a maximum pairing

distance L = 40 as recommended in Ref. [40].

Scoring of miRNA-39UTR interactions in PACCMIT
The list of predicted miRNA-39UTR interactions is always

ranked according to the single hypothesis P value (PSH), which is a

statistical score capable to account simultaneously for single and

multiple binding sites as well as to accommodate accessibility and/

or conservation filters. PSH is an approximate probability that a

given oligomer (e.g., a 7-mer), complementary to the miRNA seed,

is found by chance at least c times in the corresponding 39UTR.

Lower values of PSH imply that the interaction is more likely to be

functional (see Refs. [18,19] for details about PSH). PSH is

computed as

PSH~
Xtfilter

i~cfilter

tfilter

i

� �
Pi(1{P)tfilter{i ð1Þ

where tfilter and cfilter are respectively the total number of 7-mers in

a 39UTR sequence that meet the filter requirement and the

number of seed matches that meet the filter requirement. The

possible ‘filters’ are: ‘access’ (i.e., only accessible 7-mers are

counted), ‘cons’ (i.e., only conserved 7-mers are counted), or

‘cons+access’ (i.e., only 7-mers that are both conserved and

accessible are counted). If no filter is specified, the whole 39UTR

and all seed matches are considered. All results shown in this work

were obtained using 7-mers matching (i.e., complementary to) the

miRNA positions 2–8. However the algorithm allows looking for

shorter or longer matches and also for matches with varying

starting position.

Predictions of other methods for human miRNAs
Results of DIANA-microT v3.0 [21], PicTar [20], ElMMo v5

[22], TargetScan 5.2 [6,41], miRanda [42], MirSVR [35], PITA

[27], and IntaRNA [29] were used for comparison with

PACCMIT. The details for each method are: i) DIANA-microT

v3.0: bulk data were downloaded from http://diana.cslab.ece.

ntua.gr/microT; predictions were ranked by ‘miTG score’; only

predictions above a cutoff of 7.3 were considered as suggested by

the authors. ii) PicTar: bulk data were downloaded from the

UCSC browser (in July 2010) as explained in http://pictar.mdc-

berlin.de; predictions were ranked by the scaled ‘PicTar score’;

conservation in four species (human, mouse, rat, and dog) was

used. iii) ElMMo v5: bulk data were downloaded from http://

www.mirz.unibas.ch/miRNAtargetPredictionBulk.php; predic-

tions were ranked according to the probability ‘p’ that the site is

under evolutionary selective pressure; only predictions above a

cutoff of 0.5 were considered as recommended by the authors. iv)

TargetScan 5.2: the list of ‘Summary Counts’ was downloaded

from http://www.targetscan.org; predictions were ranked accord-

ing to the aggregate PCT score recommended by the authors to

assess the biological relevance of the predicted interaction and also

according to the total context score. PCT score was only available

for the set of highly conserved miRNAs. v) miRanda: the version

of the software from August 2010 was downloaded from http://

www.microrna.org/microrna/getDownloads.do; targets were pre-

dicted using default parameters and ranked according to the total

score. vi) MirSVR: bulk data (released in August 2010) for

conserved and non-conserved miRNAs were downloaded from

http://www.microrna.org/microrna/getDownloads.do; predic-

tions were ranked according to the sum of the scores for individual

sites as recommended by the authors. vii) PITA: the first and only

public version of the software was obtained from http://genie.

weizmann.ac.il/pubs/mir07/mir07_prediction.html; targets were

predicted using default parameters and ranked according to the

PITA score. viii) IntaRNA 1.2.2: the software was downloaded

from http://www.bioinf.uni-freiburg.de/Software; targets were

predicted using the seed 2–8, w = 80 and L = 40. Predictions were

ranked by optimal energy score. In order to compare with the

experimental datasets, gene names in the predictions of other

methods were translated from RefSeq IDs, gene symbols, or gene

IDs to Ensembl gene IDs using the BioMart tool corresponding to

Ensembl54 (available at http://may2009.archive.ensembl.org)

[43].

Results

Two different approaches to filter seed matches by
conservation

Different target prediction methods have implemented different

approaches to filter seed matches according to their conservation

[6,18,20,21,22]. The degree of conservation of the binding site is

generally judged by the number of species with the same sequence

and/or by the phylogenetic distance between the species sharing

the same sequence. Motivated by these two main strategies, we

designed two simple approaches to judge a site as conserved (see

Figure S1): (i) in the ‘‘Any-species’’ (Any-S) approach, the seed

match must be present in the aligned sequences of at least S species

(including the human), regardless of their distance from the

human. Increasing S makes the conservation filter more stringent.

(ii) In the ‘‘Selected-species’’ (Selected-S) approach, the seed match

must be present in the aligned sequences of specific S species. The

stringency is again increased by increasing S, but now the (S+1)st

added species is pre-selected and is more distant from the human

than the preceding S species. In this approach, we only included

those species in which the seeds of the eight miRNAs from the

proteomics datasets were conserved (see Figure S1). The

conservation filter was optimized using a training dataset

constructed from the proteomics data of Baek et al. [8] (see

Methods). Site conservation was obtained from the 28-species

alignment available at the UCSC Table Browser [37] and from

the topology of the phylogenetic tree reported by Miller et al. [36].

Conservation and Accessibility of MicroRNA Targets
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Precision and the number of true targets per miRNA were

computed as functions of the number of predictions per miRNA

for varying stringency of the conservation filter (Figure 1). For both

approaches and for all levels of stringency of the conservation

filter, PACCMIT performed better with the conservation filter

than without it. Note, however, that, regardless of the approach

used, the most restrictive configuration was not necessarily the

optimal choice. For instance, in the Any-species approach, only

small fluctuations were observed in the number of targets per

miRNA found among the top 25, 50, and 100 predictions per

miRNA for different levels of stringency. It was only among the

200 and 300 predictions per miRNA that using more species in the

filter helped recovering more validated targets (Figure 1A). As for

precision, when the statistics become sufficient (i.e., for 50 or more

predictions per miRNA), the best overall performance appears to

be for S = 12 species (Figure 1B). On the other hand, among

different configurations of the Selected-species approach, we found

Selected-4 to be clearly optimal as it showed both the best

sensitivity (Figure 1C) and the best precision (Figure 1D) among

the top predictions per miRNA. Given that the conservation filter

with four selected species performs better than the filter with any

twelve species (compare Figure 1C–D with Figure 1A–B), the

former has been used for all further analyses, unless specifically

indicated otherwise.

Accessibility is a better filter than conservation when
predicting targets of weakly conserved miRNAs

There is abundant evidence (also corroborated by our results on

the training dataset) confirming the relevance of the site

conservation requirement in miRNA target prediction. This is

not surprising since this requirement is based on the assumption

that highly conserved miRNAs should have highly conserved

binding sites in order to maintain miRNA function. However, this

reasoning may not apply to other miRNAs that are either weakly

conserved or that are not conserved at all. In such cases, using a

conservation filter may not be particularly useful. In order to

investigate the differences between these two scenarios, we applied

PACCMIT with various filters to two datasets of experimentally

Figure 1. Determination of the optimal conservation filter in PACCMIT. (A–B) Number of validated targets per miRNA (panel A) and
precision (panel B) of the top predictions of PACCMIT using different number S of species in the ‘‘Any-species’’ approach. (C–D) The same as in panels
(A–B) but using the ‘‘Selected-species’’ approach. The definitions of different levels of stringency of the conservation filter are: Selected-2 = human
and chimp, Selected-3 = Selected-2 and rhesus, Selected-4 = Selected-3 and mouse, Selected-5 = Selected-4 and dog, Selected-6 = Selected-5 and cow,
and Selected-7 = Selected-6 and chicken. In all four panels, the number of predictions on the horizontal axis is normalized by the number of miRNAs,
i.e., it is displayed as ‘‘predictions per miRNA.’’ Note that in the case of Selected-7 (and only in this case) fewer than 300 predictions per miRNA were
obtained, which explains the abrupt decrease in the number of targets per miRNA found among the top 300 predictions per miRNA in panel (C).
doi:10.1371/journal.pone.0032208.g001

Conservation and Accessibility of MicroRNA Targets
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validated targets: the former dataset consisted of targets of highly

conserved miRNAs while the latter was composed of targets of

weakly conserved miRNAs (see Methods).

We have found that for highly conserved miRNAs, the

conservation filter provides more true targets per miRNA and

higher precision than does the accessibility filter (Figure 2A–B),

and that the differences are statistically significant according to the

one-sided t test (see Table S3 for the P-values). The same behavior

is observed in the corresponding precision vs. sensitivity plots in

which the curve for PACCMIT ‘Cons’ lies above the curves of

both PACCMIT ‘No filter’ and PACCMIT ‘Access’ (Figure S2A).

This is consistent with the results from two previous studies [31,32]

in which site conservation was found to be a better predictor of

miRNA targets than site accessibility. However, in the case of

weakly conserved miRNAs a completely opposite situation

emerges (Figures 2C–D and S2B). Here the conservation filter is

outperformed not only by the accessibility filter but in many cases

also by the algorithm with no filter at all. While the superiority of

the accessibility filter is less statistically significant than the

superiority of conservation was for highly conserved miRNAs

(see Table S3), Figure 2C–D shows clearly that conservation is not

an appropriate filter for weakly conserved miRNAs. At first glance,

the behavior exposed in Figure 2C–D might seem in conflict with

the results from Wen et al. [32], who reported a higher predictive

power for seed conservation than for site accessibility on a PAR-

CLIP dataset of 20 miRNAs. However, since 17 out of the 20

miRNAs selected for that study were highly conserved, conclusions

of Wen et al. cannot be automatically extended to weakly

conserved miRNAs. In fact, in the same study, seed conservation

showed higher predictive power than accessibility only for one out

of the three weakly conserved miRNAs. Similar caution should be

taken when interpreting results obtained from the transcriptomics

and proteomics datasets in Refs. [31,32] since most of the miRNAs

over- or under-expressed in those experiments were highly

conserved. Altogether, our findings suggest that using a conser-

vation filter is critical only when predicting targets for highly

conserved miRNAs. In order to predict targets for weakly

conserved miRNAs other criteria should be considered, and our

results show that accessibility is one of them.

Figure 3 shows results of nine available prediction methods in

the two situations analyzed above. Some of those methods are

based on site conservation (DIANA-microT [21], TargetScan-PCT

[6], PicTar [20], and ElMMo [22]), while others rely on site

accessibility (PITA [27], IntaRNA [29]) and one on both criteria

(MirSVR [35]). In each case, results of PACCMIT using the most

appropriate filter (i.e., either conservation or accessibility) are

shown for reference (see Table S4 for the P-values of the

comparison between those methods and PACCMIT). The figure

demonstrates that when predicting targets for highly conserved

miRNAs, conservation-based methods perform much better than

methods based on site accessibility (Figure 3A–B). On the other

hand, in the case of weakly conserved miRNAs, conservation-

based methods are not better than those based on site accessibility

(Figure 3C–D). Remarkably, the two methods performing the best

Figure 2. Accessibility is a better filter than conservation when predicting targets of weakly conserved miRNAs. (A–B) Number of
validated targets per miRNA (panel A) and precision (panel B) of the top predictions of PACCMIT for highly conserved miRNAs. Error bars represent
the standard errors of the mean computed from three ‘small’ datasets (see Methods). Results of PACCMIT without any filter (‘‘No filter’’), with single
filters (‘‘Accessibility’’ or ‘‘Conservation’’), and with the combined filter (‘‘Access+Cons’’) are shown in both panels. (C–D) The same as in panels (A–B)
but for weakly conserved miRNAs.
doi:10.1371/journal.pone.0032208.g002

Conservation and Accessibility of MicroRNA Targets
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in this scenario, at least with respect to the number of targets found

per miRNA (i.e., ‘‘PACCMIT Access’’ and ‘‘TargetScan-score’’),

do not consider conservation of the binding sites at all;

‘‘PACCMIT Access’’ considers all accessible seed matches while

‘‘TargetScan-score’’ scores binding sites according to the local A/

U content, additional 39 pairing, and relative position in the

39UTR (these three criteria being grouped into the so-called

‘context score’).

Given the simplicity of our conservation and accessibility filters,

we found remarkable that PACCMIT emerged among the best

performing methods in both scenarios. Here, by simplicity we mean

that accessibility and conservation are only used as restrictions to

discard some seed matches rather than as scores to rank the

miRNA-39UTR interactions, which is done in more sophisticated

approaches. For instance, in the case of accessibility, PITA and

IntaRNA use the differences between the so-called opening and

hybridization energies to rank the interactions. Similarly, most

conservation-based methods use the degree of conservation to rank

the miRNA-39UTR pairs.

As the reader may have inferred from Figures 2 and 3, highly

conserved miRNAs have more targets per miRNA among the top

predictions than the weakly conserved miRNAs; overall, we found

48.5 targets per highly conserved miRNA and only 4.3 targets per

weakly conserved miRNA. This difference can be justified by the

fact that highly conserved miRNAs are more likely to have

accumulated more targets throughout evolution.

Combination of conservation and accessibility filters in
PACCMIT improves the predictions of highly conserved
miRNAs

Assuming that the binding sites of highly conserved miRNAs

should be both conserved and accessible, one would expect the

combined filter to outperform the single filters. Although that

turned out not to be the case when evaluating 20 or more

Figure 3. Comparison of sensitivity and precision of various methods in predicting targets of highly and weakly conserved miRNAs.
(A–B) Number of validated targets per miRNA (panel A) and precision (panel B) of the top predictions of different methods for highly conserved
miRNAs. (C–D) The same as in panels (A–B) but for weakly conserved miRNAs. Results of PACCMIT with the conservation filter (panels A–B) and with
the accessibility filter (panels C–D) are included for comparison. TargetScan predictions ranked by context score are labeled as ‘‘TargetScan-score’’
while its predictions ranked by probability PCT are labeled as ‘‘TargetScan-PCT’’. [The latter are not shown in panels (C–D) because PCT is not available
for targets of weakly conserved miRNAs.] Given that available predictions of PicTar involve only 3 of the 26 weakly conserved miRNAs, we did not
consider this method for this part of the analysis. In panel (D), precision of the top 25 predictions per miRNA is not shown for DIANA-microT, Miranda,
ElMMo, and PITA because precision is not defined for these methods, i.e., there are no true or false positives found yet. For details about the version
and/or release date of each prediction method see the Methods section.
doi:10.1371/journal.pone.0032208.g003

Conservation and Accessibility of MicroRNA Targets
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predictions per miRNA, for 10 predictions per miRNA the

combined filter indeed performed slightly better than the

conservation filter (Figure 2A–B). This suggested that the double

restriction could outperform the single filters more markedly

among the very top predictions, which was confirmed by focusing

our analysis on eight or fewer predictions per miRNA (see

Figure 4. Combination of conservation and accessibility can improve performance over individual filters. (A–B) Number of validated
targets per miRNA (A) and precision (B) of the topmost predictions of PACCMIT for highly conserved miRNAs. (C–D) Comparison of PACCMIT (using
the combined filter) with different methods under the same conditions as in panels (A–B). In panel (D), the precision of the top two predictions per
miRNA is not defined for MirSVR. (E) Number of validated targets found before the first, second, and third false positive appears in the ranked
predictions for highly conserved miRNAs. For this analysis we used the ‘large’ dataset of validated targets that involve all 74 highly conserved miRNAs
(see Methods).
doi:10.1371/journal.pone.0032208.g004

Conservation and Accessibility of MicroRNA Targets
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Figure 4A–B and P-values in Table S3). The same behavior can be

seen in Figure S2A where at low sensitivity the combined filter

shows higher precision than either filter alone. Comparison with

other available methods confirmed that PACCMIT belonged

again among the most competitive methods; it was outperformed

only by DIANA-microT (Figure 4C–D).

The conservation and combined filters used in PACCMIT were

further compared by measuring the number of true targets

obtained before the first, second, and third false positive (i.e., non-

functional pair) appeared in the predictions. Higher numbers of

true targets were always obtained when both conservation and

accessibility were required, implying that some non-functional yet

conserved seed matches could be successfully rejected with the

accessibility criterion (Figure 4E). The results of other methods are

shown for reference.

In order to see if the improvements obtained with the different

filters were also reflected in the downregulation of the targets, we

computed the mean log2 fold changes (log2FC) in protein

expression of miRNA targets predicted with different configura-

tions of PACCMIT. For this purpose, we used the proteomics data

from Selbach et al. [7]. Figure 5 shows that the mean log2FC in

protein expression is indeed more negative for targets predicted

with a single filter than for targets predicted with no filter.

Moreover, the mean log2FC is the most negative for genes

predicted with the combined filter, although only the difference

with respect to the accessibility filter was statistically significant. It

is not surprising that the conservation filter performs considerably

better than the accessibility filter, given that the five miRNAs in

this dataset are highly conserved.

Altogether, results presented in Figures 4, 5, and S2A show that

the use of the combined filter can improve sensitivity, precision,

and quality (measured by downregulation of targets) of the top

predictions for highly conserved miRNAs in comparison with the

use of each filter separately. The figures also reaffirm that in that

scenario the conservation filter is more effective than the

accessibility filter.

As far as ranking predictions is concerned, when both filters are

used simultaneously, PSH is computed using Eq. (1) (see Methods),

taking tfilter equal to the total number tcons+access of 7-mers in the

39UTR that are both conserved and accessible (regardless of their

complementarity to the seed) and cfilter equal to the number

ccons+access of conserved and accessible seed matches.

Ranking predictions according to PSH is correlated with
the extent of target downregulation

Analysis of the log2FC in target expression, presented in the

previous section, illustrates the quality of different filters, but says

nothing about the quality of the ranking of predictions. In other

words, we cannot tell from Figure 5 whether the top ranked

predictions correspond to proteins that are more, equally, or less

downregulated than those among the bottom predictions. To

answer this question we partitioned the predictions for the five

miRNAs in the Selbach dataset into several non-overlapping

subsets of increasing size (see Figure 6A) and computed the mean

log2FC for each subset. Our results showed that both in the

presence and in the absence of a filter, the top ranked targets have

a more negative mean log2FC than the rest of the targets in the list

(Figure 6B).

When different algorithms are compared in the literature,

sometimes the ranking is ignored and only the overall sensitivity

and precision are considered (we show these in Table S2).

Similarly to Figure 5, such comparisons only evaluate the filters (or

cutoff values for different quantities) used in different algorithms

that can be tuned at will. However, until a perfect algorithm is

found, ranking of predictions will be very important in order to

guide experiments. In Ref. [19] a detailed analysis of several

ranking criteria showed that over-representation, measured by

PSH, is more successful in ranking predictions than other scores

such as the hybridization or total free energies. Analysis in Ref.

[19] was based on a binary classification of predictions as true or

false positives. Here we took a more quantitative approach, finding

that the ranking according to PSH, used in PACCMIT, also

correlates with the degree of protein repression expected from a

predicted miRNA-gene interaction. A qualitative comparison of

the ranking obtained with different methods shows that PSH is

among the best ranking criteria (Figure 6C). The same comparison

also confirms that scoring miRNA-39UTR interactions according

to the thermodynamic stability of the pairing along the whole

miRNA (as is done, e.g., in PITA and IntaRNA) does not

necessarily reflect their biological functionality, as has been already

argued by Robins et al. [17] and by Marin and Vanicek [19].

Analysis similar to that presented in Figure 6, but in which the

predictions were partitioned into bins of the same instead of

increasing size, led to the same conclusions as those drawn from

Figure 6 (see Figure S3).

Discussion

Although conservation and accessibility are known to be

important factors reducing the false discovery rate in target

prediction methods, they are not usually exploited in a combined

and flexible manner. Here we have used the statistical framework

introduced by Robins and Press [25] to develop PACCMIT, an

miRNA target prediction method capable of filtering putative

binding sites according to their accessibility and/or conservation.

The first application of PACCMIT has revealed that although

conservation is the most appropriate filter for predicting targets of

highly conserved miRNAs, it is not equally effective in predicting

targets of weakly conserved miRNAs. For those miRNAs, target

site accessibility turns out to be the more appropriate filter.

Moreover, in the case of highly conserved miRNAs we have found

Figure 5. Predictions filtered by conservation, accessibility, or
both are more downregulated than non-filtered predictions.
Mean log2 fold changes in protein expression are shown for the targets
of five highly conserved miRNAs, predicted using PACCMIT with
different filters. The log2 fold changes are taken from Selbach et al. [7].
Statistical significance is given by the one-sided Wilcoxon rank sum test
(*P#0.05, **P#0.01, ***P#0.001). P-values.0.05 are not indicated. Error
bars indicate standard errors of the mean.
doi:10.1371/journal.pone.0032208.g005

Conservation and Accessibility of MicroRNA Targets

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e32208



that a combined filter is more effective in discarding false positives

than either the conservation or accessibility filters alone.

Additional comparisons between PACCMIT and nine standard

prediction methods confirmed the advantages of using the

conservation filter in predicting targets of highly conserved

miRNAs. These comparisons also showed that target prediction

for weakly conserved miRNAs cannot rely on site conservation as

heavily as it does in most available prediction tools. Therefore, it is

important to identify other criteria that would be as useful as

accessibility in the prediction of targets for non-conserved

miRNAs.

When performing genome-wide target searches, it is desirable to

have methods with low false discovery rates in order to avoid

extensive lists of low confidence predictions. Since designing such

methods is much more difficult than generating methods with high

or even perfect sensitivity, our efforts have been directed more

towards increasing precision than covering all known miRNA

targets. However, PACCMIT’s sensitivity can be expanded thanks

to the possibility to adapt its search according to the information

available. Requiring only accessibility allows searching for species-

specific targets (which are not expected to have conserved binding

sites) and for targets in genomes for which conservation

information is difficult to obtain. Sensitivity of PACCMIT can

be also modulated easily by using different stringency levels in the

conservation or accessibility filters. This flexibility is due to the

simple underlying statistical framework of PACCMIT, providing a

single scoring function (PSH) that can easily accommodate various

filters (as explained in the Methods section). However, PSH is more

than a score to rank the predictions; it is also a statistical estimate

that the predicted interaction occurs by chance (lower PSH values

imply a higher likelihood that the predicted interaction is

functional). It has been shown previously that PSH is a better

Figure 6. Top predictions ranked according to PSH correspond to strongly downregulated targets. (A) Predictions of PACCMIT analyzed
in Figure 5 are partitioned into non-overlapping subsets Aj of increasing size. The first subset (A1) contains the top 10 predictions, the second subset
(A2) contains the next 20 predictions (11th to 30th), the third subset (A3) contains the next 40 predictions (31st to 70th), etc. (B) The mean log2 fold
changes in protein expression are shown for each subset of ranked predictions and the four possible filter configurations of PACCMIT are compared.
(C) The same analysis as in panel (B) is applied to nine standard target prediction methods. Results of ‘‘PACCMIT Cons’’ are included for comparison.
Error bars indicate standard errors of the mean.
doi:10.1371/journal.pone.0032208.g006
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ranking criterion than several free energy scores [19]. Here we also

show that ranking by PSH is in good agreement with the protein

fold changes: in comparison with lower ranking interactions, top

ranking interactions correspond to more downregulated genes.

This observation holds regardless of which filter configuration of

PACCMIT is used. We have shown that PSH is at least as good as

other types of scores implemented in conservation-based methods

and considerably better than the energy-based scores implemented

in other accessibility-based methods.

The miRNA target predictions of PACCMIT in the human

using different filter configurations can be found at http://lcpt.

epfl.ch.

Supporting Information

Figure S1 Tree topology of the 28-species alignment
used to compute conservation. The two approaches used in

PACCMIT to filter sites by conservation are illustrated with

examples: In the ‘‘Any-species’’ approach, we show one possible

configuration of PACCMIT with S = 8 (i.e., Any-8). In the

‘‘Selected-species’’ approach, all six possibilities studied here are

shown, i.e., Selected-S for S = 2, 3, 4, 5, 6, and 7.

(TIFF)

Figure S2 Precision as a function of sensitivity using
different filter configurations of PACCMIT. (A) Precision

of PACCMIT plotted as a function of sensitivity for predicted

targets of highly conserved miRNAs. (B) The same as in panel (A)

but for weakly conserved miRNAs.

(TIFF)

Figure S3 Correlation between ranking and target
downreguation for different miRNA target prediction
methods. (A) The mean log2 fold changes are shown for each

subset of ranked predictions for the different filter configurations of

PACCMIT. Each bin represents 100 predictions: A1: top 100

predictions, A2: predictions 101 to 200, A3: predictions 201 to 300,

and A4: predictions 301 to 400. (B) Similar analysis as in panel (A)

is applied to nine standard prediction methods. The results of

‘‘PACCMIT Cons’’ are also included for comparison. Error bars

indicate standard errors of the mean.

(TIFF)

Table S1 List of the highly and weakly conserved
miRNAs used in this study.

(DOC)

Table S2 Overall sensitivity and precision obtained
with PACCMIT and other methods.

(DOC)

Table S3 Statistical significance of the differences
between the four configurations of PACCMIT. P-values

were obtained from a one-sided t test and correspond to the null

hypothesis.

(DOC)

Table S4 Statistical significance of the differences
between PACCMIT and other methods. P-values were

obtained from a one-sided t test and correspond to the null

hypothesis.

(DOC)
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