Résumé

The formation energies and charge transition levels of vacancy and antisite defects in GaAs and In0.5Ga0.5As are calculated through hybrid density functionals. In As-rich conditions, the As antisite is the most stable defect in both GaAs and InGaAs, except for n-type GaAs for which the Ga vacancy is favored. The Ga antisite shows the lowest formation energy in Ga-rich conditions. The As antisite provides a consistent interpretation of the defect densities measured at mid-gap for both GaAs/oxide and InGaAs/oxide interfaces.

Détails

Actions