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Abstract
We analyze the ability of mobile phone-generated ac-

celerometer data to detect high-level (i.e., at the semantic
level) indoor lifestyle activities, such as cooking at home
and working at the workplace, in practical settings. We de-
sign a 2-Tier activity extraction framework (called SAMM-
PLE1) for our purpose. Using this, we evaluate discrimina-
tory power of activity structures along the dimension of sta-
tistical features and after a transformation to a sequence of
individual locomotive micro-activities (e.g. sitting or stand-
ing). Our findings from 152 days of real-life behavioral
traces reveal that locomotive signatures achieve an aver-
age accuracy of 77.14%, an improvement of 16.37% over
directly using statistical features.

1 Introduction
Semantic-level activity mining in wearable computing

literature has traditionally been investigated in smart home
environments, using object-embedded & multiple wearable
sensors. Recently, activity recognition in the wild (i.e., in
real-life practical settings with mobile phone sensors), is
receiving a lot of attention [5]. We investigate the perfor-
mance of detecting an individual’s lifestyle-related indoor
semantic activities, solely based on observations from a sin-
gle phone-based accelerometer, without constraints on ori-
entation and usage. It is natural that multiple sensors, while
improving activity recognition accuracy, burdens the power-
constrained mobile device and impacts user comfort. We
investigate discriminatory power of the accelerometer sen-
sor as it constitutes the most commonly-used, low-energy
smartphone sensor.

In contrast to laboratory studies, we focus on real-life
naturalistic environments. We utilize two user-generated
data traces from 5 users. The first data set (MICRO-SHORT)
is used to determine the best features for classifying loco-
motive activities in controlled but naturalistic conditions,

1 SAMMPLE: Semantic Activity Mining via Mobile Phone-
based Locomotive Estimation

where the smartphone’s usage and on-body position var-
ied dynamically. The second data set (SEMANTIC-LONG)
captured accelerometer readings from the phones of these
5 users as they went about performing their daily lifestyle-
based semantic activities, for a period of 6–8 weeks, giving
us a rich observation data for 152 days. The key question we
investigate is: In real life, does an individual’s semantic ac-
tivities possess enough regularity and discriminatory power,
as observed by the phone accelerometer, and what level of
accuracies can be achieved for various lifestyle activities?

Traditional approaches (e.g., [4]) towards recognition
tasks from accelerometer data use various statistical fea-
tures computed from the raw sensor streams. These work
well when the activity exhibits recurring behavior over short
spans of time, typically of the order of seconds. Seman-
tic activities are often long running (minutes) and non-
homogeneous (i.e. complex), resulting in temporal varia-
tions in the statistical features over the observation period.
Moreover, in real-life settings, the placement & orientation
of the accelerometers/phones vary unpredictably, affecting
the statistical features computed over a longer period.

We analyze the discriminatory power of statistical fea-
tures (1-Tier) towards classification of these semantic ac-
tivity structures for real-life settings. Further, using the in-
tuition that that locomotive and postural states are likely
to be recorded relatively well from short observation win-
dows, we study the discriminatory power of locomotive fea-
tures (2-Tier) by first converting the signal to a sequence
of an individual’s micro-activities (MAs), as a specific set
of these locomotion or postural states.

Prior investigations on building hierarchical representa-
tions of complex activities from low-level sensors [6, 3, 2]
have mostly operated using multiple wearable accelerome-
ters (e.g. on wristwatch and right pocket) along with object
interaction data and showed that good recognition accuracy
is achievable. In contrast to prior work, our data set is on
the most practical usage scenario – a phone with uncon-
strained orientation and usage, with a very large data set
(152 days of readings from 5 users). Accordingly, our re-
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sults on achievable accuracy serves a valuable baseline to
the “smartphone-based sensing” research community.

2 The SAMMPLE Inference Framework

SAMMPLE is a 2-Tier classification framework (Fig.
1) that infers an individual’s semantic activity (HA), using
micro-activities (MA) as an intermediate step. In Layer I,
the raw accelerometer data corresponding to a HA is first
partitioned into a sequence of non-overlapping “frames”
(Tf ) of small duration (e.g., 5 secs, 10 secs). We extract
statistical features for each frame, and classify each frame
to a corresponding MA. The Layer II accepts this sequence
of inferred MAs and extracts activity structures using fea-
tures from this MA sequence.
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Figure 1: Our 2-Tier Semantic Activity Inferencing Process

2.1 Layer I: Micro-Activity Inference

For extracting MAs, we consider a feature vector, con-
sisting of both time and frequency domain features from: (1)
the 3D axis of the accelerometer, referred to as 3D-features;
(2) a projection of the readings on the gravity direction (~p)
and the plane perpendicular to gravity(~h), which makes it
orientation-independent (referred to as 2D-features). We
use the fact that the mean of accelerometer readings, com-
puted over a long time period gives an estimate of g [5],
to project the raw signal to this “2D” reference frame. For
the frequency domain, the features are computed by first
transforming the (xi, yi, zi) segment into a 250-point FFT
vector [7]. Finally, a total of ∼70 features (summarized in
Table 1) are used per frame (Fi). A state-of-the-art calibra-
tion technique on the Nokia N95[9] is used to calibrate the
sensor readings, before feature extraction.

2.2 Layer II: Semantic Activity Inference

We investigate two feature extraction approaches: a) the
Order-Oblivious (OO) and b) the Sequence-Aware (SA) ap-
proach. For explanation, we utilize the illustrative exam-
ple in Table 2, showing two HA instances (i.e., HA1 - Of-
fice Break and HA2 - Office Lunch), with a simple set of
MAs (viz. ‘walk (w)’, ‘sit (s)’, ‘stand (t)’).
Order-Oblivious (OO) – Given the MA sequence asso-
ciated with an HA instance, this approach creates an M -

Table 1: Features Used for Micro-Activity Classification
Name Definition

3D calibrated (3D) (xi, yi, zi)

Pr
oj
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te

d
2D Vertical [~p]

~p =
~d·~v
~v·~v · ~v,

where v = 〈x̄, ȳ, z̄〉 (the mean of x,y,z)
and ~d = 〈x− x̄, y − ȳ, z − z̄〉

Horizontal [~h] ~d− ~p

Magnitude [mag] |~h|, |~p|, corr(|~h|, |~p|)
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Mean AVG(
∑

xi); AVG(
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∑
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Variance VAR(

∑
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∑
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∑
zi)

Mean-Magnitude AVG(
√

x2
i + y2

i + z2
i )

Magnitude-Mean
√

x̄2 + ȳ2 + z̄2

2-Axis Correlation corr(xy) =
cov(xy)
σx,σy

; corr(yz); corr(xz)

Signal-Magnitude-Area 1
n

n∑
i=1

(|xi|+ |yi|+ |zi|)

Fr
eq
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nc

y FFT Magnitude m
(x)
j = |aj + bji|; similarly, m(y)

j , m(z)
j

FFT Energy
∑N
j=1(m2

j )

N , for x,y,z respectively

FFT Entropy −
∑n
j=1(p∗log(p))

n , for each axis, where p is
normalized histogram count of FFT components

dimensional feature vector (M = No. of MAs), where the
ith element of the vector denotes the number of MAs of type
MAi. The feature vector thus captures the duration (as Tf

is a constant) of each specific MA in the given HA instance.
Sequence-Aware (SA) – This approach extracts features
that also capture the order in which the various MAs occur
within a HA instance. This approach should improve dis-
criminatory capability of the resulting features, compared
to the OO approach which does not utilize such knowledge.
However, it comes at the expense of higher dimensional-
ity of the feature vector. We consider two pattern mining-
based techniques to learn key discriminatory features from
the underlying traces: SA-TD (a duration-preserving strat-
egy) and SA-TP (a transition-preserving strategy). To ex-
plain them, we first define a few terms.

Let Mi=[MS
(i)
1 , . . .MS

(i)
l ] be l MA sequences as the

different instances of HAi, e.g., MS
(1)
1 =[t t t t t t w w w w

t] in Table 2. the set of MA sequences associated with the
Let S(i)

j be the set of all subsequences of MS
(i)
j . Let subc

be a MA subsequence, i.e. subc ⊆ S(i)
j .

Definition 1 (Cover of subc). Denoted as cov(subc,Mi), equals
the number of instances in Mi where subc is present.

Definition 2 (Support of subc). Denoted as supp(subc,Mi),
equals cov(subc,Mi)

l
.

For example, Col.3 in Table 2 shows the length-3 sub-
sequence [t t w] is present in two amongst the three (l=3)
instances of HA1. Hence, we have cov([t t w],HA1)=2 and
supp([t t w],HA1)=2/3.
• Duration-preserving (SA-TD): Given a minimum support
threshold Θ0 and a maximum subc size Kmax, this strat-
egy discovers the set of all subcs of length [2, 3, . . . ,Kmax]
that have supp(subc, HAi) ≥ Θ0. For example, Col.3 in
Table 2 shows that the subcs of length 3 selected with Θ0

≥ 0.6 for HA1 are {t t w}, {t w w}, {w w t}. The SA-
TD algorithm finds the union of all such qualifying sub-



Table 2: Running example of feature selection in the Locomotive Signature Space in the 2-T ier approach.
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sequences across all HAs in the training data. The resulting
features are appended to the OO features to create a longer
OO+Sequence feature vector, with the ith element of the
vector corresponding to the frequency of occurrence of the
corresponding feature (Refer Col. 4 in Table 2).
• Transition-Preserving (SA-TP): Different from SA-TD,
SA-TP preserves only the transitions between distinct, ad-
jacent MA instances, by removing (or collapsing) the run-
length of consecutively repeating MA symbols for each HA
instance. E.g., Col.5 in Table 2 shows the TP sequence of
MS

(1)
1 is transformed to [t w t]. By focusing purely on

the sequence of transitions among distinct MAs, the ap-
proach ignores slight variations in the duration of an indi-
vidual MA and produces the transition structure.

3 Experimental Results on HA Detection

Data Collection: We recruited 5 users; each one was pro-
vided with a Nokia N95 phone with embedded Python
scripts that sampled the accelerometer sensor at 30Hz. The
data (along with an inferred GPS-location - Home or Office
- by [8]) was periodically transmitted to a back-end server.

• MICRO-SHORT: Each user was asked to perform a set of 7
MAs: {sit, sit active, walk, loiter, bursty move, stand, using
stairs}, consecutively for 7-10 mins each, resulting in a per-
user study duration of 50-60 mins. These MAs were chosen
based on user’s feedback of locomotions commonly associ-
ated with their daily-life at home and office.

• SEMANTIC-LONG: Each user carried the phone in their pre-
ferred position as they went about performing their daily
lifestyle activities. Alongside, they maintained a separate di-
ary where they tagged all the HAs performed, at their office
and home locations. This longitudinal data was gathered for
8 weeks on working days, with gaps due to individual varia-
tions in lifestyle routines (see Table 3).

Table 3: Summary of Semantic Activity Dataset
User1 User2 User3 User4 User5

# of Days 27 31 39 32 23
# of unique HAs 30 64 25 41 65
# of HA instances 194 215 372 167 228
# of HA instances selected 186 203 356 165 192

Tagging Process & Principles: Each user recorded the tag
tuples: [activity start time, activity tag]. As the activities
were sequential, the end time of an activity was derived
from the start time of the next tag. In total, we obtained 152

days of data, with each day having 4-15 tags/person. This
data was cleaned by applying a per-user manual process of
normalization and information summarization, resulting in
a total of 1102 HA instances across all users; some detailed
tags are shown in Table 4.

Table 4: Examples showing Activities collected (right column)
and corresponding normalized Tags (left column)

HA Label Examples of User Tags
O work office work, work work, office work TA, office work check printer
O break office break, office break walk around office break talk,
O coffee office coffee break, office break tea, office short break coffee
O toilet office break toilet, work break toilet, office short break toilet
O meet office meet, office meet lab, office meeting, office meet NRC
O lunch office lunch, work lunch, office lunch desk, office break lunch
H work home work, home work move, home work on computer
H relax home relax, home relax freshen up, home relax movie
H break home break, home break shopping, home break coffee
H cook home cook, home cooking, home clean dishes, home wash dishes
H eat home eat, home lunch, home dinner, home eat dinner
H baby home baby routine, home baby routine eat with baby

Figure 2: MA Classification accuracy for User1 with naturalis-
tic (varying) phone orientations (Tf=5 secs) and with unknown
body positions. ‘FrontShirt’=shirt pocket in the chest, ‘Front-
Pants’=front pocket in the pants, ‘BackPants’=back pocket in the
pants. ‘Unknown’=body position is mixed and not given.

Results of MA Inference: We present the results using
10-fold cross validation. We tested many classifiers2 and
evaluated discriminatory power of different feature choices.
Fig. 2 plots the MA accuracy on User1 with 9 feature
choices and 4 phone positions. The plot shows the average
accuracy (& the standard deviation) over all of the classi-
fiers. In Fig. 2, 3Dall (or 2Dall) implies the use of all 3D-
features (or 2D-features); 2Dhp refers to features computed

2 Decision tree – J48, Naive Bayes, Bayesian network, LibSVM, and
Adaptive Boost (Adaboost) using J48 as the meta learner
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Figure 3: Performance of 1-T ier vs SAMMPLE (Kmax = 4; Θ0 = 0.7; MA frame-size Tf = 5secs) on User1. ‘Office HAs’ and
‘Home HAs’ indicate office and home semantic activities. (Left: accuracy comparison; Right: confusion matrix.)

on the projected orientation-independent frames, including
both gravity (~p) and its plane perpendicular (~h); 2Dmag

refers to features computed over magnitudes of ~h and ~p;
‘correlation’ refers to using correlation-based feature selec-
tion. We observe that a) the MA classification accuracy is
higher when the phone is placed in the lower part of the
body (an observation previously made with multiple body-
worn sensors [1]); b) the choice of feature classes result in
performance differences of ∼5%, and using feature selec-
tion is the best in classifying such naturalized usage data; c)
the classification accuracy for the “unknown” case, which
best reflects naturalistic usage conditions, is at an accept-
ably healthy ∼90%.

Results of HA Inference: Fig. 3 plots the HA classification
accuracies for the first User1. The HA classification ac-
curacies were obtained by 8-fold cross validation, as some
HA instances did not have enough samples to perform 10-
fold. Further, we compare four feature extraction strategies
in SAMMPLE – OO, SA-TD, SA-TP and the combined
feature sets SA-TD+TP . We applied a variety of classi-
fiers (decision tree – J48, Adaptive Boost - Adaboost, Lib-
SVM, Bayesian Network and Naive Bayes). The plots show
mean & standard deviation of the accuracies across these
classifiers. The right of Fig. 3 shows the confusion matrices
obtained using the locomotive signatures (2-Tier) and the
statistical features (1-Tier).

Across 5 users, locomotive signatures results in an im-
provement in the classification accuracy ranging from 7-
30%, compared to the 1-Tier approach. Due to the different
dynamics of lifestyle activities of different users, the abso-
lute accuracy values are user-dependent. A salient observa-
tion is that even the OO approach, with a slim feature vec-
tor dimension (7 MAs), mostly out-performs the 1-Tier ap-
proach which uses∼70 statistical features (with correlation-
based feature selection). We also note that sequence-based
features provide an additional but variable (4-15%) amount
of improvement in the classification accuracy. Typically,
the sequential features provide better performance improve-
ment on home activities, but not much on office ones. Nev-
ertheless, using both OO (set) and SA (sequential) fea-
tures establish the superior quality of locomotive signatures,

compared to their statistical counterparts.
We also studied the sensitivity of choosing different pa-

rameters, e.g., Kmax, i.e., the maximum possible sequence
length considered in SA-TD & SA-TP. We observe that
relatively-short MA sequences possess the highest discrim-
inatory power (e.g., Kmax=4).

4 Conclusions
This paper evaluated the power of locomotive signa-

tures to infer semantic activities (HA) in realistic envi-
ronments, using data from a single phone-embedded ac-
celerometer. Our investigation finds that locomotive and
postural features as low-level, reliably extractable events
achieve 16.37% accuracy gain, over semantic activity struc-
tures extracted directly using statistical features. Overall,
the average accuracy achieved was 77.14% with many ac-
tivities exhibiting over 85% accuracy. We plan to release
the longitudinal activity data set for further research by the
community.
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