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Figure 1: 70 semantic terms with their associated color patches. Our algorithm is able to determine the color values not only for
an arbitrary color name (rows 1-5) but also for any other semantic expression (last 2 rows). It is fully automatic without any human
intervention using only freely available images from Flickr.

Abstract
We present a statistical framework to automatically deter-

mine an associated color for a given arbitrary semantic expres-
sion. The expression can not only be a color name but any word
or character string. In addition to the color value, we are also
able to compute the result’s significance, which determines how
meaningful defining the color is for the expression. To demon-
strate the framework’s strength we apply it to two well known
tasks: assessing memory colors and finding the color values for
a given color name (color naming). We emphasize that we solve
these tasks fully automatic without any psychophysical experi-
ment or human intervention. Further, we outline the potential of
our automatic framework and in particular the significance for
the imaging community.

Introduction
For a computer to answer the question “What is the color of

chocolate?” with the color triplet (R, G, B) = 98, 55, 32, it is nec-
essary to bridge the semantic gap. The semantic gap comes from
the fact that, on the one hand, chocolate is an expression that is
meaningful to human beings. Almost everybody has seen and
also tasted chocolate multiple times in his/her life. On the other
hand, 98, 55, 32 is an abstract representation of color suited for
a computer’s bitwise representation of information. Bridging the
semantic gap has been and still is a main challenge in computer
science. In this article, we present a framework to bridge the se-
mantic gap for semantic expressions (e.g. chocolate) and color
values such as 98, 55, 32.

Relating a semantic expression with a numeric representa-
tion can be seen as a translation problem [2]. In order to learn
the relation between the two “languages” one needs examples
that have already been translated. We thus need a large corpus
of data with numerical color representations that are linked to
corresponding semantic expressions.

The just described properties of the necessary data cor-
pus are perfectly matched by annotated images. The pixel val-
ues are the numeric representation of color and the annotated
text/keywords are a semantic description of them. Learning from
annotated images thus is a promising approach to train a com-
puter to answer questions like the one in the title and similar
ones.

There can be a large variety of semantic expressions linked

to an image: keywords, title, filename, captions, comments and
so forth. In this article we focus on image keywords since they
are single entities. They do not need to be parsed for a gram-
mar structure, such as a title or even associated sentences in the
caption.

Image keywords themselves again cover a widespread se-
mantic variety. They can represent color names (e.g. red,
turquoise), sceneries (e.g. sky, sunset), objects (e.g. chocolate,
apple), abstract terms (e.g. love, war) and more [11]. We do not
try to distinguish between different categories, but rather use a
unified framework for all keywords.

Our system uses annotated images from Flickr1, an online
image sharing community. This enables us to leverage the se-
mantic input from millions of people. The publicly available API
eases access to their database. It offers functions to query for a
keyword and to download image metadata.

The framework uses well-known statistical methods to ex-
tract the necessary information from the abundance of data. This
so called data-mining is robust against inevitable noise such as
mis-typed keywords or wrong annotations.

We use two well established tasks in color science to
demonstrate the strengths and capabilities of our framework. The
first one is to determine memory colors. Memory colors are col-
ors of familiar objects/scenes that strike human observers if not
correctly reproduced. The three most cited colors are: green
grass, blue sky and skin tone. We use our framework to deter-
mine the color values for these three categories and variations
thereof as can be seen in Figure 2. The second task is color nam-
ing, where the goal is to find the color values associated to a
color name and vice versa. We use color names and values from
Moroney’s online experiment [14] and compare our estimations
against it. The top Figure 1 shows the color names along with
the automatically estimated color values.

After demonstrating that our framework automatically
solves these known tasks, we go a step further and present new
possibilities this approach offers. The first is to automatically
determine the associated color values of an arbitrary semantic
expression. The second is to assess the association strength be-
tween a semantic expression and a color.

The great potential this approach offers is to show a way to
bridge the semantic gap between color values and semantic ex-

1http://www.flickr.com
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Figure 2: Example memory colors from our automatic algorithm.
The three basic categories (vegetation, skin and sky) are further
refined by the additional keywords indicated in the center of each
patch.
pressions. The ability to perform this automatically offers new
applications that have not been possible so far since acquiring
results was expensive and labour-intensive. We believe this can
help to improve applications such as image rendering, image tag-
ging or image search.

Related Work
This work covers the areas of memory colors, color nam-

ing and image semantics. Memory colors and color naming are
well established fields with many contributions from different re-
searchers. Image semantics is comparatively more recent, but
still, a lot of interesting research has already been done. In this
section we aim to give an overview of the fields, highlighting
major contributions and aspects related to our work.

At the beginning, memory colors were mostly discussed
from a psychologist’s point of view [8, 1]. Adams discusses
in his article [1] the appearance of grass, snow, coal, gold, and
blood under different illumination conditions. However, the lack
of adequate color spaces limited research and applications in this
field.

The invention of the Munsell Color System [16, 19] allowed
to describe memory colors in a perceptual color space. In 1960,
Bartleson defined ten different memory colors in the Munsell hue
and chroma plane using 50 observers [3]. The categories had
subtle nuances such as “green grass”, “dry grass”, “summer fo-
liage”, and “evergreen trees”.

Memory colors have become important to assess different
qualitative aspects in image reproduction. Yendrikhovskij et al.
showed that a deviation from the memory color prototype is per-
ceived as unnatural [29]. Taplin et al. demonstrated that if a color
shift is unavoidable, observers agree on a preferred hue angle of
the shift [24].

The active tuning of memory colors in image reproduction
systems is a common application in industry. Park et al. pro-
posed a method to adjust skin colors for a more preferred image
rendering [20]. You and Chien presented a framework to enhance
blue sky [30]. Other work focusses on segmenting memory col-
ors in images [18, 10, 21]. The extracted maps can be used for
further image processing.

In color naming, the well known study of Berlin and Kay
[4] proposes that a language has, depending on their stage, two
to eleven basic color terms. The simplest language distinguishes
only black and white. As a language evolves new color terms
are added in a strict chronological order: red, green, yellow, blue
and so forth. Thus a language of a higher stage contains all color
terms of the previous stages. Fully evolved languages all have
the same eleven basic color terms. As this study suggests, color
naming is a research subject in many fields such as linguistics,
psychology, and ethnology.

Despite the importance of the different aspects of color

naming, we focus on the acquisition of a numeric model for
a given color expression. This is usually very labour intensive
since the responses of many observers have to be gathered in or-
der to achieve statistical significance. Recent publications used
web-based approaches to crowd source the task to a large pub-
lic [15, 17]. Moroney’s experiment still continues online and the
color names and their corresponding RGB values are accessible
[14]. Another interesting study discusses the feasability of color
adjustment by non-experts through the use of language [28].

Image semantics is a growing research field [22]. Online
image sharing communities stimulate social tagging, which pro-
vides a rich resource for semantic research. Flickr makes its
database accessible via a public API, where images can be down-
loaded together with their annotations and other metadata.

Uncontrolled tags from non-experts might be of lower qual-
ity, but the plentifulness of data and modern data mining tech-
niques make their exploitation inexpensive and competitive. This
is known as the “wisdom of crowds” and has become a more and
more widespread approach for a variety of applications in the last
years [23, 22]. In a recent study, van de Weijer et al. [25] use im-
ages from Google image search to learn a generative model for
colors. The authors use a modified PLSA based model with a
Dirichlet prior and enforced unidimenionality. The method per-
forms well, but requires a retraining of the entire statistical model
if a new color term is added. In our framework, it is possible to
add a new color term without affecting previous estimations.

ImageNet [6] is a recently published database that aims at
populating each synset in WordNet [13] with 1000 images on av-
erage. Deselaers and Ferrari computed image descriptors for all
images in this database and made an interesting observation: the
more two images are semantically related, the more their visual
descriptors are similar [7].

In this work, we focus on one visual descriptor, color, and
present a unified framework to determine numeric color models
of semantic expressions. The input can be a color name (e.g.
red), something related to a color (e.g. tanned skin) or any other
expression.

Statistical Analysis
Our database contains image/annotation pairs (Ii,Ai) ∈ Idb.

An image’s annotation is a set of one or more keywords Ai =
{w1,w2, . . .}. The database can be split into two parts with a
keyword w: Iw= {Ii|w ∈ Ai} and Iw= {Ii|w /∈ Ai} that contain
all images annotated with keyword w and all remaining images,
respectively. Each image is in exactly one of the two subsets, i.e.
Iw∩ Iw= /0 and Iw∪ Iw= Idb.

For each image Ii we compute a characteristic j, denotedCj
i .

Like the images, the characteristics can be split into two disjoint
sets C j

w= {C j
i |Ii ∈ Iw} and C j

w= {C j
i |Ii ∈ Iw}, containing all j

characteristics of those image that are annotated with keyword w
or not, respectively.

The goal is to assess whether a specific keyword w influ-
ences the characteristic j in the associated images. Therefore the
two setsC j

w areC j
w are compared against each other. This is done

by a statistical test that assesses whether the values in the first set
are significantly larger (or smaller) than the ones in the latter set.

Since the distribution of the characteristic is not known a
priori, we have to use non parametric statistics. A well known
test is the Mann-Whitney-Wilcoxon ranksum test [27, 12]. It
assesses whether one of two sets tends to have larger values than
the other.

For a characteristic j, let the computed values from the first
set be Cw= {C1,C2,C4, . . .} and those from the second set Cw=



{C3,C5,C6 . . .}. We first sort the joint set Cw∪ Cw and give each
element an associated integer rank. The ranksum is defined as the
sum of the rank indices of the elements of Cw. Wicoxon denoted
this statistic with T .

In a concrete example we consider Cw=
{2.4,−1.0,5.0,4.1} and Cw= {−0.4,7.1,2.9,11.0,3.0}.
The sorted list of the joint set is: −1.0, −0.4, 2.4, 2.9, 4.1, 5.0,
7.1, 11.0 and T = 1+ 3+ 5+ 6 = 15. The expected mean and
variance of T are [27, 12]:

µT =
nw(nw+nw+1)

2
(1a)

2
T =

nwnw(nw+nw+1)
12

(1b)

where nw = |Cw| and nw = |Cw| are the cardinalities of either
set, respectively.

The expected mean and variance can be used to compute the
normalized z statistic, which is a widely used quantity in statistics
[12]:

z=
T −µT

T
. (2)

For our application, the characteristics are bin values of
color histograms in CIELAB color space. It is a simple per-
ceptual color space that can be computed efficiently on a large
database of images. Our assumption is that the original images
from Flickr are encoded in sRGB [9]. We uniformly divide the
CIELAB space into 15× 15× 15 histogram bins in the ranges
0 ≤ L ≤ 100, −80 ≤ a ≤ 80 and −80 ≤ b ≤ 80, respectively.
Values outside the range on the a and b axis are clipped to the
closest bin. In the above notation the j-th histogram bin of im-
age I has the value Cj

I .

Example
Let us exemplarily consider the keyword ferrari. When

comparing the two sets C j
ferrari and C

j
ferrari one finds that the first

set has significantly larger values in the reddish bins. This is ex-
pressed by a high z value and can be easily detected as the z value
distribution’s maximum.

In this example the highest z value is zj
∗

ferrari= 14.4 where j
∗

is the bin with center
[
L j∗ = 63.3, aj∗ = 53.3, bj∗ = 21.3

]
and

describes a red as depicted in Figures 3 or 1.
Figure 3 shows the z jferrari values in a 3-dimensional heat

map. The three orthogonal planes are defined by L = Lj∗ , a =
a j∗ and b= bj∗ ; thus, the intersection of the planes is the bin cen-
ter j∗ with maximum z value. For better orientation the bottom
plane shows the bin centers’ colors for L= Lj∗ .

We show a similar plot for the keyword color in Figure 4.
As the term suggests, there are many colors present and little neu-
tral white, gray or black pixels. This is why there are negative z
values all along the center axis and elevated z values everywhere
else. There is no clearly located maximum value as opposed to
the ferrari example in Figure 3. Also the z values are lower than
in the previous example.

Discussion
The task we are trying to solve is to find the color value

that corresponds to a semantic expression. This high-level task
is drastically reduced in complexity by using the presented sta-
tistical framework. We do not use insecure pre-processing steps
like trying to find salient regions, to label image regions, to clas-
sify images, to estimate the credibility of an annotated keyword

Figure 3: The z jferrari values in a 3-dimensional heat map. The
maximum is z j

∗

ferrari= 14.4 and is at the crossing of the three or-
thogonal planes. The homogeneous dark areas along the plane
borders are out of gamut values. For better orientation in the ab-
plane we show on the plot’s floor a plane indicating the colors for
the bins with L= L j∗ .

Figure 4: Same plot as in Fig. 3 but for z jcolor values. For better
comparison the heatmap has the same scale as above. The only
certainty is that there are less image pixels along the neutral gray
axis as indicated by the negative z values. Since all colors are
more or less equally present there is no clearly located maximum.

and so forth. Neither do we use laborious manual work or crowd
sourcing with online experiments.

The simplistic nature of our approach allows us to process a
lot of data on relatively little hardware. The quantity outweighs
a possible input data’s lack of quality.

The ferrari example shows an important property of our sta-
tistical framework. Even though the official color, rosso corsa,
is well defined in controlled lab conditions, in the real world the
cars are exposed to different lighting conditions and shadows.
Thus the pixel values of red Ferraris are spread in color space.
The z values inherently reflect this fact: the more frequent a par-
ticular tint of ferrari red in images, the higher the corresponding
z value; less frequent values that occur under extreme lighting
conditions have lower z values.

Picking the corresponding color for a semantic expression
can be as easy as finding the bin with maximum z value. But also
the other bins contain information about the semantic expression.
Analyzing the whole z value distribution indicates how confined
the corresponding region is. As can be seen in Figure 3, there
is a strong peak in the zferrari value’s distribution around the red



bin. In general, stronger peaks imply well defined colors whereas
flatter peaks imply more color variation of a semantic concept.

The number of histogram bins has to be chosen with respect
to two limitations. If one chooses too few bins, the sampling in
color space is very coarse and estimating fine color nuances is
not possible. If there are too many bins, the histogram begins to
be sparse and is more affected by noise. We address this further
in the third experiment of the following section.

The code for our experiments along with ex-
ample images is available for download and re-use:
http://ivrg.epfl.ch/color/color_of_chocolate .

Experiments
We present five different experiments to show the strength

and potential of our approach. We demonstrate the efficiency of
the statistical framework with the examples of memory colors
and color naming. The framework solves these tasks fully au-
tomatically. We also provide experimental justification for our
choice to set the one parameter the framework depends on. Then
we outline how the framework can be further exploited to add
semantic understanding of color to image applications.

1. Memory colors: We use the three basic memory col-
ors, which are vegetation, skin, and sky. We then chose other
additional keywords that modify the tint of the memory colors in
a distinct way. We combined vegetation with wet, dry, leaves,
bush, further skin with caucasian, tan, bright, and dark, and fi-
nally sky with sunny, rain, overcast, and sunset. We then down-
loaded 500 images for each combination.

The rows in Figure 2 show the output of our statistical anal-
ysis for the different combinations of memory colors. It is clearly
visible how the shade of a memory color varies with the specific
context; e.g. tanned skin is darker than caucasian skin. The vari-
ations of a memory color can be very extreme, such as for sky
under different environmental conditions.

To give an intuition of the z value distribution and how it
changes for different semantic expressions we show in more de-
tails the cases sky+sunny and sky+sunset. In order to show the
z values on a plane we computed also color histograms on the
ab-plane, discarding the luminance information.

Figure 5 shows the bin centers’ colors in the ab-plane and
the corresponding z value distribution as a heat map. One sees
how the expression sunset causes the z values to rise in the orange
and red regions of the histograms. For sunny the highest z values
are as expected in the blue region.
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Figure 5: The map on the left shows the colors of the bin centers.
In the middle and on the right are the z value distributions for
sky+sunny and sky+sunset, respectively. The dark blue homoge-
neous areas are out of gamut values.

We compare our memory color values with Yen-
drikhovskij’s values [29]. Figures 6(a) to 6(c) each show his el-
lipses for vegetation, skin and sky in the u′v′ plane, respectively.
For clarity we do not show the whole z distribution for each key-
word combination, but only the value with maximum z value.
They are plotted as labeled cross-marks in the respective color.

Our values lie within or relatively close to the ellipsis for
vegetation and skin. However, they differ significantly for sky.

The reason is that sky drastically changes under the different
weather conditions we used for this experiment. Even a sunny
sky is brighter than what is usually considered as sky blue. The
cross-mark is thus shifted outside the ellipse towards the neutral
white point.
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Figure 6: All three subfigures show the ellipses from Yen-
drikhovskij [29] for vegetation, skin and sky. Our results are
visualized with crossmarks: (a) variations of vegetation, (b) vari-
ations of skin, (c) variations of sky. For clarity only the color
estimates with maximum z values are shown, not the complete z
distribution.

The distinction between different varieties of a memory
color is significant. This is crucial for high quality image ren-
dering since images with wrong memory colors appear unnatural
[29]. There is not a single vegetation green in the world, but it
visibly changes across landscapes and human observers expect
to see it the way they know it. The same holds for skin tones and
sky blues.

2. Color names: We use the 50 most common2 color names
from Nathan Moroney’s color naming experiment [14]. Using
Flickr’s API we downloaded for each color name 200 images.
The search query was simply the color name itself. The color
patches in Figure 1 represent the bin with maximum z value for
each semantic expression (i.e. color name).

Figure 7 shows the E distances between Moroney’s esti-
mations and our color value with the highest z score. The dis-
tance distribution shows that the two estimations are relatively
close to each other with a few outliers. It is worth to point out
that due to the binning in CIELAB histograms we introduce an
inherent quantization error. A color within a bin can have a dis-
tance to its center of up to E= 8.2, which is indicated by the
dashed red line. The outliers with highest E distances are: puce
( E= 55.2), royal blue ( E= 45.3) and lime ( E= 42.1).

In the following we explain for these three color names why
the estimations differ so much since it helps to get a better under-
standing of the framework’s functioning:

PUCE: Our estimate is 27, 13, 10 while Moroney’s values
are 171, 134, 55. Even though this color name is rarely used and
opinions about its correct tint diverge (a very complete online
color database [5] reports 204, 136, 153), our estimate is clearly
too dark.

The reason for this is, that the term puce has two other
meanings: Puce Moment, a music group and puce as the french
translation of microchip. It turns out that puce is more often used
to refer to the band or the microchip than to the color. The im-
ages from the band’s concerts have, like most live stage acts, a
black background with the band members illuminated in the fore-
ground. And microchips almost all have a dark body. Thus, black
is over-proportionally present in images with keyword puce and
thus our framework finds this association.

2status on October 20, 2011
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Figure 7: The E distance in CIELAB color space when com-
paring the color values with maximum z value with the values
from Moroney’s database. The distance a color within a bin can
deviate from its center is up to E= 8.2.

The true origin of the color name puce is different. It comes
from the French word for flea, puce, possibly a reference to the
16-19th century source of the carmine dye colour that was ex-
tracted from Mexican scale insects (resembling fleas)3.

We see that the reason for the large deviation is semantic
ambiguity. This can be seen as a positive and a negative point.
If the task was to find the exact values for the color puce it is
better to do a color naming experiment since human observers
do understand the semantic ambiguity. However, if the task is
to find what the semantic expression means for the majority of
images, our estimate is better.

ROYAL BLUE: There exist two kinds of royal blue: a tra-
ditional royal blue 0, 35, 102 [5] and a modern royal blue as
defined by the Word Wide Web Consortium (W3C) 65,105,225
[26]. Society’s perception must have changed from the darker
version to the brighter version over time. Our and Moroney’s es-
timates are 19, 49, 107 and 39, 41, 212, which are closer to the
original and the modern version, respectively.

The reason why the statistical framework ranks the tradi-
tional royal blue first is due to the “Royal Blue Coach Services”,
an English coach operator from 1880 to 1986. Their coaches
were varnished in traditional royal blue; which is obvious when
considering the early founding year. The coaches seem to have a
very active fan community that preserves them for nostalgic rea-
sons. They also post many pictures online so that the analysis
ranks this color first.

Again, our estimate is different from what one would expect
at first sight but it is not wrong. The distance between the color
traditional royal blue and our estimate of the semantic expres-
sion royal blue is E= 12.6. The distance between Moroney’s
estimate and the W3C’s definition of royal blue is much higher:
E= 40.5.
LIME: There is no straight forward explanation why the

estimate 186, 204, 124 is not bright and saturated enough. Mo-
roney’s estimate for this color name is better: 106, 239, 59. The
best explanation to give is that our estimation, which is based on
200 images per color name, is only correct with a certain proba-
bility.

For a given semantic expression (i.e. color name) our sys-
tem computes a z value for all possible color values. So far we
considered only the color value with the highest z value, but for
a deeper insight also the other z values need to be analyzed.

3We thank the anonymous reviewer for this knowledgeable contribu-
tion.

In order to consider all z values we rank for a given color
name the color estimates with decreasing z value. We computed
for the best 1000 color estimates the E distance to Moroney’s
value. The values for the first rank are thus the ones shown in the
histogram in Figure 7 (the histogram shows the color estimate
with highest z values, i.e. 1st rank). The following 999 distances
are the deviations for the less significant colors.

The results for all the 50 color names are summarized in
Figure 8. It shows the rank on the logarithmic horizontal axis
and the E distance on the vertical axis. The deviations continu-
ously grow for increasing ranks and become more prone to noise.
The graph illustrates that it is not possible to guarantee a specific
error. But it shows that, from a probabilistic viewpoint, colors
that are ranked first are better estimates.
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Figure 8: E distances between Moroney’s 50 color names and
our estimations. We compare not only our best estimate (color
value with the highest z value) but the first 1000 estimates (sorted
by decreasing z values). This significance rank is plotted along
the logarithmic horizontal axis. It is clearly visible that color
estimates on the first ranks have smaller errors.

3. Dependency on the number of bins: The only pa-
rameter our framework depends on is the number of bins in
the histogram. To show its effect on the results, we compute
the E distances between ours and Moroney’s estimates for
23,33,43, . . . ,323 histograms bins. Figure 9 shows the median
and 25% and 75% quantiles of the E distance as a function of
the number of bins. The additional red curve is the maximum
quantization error, which is the distance between the bin center
and bin corner. Please note that the horizontal axis is not linear,
but cubic.

It is visible that the error is high for very small bin num-
bers and then decreases for higher number of bins. The plot also
shows that the error stops improving for approximately 123 or
more bins. Our choice of 153 bins is thus on the safe side, but
not excessively high.

4. Arbitrary semantic expressions: In the next experi-
ment we do not limit the semantic expressions to memory colors
or color names. We downloaded for 20 semantic expressions 200
images each. The two bottom rows in Figure 1 illustrate the se-
mantic expressions4 and their associated colors. Even though
one might want to argue about the correct tint of the one or the
other example, they are all very good estimates. Precisions are in
the range of human disagreement.

4granny smith is a green kind of apple and lakers is a basketball team
from the United States with a violet and yellow outfit.
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Figure 9: Median and 25% and 75% quantils of E error be-
tween ours and Moroney’s estimates as a function of the number
of bins. Please note that the horizontal axis is not linear, but cu-
bic. The red curve shows the maximum quantization error, the
distance between a histogram bin’s center and corner.

5. z significance: We finally show that, apart from assess-
ing an associated color value, the z values can be used to estimate
the association strength. The higher the z value the more an as-
sociation is significant. Thus, semantic expressions that are very
meaningful in terms of color have a higher z value.

We compare the maximum z values from the color names
(experiment 2) and the arbitrary semantic expressions (experi-
ment 4). Figure 10 shows the maximum z values of both sets in a
histogram plot. The highest z values are solely from color names.
This is not surprising since color names have a stronger link to
colors by definition. The highest values stem from red (28.8),
yellow (26.3) and purple (26.0). Among the arbitrary semantic
expressions the highest zmax values are obtained for granny smith
(14.9), ferrari (14.4) and smurf (13.6).

For the sake of completeness we downloaded also 200 im-
ages with keywords for which we expect low zmax values. The
results are: poster (4.5), painting (4.0) and boredom (2.5). The
reason why the z values are low is straight forward. None of these
semantic expressions can be associated with a specific color, even
though poster and painting might be colorful in general (see also
example in Figure 4).

5 10 15 20 250

0.05

0.1

0.15

0.2

0.25

0.3

0.35

no
rm

al
iz

ed
 h

is
to

gr
am

 

 

color names
arbitrary expressions

zmax
Figure 10: Histogram of the maximal z values for the color names
(experiment 2) and the arbitrary semantic expressions (experi-
ment 4). The color names have higher zmax values and are thus
stronger associated with color.

Conclusions
In this article we presented a novel approach to link colors

and semantics. Our algorithm is able to automatically give an
answer to the question “What is the color of X”. X can be a color
name such as red, but also any other semantic expression such as
chocolate, vegetation or dolphin.

As easy as this task is for human beings, as hard it is for
computers. The challenge is to bridge the semantic gap. The
semantic expression (e.g. chocolate) is meaningful for a human
being, but only a character string for a computer. In order to
find the correct answer 98, 55, 32, the computer has to retrace
the semantic meaning.

We argue that the semantic gap can be seen as a transla-
tion problem from a semantic to a numeric language. In order
to learn this translation process, a computer needs examples that
are already translated.

A rich source of examples that contain both semantic ex-
pressions and numeric values are annotated images. When an-
notating images, human beings translate from the numeric pixel
values to a semantic representation of the images. Our goal is
develop an algorithm that learns from annotated images to invert
this process.

The image acquisition is done on Flickr, an online image
sharing community. The API allows to query the database, to
download the corresponding images and their metadata. The
abundance of data on Flickr makes our framework very versa-
tile.

We compute color histograms in CIELAB color space on all
images. We then compute for each keyword and each color bin
a statistical test. It assess whether the color bin has the tendency
to be more populated under the presence of the keyword. This
results in a z score. The bin with the highest z value designates
the corresponding keyword’s color value.

This approach’s potential is demonstrated on two common
tasks of the color community: assessing memory colors and color
naming. Usually these tasks are carried out with psychophysic
experiments. However, our approach is fully automatic and gives
reasonable results. We compare our results with state-of-the-
art data. For the experiment on memory colors we use Yen-
drikhovskij’s ellipses of memory colors and for the color naming
experiment we compare against Moroney’s online color naming
experiment [15]. We show in both cases that our approach gives
comparable results.

The same framework can be used to determine the associ-
ated color of an arbitrary semantic expression. We show exam-
ples such as chocolate, smurf or pretzel in Figure 1.

We finally show how the z value can be used to determine
the association strength. Color names such as red and yellow
have high z values and are thus significant. The arbitrary seman-
tic expressions have lower z values than the color names. This
is reasonable since we estimate the significance for colors. The
highest z values among arbitrary expressions are deduced from
granny smith (a green kind of apple) and ferrari.

We believe that our framework brings great value to the
imaging community. It shows how laborious psychophysics can
be replaced with statistical processing on annotated (i.e. semanti-
cally enhanced) images. The significance values can be exploited
for applications such as image processing, image tagging and im-
age search.

Future work should include word sens disambiguation
methods. This can help to separate different meanings of a key-
word such as puce (see experiment 2). Further, we want to
demonstrate on different imaging applications that our frame-



work adds a semantic understanding of color and thus improves
quality.
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