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ABSTRACT

This paper proposes a novel joint reconstruction algorithm

to decode sets of correlated images from distributively com-

pressed images. We consider a scenario where the images

captured at different viewpoints are encoded independently

using transform-based coding solutions (e.g., SPIHT) with a

balanced rate distribution among different cameras. A central

decoder jointly processes the compressed images and recon-

structs an image pair by exploiting the inter-view correlation.

The central decoder first estimates the underlying correlation

model from the independently decoded images and it is even-

tually used for the joint signal recovery. The joint reconstruc-

tion is cast as a constrained convex optimization problem that

reconstructs a total-variation (TV) smooth image pair that sat-

isfies with the estimated correlation model. At the same time,

we add constraints that force the reconstructed images to be as

close as possible to the compressed views. We show by exper-

iments that the proposed joint reconstruction scheme outper-

forms independent reconstruction in terms of image quality,

for a given target bit rate.

Index Terms— Distributed representation, Joint recon-

struction, Convex optimization, Disparity estimation.

1. INTRODUCTION

Distributed source coding (DSC) usually refers to the inde-

pendent encoding and joint decoding of correlated sources

[1]. It permits to design low complexity acquisition systems

and to shift the computational burden to the decoder. DSC

typically finds applications in vision sensor networks where

the low-power cameras perform a spatio-temporal sampling

of the visual information and send the resulting compressed

images to a central decoder. A joint decoder eventually recon-

structs the visual information from the compressed images by

exploiting the correlation between the samples, which permits

to achieve a good rate-distortion tradeoff in the representation

of multi-view information.

Several distributed coding schemes for compressing the

video and the multi-view images have been proposed in the

literature [2, 3]. In such schemes, a feedback channel is gen-

erally used for accurately controlling the Slepian-Wolf coding

rate. Unfortunately, this results in high latency and bandwidth

usage due to the multiple requests from the joint decoder.

These schemes can thus hardly be used in real time appli-

cations. One solution to avoid the feedback channel is to use

a separate encoding rate control module in order to precisely

control the Slepian-Wolf coding rate [4]. The overall com-

putational complexity at the encoder becomes non-negligible

due to this rate control module. In this paper, we build a

symmetric distributed coding scheme, where the correlated

compressed images are directly transmitted to the joint de-

coder without implementing any Slepian-Wolf coding; this

avoids the necessity for complex estimation of the statistical

correlation estimation and of the coding rate at the encoder.

In a similar framework, Schenkel et al. [5] have proposed a

distributed joint representation of image pairs. In particular,

they have proposed an optimization framework to enhance the

quality of the JPEG compressed images. This work, however,

considered an asymmetric scenario that requires a reference

image for joint decoding.

In this paper, we propose a symmetric distributed joint

representation scheme for compressing a pair of correlated

images captured in stereo camera networks. We consider a

scenario where the captured images are compressed indepen-

dently using standard encoding solutions (e.g., SPIHT [6])

and are transmitted to a central decoder. The central decoder

builds a correlation model from the compressed images,

which is used to jointly decode a pair of images. The joint re-

construction is formulated as a convex optimization problem;

it reconstructs a pair of images that are consistent with the

underlying correlation information and with the compressed

images information. We solve this joint reconstruction prob-

lem using parallel proximal algorithms [7]. Experimental

results demonstrate that the proposed distributed coding solu-

tion improves the rate-distortion performance of the separate

coding results by taking advantage of the inter-view correla-

tion. Also, the quality of the decoded images is quite similar

for a given bit rate; this confirms the symmetrical nature of the

proposed scheme. Thus, our framework certainly provides

an interesting alternative to the most classical DSC solutions

[2, 3, 4], since it does not require any statistical correlation

information at the encoder nor any feedback channel.
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Fig. 1. Schematic representation of the proposed scheme. The images I1 and I2 are correlated through displacement of scene

objects due to positioning of the cameras C1 and C2.

2. PROPOSED FRAMEWORK

In this section, we give an overview of our distributed cod-

ing framework. We consider the scenario illustrated in Fig. 1,

where a pair of cameras C1 and C2 sample a 3D scene in dif-

ferent viewpoints. Without loss of generality, we assume that

the images I1 and I2 (with resolution N = N1 × N2) are

rectified, so that correlation between images is effectively de-

scribed by a disparity field. The correlated images I1 and I2
are compressed independently with b bits per view using com-

mon coding solutions (e.g., SPIHT [6]). Balanced rate alloca-

tion permits to share the transmission and the computational

costs equally among the sensors. It prevents the necessity for

hierarchical relationship among the sensors. The compressed

information is transmitted to a central decoder that exploits

the underlying correlation between views for joint decoding.

In particular, as shown in Fig. 1, the joint decoder estimates

the correlation between images in terms of a dense disparity

image d from the decoded images Ĩ1 and Ĩ2. Several algo-

rithms have been proposed in the literature to compute the

dense disparity images [8]. In this work, we estimate the dis-

parity image d using graph-based optimization techniques,

due to better performance over other techniques [8, 9]. A

joint reconstruction stage eventually uses the disparity infor-

mation d and enhances the quality of the independently de-

coded views Ĩ1 and Ĩ2. Finally, note that our framework can

also be extended to the joint decoding of unrectified multi-

view images. The details are available in [10].

3. JOINT RECONSTRUCTION IN OPTIMIZATION

FRAMEWORK

In this section, we describe the proposed optimization-based
joint reconstruction algorithm. We propose to reconstruct an

image pair (Î1, Î2) as a solution to the following optimization
problem:

(Î1, Î2) = argmin
I1,I2

(‖I1‖TV + ‖I2‖TV ) (1)

s.t. ‖R(I1)−R(Ĩ1)‖2 ≤ ǫ1, ‖R(I2)−R(Ĩ2)‖2 ≤ ǫ1,

‖I2(m,n)− I1(m+ d(m,n), n)‖2
2
≤ ǫ2,

where Ĩ1 and Ĩ2 represent the compressed views and ‖.‖TV

represents the total-variation (TV) norm. The reshaping op-

erator R : IN1×N2
→ XN1N2×1 produces a vector X =

R(I) = [IT.,1 IT.,2 . . . I
T
.,N1

]T , where I.,m represents the mth

row of the matrix I . The first two constraints of Eq. (1) forces

the reconstructed images Î1 and Î2 to be consistent or close

to the respective decoded images Ĩ1 and Ĩ2. The last con-

straint imposes the reconstructed images to fit with the cor-

relation information d. Finally, the TV prior term ensures

that the reconstructed images are smooth. In general, inclu-

sion of the prior knowledge brings effective reduction in the

search space, which leads to efficient optimization solutions.

Therefore, optimization problem of Eq. (1) reconstructs a pair

of TV smooth images that is consistent with both the com-

pressed images and the correlation information. In our frame-

work, we use the TV prior on the reconstructed images, how-

ever, one could also use a sparsity prior that minimizes the l1
norm of the coefficients in a sparse image representation.

Before solving Eq. (1), we represent the last constraint

‖I2(m,n)− I1(m+ d(m,n), n)‖22 in the matrix format as

‖R(I2)−A · R(I1)‖
2
2. That is, we represent the disparity

compensation I1(m+ d(m,n), n) as a linear transformation

A · R(I1) given as

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, (2)

where Ī2 is the predicted image. The sub-matrix Am is of

dimensions N2 ×N2 that is computed as

Am(p,min(p+ β,N2)) =

{
1 d(m, p) = β,
0 otherwise.

(3)

where d(m, p) represents the disparity value at the pth loca-

tion in the mth row. If the value of p + β > N2 (which

might happen at the boundaries) we set p + β = N2, so that

the dimensions of the matrix Am is N2 × N2. It is easy to

check that the matrix Am formed using Eq. (3) contains only

one non-zero value in each row. For example, the matrix Am

corresponding to d(m, .) = [2 2 1 1] is given as

Am =







0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1






. (4)



Since the matrix Am contains only one non-zero value in each
row it is evident that Ī2(m, i) = I1(m, j) if Am(i, j) = 1.
Thus, it is clear that the matrix Am shifts the pixels in I1,m by

the corresponding disparity vector d(m, .), to form Ī2,m. Us-
ing this linear relationship of disparity compensation, Eq. (1)
can be rewritten as

(Î1, Î2) = argmin
I1,I2

(‖I1‖TV + ‖I2‖TV ) (OPT-1)

s.t. ‖R(I1)−R(Ĩ1)‖2 ≤ ǫ1, ‖R(I2)−R(Ĩ2)‖2 ≤ ǫ1,

‖R(I2)− A · R(I1)‖
2

2
≤ ǫ2.

Finally, note that the joint reconstruction of compressed

images has been considered in other applications such as

super-resolution, where multiple compressed images are

fused to enhance the resolution [11]. Such techniques usually

target reconstruction of a single high resolution image from

multiple compressed images. Alternatively, in [12] several

encoded versions of the single image are fused together to ex-

tract a single high quality image. Our main target in this paper

is to jointly improve the quality of multiple compressed views

and not to increase the spatial resolution of the compressed

images or to extract a single high quality image.

4. OPTIMIZATION METHODOLOGY

We propose now a solution for the joint reconstruction prob-

lem OPT-1. We first show that the problem OPT-1 is convex.

Then, we propose a solution based on proximal methods.

Proposition 1. The optimization problem OPT-1 is convex.

Proof. Our objective is to show that all the functions in the

problem OPT-1 are convex. However, it is quite easy to

check that the functions ‖Ij‖TV
and ‖R(Ij)−R(Ĩj)‖2,

∀j ∈ {1, 2} are convex [13]. So, we have to show that

the last constraint ‖R(I2)−A · R(I1)‖
2
2 is a convex func-

tion. Let g(Ì1, Ì2) = ‖Ì2 −AÌ1‖
2

2, where Ì2 = R(I2) and

Ì1 = R(I1). The function g can be represented as

g(Ì1, Ì2) = ÌT2 Ì2 − ÌT2 AÌ1 − ÌT1 A
T Ì2 + ÌT1 A

TAÌ1.

The second derivative ∇2g of the function g is given as

∇2g =

[
2AAT −2A
−2AT 2

]

= 2CTC � 0,

where C = [AT − 1] and 1 represents the identity matrix.

2CTC � 0 follows from 2xTCTCx = 2‖Cx‖
2
2 ≥ 0 for any

x. This means that ∇2g is positive semi-definite and thus

g(Ì1, Ì2) is convex.

We now propose an optimization methodology to solve

OPT-1 with proximal splitting methods [7]. For mathematical

convenience, we rewrite OPT-1 as

argmin
X∈R2N

{‖R−1(S1X)‖TV + ‖R−1(S2X)‖TV }

s.t. ‖S1(Y −X)‖
2
≤ ǫ1, ‖S2(Y −X)‖

2
≤ ǫ1,

‖[−A 1]X‖2
2
≤ ǫ2,

(5)

where X = [R(I1) ;R(I2)], Y = [R(Ĩ1) ;R(Ĩ2)], S1 =
[1 0] and S2 = [0 1]. The operator R−1

N1×N2
outputs a matrix

of dimensions N1 ×N2 from a column vector of dimensions

N = N1N2, i.e., it performs the inverse operations corre-

sponding to R. The optimization problem of Eq. (5) can be

visualized as a special case of general convex problem as

argmin
X∈R2N

{f1(X) + f2(X) + f3(X) + f4(X) + f5(X)}. (6)

The functions f1, f2, f3, f4, f5 ∈ Γ0(R
2N ), where Γ0(R

2N )
is the class of lower semicontinuous convex functions from

R
2N to (−∞ +∞] that are not infinity everywhere [7]. For

the optimization problem given in Eq. (5) the functions in the

representation of Eq. (6) are (i) f1(X) = ‖R−1(S1X)‖TV ;

(ii) f2(X) = ‖R−1(S2X)‖TV ; (iii) f3(X) = ic1(X) =
0 if X ∈ c1 and ∞ otherwise, i.e., f3(X) is the indicator

function of the convex set c1 = {X : ‖S1(Y −X)‖2 ≤ ǫ1};

(iv) f4(X) = ic2(X) = 0 if X ∈ c2 and ∞ otherwise, where

the convex set c2 = {X : ‖S2(Y −X)‖2 ≤ ǫ1}; and (v)

f5(X) = ic3(X) = 0 if X ∈ c3 and ∞ otherwise, where the

convex set c3 = {X : ‖[−A 1]X‖22 ≤ ǫ2}.

The solution to the problem of Eq. (6) can be estimated by

generating the recursive sequence X(t+1) = proxf (X
(t)),

where the function f is given as f =
∑5

i=1 fi. The prox-

imity operator is defined as proxf (X) = minX {f(X) +
1
2‖X − Z‖

2
2}. The main difficulty with these iterations is the

computation of the proxf (X) operator. There is no closed

form expression to compute the proxf (X), especially when

the function f is the cumulative sum of two or more functions.

In such cases, instead of computing the proxf (X) directly

for the combined function f , one can perform a sequence

of calculations involving separately the individual operators

proxfi (X), ∀i ∈ {1, . . . , 5}. The algorithms in this class are

known as splitting methods [7], which lead to an easily im-

plementable algorithm.

We describe in more details the methodology to compute

the prox for the functions fi, ∀i ∈ {1, . . . , 5}. For the func-

tion f1(X) = ‖R−1(S1X)‖TV , the proxf1 (X) operator can

be computed using Chambolle’s algorithm [14]. A similar ap-

proach can be used to compute the proxf2 (X). The function

f3 can be represented as f3 = F ◦ G, where F = id(ǫ1) and

G = S1Y −S1X . The set d(ǫ1) represents the l2-ball defined

as d(ǫ) = {y ∈ R
2N : ‖y‖2 ≤ ǫ1}. Then, the proxf3 can be

computed using the following closed form expression:

proxf3 (X) = proxF◦G(X) = X+(S1)
∗(proxF−1)(G(X))

(7)

[15], where (S1)
∗ represents the conjugate transpose of S1.

The proxF (y) with F = id(ǫ1) can be computed using

radial projection [7] as proxF (y) = y if ‖y‖2 ≤ ǫ1 and
y

‖y‖
2

otherwise. The prox for the function f4 can also be

solved using Eq. (7) with F = id(ǫ1) and G = S2Y − S2X .

Finally, the function f5 can be represented with F = id(√ǫ2)

and an affine operator G = [−A 1]X = ΩX , i.e.,



f5 = F ◦ G. As the operator Ω is not a tight frame, the

proxf5 can be computed using an iterative scheme [15]. Let

µt ∈ (0, 2/γ2), and γ1 and γ2 be the frame constants with

γ11 ≤ ΩΩ∗ ≤ γ21. The proxf5 can be calculated iteratively

[15] as

u(t+1) = µt(1− proxµ
−1

t
F )(µ

−1
t u(t) +Gp(t)) (8)

p(t+1) = X − Ω∗u(t+1), (9)

where u(t) → u and p(t) → proxF◦G = proxf5 = X−Ω∗u.

It has been shown that both u(t) and p(t) converge linearly and

the best convergence rate is attained when µt = 2/(γ1 + γ2).
In our work, we use the parallel proximal algorithm

(PPXA) proposed by Combettes et al. [7] to solve Eq. (6),

as this algorithm can be easily implementable on multicore

architectures due to its parallel structure. The PPXA algo-

rithm starts with an initial solution X(0) and computes the

proxfi , ∀i ∈ {1, . . . , 5} in each iteration and the result is used

to update the current solution X(0). The iterative procedure

for computing the prox of functions fi, ∀i ∈ {1, . . . , 5}, and

the updating steps are repeated until convergence is reached.

The authors have shown that the sequence (X(t))t≥1 gener-

ated by the PPXA algorithm is guaranteed to converge to the

solution of problems such as the one given in Eq. (6).

5. EXPERIMENTAL RESULTS

In this section, we study the performance of our proposed

joint reconstruction algorithm on two correlated datasets,

Tsukuba and Venus [8]. In our experiments, the images I1
and I2 are encoded independently using the SPIHT algorithm

[6]. Note that one can also use standard encoding techniques

like JPEG for compressing the images (see [10] for details).

We estimate a dense disparity image from the decoded im-

ages Ĩ1 and Ĩ2 using α-expansion algorithm in Graph Cuts

[9]. We solve the OPT-1 problem with ǫ1 = 2 and ǫ2 = 3 that

are selected based on trial and error methods such that the

quality of the reconstructed images Î1 and Î2 is maximized.

Fig. 2(a) and Fig. 2(b) compare the quality of the decoded

images for the independent and joint decoding solutions, re-

spectively for the Tsukuba and Venus datasets. For bit rates

b > 0.2, we see from Fig. 2 that the proposed joint reconstruc-

tion scheme outperforms the independent reconstruction by a

margin of about 0.7-0.8 dB. This confirms that the proposed

joint reconstruction framework effectively exploits the inter-

view correlation. We also see that the reconstruction quality

of the images Î1 and Î2 is quite similar for a given bit rate

b. We have also observed substantial coding gains when com-

pared to the performance of a DSC scheme based on disparity

learning [16]. Unfortunately, due to page restrictions we omit

the discussion here. More details are available in [10].

From Fig. 2, we further see that the joint reconstruction

fails to improve the quality of the compressed images at low

rates; this is due to the poor quality of the estimated disparity

images. For the Venus dataset, the disparity images estimated

from the decoded images Ĩ1, Ĩ2 that are encoded at bit rates

b = 0.1 and b = 0.4 are shown in Fig. 3(b) and Fig. 3(d),

respectively. Comparing the respective disparity images with

respect to the groundtruth information D in Fig. 3(a), we ob-

serve poor quality disparity results for a bit rate of 0.1. Quan-

titatively, the respective disparity errors are found to be 28%
and 10.4%, when it is measured as the percentage of pixels

with an absolute error greater than one. This confirms that the

quantization noise in the compressed images are not properly

handled while estimating the correlation information. Devel-

oping robust correlation estimation techniques to alleviate this

problem is the target of our future works.

6. CONCLUSION

In this paper, we have proposed a novel rate balanced dis-

tributed representation scheme for compressing a pair of cor-

related images captured in camera networks. Contrary to the

classical DSC schemes, our scheme compresses the images

independently without knowing the inter-view geometrical or

statistical relationship at the encoder. We have proposed a

new joint decoding algorithm based on a constrained opti-

mization problem that permits to improve the reconstruction

quality by exploiting the correlation between images. We

have shown that our joint reconstruction problem is convex so

that it can be efficiently solved using proximal methods. Sim-

ulation results confirm that the proposed joint representation

algorithm is successful in improving the reconstruction qual-

ity of the compressed images at medium to high coding rates,

with a balanced quality between images. Our future work fo-

cuses on developing robust techniques to estimate an accurate

correlation information from highly compressed images.
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