
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. E. Sanchez, président du jury
Prof. P. Ienne, directeur de thèse
Prof. G. De Micheli, rapporteur
Prof. G. Lemieux, rapporteur
Dr A. Mishchenko, rapporteur

Closing the Gap between FPGA and ASIC: Balancing
Flexibility and Efficiency

THÈSE NO 5339 (2012)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 27 MARS 2012

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE D'ARCHITECTURE DE PROCESSEURS

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2012

PAR

Hadi PARANDEH AFSHAR

Acknowledgements
Foremost, I would like to thank my wonderful advisor, Prof. Paolo Ienne, for all his effective

supports and his patience. He is not only a good advisor, but also a great teacher and manager.

I hope to be lucky enough to work with such a professional manager in my future career. His

comments and guidance always improved my work, and the result is a thesis that includes

two Best Paper Awards received from top international conferences.

I would like to appreciate my committee members, Prof. Giovanni De Micheli, Prof. Guy

Lemieux, and Dr. Alan Mishchenko, for having accepted this demanding task, reading this

dissertation, and providing constructive feedbacks. I would like to thank Prof. Eduardo

Sanchez for serving as the president of my jury.

Parts of this thesis have been published in some conferences and journals, in which many of

my colleagues contributed over the years. I have had the privilege of interacting with some of

present and past members of Processor Architecture Laboratory (LAP) including Prof. Philip

Brisk, Dr. David Novo, Dr. Madhura Purnaprajna, Dr. Ajay K. Verma, Alessandro Cevrero,

Grace Zgheib, Arkosnato Neogy, Panagiotis Athanasopoulos, and Hind Benbihi. I would like to

thank all these colleagues and friends for their incredible collaborations.

The members of the LAP group provided a wonderful work environment in which it was

hard not to be productive, in particular I would like to thank Chantal Schneeberger whose

constant support and encouragement has been an important factor in the completion of this

thesis. Additionally, her contribution in editing the thesis also cannot be ignored. I would

like to express my special thanks to Xavier Jimenez, my office mate, for all his useful tips and

also his contribution in editing the thesis. Also, I would like to thank René Beuchat for his

contribution in editing the thesis and his feedbacks on my research.

I am grateful to Prof. Babak Falsafi for his supports, fruitful guidances, and inspiring feed-

backs. I learnt many concepts related to computer architecture from him in the two courses

that I had with him.

I am thankful to Dr. Alan Mishchenko for his kind supports in connecting me with various

FPGA companies, which enabled to present my ideas and receive practical feedbacks that

improved my work. Also, I would like to thank Alan for providing his wonderful synthesis and

verification tool, ABC. This open source tool had a key role in our research advances.

Needless to mention that without financial support from Swiss National Science Foundation

(SNSF), it was impossible to make such a progress in the field. The SNSF fund provided the

opportunity to concentrate on the research and attend several international conferences all

over the world.

iii

Acknowledgements

Finally, I would like to thank my lovely wife, Mahboobeh Karamian, for her patience and

supports during our extended and long student life. She, with her patience and encourage-

ment, gave me the flexibility to work overtime and during the weekends to meet all tough

deadlines. It is my great pleasure to dedicate this thesis to my wife, Mahboobeh, and my little

daughter, Helen. Also, I would like to appreciate our parents for their support, understanding

and endurance that helped us to live happily, although we were thousands of miles away from

them.

Lausanne, 12 March 2011 Hadi P. Afshar

iv

Abstract
Despite many advantages of Field-Programmable Gate Arrays (FPGAs), they fail to take over

the IC design market from Application-Specific Integrated Circuits (ASICs) for high-volume

and even medium-volume applications, as FPGAs come with significant cost in area, delay,

and power consumption. There are two main reasons that FPGAs have huge efficiency gap

with ASICs: (1) FPGAs are extremely flexible as they have fully programmable soft-logic blocks

and routing networks, and (2) FPGAs have hard-logic blocks that are only usable by a subset

of applications. In other words, current FPGAs have a heterogeneous structure comprised

of the flexible soft-logic and the efficient hard-logic blocks that suffer from inefficiency and

inflexibility, respectively. The inefficiency of the soft-logic is a challenge for any application

that is mapped to FPGAs, and lack of flexibility in the hard-logic results in a waste of resources

when an application can not use the hard-logic.

In this thesis, we approach the inefficiency problem of FPGAs by bridging the efficiency/flex-

ibility gap of the hard- and soft-logic. The main goal of this thesis is to compromise on

efficiency of the hard-logic for flexibility, on the one hand, and to compromise on flexibility

of the soft-logic for efficiency, on the other hand. In other words, this thesis deals with two

issues: (1) adding more generality to the hard-logic of FPGAs, and (2) improving the soft-logic

by adapting it to the generic requirements of applications.

In the first part of the thesis, we introduce new techniques that expand the functionality of

FPGAs hard-logic. The hard-logic includes the dedicated resources that are tightly coupled

with the soft-logic—i.e., adder circuitry and carry chains—as well as the stand-alone ones—i.e.,

DSP blocks. These specialized resources are intended to accelerate critical arithmetic opera-

tions that appear in the pre-synthesis representation of applications; we introduce mapping

and architectural solutions, which enable both types of the hard-logic to support additional

arithmetic operations. We first present a mapping technique that extends the application

of FPGAs carry chains for carry-save arithmetic, and then to increase the generality of the

hard-logic, we introduce novel architectures; using these architectures, more applications can

take advantage of FPGAs hard-logic.

In the second part of the thesis, we improve the efficiency of FPGAs soft-logic by exploiting

the circuit patterns that emerge after logic synthesis, i.e., connection and logic patterns. Using

these patterns, we design new soft-logic blocks that have less flexibility, but more efficiency

than current ones. In this part, we first introduce logic chains, fixed connections that are

integrated between the soft-logic blocks of FPGAs and are well-suited for long chains of logic

that appear post-synthesis. Logic chains provide fast and low cost connectivity, increase the

v

Abstract

bandwidth of the logic blocks without changing their interface with the routing network, and

improve the logic density of soft-logic blocks.

In addition to logic chains and as a complementary contribution, we present a non-LUT

soft-logic block that comprises simple and pre-connected cells. The structure of this logic

block is inspired from the the logic patterns that appear post-synthesis. This block has a

complexity that is only linear in the number of inputs, it sports the potential for multiple

independent outputs, and the delay is only logarithmic in the number of inputs. Although this

new block is less flexible than a LUT, we show (1) that effective mapping algorithms exist, (2)

that, due to their simplicity, poor utilization is less of an issue than with LUTs, and (3) that a

few LUTs can still be used in extreme unfortunate cases.

In summary, to bridge the gap between FPGAs and ASICs, we approach the problem from

two complementary directions, which balance flexibility and efficiency of the logic blocks of

FPGAs. However, we were able to explore a few design points in this thesis, and future work

could focus on further exploration of the design space.

Keywords: FPGA, Efficiency Gap, ASIC, FPGA Logic Block, FPGA Mapping Algorithm, Logic

Chains, Carry Chains, And-Inverter Graph, And-Inverter Cone, DSP Block, Carry Save Arith-

metic, Look-Up Table.

vi

Résumé
Malgré leurs nombreux avantages, les Field-Programmable Gate Arrays (FPGAs) ne parviennent

pas à s’emparer du marché de conception de circuits intégrés pour des applications à hauts ou

même moyens volumes, actuellement contrôlés par les Application-Specific Integrated Circuits

(ASICs), car les FPGAs ont des coûts importants en terme de surface, délai et consommation

d’énergie. Il y a deux raisons principales expliquant le large écart de rendement entre les

FPGAs et les ASICs : (1) les FPGA sont extrêmement flexibles, grâce aux routage program-

mables et des blocs de logique programmables, et (2) les FPGAs ont des blocs spécialisés,

à logique non-programmable, utilisables seulement par un sous-ensemble d’applications.

En d’autres termes, les FPGAs actuelles ont une structure hétérogène, composée de logique

programmable flexible et de logique spécialisée efficace qui souffrent respectivement d’ineffi-

cacité et d’inflexibilité. L’inefficacité de la logique programmable est un défi pour n’importe

quelle application implementeé sur FPGA. Le manque de flexibilité dans la logique spécialisée

entraîne un gaspillage de ressources lorsque l’application ne peut en bénéficier.

Dans cette thèse, nous proposons d’am’eliorer l’inefficacité des FPGAs en équilibrant la

performance et la flexibilité de la logique spécialisée et programmable des FPGAs. L’objectif

principal de cette thèse est d’une part, de faire des concessions sur la performance de la

logique spécialisée pour plus de la flexibilité, et d’autre part de faire des concessions sur la

flexibilité de la logique programmable pour gagner en performance. En d’autres termes, cette

thèse traite de deux questions : (1) ajouter plus de généralité à la logique spécialisée des FPGAs,

et (2) l’améliorer la logique programmable en l’adaptant aux besoins des applications.

Dans la première partie de la thèse, nous introduisons de nouvelles techniques qui élargissent

les fonctionnalités de la logique spécialisée des FPGAs. La logique spécialisée comprend les

ressources dédiées qui sont étroitement couplées avec la logique programmable–par exemple,

circuits additionneurs et chaînes de retenue–ainsi que les cellules autonomes–par exemple, les

blocs DSP. Ces ressources ciblent généralement les opérations arithmétiques avec l’intention

de les utiliser avant la synthèse ; nous introduisons des solutions de synthèse et architecturales,

qui permettront aux deux types de logique spécialisée de faciliter des opérations arithmétiques

supplémentaires. Nous présentons d’abord une technique de synthèse qui permet l’utilisation

des chaînes de retenue des FPGAs pour des applications sans propagation de retenue, puis

afin d’augmenter encore la généralité de la logique spécialisée, nous introduisons de nouvelles

architectures ; en utilisant ces architectures, un plus grand nombre d’applications peut tirer

avantage de la logique spécialisée des FPGAs.

Dans la deuxième partie de la thèse, nous améliorons l’efficacité de la logique programmable

vii

Abstract

des FPGAs en exploitant des motifs de circuits qui émergent après la synthèse logique, comme

des motifs d’interconnection et de logique. En utilisant ces modèles, nous concevons de

nouveaux blocs à logique programmable qui ont moins de flexibilité, mais sont plus per-

formant que ceux actuels. Dans cette partie, nous présentons d’abord les logic chains, des

connexions fixes qui sont intégrées entre les blocs à logique programmable des FPGAs et sont

bien adaptées aux longues chaînes logiques qui apparaissent après synthèse. Les logic chains

fournissent une connectivité rapide et à faible coût, augmentent la bande passante des blocs

logiques sans changer leur interface avec le réseau de routage, et améliorent la densité logique

du bloc à logique programmable.

En plus des logic chains, nous vous présentons un bloc à logique programmable sans Loo-

kUp Table (LUT) qui comporte des cellules simples et pré-connectées. La structure de ce

bloc logique est inspirée des motifs logiques qui apparaissent après synthèse. Ce bloc a une

complexité qui n’est linéaire que dans le nombre d’entrées, il peut potentiellement avoir de

multiples sorties indépendantes, et le délai est uniquement proportionel au logarithmique

du nombre d’entrées. Bien que ce nouveau bloc est extrêmement moins flexible que les LUTs

traditionnels, nous montrons (1) que des algorithmes de synthèse efficaces existent, (2) qu’en

raison de leur simplicité, une faible utilisation est moins un problème que pour les LUTs, et

(3) que quelques LUTs peuvent toujours être utilisés dans des cas extrêmes.

En résumé, pour combler le fossé entre les FPGAs et les ASICs, nous abordons le problème

par deux directions complémentaires, lesquelles équilibrent la flexibilité et la performance

des blocs logiques des FPGAs. Seuls quelques points du problème ont pu être couverts par la

présente thèse et des travaux futurs pourraient continuer sur une exploration plus poussée du

problème dans sa totalité.

Mots-clés : FPGA, Écart de Rendement, ASIC, Blocs de Logique Programmables, Algorithmes

de Synthèse, Logic Chains, Chaînes de Retenue, And-Inverter Graph, And-Inverter Cone, Bloc

DSP, Applications sans Propagation de Retenue, Look-Up Table.

viii

Contents
Acknowledgements iii

Abstract (English/Français) v

List of figures xi

List of tables xix

1 Introduction 1

1.1 Thesis Motivation . 2

1.2 Thesis Organization . 5

2 Background and Preliminaries 9

2.1 FPGAs Introduction . 9

2.1.1 FPGAs Architecture . 9

2.1.2 FPGAs CAD Flow . 11

2.2 State-of-the-art FPGAs . 12

2.2.1 Altera Stratix-III . 13

2.2.2 Xilinx Virtex-5 . 15

2.3 Computer Arithmetic Preliminaries . 17

2.3.1 Full- and Half-Adders . 17

2.3.2 Ripple-Carry and Carry-Save Adders . 18

2.3.3 Parallel Counters . 19

2.3.4 Compressors . 19

2.3.5 Adder and Compressor Trees . 20

2.3.6 Parallel Multipliers . 23

3 Mapping using Carry Chains 25

3.1 Introduction . 26

3.2 Hybrid Design Methodology . 27

3.3 Developing Compressor Tree Primitives for FPGAs 28

3.3.1 GPC Libraries . 30

3.3.2 Efficiently Packing Adjacent GPCs Along Carry Chains 33

3.4 Compressor Tree Synthesis Heuristic . 34

3.4.1 GPC Library Characterization . 34

ix

Contents

3.4.2 Compressor Tree Synthesis Heuristic . 35

3.5 Experimental Results . 37

3.5.1 Experimental Methodology . 37

3.5.2 Benchmarks . 37

3.5.3 Results: Stratix-III . 38

3.5.4 Results: Virtex-5 . 40

3.5.5 Integer Linear Programming (ILP) . 41

3.6 Related Work . 41

3.6.1 Compressor Tree Synthesis for FPGAs . 41

3.6.2 Compressor Tree Synthesis for ASICs . 42

3.7 Conclusion . 42

4 Non-propagating Carry Chains 45

4.1 Introduction . 45

4.2 Compressors . 46

4.2.1 Compression Ratio . 47

4.3 Logic Block Design . 47

4.4 Compressor Tree Synthesis on the New Logic Block 50

4.5 Experimental Setup . 51

4.5.1 VPR . 52

4.5.2 Packing . 54

4.5.3 Benchmarks . 54

4.6 Experimental Results . 54

4.6.1 Overview of Experimental Comparison . 54

4.6.2 Critical Path Delay . 56

4.6.3 Critical Path Analysis . 57

4.6.4 Area Utilization . 59

4.6.5 Wire-length and Routability . 60

4.7 Related Work . 61

4.8 Conclusion . 62

5 Versatile DSP Blocks 63

5.1 Introduction . 64

5.2 Overview of DSP Blocks for Multi-input Addition 65

5.2.1 FPCA Architecture Overview . 65

5.2.2 FPCT Architecture Overview . 66

5.3 Proposed Versatile DSP Block . 67

5.3.1 Architecture of the Base DSP Block . 67

5.3.2 Supporting Various Multiplier Bit-widths 70

5.3.3 Supporting Multi-input Addition . 74

5.3.4 Multi-input Addition Mapping Algorithm 76

5.4 Experiments . 78

5.4.1 Results . 78

x

Contents

5.5 Related Work . 80

5.6 Conclusion . 81

6 Logic Chains 83

6.1 Introduction . 84

6.1.1 Key Idea . 85

6.1.2 Carry Chain Option . 86

6.2 New Logic Chain . 88

6.3 Chaining Heuristic . 90

6.4 Tool Chain Flow . 92

6.4.1 DAG Generator . 92

6.4.2 Placement and Routing . 93

6.4.3 Timing Analysis . 95

6.4.4 Power Estimation . 96

6.5 Experimental Results . 97

6.6 Related Work . 101

6.7 Conclusion . 103

7 AND-Inverter Cones 105

7.1 Introduction . 105

7.2 Logic Block Design . 108

7.2.1 An AIG-inspired logic block . 108

7.2.2 AND-Inverter Cone (AIC) Architecture . 109

7.3 Technology Mapping . 109

7.3.1 Definitions and Problem Formulation . 110

7.3.2 Generating All Cones . 111

7.3.3 Forward Traversal . 112

7.3.4 Backward Traversal . 114

7.3.5 Converting Cones to LUTs and AICs . 114

7.4 Logic Cluster Design . 114

7.5 Packing Approach . 115

7.6 Experimental Methodology . 116

7.6.1 Area Model . 116

7.6.2 Delay Model . 117

7.7 Results . 118

7.8 Related Work . 121

7.9 Conclusions . 122

8 Conclusions and Future Work 125

8.1 Future Work . 128

Bibliography 138

Curriculum Vitae 139

xi

List of Figures
1.1 FPGA versus ASIC. FPGA is highly flexible and less efficient, while ASIC is highly

efficient and less flexible. The flexibility of FPGA comes at a price, which is the

delay, area and power gap between FPGAs and ASICs [50]. 2

1.2 Effect of using hard-logic in FPGAs in narrowing their area and delay gaps with

ASICs [50]. Although the hard-logic can significantly reduce the area gap, its

effect on the delay gap is not considerable for three reasons: (1) Underutilization

of the hard-logic, (2) high routing cost to the stand-alone hard-logic, and (3) the

presence of the FPGAs soft-logic in critical-paths. 3

1.3 Thesis roadmap for improving FPGAs. To bridge the FPGAs and ASICs efficiency

gap, two complementary steps are required: (1) increasing the generality of the

hard-logic such that more applications benefit from it, and (2) improving the

soft-logic efficiency, which impacts all applications, through novel logic blocks. 4

1.4 Ideal FPGA and how the roadmap of Figure 1.3 helps to get closer to this ideal

FPGA. 5

1.5 Thesis organization. Based on the thesis roadmap, shown in Figure 1.3, we

approach the gap problem from two complementary directions: (1) Improving

the generality of the hard-logic blocks through synthesis (1A) and architectural

(1B, 1C) methods, and (2) lightening the stress on the expensive routing network

through locally connected (2A) and synthesis-inspired (2B) logic blocks. 6

2.1 An island-style FPGA with heterogeneous structure. Different types of FPGA

blocks, including soft-logic and hard-logic blocks, interconnected through a two

dimensional routing network consisted of routing switches. 10

2.2 Generic structure of logic cluster (left) and logic block (right) in current FPGAs.

Logic cluster is an array of logic blocks with a local routing network that is

mainly a crossbar. Logic block has a fracturable LUT structure and supports fast

arithmetic addition using the dedicated circuitry and hard-wired carry chains. 11

2.3 Typical CAD and design flow in current FPGAs. 12

2.4 Logic block (ALM) structure of Altera Stratix II-V [7]. 13

2.5 Modes of the ALM that use the carry chain [7]. Arithmetic mode is used for

binary addition and subtraction and shared arithmetic mode is used for ternary

addition. 14

2.6 The DSP block structure of Altera Stratix-III [7]. 15

xiii

List of Figures

2.7 Structure of logic cluster in Xilinx Virtex-5 [92]. The adder circuitry is composed

of multiplexers and XOR gates. This logic cluster has four logic blocks that are

equivalent to the Altera ALM. 16

2.8 The DSP block structure of Xilinx Virtex-5 [92]. 17

2.9 Ripple carry adder (RCA) versus carry save adder (CSA). In RCA, carry propagates

through the full-adders, while in CSA, no carry propagation occurs. 18

2.10 Example of an arithmetic compressor. (a) 4 : 2 compressor I/O diagram; (b) 4 : 2

compressor architecture; (c) 4-ary adder built from an array of 4 : 2 compressors

followed by an RCA; (d) illustration of the interconnect between consecutive 4 : 2

compressors: although the array has the appearance of an RCA in Figure 2.10c,

the carry chain only goes through two compressors. 21

2.11 Adder tree versus compressor tree. Two implementations of a 4-bit ternary adder

using (a) an adder tree, i.e., two RCAs; and (b) a compressor tree, i.e., a CSA

followed by an RCA. The compressor tree implementation eliminates the delay

of two XOR gates from the critical path. 22

2.12 Illustration of the critical path delay through a compressor tree of a multiplier,

including that of the final CPA. The critical path typically includes the j most

significant bits of the final CPA; the portion of the final CPA that computes the

m − j least significant bits can be optimized for area rather than for speed, as

long as it does not become critical. 22

2.13 The PPG unit of the Radix-4 Booth multiplier. Based on the output of the booth

encoder, the right PP is generated by the Booth selector. The input to the Booth

encoder is the multiplier, Y , and the input to the Booth selector is the multipli-

cand, X . 23

3.1 A kernel of the adpcm benchmark, originally written in C [53]. (a) a dataflow

graph of the circuit is shown following if-conversion [2]; and (b) rewritten to

merge three addition operations into a compressor tree [86]. 26

3.2 In the FPGA implementation, GPCs are more flexible and efficient than parallel

counters for compressing bits. Fewer blocks are required to map the same bits,

using GPCs as the mapping blocks. Here, we assume that the GPCs and counters

have the same area and delay, when they are mapped on FPGAs. 28

3.3 The covering GPCs listed in Tables 3.1 and 3.2 as networks of full- and half-adders.

The shaded full- and half-adders are synthesized on the carry chains. 29

3.4 A (0,6;3) GPC implemented at the circuit level (a) and synthesized on ALMs

and carry chains using Arithmetic Mode (b). A (3,5;4) GPC implemented at

the circuit level (c) and synthesized on ALMs and carry chains using Shared

Arithmetic Mode (d). 30

3.5 A (0, 7; 3) GPC implemented at the circuit level (a) and synthesized on a Virtex-5

Slice (b) using the carry chain. 32

xiv

List of Figures

3.6 Example of abutting GPCs on the carry chains of FPGAs. (a) By abutting two

(0,6;3) GPCs on Stratix-III, which are implemented using the same (Arithmetic)

mode, an ALUT can be shared between two GPCs. (b) Two (0,7;3) GPCs on

Virtex-5 are abutted by sharing on LUT. Only portions of both GPCs are shown

to conserve space (b). 34

3.7 Adder tree dot representation of a sample FIR filter with three taps. 36

3.8 The critical path delay of Ternary, MaxPD, MaxAPD, MaxAD decomposed into

logic and routing delay after synthesis on Stratix-III. 38

3.9 Area usage (LABs) of the four synthesis methods on Stratix-III. 39

3.10 The critical path delay of Ternary, MaxPD, MaxAPD, MaxAD decomposed into

logic and routing delay after synthesis on Virtex-5. 40

3.11 Area usage (LUTs) of the four synthesis methods on Virtex-5. 40

4.1 (a) 7 : 2 compressor I/O diagram; (b) 7 : 2 compressor architecture; (c) illustration

of the interconnection pattern between consecutive 7 : 2 compressors. 47

4.2 Compression ratio difference between counters and compressors. (a) Covering

a set of columns with 7 : 3 counters yields three bits per column in the output;

(b) using 7 : 2 compressors reduces the number of bits per column to two. Con-

tiguous columns covered with 7 : 3 counters can be converted to 7 : 2 compressors. 48

4.3 Logic block architecture with new hard-logic.(a) Enhanced version of the Shared

Arithmetic Mode of the Altera ALM; new carry chains, shown in gray, allow the

ALM to be configured as a 7:2 compressor. Two additional multiplexers are

required to select between the two sum outputs of the 7 : 2 compressor and

ternary adder—already present in the ALM; (b) pattern of carry-propagation for

the 7 : 2 compressor. 49

4.4 Mapping to the logic block of Figure 4.3a. The first step is to cover the bits with

the GPCs, using the mapping heuristic of Chapter 3. The second step is to replace

contiguous single column GPCs with 7 : 2 compressors. 51

4.5 Combinational delays of the ALM outputs in a LAB, including propagation delays

along the carry chains. 53

4.6 The critical path delay for each benchmark and compressor tree synthesis

methodology, shown with a 95% confidence interval. 55

4.7 On average, the percentage of critical path delay due to logic and routing for

each benchmark. 56

4.8 The minimum critical path for each benchmark and synthesis method, decom-

posed into logic delays within the compressor and CPA, and routing delay. . . . 58

4.9 The area (LABs) required for each benchmark and compressor tree synthesis

method. 59

4.10 Average wirelength per net for each benchmark and compressor tree synthesis

method. 60

4.11 The minimum channel width in the x and y directions for which each benchmark

is routable for each compressor tree synthesis method. 61

xv

List of Figures

5.1 Architecture of an m-input, n-output programmable GPC. The programmable

GPC is the building logic block of FPCA. 65

5.2 FPCT structure, consisted of 8 CSlices. (a) I/O interface to a CSlice (b) and an

8-CSlice FPCT. 66

5.3 Conceptual illustration of the reference DSP block architecture. Four 18×18

multiplies along with the adders that are required for either constructing larger

multipliers or complex arithmetic multipliers. 68

5.4 The Radix-4 Booth PPG unit. Booth encoder is shared between all PPs bits, but

each bit of PP needs a separate Booth Selector unit. 69

5.5 Structure of the 9 : 2 compressor in the proposed DSP block. This compressor

has nine inputs and two outputs, in addition to the carry inputs and outputs. All

the inputs, including the carry inputs, have the same rank. 70

5.6 A chain of three 9 : 2 compressors. The longest path that a carry output can

propagate includes two compressors, as shown in this figure. Hence, the delay

of a 9 : 2 compressor layer remains constant when the number of compressors

in the layer varies. 71

5.7 Merging the ninth carry bit with the first PP. MSB bits of the PP from bit 16 are

modified. 71

5.8 The compressor tree structure of each multiplier pair in Figure 5.3. The com-

pressor tree includes one layer of 9 : 2 compressors followed by one layer of 4 : 2

compressors and the final CPA adder. The 9:2 layer can be split into independent

9:2 layers at the multipliers boundaries by disconnecting the carry paths using

the shown AND gates. 72

5.9 Overlap between the PPG of two different multiplier configurations. Since the

same PPRT is used for both configurations, several multiplexers are required to

select between either the encoded or the sign bits of the two configurations. . . 73

5.10 Reducing the repetitive sign bits by adding with ±1. 73

5.11 Reducing the constant numbers to one number. 74

5.12 Merging the constant number into first partial product. 74

5.13 The modified Radix-4 Booth PPG encoder for resolving the conflicts of PPG parts

of various multiplier bit-widths. 75

5.14 The indices of the DSP Block inputs that are connected to each Rectangular (RC)

block. RC-blocks are aligned for maximum input sharing, and each RC-block is

connected to distinct DSP block inputs. 76

5.15 Block refinement. The underutilized column in the RC-block provides the oppor-

tunity to cover more bits in other columns. The circled indices are the mapping

candidates, from which two can be covered. 77

xvi

List of Figures

6.1 Key idea. (a) Two logic blocks, each has eight inputs and two base 5-LUTs. Many

13-input logic functions can be mapped to a linear cascade of the base LUTs;

routing resources are required to connect adjacent LUTs in the cascade. (b)

A dedicated logic chain between adjacent LUTs eliminates the overhead due

to routing resources and increases the input bandwidth of logic block. Many

16-input logic functions can be mapped with the same number of available LUTs. 85

6.2 Proposed configuration for the ALM, using the adder and the carry chain for

generic logic synthesis. Each ALM can implement two chained 5-input functions

with non-shared inputs. 86

6.3 (a) The Altera’s ALM configured to implement two 5-input logic functions; ALM

imposes the constraint that the two functions must share two inputs. (b) Using

fracturable LUTs, a subset of 7-input logic functions can be synthesized on an

ALM, but this requires routing a signal from one sub-LUT to the next. (c) To

implement two cascaded 5-input functions with no common inputs, two ALMs

are required. (d) All three of the preceding logic functions can be synthezed

on the proposed logic block using the logic chain and without using the global

routing network; moreover, the proposed cell can implement a subset of 9-input

logic functions. 88

6.4 Integrating the logic chain into the ALM’s structure. The shaded area indicates

the logic chain. Existing 4-LUTs are cascaded using multiplexers to form vertical

5-LUTs along the logic chain. The fifth input of the 5-LUTs is the output of the

preceding vertical 5-LUT, which is actually the logic chain. The key point of

this structure is that the ALM input bandwidth remains the same, therefore two

cascaded 5-LUTs with no shared inputs can be mapped to the new cell. 90

6.5 The logic chain integrated with the carry chain. In addition to the vertical

multiplexer, a horizontal multiplexer is added to select between the sum output

of the full-adder and the logic chain fanout; this multiplexer gives access to any

point of the logic chain. 91

6.6 (a) Two chains intersecting at a shared node. (b) The shared node is assigned to

one of the chains, breaking the other chain into two smaller sub-chains. 92

6.7 The depths of different nodes in a sample DAG. The shaded nodes are part of

other chains and hence not chainable. 94

6.8 Tool chain flow used for the experiments. 95

6.9 Number of logic blocks (ALMs) that are used in each method. On average, the

introduction of our logic chain reduces the ALM usage by 4%. 97

6.10 The number of local interconnection wires—i.e., within a LAB—used for each

benchmark. On average, the introduction of the logic chain reduces the number

of local wires used by 37%. 98

6.11 The number of global and local interconnection wires used for each benchmark,

scaled by the length of the wires. On average, the introduction of the logic chain

reduces the total number of wires used by 12%. 98

xvii

List of Figures

6.12 Dynamic power consumption estimates for the routing network; as the logic

chain reduces the number of programmable wires used, an average savings of

18% is obtained. 99

6.13 Total (logic plus routing network) power consumption estimates; the logic chain

reduces total power consumption by 10%, on average. 99

6.14 Critical path delay of each benchmark; the introduction of the logic chain

marginally improves the critical path delay of most benchmarks. 100

7.1 Flexibility, bandwidth, cost, and delay. (a)–(b) And-Inverter Cones (AICs) can

map circuits more efficiently than LUTs, because AICs are multi-output blocks

and cover more logic depth due to their higher input bandwidth. (c) A possible

integration of AIC clusters in an FPGA architecture. 106

7.2 The paths to design and use a novel FPGA with AICs. In this chapter, we alternate

between adapting the traditional CAD flow to our new needs and using the

results to fix our architecture. To each of the last four steps is devoted one of the

sections of this chapter, as indicated. 107

7.3 Architecture of 5-AIC (AND-Inverter Cone), which has five levels of cells that are

programmable to either AND or NAND gates. The 5-AIC can also be configured

to 2-, 3-, and 4-AICs in many ways (highlighted cells show one possibility),

without any need for extra hardware. The AIG of Figure 7.1 is mapped onto the

right-hand side. To propagate a signal, we can configure a cell to the bypass

mode (e.g., forcing one input to 1 when this is operated as an AND). Moreover,

some AIG nodes need to be replicated when the fanout of an internal value is

larger than one. 109

7.4 Difference between LUT and AIC mapping. Since AICs are inherently multi-

output blocks, the same cone rooted at u in (a) can also be a (free) mapping cone

of v , while in LUT mapping, no common cone exist for any two nodes (b). . . . 111

7.5 The packing efficiency of three crossbar connectivity scenarios: 50%, 75%, and

100%. The allowed cone depth in technology mapping is varied to study the

effect of AIC size on the packing quality. 116

7.6 Structure and delay paths of an AIC cluster with three 6-AICs. 117

7.7 Logic delay of all benchmarks in the original FPGA (LUT), for the FPGA com-

posed only of AIC (6-AIC), and for a hybrid FPGA (LUT/6-AIC). 118

7.8 Number of logic blocks (both LUTs and AICs) on the critical path. 119

7.9 Geometric mean of normalized total logic and routing delays. 120

7.10 Number and type of logic blocks used in the various architectures and with the

various mapping strategies. 120

7.11 Area measured as the total number of clusters used, completely or partially. LABs

and AIC clusters occupy approximately the same area. On average, LUT/5-AIC

uses 16% less resources than LUT-only. 121

xviii

List of Figures

8.1 Achievements of this thesis in closing the delay and area gaps between FPGAs

and ASICs. By increasing the flexibility of the hard-logic, we improved the per-

formance of carry-save-based arithmetic circuits. Moreover, we enhanced both

performance and area of generic logic implementation on FPGAs, by introducing

novel architectures for the soft-logic. 129

xix

List of Tables
3.1 Covering GPC libraries for the Stratix-III (left) and Virtex-5 (right) FPGAs. The

delay unit is ns and the area unit for Stratix-III is ALM and for Virtex-5 is LUT. . 33

3.2 The CD value for each GPC, and the PD, AD, and APD values for the Stratix-III

and Virtex-5 GPC libraries listed in Table 3.1. The GPC with the highest priority

in each case has been highlighted. 35

3.3 Benchmark summary. 38

4.1 Description of the three synthesis methodologies used in the experiments. . . . 55

5.1 Operation modes of the modified Radix-4 Booth PPG. 74

5.2 Different rectangular blocks that are used for the mapping of the inputs bits of

the adder tree. 75

5.3 Overhead of adding new features to the base DSP block. The delay numbers

show the 18×18 multiplier delay in each case. 79

5.4 Delay comparison of the multipliers in our DSP block with the Stratix-II DSP

block. For our DSP block, these numbers are achieved when all features pre-

sented in Table 5.3 are included. 79

5.5 Delays (ns) of multi-input addition benchmarks, when they are mapped on

different logic blocks. 80

5.6 Areas of multi-input addition benchmarks, when they are mapped on different

logic blocks. 80

6.1 Distribution of LUT sizes in different benchmarks. 96

6.2 Chaining heuristic statistics for different benchmarks. 97

7.1 AICs have less configuration bits than LUTs, while they can implement circuits

with a much greater number of inputs (e.g., a 6-AIC includes eight times more

inputs than a typical 6-LUT). 110

7.2 Areas of different components in an AIC cluster and in a LAB, measured in units

of minimum-width transistor area. 117

7.3 Delays of different of paths in the AIC cluster of Figure 7.6. 118

7.4 Average ratio of intra cluster wires for the different mapping scenarios. 119

7.5 Average wire length in units of one CLB segments. 122

xxi

1 Introduction

With the increase of Application-Specific Integrated Circuit (ASIC) design costs and the pressure

of time-to-market, Field-Programmable Gate Arrays (FPGAs) continue to replace ASICs in

many low- and mid-volume products. The cost of designing ASICs, including Non-Recurring

Engineering (NRE), mask, and development costs, is increasing every year as Moore’s law

progresses and applications get extremely complicated. Issues such as power, signal integrity,

clock tree synthesis, and manufacturing defects can add significant risk and time-to-market

delays. FPGAs offer a viable and competitive option to ASIC development by reducing the risk

of re-spins, high NRE costs, and time-to-market delays, as an off-the-shelf FPGA has already

been fabricated and verified.

Although they outperform traditional software, FPGAs have a significant gap in performance,

power consumption, and area utilization with ASICs. A recent research by Kuon and Rose [50]

indicate that FPGAs require approximately 20 to 35 times more area, have a speed roughly three

to four times slower, and consume roughly 10 times more dynamic power than standard-cell

ASICs. Figure 1.1 pictorially illustrates the FPGA and ASIC gaps in the flexibility and efficiency

design space. As shown, FPGAs are the most flexible choice for implementing applications,

but their efficiency is low; ASICs offer the best efficiency, but they are not flexible. This is

the reason that ASICs are still the first choice for implementing high-volume applications, in

which the unit cost remains low.

In the past, many researchers have attempted to enhance FPGAs, but despite more than 20

years of research, FPGAs are way behind ASICs in efficiency, as described in the previous

paragraph. Previous studies have shown that without innovations in FPGA architecture,

advances in device technology, alone, cannot noticeably shrink this gap between FPGAs

and ASICs. In this thesis, we introduce a roadmap for improving FPGAs, and we show how

each contribution of the thesis fits into the roadmap. In the next section, we first describe

the motivation of this thesis, and then we introduce the mentioned roadmap and the thesis

contributions.

1

Chapter 1. Introduction

Efficiency

Flexibility

GAP
Delay: 4X
Area: 35X
Power: 10X

ASIC

FPGA

Figure 1.1: FPGA versus ASIC. FPGA is highly flexible and less efficient, while ASIC is highly
efficient and less flexible. The flexibility of FPGA comes at a price, which is the delay, area and
power gap between FPGAs and ASICs [50].

1.1 Thesis Motivation

Early FPGAs were created with the purpose of implementing any possible digital circuit; hence,

they had a highly flexible structure consisting of fully programmable logic blocks—Look-Up

Tables (LUTs)—and a routing network. This flexibility and its consequent advantages do not

come for free: logic blocks and routing resources tend to be large and slow. Later, FPGA vendors

embedded ASIC-like logic blocks into FPGAs to soften the inefficiency problem of FPGAs.

These new blocks have little flexibility and are dedicated to critical arithmetic operations

that occur frequently in many signal processing applications. As a result, the FPGA structure

became heterogeneous, comprised of the original flexible logic blocks and new dedicated

blocks, which are called soft- and hard-logic in this thesis, respectively.

Although the hard-logic can improve FPGAs when it is utilized efficiently, due to its inflexible

nature, many applications cannot take advantage of it. In [50], Kuon and Rose have evaluated

the impact of the hard-logic on narrowing the gaps between FPGAs and ASICs. The results of

this study for the area and delay gaps are illustrated in Figure 1.2. As shown, the area gap can

be improved substantially when the hard-logic is actually used. In principle, operations that

are implemented by the hard-logic are also implementable by the soft-logic. But, the area that

is consumed by the soft-logic is much larger than the area of the dedicated implementation.

Though, due to the inflexible nature of the dedicated blocks, it is quite possible that these

blocks are not utilized in many applications, which makes the area efficiency problem even

worse.

On the other hand, the impact of the hard-logic on delay improvement is little compared to

the area improvement. Kuon and Rose [50] give three reasons for that: (1) the hard-logic is less

flexible and it might be underutilized, (2) some parts of applications still need to be mapped

to the soft-logic, which is inherently slow, and (3) the cost of routing to the (stand-alone)

2

1.1. Thesis Motivation

ASIC

booth
rs-encoder

cordic18
cordic8

des_area

des_perf
fir_restruct

mac1
aes192

fir3
diffeq

diffeq2

molecular
rs_decoder1

rs_decoder2

fir3

diffeq
diffeq2

aes

aes_inv
pipe5proc

LUT-Only

LUT+HardBlock

Area Gap

Delay Gap

12X3X4X5X

110X20X30X60X 50X 40X

LUT-Only

LUT+HardBlock

ASIC

fir24

ethernet
ray_tracer

des_perf
fir_restruct

rs_decoder1
rs_decoder2

mac1

cordic8
des_area

aes192
diffeq

fir3
cordic18

rs_encoder

booth
molecular

diffeq2

fir24

ethernet
pipe5proc

fir3

aes_inv
aes

raytracer

diffeq2
diffeq

Figure 1.2: Effect of using hard-logic in FPGAs in narrowing their area and delay gaps with
ASICs [50]. Although the hard-logic can significantly reduce the area gap, its effect on the
delay gap is not considerable for three reasons: (1) Underutilization of the hard-logic, (2) high
routing cost to the stand-alone hard-logic, and (3) the presence of the FPGAs soft-logic in
critical-paths.

hard-logic is high and the interconnection delay can be considerable. This implies that the

impact of the hard-logic on delay improvement of an application is highly dependent on how

the rest of the application is implemented by the soft-logic.

In summary, current heterogeneous FPGAs have logic blocks that suffer from either inflex-

ibility or inefficiency, which both limit the enhancement of FPGAs. This fact motivated us

to approach the gap problem from two perspectives, as shown in Figure 1.3. The top plot in

this (conceptual) figure illustrates the current efficiency gap between FPGAs and ASICs. In

this figure, it is assumed that the same applications are used for comparing FPGAs against

ASICs, but for FPGAs, these applications are categorized into two sets: (1) the first set contains

the applications that can exclusively use the soft-logic for their implementation, and (2) the

second set contains the ones that use a mixture of the soft- and hard-logic. Typically, more

applications fall into the first set compared to the second. Hence, the overall average of the

3

Chapter 1. Introduction

ASICsoft-logic + hard-logic
soft-logic

(hard-logic is not usable)

Average (All Applications)

ASIC

ASIC
enhanced soft-logic

(hard-logic is not usable) enhanced soft-logic + hard-logic

Current FPGAs

Step1:
Increasing hard-logic
generality

Step2:
Paradigm shift in
soft-logic design

GAP

Average (All Applications)

GAP

Average (All Applications)

GAP

1

2

soft-logic + hard-logic
soft-logic

(hard-logic is not usable)

Figure 1.3: Thesis roadmap for improving FPGAs. To bridge the FPGAs and ASICs efficiency
gap, two complementary steps are required: (1) increasing the generality of the hard-logic
such that more applications benefit from it, and (2) improving the soft-logic efficiency, which
impacts all applications, through novel logic blocks.

FPGAs efficiency tends to be closer to the average efficiency of the applications in the first set.

The next two plots in Figure 1.3 reveal the roadmap that we follow in this thesis for enhanc-

ing FPGAs. In this figure, two orthogonal and complementary paths to improve FPGAs are

presented. The first path—the middle plot—suggests that one way of improving the overall

efficiency of FPGAs is to increase the number of the applications that can take advantage of

the FPGAs hard-logic. This requires to compromise on efficiency of the hard-logic for the

flexibility. The more number of applications benefit from these resources, the more overall

reduction in the gap will be obtained. This is an essential step to improve FPGAs, however, its

impact is still limited by the soft-logic constraints, as described earlier. Therefore, it is crucial

and complementary to improve the soft-logic of FPGAs, as suggested in the bottom plot of

Figure 1.3. Any enhancement in the soft-logic will affect all applications, as they typically use

4

1.2. Thesis Organization

Hard-Logic

Soft-Logic

Efficiency

F
le
xi
bi
lit
y

IDEAL

Figure 1.4: Ideal FPGA and how the roadmap of Figure 1.3 helps to get closer to this ideal
FPGA.

the soft-logic for their implementation.

Figure 1.4 shows how the presented roadmap in Figure 1.3 can lead to having improved FPGAs.

This figure suggests that to get closer to an FPGA with ideal logic blocks—top-right—the gap

between the soft-logic and hard-logic of FPGAs should be narrowed by improving the efficiency

and flexibility of the soft- and hard-logic, respectively. However, such improvements should

not severely affect the mapping generality of the soft-logic and the efficiency of the hard-

logic—the ideal case for both is when we have no negative impact. The other observation from

this figure is that the ideal FPGA—although may not be feasible—should have homogeneous

structure consisting of ideal logic blocks, as opposed to current FPGAs.

1.2 Thesis Organization

This thesis is organized into eight chapters, including this chapter. In Chapter 2, we review

some background information that are required to better understand the thesis contributions,

which are presented in the next five chapters—Chapters 3, 4, 5, 6, and 7. The final chapter—

Chapter 8— concludes the thesis and discusses about future research opportunities. In the

following, we introduce the thesis organization in more detail.

To establish the background knowledge that is required to understand the thesis contributions,

we provide some basic information in Chapter 2. First, we review the generic architecture

of FPGAs and the CAD flow that is used to design with them. Next, we introduce two recent

high-end FPGAs from two leading FPGA vendors, namely, Altera and Xilinx. In this part, we

briefly review the architectural aspects of these two FPGAs that relate to the contributions of

this thesis. Finally, we present some computer arithmetic concepts, which we will refer to in

the rest of the thesis.

Following the thesis roadmap that was presented in the previous section, this thesis con-

5

Chapter 1. Introduction

+ _

 &

>>

=

 ^

 X

 | &

 ^

c

c

Σ

Logic
Synthesis

X

hard-logic

FPGA

1A

2A

2B

1B

1C

1A: Chapter 3
1B: Chapter 4
1C: Chapter 5

2A: Chapter 6
2B: Chapter 7

Figure 1.5: Thesis organization. Based on the thesis roadmap, shown in Figure 1.3, we ap-
proach the gap problem from two complementary directions: (1) Improving the generality
of the hard-logic blocks through synthesis (1A) and architectural (1B, 1C) methods, and (2)
lightening the stress on the expensive routing network through locally connected (2A) and
synthesis-inspired (2B) logic blocks.

tributes in two complementary parts, as shown in Figure 1.5. In the first part—Chapters 3, 4,

and 5—we discuss how we can add more functionality to the hard-logic of current FPGAs by

either mapping or architectural methods. While, in the second part—Chapters 6 and 7—we

present new architectures to enhance the soft-logic of FPGAs.

The current hard-logic of FPGAs is typically specialized for the critical arithmetic operations;

hence, as shown in the top part of Figure 1.5, one direction of the thesis is to expand the

functionality of the hard-logic to support more arithmetic operations. This can be done either

by new mapping techniques or architectural modifications, as shown in this figure—1A, 1B,

and 1C.

Chapter 3, which corresponds to contribution 1A in Figure 1.5, presents a new mapping

algorithm that uses the adder circuitry and carry chain of FPGAs for performing carry-save

arithmetic. Adders and carry chains are considered as the hard-logic that is coupled with the

LUTs in FPGAs. This adds some level of flexibility, which enables to use in (an unintuitive way)

these resources for a purpose that was not intended. Carry chains are exclusively intended

6

1.2. Thesis Organization

for carry-propagate based circuit implementations. Though, in Chapter 3, we present a

method of using carry chains to map compressor trees—refer to Chapter 2 for the definition

of compressor trees—on FPGAs using the carry chains.

However, due to the hardware constraints of the carry chains, we faced challenges for the

mapping technique of Chapter 3. This motivated us to modify the hard-logic structure and in-

troduce a new carry chain in Chapter 4; this new carry chain has a non-propagating nature and

improves the logic density of FPGAs for compressor trees. The new carry chain corresponds

to contribution 1B in Figure 1.5, in which the hard-logic that is mixed with the soft-logic is

architecturally improved.

In Chapter 5, in contrast to Chapters 3 and 4, we focus on the stand-alone hard-logic of FPGAs,

specifically DSP blocks. This chapter presents a new and versatile architecture for the current

DSP blocks in FPGAs, which have more flexibility in supporting multiplication bit-widths,

and additionally, it enables us to reuse the adder circuitry of the block for implementing

compressor trees. Supporting more multiplication bit-widths is useful to tailor the DSP blocks

to the applications requirements rather than ending up in the underutilized DSP blocks.

Moreover, accessing the adder logic of the multipliers provides the opportunity that additional

applications gain from the DSP blocks. This chapter corresponds to contribution 1C in

Figure 1.5.

The second direction of the thesis, based on the roadmap, is to enhance the soft-logic of FPGAs

using post-synthesis patterns, as shown in the bottom part of Figure 1.5. Using these patterns,

which become visible when applications pass through logic synthesis, we can simplify the

design of FPGAs soft-logic and reduce its excess flexibility. These post-synthesis patterns

include both connection and logic patterns; the connection patterns enable integration of

fixed and hard-wired connections between the soft-logic blocks (2A), and the logic patterns

are exploited to design non-LUT and efficient soft-logic blocks (2B).

In current FPGAs, the routing delay is as critical, if not more critical than, the logic delay.

This is also the case for power consumption. Hence, it is crucial to avoid using routing wires,

especially for long chains of logic that appear in the post-synthesis netlists. This motivated us

to introduce the idea of logic chain, in which fracturable LUTs spanned over the logic blocks

in an array, are cascaded with hard-wired connections to build larger LUTs and to replace

routing wires. These LUTs that are formed along the chain can be exploited to map the critical

chains of logic. Chapter 6 presents this idea and corresponds to contribution 2A in Figure 1.5.

In addition to the long chains of logic, there are some post-synthesis logic patterns, which can

be exploited to design a radically different, yet general, soft-logic block that has a complexity

that is only linear in the number of inputs, it sports the potential for multiple independent

outputs, and the delay is only logarithmic in the number of inputs. Although this new block

is extremely less flexible than a LUT, we show (1) that effective mapping algorithms exist, (2)

that, due to their simplicity, poor utilization is less of an issue than with LUTs, and (3) that a

few LUTs can still be used in extreme unfortunate cases. This idea is presented in Chapter 7

7

Chapter 1. Introduction

and corresponds to contribution 2B in Figure 1.5.

Finally, Chapter 8 concludes this thesis with some final remarks and a review of the contribu-

tions. We also provide some possible research areas that can extend the research related to

this thesis.

8

2 Background and Preliminaries

This thesis presents a roadmap to improve FPGAs efficiency by mapping and architectural

techniques. The purpose of this chapter is to provide background information on basic

concepts and architectures that will be used in the rest of the thesis. Hence, we first give a brief

and general overview on FPGA architecture and tools. Next, we introduce the state-of-the-art

high-end FPGAs from both Altera and Xilinx that are referred in this thesis. Finally, we present

some computer arithmetic concepts and architectures, which are necessary to understand the

contributions of this thesis.

2.1 FPGAs Introduction

Field-Programmable Gate Arrays (FPGAs) are prefabricated devices that can be programmed

to implement any digital circuit. In principle, FPGAs consist of logic blocks and routing

network that each can be programmed to implement a digital design. Original FPGAs had a

homogeneous structure—all the logic blocks were identical—comprised of Look-Up Tables

(LUTs), which we call soft-logic in this thesis. Current FPGAs, however, are heterogeneous,

consist of specialized and dedicated blocks, which we call hard-logic in this thesis, and the

original soft-logic. Current FPGAs are augmented with special purpose hard-logic, tailored to

certain operations that are critical and occur frequently in many applications, for improved

efficiency.

In the following sub-sections, we will briefly review some architectural details of current

FPGAs, and then we will introduce the CAD flow that is used to program such FPGAs.

2.1.1 FPGAs Architecture

Current FPGAs, as shown in Figure 2.1, consist of different types of programmable logic blocks,

including the LUT-based soft-logic, memory, and DSP blocks surrounded by a programmable

routing fabric that allows flexible interconnection of the blocks. The FPGA in Figure 2.1 has

an island-style routing structure, in which FPGA blocks are arranged in a two dimensional

9

Chapter 2. Background and Preliminaries

DSP
Block

Mem
Block

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

DSP
Block

DSP
Block

DSP
Block

DSP
Block

Mem
Block

Mem
Block

Mem
Block
Mem
Block

Mem
Block

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Logic
Cluster

Switch box

Connection box

Figure 2.1: An island-style FPGA with heterogeneous structure. Different types of FPGA blocks,
including soft-logic and hard-logic blocks, interconnected through a two dimensional routing
network consisted of routing switches.

mesh with routing resources evenly distributed throughout the mesh. In this structure, there

are routing channels and connection boxes on all four sides of FPGA blocks. The number

of wires in the horizontal and vertical channels is pre-set during the FPGA chip fabrication.

Currently, most commercial SRAM-based FPGA architectures [6, 7, 52, 91, 92] use island-style

architecture. The typical routing resources include switch boxes, connection boxes, and wire

segments. A switch box [75] is a programmable block that allows the wires of two intersecting

channels to be connected based on routing demand. Meanwhile, a connection box [75]

provides the connectivity between the pins of FPGA blocks and the routing channels.

The box labeled as logic cluster in Figure 2.1 is an array of soft-logic blocks that consist of

Look-Up Tables (LUTs) and certain dedicated gates. Logic blocks clustering is an effective

approach to lighten the stress on the routing network, as most circuits that map to FPGAs

exhibit locality, necessitating short and fast interconnection wires. The logic blocks that reside

in the same cluster are connected through a local routing network, which routes the cluster

inputs and logic blocks outputs to the logic blocks inputs. Figure 2.2 illustrates a sample logic

block cluster. As shown, the input crossbar of the cluster provides the connectivity of the logic

blocks that reside in the same cluster. The generic structure of a logic block in current FPGAs

is also shown in this figure (right). In current modern FPGAs, each logic block is a mixture

of LUTs and dedicated circuits such as adders and carry chains. Carry chains include fast

connections between adjacent logic cells that are used for carry propagation; this permits

the elimination of most of the routing delays that would otherwise be present. In addition to

10

2.1. FPGAs Introduction

LUT

LUT +

carry chain

FF

S

S

Logic block

Logic block

Logic block

Figure 2.2: Generic structure of logic cluster (left) and logic block (right) in current FPGAs.
Logic cluster is an array of logic blocks with a local routing network that is mainly a crossbar.
Logic block has a fracturable LUT structure and supports fast arithmetic addition using the
dedicated circuitry and hard-wired carry chains.

the hard-logic that is tightly coupled with the soft-logic—i.e., adders and carry chains that

are integrated with LUTs—FPGAs include another hard-logic type that is stand-alone and not

mixed with the soft-logic, such as DSP and memory blocks, as shown in Figure 2.1. Almost all

current commercial FPGAs have DSP blocks with different architectures; these DSP blocks

mainly implement multiplication, in addition to other few operations, such as shifting and

accumulation. These are the operations that are commonly present in many signal processing

applications. Such operations, however, still can be implemented by the soft-logic of FPGAs

with lower quality.

2.1.2 FPGAs CAD Flow

Given the complexity of current applications, CAD tools are the indispensable part of the

design process. Today, most FPGA vendors provide a fairly complete set of design tools

that allows automatic synthesis and compilation from design specifications in hardware

specification languages, such as Verilog or VHDL, all the way down to a bit-stream to program

FPGA chips. Figure 2.3 shows the steps of a typical FPGA design flow. Inputs to the design

flow generally include the HDL specification of the design, the design constraints, and the

specification of the target FPGA device.

As the first step, the HDL design is elaborated into generic logic functions as well as datapath

operations, for which the target FPGA has architectural support, such as adders and multipliers.

Next, the elaborated design passes through technology independent logic optimization. In

this step, both sequential and combinational parts of the circuits are optimized. Sequential

logic optimizations include finite state machine encoding/minimization and retiming, and

combinational logic optimization includes constant propagation, redundancy removal, logic

network restructuring and optimization, and don’t-care based optimization.

11

Chapter 2. Background and Preliminaries

Front-end Synthesis

Tech-independent Logic Optimization

Technology Mapping

Packing and Clustering

Placement and Routing

Bitstream Generation

module cgate (a, z);
input [3:0] a;
output[1:0] z;
always@(a)
begin
 z[0] = (a[0] ^ a[1]) | (a[0] & a[2]);
 z[1] = (a[0] ^ a[1]) | (~a[2] & ~a[3]);
end
endmodule

1010101011011101
0100100111011100
0101010111100001
1110101010111101
1010101011110101
0101010111101011

LUT

LUT*
*

*

HDL source code

Synthesized netlist

Target FPGA

Bitstream

FPGA Board

Synthesis

Mapping, packing, placement and routing

Bitstream Generation

FPGA programming

FPGA Board

RTL Design

Bitstream

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

Figure 2.3: Typical CAD and design flow in current FPGAs.

Technology mapping is the next step, which maps logic-optimized circuits to logic blocks of the

target FPGA, including the soft- and hard-logic blocks. Note that the arithmetic operators such

as adders and multipliers can be mapped either to the hard-logic or the soft-logic, depending

on the efficiency of the mapping and availability of resources. Then, the mapped circuit goes

through the packing process, in which the mapped blocks are packed into logic clusters. For

instance, LUTs and flipflops are packed into logic blocks, and then logic blocks are grouped

into logic clusters.

After the packing, placement and routing is performed, during which the packed blocks

are placed and interconnected on the grid of the FPGA. The main objective in this step is

to reduce the wire lengths and minimize the usage of routing resources through a proper

placement of the packed blocks. Once this step is performed, the configuration of the FPGA is

determined. In the final step of the design flow, using the configuration information, a bit-

stream is generated to program the logic and interconnects of the target FPGA to implement

the intended design.

2.2 State-of-the-art FPGAs

Altera and Xilinx are the two main FPGA market leaders. Both have high-end FPGA devices

that resemble the generic FPGA architecture that was presented in the Section 2.1.1. The

12

2.2. State-of-the-art FPGAs

Figure 2.4: Logic block (ALM) structure of Altera Stratix II-V [7].

high-end FPGAs from both vendors have island style structure and consist of fracturable

LUTs that are paired with the hard-logic—i.e., adders—and the stand-alone hard-logic—i.e.,

DSP and memory blocks. However, despite these similarities, the FPGAs from these two

vendors are built differently. In the following, we will briefly review the architectural aspects of

the Altera and Xilinx FPGAs that we use for our experiments and comparisons in this thesis.

For the reviewing purpose, we pick the Altera Stratix-III and Xilinx Virtex-5 FPGAs, which

both are fabricated with the same process technology (65nm) and support 3-input (ternary)

addition. Note that, the subsequent generations of these two FPGAs more or less have the

same architecture, but they have been fabricated with more advanced process technology.

2.2.1 Altera Stratix-III

The logic cell that is employed in the Altera Stratix II-V series of FPGAs, is called Adaptive

Logic Module (ALM) that is shown in Figure 2.4. Each ALM is comprised of two six-input

13

Chapter 2. Background and Preliminaries

(a) ALM in arithmetic mode (b) ALM in shared arithmetic mode

Figure 2.5: Modes of the ALM that use the carry chain [7]. Arithmetic mode is used for binary
addition and subtraction and shared arithmetic mode is used for ternary addition.

LUTs (6-LUTs) with four shared inputs and shared configuration bits—the two 6-LUTs in the

ALM should implement the same logic function. Additionally, the ALM contains a carry chain

that performs efficient ripple carry addition, and by-passable flip-flops that facilitate either

combinational or sequential circuits. The two 6-LUTs are also fracturable, meaning that each

can be decomposed into two or more smaller LUTs. The ALM also includes a seventh input

bit, but can only implement a selected set of seven-input functions.

The ALM has five operating modes, two of which use the carry chains, as shown in Figure 2.5.

In Arithmetic Mode, see Figure 2.5a, each 6-LUT is decomposed into two independent 4-LUTs,

which perform a small amount of pre-adder logic, followed by the carry chains. Arithmetic

mode implements effective adders, (sequential) counters, accumulators, parity functions, and

comparators.

In Shared Arithmetic Mode, see Figure 2.5b, the ALM is configured as a 3-input ripple carry

adder, which is called ternary adder. The fracturable LUTs are configured as Carry-Save Adders

(CSAs)—3:2 full-adder—and the adder circuitry in the ALM functions as the final adder. Using

ternary adders, one can add multiple integers with fewer logic levels compared to binary

adders. Note that the 6-LUTs in the ALM are decomposed into smaller LUTs of 3- and 4-inputs;

only the smaller LUTs are shown in Figure 2.5.

The DSP block in Altera Stratix-III, see Figure 2.6, implements multiplication, multiply-add,

multiply-accumulate (MAC), and dynamic shift functions efficiently. The natively supported

multiplier bit-widths are 9, 12, 18, and 36 using the base 18×18 ASIC multiplier. Other bit-

widths can be supported by combining these bit-widths. The DSP block has built-in addition,

subtraction, and accumulation units to combine multiplication results efficiently. Each DSP

block is comprised of two half-DSPs, as shown in this figure, and each half DSP block has four

18×18 multipliers.

14

2.2. State-of-the-art FPGAs

Figure 2.6: The DSP block structure of Altera Stratix-III [7].

2.2.2 Xilinx Virtex-5

The logic block of Virtex-5 is called Slice [92], as shown in Figure 2.7a. Each Slice contains

four 6-LUTs, four XOR gates, and additional carry logic, including multiplexers. Each 6-LUT

implements one 6-input logic function and LUTs do not share inputs. The 6-LUTs are also

fracturable: each 6-LUT can be decomposed into two 5-LUTs, each of which can be configured

to produce a separate logic function. The propagation delay through an LUT is independent

of the function that it implements, or whether it implements one 6-input or two 5-input

functions. Signals produced by an LUT can exit the Slice, drive the XOR gate, enter the carry

chain, enter the select line of the carry-logic multiplexer (MUXCY), or drive the input of a

flip-flop. The carry chains and XOR gates perform fast arithmetic addition and subtraction

in a Slice. Slices are laid out to form columns. Carry chains can be formed that span all of

the Slices in a column; that is, the carry chains are cascadable, permitting them to perform

addition or subtraction on operands of arbitrary bitwidth.

15

Chapter 2. Background and Preliminaries

(a) Slice architecture (b) Slice configured as 3-input adder

Figure 2.7: Structure of logic cluster in Xilinx Virtex-5 [92]. The adder circuitry is composed of
multiplexers and XOR gates. This logic cluster has four logic blocks that are equivalent to the
Altera ALM.

Figure 2.7b shows a 3-input (ternary) adder synthesized on Virtex-5. Each LUT is configured

as a full-adder, which produces a sum and a carry bit; this is similar to the carry save adder

synthesized on the Stratix-III’s ALM using Shared Arithmetic Mode. The second full-adder,

shown in the shaded box, is formed by the conjunction of the same LUT with the XOR gate and

multiplexer. The XOR gate’s output represents the sum and the multiplexer output represents

the carry. The Ci input to each LUT is the output of the previous LUT in the chain, which is

connected by a routing wire; however, the design is structured so that Ci is dependent on

the inputs to the full-adder and not on Ci−1. For this reason, the path that goes through the

routing network is uncritical.

A pair of Slices forms a Configurable Logic Block (CLB). The two Slices in a CLB do not connect

to one another; each belongs to a different column and has an independent carry chain. Each

CLB connects to a switch matrix for access to the routing network. There is no notion of a

LAB-like logic cluster with fast local routing.

Figure 2.8 shows the architecture of the DSP block in Virtex-5, which supports many inde-

16

2.3. Computer Arithmetic Preliminaries

Figure 2.8: The DSP block structure of Xilinx Virtex-5 [92].

pendent functions. These functions include multiply, multiply accumulate, multiply add,

three-input add, barrel shift, wide-bus multiplexing, magnitude comparator, bitwise logic

functions, pattern detect, and wide counter. The architecture also supports cascading multiple

DSP blocks to form wide math functions, digital filters, and complex arithmetic without using

the soft-logic of FPGAs. Unlike to the Altera DSP blocks, there is less flexibility concerning the

multiplier bit-width in the Xilinx DSP blocks.

2.3 Computer Arithmetic Preliminaries

FPGAs are widely used to implement signal processing and multimedia applications, whose

performance is dictated by the efficiency of the implementation of their arithmetic kernels.

Dedicated arithmetic circuitries (hard-logic), such as multiplier-based DSP blocks and carry

chains, have been embedded in modern FPGAs to improve the performance and logic density

of these industrially relevant circuits. In this thesis, we expand the arithmetic functionality of

the hard-logic of FPGAs, using mapping and architectural techniques. To better understand

these contributions of the thesis, in the following section, we review the relevant computer

arithmetic concepts.

2.3.1 Full- and Half-Adders

A Half-Adder (HA) is a 2-input, 2-output circuit that computes the sum of two bits and outputs

the result as an unsigned binary integer. A Full-Adder (FA) computes a similar sum for three

input bits. The lower-order output bit is called a sum, and the higher-order output bit is called

17

Chapter 2. Background and Preliminaries

 FA FA FA FA

(a) ripple-carry adder

 FA FA FA FA

(b) carry-save adder

Figure 2.9: Ripple carry adder (RCA) versus carry save adder (CSA). In RCA, carry propagates
through the full-adders, while in CSA, no carry propagation occurs.

a carry. In the case of an FA, one of the inputs is called a carry-in bit and the high-order output

is called a carry-out. Many arithmetic circuits, including adders and multipliers are primarily

comprised of HAs and FAs.

2.3.2 Ripple-Carry and Carry-Save Adders

A Carry-Propagate Adder (CPA) is a circuit that adds two binary integers; if the integers are

signed, two’s complement form is assumed. Numerous architectures for carry-propagate

adders have been proposed in the past. In modern CMOS technologies, significant differ-

ences in critical path delay among the different adder architectures generally do not manifest

themselves for small bitwidths, e.g., 8-bits or less.

The most straightforward CPA architecture is the Ripple-Carry Adder (RCA), which generally

has the smallest area but highest delay compared to the alternatives. Figure 2.9 shows a 4-bit

RCA constructed from FA cells; the carry-in of the least significant FA is 0, so an HA can be

used instead of an FA.

As shown in Figure 2.9a, an RCA is a 1-dimensional array of FAs, where the carry-out of each

FA is connected directly to the carry-in of the next; thus, the worst-case critical path delay

is through all of the FAs in the design. If an RCA adds two k-bit numbers, the complexity of

the critical path delay is O(k). Many faster, but larger, alternative adders have been designed,

most with a critical path delay of O(log k).

A Carry-Save Adder (CSA), shown in Figure 2.9b, breaks the carry chain; in fact, it is a 1-

dimensional array of disconnected FAs. CSAs are generally used in conjunction with CPAs in

order to perform efficient n-input addition for n > 2.

18

2.3. Computer Arithmetic Preliminaries

2.3.3 Parallel Counters

An m:n parallel counter (or single-column counter) is a circuit that takes m input bits, counts

the number of input bits that are set to 1, and outputs the value as an n-bit binary unsigned

integer. The output range is [0,m], so the number of output bits is

dlog2 (m +1)e. (2.1)

HAs and FAs are 2 : 2 and 3 : 2 counters, respectively. Verma and Ienne [87], for example,

described an integer linear programming formulation for compressor tree design that uses a

library of m : n counters, for 2 ≤ m ≤ 8.

Let B = bk−1bk−2...b0 be a k-bit unsigned binary integer, where bk−1 is the most significant

bit, and b0 is the least significant bit. Each bit br contributes a total value of br ·2r to the total

value of B , i.e., br contributes 2r , if it is set, and 0 otherwise. In this context, r is called the rank

of br .

When an m : n counter is used to synthesize a compressor tree, all of its inputs have the same

rank. A Generalized Parallel Counter (GPC) is an extension of an m : n counter that can sum

bits of multiple ranks [82]. For example, a (2,3;3) GPC can sum up to two bits of rank 1, and

three bits of rank 0; the maximum output value is 2×21+3×20 = 7, so three output bits are

required. The general form of a GPC is (kt−1,kt−2, ...,k0; s), where kr is the maximum number

of bits of rank r that can be summed, and s is the number of output bits. Similar to an m : n

counter, the number of output bits of a GPC is

dlog2(1+
t−1∑
r=0

kr ·2r)e. (2.2)

In fact, a sufficiently large m : n counter can implement a GPC (although many other imple-

mentations also exist). Each GPC input bit of rank r is connected to 2r inputs of the m : n

counter; any unused input bits of the m : n counter are then driven to 0.

2.3.4 Compressors

Compressors (not to be confused with compressor trees) are arithmetic components, similar in

principle to parallel counters, but with two distinct differences: (1) they have explicit carry-in

and carry-out bits; and (2) there may be some redundancy among the ranks of the sum and

carry-output bits.

The 4 : 2 compressor (also called a 4 : 2 CSA), illustrated in Figure 2.10, was introduced by

Weinberger [89]; at first sight, this name may appear to be somewhat of a misnomer: although

it has four input bits and produces two sum output bits (out0 and out1). It also has a carry-in

(ci n) and a carry-out (cout) bit (thus, the total number of input/output bits are five and three).

19

Chapter 2. Background and Preliminaries

However, it is not the same circuit as a 5 : 3 compressor. All input bits, including ci n , have rank

0. The two output bits have ranks 0 and 1, respectively, while cout has rank 1 as well. Thus, the

output of the 4 : 2 compressor is a redundant number; for example, out1 = 0 and cout = 1 is

equivalent to out1 = 1 and cout = 0 in all cases.

When k 4 : 2 compressors are connected in a carry chain, a total of 4k input bits are compressed

down to 2k output bits plus one additional carry-out bit; the carry-in bit of the first compressor

is set to 0. The primary difference between compressors and counters is the presence of carry

bits in the former; it is also important to recognize that a compressor tree can be constructed

from compressors, counters, or both.

Figure 2.10a shows the inputs and outputs of the 4 : 2 compressor labeled with their ranks;

Figure 2.10b shows one 4 : 2 compressor architecture, which is constructed using two 3 : 2

counters. Figure 2.10c shows a 4-bit adder with four inputs, consisting of four 4 : 2 compressors

in a 1-dimensional array followed by a 4-bit RCA. At first glance, the array of 4 : 2 compressors

appears to have the same structure as an RCA, as the cout bit of each 4 : 2 compressor is

connected to the ci n bit of the subsequent one; however, this is not actually the case, as shown

in Figure 2.10d; the fact that there is no direct path from a carry-in to a carry-out prevents the

formation of a ripple-carry structure.

2.3.5 Adder and Compressor Trees

Suppose that we want to compute the sum of n > 2 binary integers. One approach is to use an

Adder Tree, i.e., a tree of CPAs; the alternative is to build a tree of carry-save adders instead,

only using a CPA at the end. Figure 2.11 shows an example where three 4-bit binary integers

are added. In Figure 2.11a, two RCAs are used; in Figure 2.11b, a CSA is followed by an RCA.

Let dF A and dH A are the respective delays of full- and half-adders. The critical path delay of

the circuit in Figure 2.11a is 2 ·dAN D +3 ·dAN D.OR +2 ·dXOR , while the critical path delay of

the circuit in Figure 2.11b is 2 ·dAN D +3 ·dAN D.OR , an overall saving of two dXOR compared to

Figure 2.11a. This savings occurs because the use of the CSA instead of the RCA permits the

elimination of one bit from the RCA in Figure 2.11b. The idea of using carry-save addition for

fast accumulation dates back to the work of Wallace [88] and Dadda [26], who designed fast

parallel multipliers; however, the fundamental ideas generalize quite elegantly to multi-input

addition as well.

Formally, let A1, ..., An ,n > 2, be a set of binary integers to sum. A Compressor Tree is a circuit

that produces two values, S (sum) and C (carry), such that:

S +C = A1 + ...+ An (2.3)

A 2-input carry-propagate adder is then required to compute the sum of S and C . Since the

high-end FPGAs from both Altera and Xilinx contain architectural support for 3-input (ternary)

carry-propagate adders, it can be more efficient to design compressor trees that produce three

20

2.3. Computer Arithmetic Preliminaries

Figure 2.10: Example of an arithmetic compressor. (a) 4 : 2 compressor I/O diagram; (b) 4 : 2
compressor architecture; (c) 4-ary adder built from an array of 4 : 2 compressors followed by
an RCA; (d) illustration of the interconnect between consecutive 4 : 2 compressors: although
the array has the appearance of an RCA in Figure 2.10c, the carry chain only goes through two
compressors.

values rather than two, e.g.:

S2 +S1 +C = A1 + ...+ An (2.4)

Wallace and Dadda trees are two specific compressor tree architectures; many others have

also been proposed [83, 82, 89, 78, 28, 81, 80, 85, 51, 62, 87].

In multi-input addition, the number of bits to sum at each position is the same. This is not

true in the case of parallel multiplication, where the number of bits to sum tends to be greater

among the bit positions in the middle. As illustrated conceptually by Figure 2.12, the lower-

order bits of the final CPA are generally not on the critical path, as the bits that arrive at these

positions go through fewer layers of logic within the compressor tree. In other words, the

arrival time of the bits at the final CPA is nonuniform, unlike the case of multi-input addition.

21

Chapter 2. Background and Preliminaries

(a) adder tree

(b) compressor tree

Figure 2.11: Adder tree versus compressor tree. Two implementations of a 4-bit ternary adder
using (a) an adder tree, i.e., two RCAs; and (b) a compressor tree, i.e., a CSA followed by an
RCA. The compressor tree implementation eliminates the delay of two XOR gates from the
critical path.

Figure 2.12: Illustration of the critical path delay through a compressor tree of a multiplier,
including that of the final CPA. The critical path typically includes the j most significant bits
of the final CPA; the portion of the final CPA that computes the m − j least significant bits can
be optimized for area rather than for speed, as long as it does not become critical.

Based on this observation, Oklobdzija and Villeger [63] argued that the final CPA of a multiplier

should be implemented as a hybrid adder, which uses a small and slow CPA, such as an RCA,

for the low-order bits, and a faster adder, such as a carry-select adder for the higher-order bits.

Carry-select adders [73] are particularly useful when the arrival time of bits is nonuniform.

Carry-select adders can start to add the bits as soon as they arrive. RCAs, in contrast, cannot,

as the output bit at position i depends on the carry-out bit computed at position i −1. That

being said, carry-select adders can be constructed from smaller bitwidth RCAs as building

blocks.

The work summarized in this section targets ASIC design methodologies; FPGAs, in contrast,

possess fast carry chains, whose usage often dictates the types of adders that perform well on

specific device families.

22

2.3. Computer Arithmetic Preliminaries

 Xi-1 Xi 0

1 0

1 0

1 0

Two

Non-Zero

Neg

Y2j+1 Y2j Y2j-1

PPk

B
o

o
th

 R
e

c
o

d
e

r U
n

it

Correction

Term

Booth Selector

Figure 2.13: The PPG unit of the Radix-4 Booth multiplier. Based on the output of the booth
encoder, the right PP is generated by the Booth selector. The input to the Booth encoder is the
multiplier, Y , and the input to the Booth selector is the multiplicand, X .

2.3.6 Parallel Multipliers

Multiplication involves two basic operations: the generation of the partial products, which is

called Partial Product Generator (PPG), and their accumulation, which is called Partial Product

Reduction Tree (PPRT). In parallel multipliers, all Partial Product (PP) bits are generated in

parallel and compressor trees are used for implementing the PPRT unit. There are two well-

known algorithms for parallel multiplication, which are briefly described in the following.

Radix-4 Booth Multiplier

Radix-4 Booth [73] multiplication is a well-known multiplier design for 2’s complement signed

numbers, in which the number of PPs is half of the basic array multiplication schemes. In

this method, the numbers that are multiplied are encoded and this way the number of PPs

is reduced. The basic idea is to take every second bit and multiply by ±1, ±2, or 0, instead

of shifting and adding for every bit of the multiplier term and multiplying by 1 or 0. To

Booth-encode the multiplier term, the bits in blocks of three are considered, such that each

block overlaps the previous block by one bit. The overlap is necessary so that we know what

happened in the last block, as the MSB of the block acts like a sign bit.

As shown in Figure 2.13, the Booth algorithm is implemented into two steps: Booth encoding

and Booth selecting. The Booth encoding step is to generate one of five values—±1, ±2, or

0—from the adjacent three bits of the multiplier, Y . The Booth selector generates a PP by

utilizing the output signals of the Booth encoding.

Although Booth multiplier generates fewer PPs, its PPG unit is more complex than the other

parallel multipliers, in which the PPG unit is comprised of simple 2-input AND gates. However,

this complexity is absorbed by the large LUTs that are available in current FPGAs.

23

Chapter 2. Background and Preliminaries

Baugh-Wooley Multiplier

Baugh-Wooley [73] multiplication is based on the standard shift and add multiplication

method and is used for the multiplication of 2’s complement signed numbers. The bene-

fit of this multiplier is that the PPs are not sign extended. A Baugh-Wooley PPG for an N ×N

signed multiplier produces N 2 +1 PP bits, some of which are computed using a NAND gate

rather than an AND gate, and the most significant output bit of the multiplier is inverted. One

of the partial product bits is set to the constant value 1.

Compared to the Radix-4 Booth multiplier, the number of PPs is doubled, and thus its PPRT

unit is bigger and slower.

24

3 Mapping using Carry Chains

Based on the thesis roadmap that was presented in Chapter 1, we first focus on increasing the

functionality of the hard-logic of FPGAs to provide the opportunity for more applications to

take advantage of these dedicated resources.

As described in Chapter 1, there are two types of hard-logic in FPGAs: (1) the hard-logic that is

tightly integrated with the soft-logic, such as adder circuitry and carry chains that are mixed

with Look-Up Tables (LUTs), and (2) the stand-alone hard-logic, such as DSP blocks. Both

types have limited flexibility and will be wasted, when they are not used. Coupling with the

soft-logic, however, increases the chances of exploring unintuitive mapping techniques to

reuse the hard-logic for unintended purposes. This is a cheap way to enhance the generality

of the hard-logic of FPGAs, as it does not require any architectural modification; we only need

to update the FPGAs mapping tools.

Typically, due to their frequent occurrence and criticality, arithmetic operations are the primary

candidates for the hard-logic of FPGAs. Moreover, due to their regular structures—e.g., carry-

propagate adders—it is easy to pair them with the soft-logic of FPGAs, which is inherently

symmetric and regular. These are the reasons that most of current FPGAs have fast carry

chains and adder circuitry in their logic blocks; the carry chains bypass the general routing

network and are combined with the adder circuitry in the logic blocks, which enhances the

implementation of the carry-propagate adders on FPGAs.

In this chapter, we present a mapping technique that exploits such dedicated resources for

implementing carry-save based arithmetic circuits. In computer arithmetic literature [73],

it is well-known that addition scales well when the number of inputs increases beyond two;

this was first observed by Wallace [88] in the context of parallel multiplier design. The key

is not to use trees of traditional carry-propagate adders, i.e., circuits that produce the sum

of two (signed) binary integers. As introduced in Chapter 2, the integers are aggregated

together using compressor trees. Carry-save arithmetic or more specifically compressor trees

are fundamental for implementing many signal processing applications, and in contrast to

conventional wisdom, we will show that it is possible to take advantage of the carry chains in

25

Chapter 3. Mapping using Carry Chains

Figure 3.1: A kernel of the adpcm benchmark, originally written in C [53]. (a) a dataflow graph
of the circuit is shown following if-conversion [2]; and (b) rewritten to merge three addition
operations into a compressor tree [86].

FPGAs to improve this class of circuits.

3.1 Introduction

In Chapter 2, we introduced compressor trees. To recall, compressor trees are a class of circuits

that generalizes multi-operand addition and the partial product reduction trees of parallel

multipliers using carry-save arithmetic, in which long chains of carry-propagate addition are

avoided. Multi-input addition occurs in many industrially relevant applications, such as FIR

filters [60], the Sum-of-Absolute Difference (SAD) computation used in video coding [15],

and correlators used in 3G wireless base station channel cards [79], among others. Verma

et al. [86] introduced a set of data flow graph transformations to form compressor trees by

merging disparate addition operations together and with the partial product reduction trees

of multipliers used in the same computations—see Figure 3.1.

The superiority of compressor trees over adder trees for ASICs has been known since the 1960s

[88, 26, 80]; however, these compressor tree synthesis methods yield poor results when circuits

are synthesized on FPGAs. With the presence of fast carry chains, it has long been thought

that trees of 2- or 3-input carry-propagate adders are more efficient than compressor trees for

FPGA synthesis. The reason is twofold. First and foremost, it was thought the compressor trees

are not efficiently synthesized onto LUTs. Secondly, the reduction in delay, which is achieved

by the fast carry-chain that does not pass through the routing network, was thought to offset

the superior arithmetic structure of a compressor tree.

26

3.2. Hybrid Design Methodology

In this chapter, we will show that, in contrast to the conventional belief, compressor trees

can be mapped to FPGA logic blocks efficiently using a mixture of LUTs and dedicated adder

circuitry. This chapter introduces a hybrid design method to synthesize compressor trees

on FPGAs, which is capable of exploiting carry chains in limited and appropriate contexts.

This method can be used to reduce the critical path delays of multi-operand adders, and

multipliers whose partial product reduction trees have been fused with other adders; fixed-

bitwidth multiplication and serialized multiply-accumulate operations can be synthesized on

DSP blocks, which already contain embedded fixed-point multipliers.

Our experiments target the Altera Stratix-III and Xilinx Virtex-5 FPGAs. For both FPGAs, we

observe significant reductions in critical path delay; for Virtex-5, area is reduced as well; for

Stratix-III, the area depends on how the library components are prioritized. If the components

are prioritized to reduce critical path delay, then the area of the compressor tree becomes

larger than that of the adder tree; however, prioritizing for area or area-delay product achieve

more conservative reductions in critical path delay, but achieve marginal area improvements

compared to the adder trees. The experimental results show that, on average, compressor

trees can reduce critical path delay by 25% and 30%, respectively, compared to adder trees

synthesized on the Xilinx Virtex-5 and Altera Stratix-III FPGAs.

3.2 Hybrid Design Methodology

Our methodology to design compressor trees on FPGAs is a hybrid top-down and bottom-

up design approach. First, we build a library of building blocks called Generalized Parallel

Counters (GPCs)—refer to Chapter 2 for the GPC definition—whose implementations are

highly tailored to the structure of LUTs and carry chains in FPGAs; this library construction

phase is vendor and architecture-specific. Each GPC in the library is characterized in terms

of the critical path delay of each output and its area. Second, a high-level greedy heuristic

synthesizes the compressor tree in an architecture-agnostic manner, using GPCs from the

library as building blocks.

Considering the fact that current FPGAs suffer from a slow routing network, the primitive

(building) blocks should be coarse grained enough to increase the logic density and thus

reduce the number of logic (block) levels, which minimizes the circuit depth and reduces

the pressure on the routing network. This, indeed, is the main reason that the compressor

primitives that are used in ASIC design are not appropriate for FPGAs, as they are too small,

underutilize the FPGAs resources, and increase the logic depth of the design. Meanwhile,

the coarse-grained primitives should not use any interconnect wire in their internal design;

using carry chains are allowed, as they have almost null delay. This implies that the depth of

the compressor tree built by these primitives will be equal to the number of the primitives

that are placed in the critical path of the mapped design. Hence, our strategy to design

these primitives is to increase the granularity of the primitive blocks until using routing wires

becomes inevitable.

27

Chapter 3. Mapping using Carry Chains

(3,5;4)(3,4;4)(0,5;3)(5;3)

Unutilized (a) Counters (b) GPCs

Figure 3.2: In the FPGA implementation, GPCs are more flexible and efficient than parallel
counters for compressing bits. Fewer blocks are required to map the same bits, using GPCs as
the mapping blocks. Here, we assume that the GPCs and counters have the same area and
delay, when they are mapped on FPGAs.

The top-down part of the design includes a heuristic that covers the bits with the available

primitives such that the depth of the design is minimized. This is a covering problem, in which

bits should be covered with different primitives. In principle, the heuristic could be replaced

by a more complicated method that achieves a solution of higher quality at the expense of

increased runtime. Theoretically, integer linear programming can help to achieve optimum

solutions. But in practice, since the primitive blocks are coarse grained and the design space

is large, for bigger benchmarks it cannot converge to a solution.

In the following sections, we will describe the details of the bottom-up and top-down parts of

the proposed design methodology.

3.3 Developing Compressor Tree Primitives for FPGAs

As described in the previous section, the first step for mapping compressor trees on FPGAs

is to develop an FPGA optimized library, which contains compressor tree primitives. We

discovered that Generalized Parallel Counters (GPCs) are the right arithmetic blocks that can

be highly tailored to the structure of current FPGAs, using a mixture of soft- and hard-logic.

There are two main reasons that we chose GPCs as compressor trees primitives for FPGAs.

The first reason is that GPCs, as described in Chapter 2, are inherently flexible, which can

cover bits with different bit positions. This allows to cover the input bits in a more efficient

manner with fewer primitives. In fact, either the input bits or the ones that are generated at

each compression level normally create irregular input bit pattern, and hence having a single

inflexible primitive will result in utilization inefficiency, as it is shown in Figure 3.2. While, by

using flexible GPCs the utilization problem is resolved. The second reason for using GPCs as

primitives is that they are implemented very efficiently to the current FPGA logic blocks using

a mixture of LUTs and the adder circuitry. In the following section, we will show how such

primitives are mapped to current FPGAs.

28

3.3. Developing Compressor Tree Primitives for FPGAs

a7 a6

z0

z3 z2

c1 s1

FA

a5 a4 a3

c0

c2

z1

FA
HA

FA

FA

a2 a1 a0

(4,4;4) (5,3;4) (6,2;4)

a7 a6 a5

z3 z2

c1 s1

FA

a4 a3 a2

c2

z1

HA
FA

FA

FA

a1 a0

c0 z0

a0

FA

FA

a3 a2 a1

z0

z2 z1

c0 c1

c2

s0 s1

a6 a5 a4

FA

FA

a3 a2 a1

a6

z0

z3 z2

c1

c2 s2

s0 c0 a0

c3
z1

FA HA

FA

FA

HA

FA a5 a4

s1

a7 a6 a5

z0

z3 z2

c1
c2

s1

FA

a4 a3 a2

s0 c0

a1 a0

c3
z1

FA
FA

FA

FA

(0,7;3) (1,6;4) (3,5;4)

a0

FA

FA

a3 a2 a1

z0

z2 z1

c0 c1

c2

s0 s1

a5 a4

HA

FA

a1 a0

 FA

FA

a4 a3 a2

z0

z2 z1

c0

c1

s0

a5

FA

a2 a1 a0

 FA

a3

z0

z2 z1

c0

a4

FA

(2,3;3) (1,5;3) (0,6;3)

a7 a6 a5

z0

z3 z2

c1

c2
s2

a3 a2

s1

c0

a1 a0

c3
z1

FA FA

FA

FA

HA

HA
a4

Figure 3.3: The covering GPCs listed in Tables 3.1 and 3.2 as networks of full- and half-adders.
The shaded full- and half-adders are synthesized on the carry chains.

29

Chapter 3. Mapping using Carry Chains

a0

FA

FA

a3 a2 a1

z0

z2 z1

c0 c1

c2

s0 s1

a5 a4

HA

FA

(a) (b)

(c) (d)

a7 a6 a5

z0

z3 z2

c1
c2

s1

FA

a4 a3 a2

s0c0

a1 a0

c3
z1

FA
FA

FA

FA

a0

!a0

 +

 +

 +

 +

S(a1,a2,a3)

!S(a4,a5)

C(a1,a2,a3)

!C(a4,a5)

0

1

a0 s1

!s0

c1

!c0

c2

z0

z1

z2

0

ALM

ALM

0

z2

ALM

a1

a0

s0

c0 c2

z0

z1

z2

0

+

+

+

+

+

0

s1

0

a0

a0

S(a2,a3,a4)

S(a5,a6,a7)

C(a2,a3,a4)

0

C(a5,a6,a7)

+

0 0

0
z3

0

0

c1
c3

ALM

ALMz3

Figure 3.4: A (0,6;3) GPC implemented at the circuit level (a) and synthesized on ALMs and
carry chains using Arithmetic Mode (b). A (3,5;4) GPC implemented at the circuit level (c) and
synthesized on ALMs and carry chains using Shared Arithmetic Mode (d).

3.3.1 GPC Libraries

GPCs are architecture-specific and are designed manually. Each GPC is implemented twice:

using only LUTs, and using a combination of LUTs and carry chains. Our approach is to model

each GPC as a network of full- and half-adders. We identify chains of full- and half-adders

within each GPC that are suitably mapped onto carry chains. The remaining full- and half-

adders map onto LUTs. Figure 3.3 shows the adder-based designs of all covering GPCs—refer

to Definition 1—in the library. Figure 3.4a depicts the representation of the (0,6;3) GPC, and

Figure 3.4b shows its corresponding ALM-based implementation on the Stratix-III FPGA—refer

to Chapter 2 for the ALM structure. For this GPC, the Arithmetic Mode of the ALM is used. The

LUT-only implementation of the GPC requires three ALMs: one for each output bit. Similarly,

the (3,5;4) GPC, represented as a network of FAs and HAs in Figure 3.4c, is implemented by

three ALMs, configured in the Shared Arithmetic Mode, as shown in Figure 3.4d. The LUT-only

30

3.3. Developing Compressor Tree Primitives for FPGAs

implementation of the same GPC requires five ALMs that are connected by routing wires, as

the number of GPC inputs exceeds the number of LUT inputs; in contrast, a single layer of

ALMs can implement the same GPC by exploiting the carry chain.

Both adders in Figure 3.4 need to route input bits directly to the carry-chain, bypassing LUTs.

To accomplish this, we exploit the following property of full-adders:

Property 1. A full-adder can be partitioned into two disjoint units, if the two inputs of the

full-adder are bound together. In this case, the sum output will be equal to the carry input, and

the carry output will be equal to the adder input.

For example, in Figure 3.4b, we use two LUTs to route signal a0 to two inputs of the first

full-adder in the chain, and set the carry-input to 0. Property 1 then allows this full-adder to

route a0 to the carry-input of the next full-adder in the chain; the sum output, which is 0, is

not used.

Similarly, both GPCs must route the carry output of the last full-adder in the carry chain to

an ALM output; the sum output has a direct connection to the ALM output, but the carry

output does not. Once again, we can exploit Property 1, by routing the carry output, e.g., z2

in Figure 3.4b, to the carry-input next full-adder in the chain. We configure the LUTs so that

the other inputs to the full-adder are both 0; this propagates z2 to the ALM output through

the sum output of the last adder in the chain. Moreover, this produces a carry output of 0.

This effectively breaks the carry chain, so a new carry chain (with carry-input 0) can start at

the following full-adder. Figure 3.5 shows a Slice-based implementation of (0,7;3) GPC for

Virtex-5—refer to Chapter 2 for the Slice structure. Figure 3.5a depicts the design built using a

network of full- and half-adders, and Figure 3.5b shows the same design mapped onto one

Slice. The LUT-only implementation of this GPC requires two Slices, because the GPC has

seven inputs, while a Slice only has six. The adder chain that is selected for the mapping to

the carry chain has been highlighted in both figures and the remaining adders are mapped

to the driving LUTs. As mentioned in Chapter 2, part of the adder that is placed on the carry

chain is implemented by the LUT as shown in Figure 3.5b. The other important feature of this

implementation is that the carry output of the second LUT, c1, is not dependent on the output

bit of the first LUT, s0; this prevents the formation of a multi-LUT critical path involving carry

chains.

In Virtex-5, an input can access the carry chain at any point, but the most significant output,

z2, goes through the last multiplexer of the chain. One additional quarter-Slice is required to

generate the GPC output. Since the multiplexer output drives an XOR gate, the other input is

set to constant 0 to propagate the last GPC output to the Slice output.

We can map up to 8-input GPCs to the logic blocks of Stratix-III and Virtex-5 using the carry

chain. The main constraint is that no routing wires are used within each GPC.

Definition 1. A covering GPC is one whose functionality, given I/O constraints, cannot be

implemented by another GPC.

31

Chapter 3. Mapping using Carry Chains

a0

FA

FA

a3 a2 a1

z0

z2 z1

c1 c0

c2

s1 s0

a6 a5 a4

FA

FA

z0

a1
a2
a3

a4
a5
a6

s0

a1
a2
a3

c1

c1

a0

s0

0

Carry
z1

z2

XOR

XOR XOR

XOR

0 1

0 1

0 1

0

0

s1

c0

Carry

s0

c2

c1

0 1

z2

(a) (b)

Figure 3.5: A (0, 7; 3) GPC implemented at the circuit level (a) and synthesized on a Virtex-5
Slice (b) using the carry chain.

For instance, a (4,3;4) GPC is not a covering GPC: either a (4,4;4) or (5,3;4) can implement its

functionality by setting an appropriate input bit to 0. The GPC library only contains covering

GPCs. Table 3.1 summarize the GPC libraries for the Stratix-III and Virtex-5 FPGAs. Each GPC

in the library can be implemented with only LUTs, or with LUTs in conjunction with carry

chains, as discussed above. When a non-covering GPC is needed during compressor tree

synthesis, the smallest covering GPC that can implement its functionality is always chosen.

For Stratix-III, GPCs using Arithmetic Mode are uniformly smaller than those built using only

LUTs. For GPCs with six or fewer inputs, the LUT-only implementation is faster. For GPCs with

more than six inputs, two layers of LUTs are required for the LUT-only implementation, while

Arithmetic Mode can realize the same GPC using a single layer of LUTs in conjunction with a

carry chain; thus, the latter is faster and smaller.

The Virtex-5 GPC library has different characteristics. For GPCs with six or fewer inputs,

the LUT-only implementations are uniformly superior to the use of carry chains. For the

(0,7;3) GPC, the carry chain-based implementation is faster and smaller than the LUT-only

implementation; for all remaining GPCs, the LUT-only implementations are faster, but larger,

than the carry-chain based implementations.

32

3.3. Developing Compressor Tree Primitives for FPGAs

Altera Stratix-III Xilinx Virtex-5

LUT-Only Arithmetic LUT-Only Arithmetic
GPCs Delay Area Delay Area Delay Area Delay Area
(0,6;3) 0.38 3 0.97 2 0.35 3 1.04 4
(1,5;3) 0.38 3 0.97 2 0.35 3 0.79 3
(2,3;3) 0.38 3 0.97 2 0.35 3 0.79 3
(0,7;3) 1.36 4 0.98 2.5 1.48 6 1.04 4
(1,6;4) 1.36 5 1.01 3 0.84 7 1.04 4
(3,5;4) 1.36 5 1.01 3 0.65 7 1.04 4
(4,4;4) 1.36 5 1.01 3 0.91 6 1.04 4
(5,3;4) 1.36 5 1.01 3 0.65 5 1.04 4
(6,2;4) 1.36 5 1.01 3 0.91 7 1.04 4

Table 3.1: Covering GPC libraries for the Stratix-III (left) and Virtex-5 (right) FPGAs. The delay
unit is ns and the area unit for Stratix-III is ALM and for Virtex-5 is LUT.

3.3.2 Efficiently Packing Adjacent GPCs Along Carry Chains

Each Stratix-III ALM, for example, contains ten ALMs, but LAB inputs can only enter the carry

chain at the first and sixth ALMs. As shown in Figures 3.4a and 3.4b, two GPCs can be abutted,

because the carry-in and carry-out bits of each are not part of the GPC circuit. However, the

placer in Altera’s Quartus II software is unable to pack GPCs densely in a LAB, because it

requires an explicit connection via a carry chain from one GPC to the next. Quartus II only

instantiates two GPCs per LAB: one starting at the first ALM, and one starting at the sixth. For

example, if two (0,6;3) GPCs were synthesized, then just four of the ten ALMs in a LAB would

be used.

Two GPCs that use the same configuration mode, e.g., (Shared) Arithmetic Mode, can share

a half-ALM (ALUT) when abutted. Looking at Figures 3.4a and 3.4b, the first ALUT in a GPC

produces no output, and the last ALUT receives no inputs. Property 1 allows the last ALUT of

one GPC to be shared with the first ALUT of the next, as shown in Figure 3.6a. This allows a new

GPC to start at any point along the carry chain, not just at the first or sixth ALM, and facilitates

resource sharing between adjacent GPCs. Fortunately, Quartus-II was able to discern that the

two GPCs are logically disjoint.

Referring back to Table 3.1, the GPCs with six or fewer inputs require two ALMs, but when n

such GPCs are abutted, one ALUT is shared between each pair and therefore 3n +1 ALUTs are

used. We abut groups of GPCs that use up to five contiguous ALMs (half-LAB) and we must

choose a value of n that satisfies 3n +1 ≤ 10. Therefore, we can abut up to three GPCs from

the first group with shared LUTs in half of a LAB.

The Virtex-5 FPGA offers a more limited opportunity to share LUTs and carry chain resources

between abutted GPCs; this technique only works for the (0,7;3) and (2,3;3) GPCs–any combi-

nation of these two GPCs—in Table 3.1. Figure 3.6b shows an example for two (0,7;3) GPCs; in

33

Chapter 3. Mapping using Carry Chains

Figure 3.6: Example of abutting GPCs on the carry chains of FPGAs. (a) By abutting two (0,6;3)
GPCs on Stratix-III, which are implemented using the same (Arithmetic) mode, an ALUT can
be shared between two GPCs. (b) Two (0,7;3) GPCs on Virtex-5 are abutted by sharing on LUT.
Only portions of both GPCs are shown to conserve space (b).

this case, the last LUT of the first GPC and the first LUT of the second GPC can be shared.

3.4 Compressor Tree Synthesis Heuristic

Given a GPC library, this section describes a heuristic to synthesize a compressor tree. The

first step characterizes each GPC in the library in terms of its ability to reduce the number of

bits at each stage. Second, a greedy heuristic generates the compressor tree.

3.4.1 GPC Library Characterization

The first step is to prioritize the GPCs in the library. We introduce four metrics for this purpose:

Definition 2. The Compression Difference (CD) of a GPC is the difference between the number

34

3.4. Compressor Tree Synthesis Heuristic

Altera Stratix-III Xilinx Virtex-5

LUT-Only Arithmetic LUT-Only Arithmetic
GPC CD PD AD APD PD AD APD PD AD APD PD AD APD

(0,6;3) 3 7.9 0.9 2.4 3.1 1.8 1.9 8.5 1 2.9 2.9 0.6 0.6
(1,5;3) 3 7.9 0.9 2.4 3.1 1.8 1.9 8.5 1 2.9 3.8 1 1.3
(2,3;3) 2 5.3 0.6 1.6 2.1 1.2 1.5 5.5 0.6 1.7 2.5 0.6 0.8
(0,7;3) 4 2.9 0.8 0.6 4.1 2.9 3 1.2 0.6 0.2 3.8 1.3 1.2
(1,6;4) 3 2.2 0.6 0.5 3 1 1 3.6 0.4 0.5 2.9 0.7 0.7
(3,5;4) 4 2.9 0.8 0.6 4 1.6 1.6 6.2 0.5 0.8 3.8 1 0.9
(4,4;4) 4 2.9 0.8 0.6 4 1.6 1.6 4.4 0.6 0.7 3.8 1 0.9
(5,3;4) 4 2.9 0.8 0.6 4 1.6 1.6 6.2 0.8 1.3 3.8 1 0.9
(6,2;4) 4 2.9 0.8 0.6 4 1.6 1.6 4.4 0.5 0.6 3.8 1 0.9

Table 3.2: The CD value for each GPC, and the PD, AD, and APD values for the Stratix-III and
Virtex-5 GPC libraries listed in Table 3.1. The GPC with the highest priority in each case has
been highlighted.

of inputs and the number outputs.

Definition 3. The Performance Degree (PD) of a GPC is the ratio PD = C D
del ay .

Definition 4. The Area Degree (AD) of a GPC is the ratio AD = C D
ar ea .

Definition 5. The Area-Performance Degree (APD) is the ratio APD = C D
ar ea·del ay .

The compression difference represents each GPC’s ability to reduce the bits at each level of the

compressor tree. For example, the compression difference of a (2,3;3) GPC is 5−3 = 2, while

that of a (6,2;4) GPC is 8−4 = 4; thus, the latter is more effective.

The three objective criteria outlined above are used to sort the GPCs in a priority order. At

each step, the heuristic traverses the prioritized list of GPCs and selects the first one that it can

use in the situation. The PD criterion is used to optimize delay; AD is used to optimize area;

and APD attempts to balance delay and area. Table 3.2 lists the CD value for each GPC, along

with the PD, AD, and APD values resulted for each GPC listed in Table 3.1. The GPCs having

the highest priority for the different design objectives have been shaded in Table 3.2; these

GPCs are called base GPCs.

3.4.2 Compressor Tree Synthesis Heuristic

The input to the compressor tree synthesis heuristic is a set of bits of different ranks to sum.

A column is a set of bits having the same rank, i.e., column[i] is the number of input bits in

the i th column. As an example, Figure 3.7 shows the input representation of the multi-input

adder part of a length-3 FIR filter using dot notation, where each dot depicts in a bit in a

specific column that will be added; for this particular filter, column[0] = 1, column[1] = 3, etc.

35

Chapter 3. Mapping using Carry Chains

Weight = 0 Weight = W

Figure 3.7: Adder tree dot representation of a sample FIR filter with three taps.

Additionally, the user specifies one of PD, AD, or APD as the optimization strategy, and the

GPCs in the library are sorted accordingly.

Coincidentally, all of the base GPCs in Table 3.2 are m:n counters. To exploit this fact, the

heuristic first covers all of the bits in column[i] with as many base GPCs as necessary; some

bits may be left over. For example, if the base GPC is (0,6;3), and column[i] contains eight bits,

then one base counter would be used to cover the first six bits, and two bits would be left over.

The output bits of each GPC must propagate to the correct columns. For example, a (0,6;3)

GPC that covers six bits in column[i] will produce three output bits of rank i , i +1, and i +2;

these bits must be added to column[i], column[i +1], and column[i +2] accordingly.

The second step is to cover the remaining bits with counters. The heuristic traverses the

columns from least to most significant, and selects an appropriate GPC for the library to

cover each column. GPCs are considered in priority order, and the first feasible GPC is

chosen. Columns containing three or fewer bits are skipped, because our target FPGAs

support 3-input CPA. To bind a GPC to column[i], two conditions must be met. Firstly, a

GPC with exactly column[i] bits in its least significant position must be chosen. Secondly,

the subsequent column(s) should have at least as many bits as GPC inputs in that position.

For example, suppose that column[i] = 3, and we are considering a (2,3;3) GPC; then, it must

have column[i +1] > 2 to satisfy this criterion. After a GPC has been chosen, the bits that it

covers are removed from their respective columns. The process then continues, starting with

column[i +1] and stopping at the most significant column.

The third step generates the output bits for each GPC; as discussed previously, an M-output

GPC whose least significant inputs cover bits from column[i] generates one output bit for

36

3.5. Experimental Results

column[i], column[i +1],..., column[i +M −1]. Output bits are generated after the covering

process stops; this prevents the formation of carry chains at each level of the tree. For example,

a GPC covering column[i] will produce an output bit for column[i +1]; we want that bit to be

covered at the next level of the tree, rather than the current level.

Next, we connect the GPCs from the current level of the tree to those at the previous level. It is

therefore important to track which GPC produces each output bit. When LUT-based GPCs are

used, each output bit of the GPC has the same delay; however, when carry-chains are used, the

least significant output bit produced by each GPC has a slightly lower delay than the second

least significant output bit, etc., e.g., as illustrated by Figure 3.4b and Figure 3.5b for Stratix-III

and Virtex-5, respectively. Similarly, input-to-output delays of certain inputs may be higher

than others; for example, in Figure 3.4b, input bit a0 clearly has the longest critical path. Thus,

it is generally a good strategy to connect bits with higher arrival times to the GPC inputs with

lower critical path delays at each level.

Both the Stratix-III and Virtex-5 FPGAs support native 3-input carry-propagate addition

through their carry chains. If all columns contain three or fewer bits, then the compressor

tree generation is complete, and all that remains is to connect the compressor tree outputs

to a carry-propagate adder of appropriate bitwidth. If at least one column contains four or

more bits, then another compressor tree level is generated, using the same technique outlined

above.

3.5 Experimental Results

3.5.1 Experimental Methodology

First, we modelled each covering GPC in Table 3.1 at a low-level granularity. For Stratix-III,

we performed atom-level modelling using the Verilog Quartus Module (VQM) format, as

provided by Altera’s Quartus-II University Interface Program (QUIP). These models were used

as components to construct larger compressor trees. The delay and area values reported here

are taken from the Quartus-II project reports. For Virtex-5, we took a similar approach, using

a Verilog-like format similar to VQM. Xilinx’s ISE 10.1 CAD tools were used for all experiments

targeting Virtex-5. The mapping heuristic was implemented in C++ using delay profiles for

each GPC provided by the synthesizer. The input is a text file containing the number of

bits per column. The output is a structural VHDL netlist of GPCs, forming the compressor

tree, followed by a 3-input carry-propagate adder. The user specifies PD, AD, or APD at the

command line.

3.5.2 Benchmarks

Table 3.3 summarizes the benchmarks used in our experiments, which are compressor trees

taken from arithmetic circuits and DSP and video processing applications. DCT [77], H.264

37

Chapter 3. Mapping using Carry Chains

Benchmark Description

dct Multiplierless DCT
hpoly Horner polynomial Eval.
H.264 ME H.264 motion estimation
g721 G.721 encoder
fir3, fir6 3- and 6-tap FIR filters
m9x9, m18x18, m24x24, m36x36 Parallel signed multipliers
add2I, add2Q Video mixer components

Table 3.3: Benchmark summary.

0

2

4

6

8

10

12

T
e

rn
a

ry
M

a
x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e

rn
a

ry
M

a
x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e

rn
a

ry
M

a
x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e

rn
a

ry
M

a
x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e

rn
a

ry
M

a
x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e

rn
a

ry
M

a
x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

add2I add2Q dct fir3 fir6 g721 hpoly H.264 ME m9x9 m18x18 m24x24 m36x36 Avg.

Routing Delay Logic Delay

St
ra

ti
x-

II
I:

 C
ri

ti
ca

l P
at

h
 D

el
ay

 (
n

s)

Figure 3.8: The critical path delay of Ternary, MaxPD, MaxAPD, MaxAD decomposed into logic
and routing delay after synthesis on Stratix-III.

ME [15], fir3, fir6 [60], m9x9, m18x18, m24x24, and m36x36 naturally contain compressor

trees. HPoly, G.721 [53], and Video Mixer [84] are transformed to expose large compressor

trees [86]. Most of these benchmarks are publicly available with a few exceptions. The

FIR filters were built using randomly generated constants; and Video Mixer is provided by

Synopsys Corporation as an example to illustrate their Behavioral Optimization of Arithmetic

(BOA) feature. Video mixer contains several distinct compressor trees and we use two of

them. Each benchmark is synthesized as a purely combinational circuit, using four different

approaches: Ternary uses a tree of three-input adders, MaxPD, MaxAD, and MaxAPD use the

compressor tree synthesis heuristic with GPCs prioritized by PD, AD, and APD, respectively.

The approaches are evaluated and compared in terms of critical path delay and area.

3.5.3 Results: Stratix-III

Figure 3.8 and Figure 3.9, respectively, report the critical path delay and area for each bench-

mark using each of the four synthesis methods for the Altera’s Stratix-III FPGA.

38

3.5. Experimental Results

0

20

40

60

80

100

120

140

160

180

200

add2I add2Q dct fir3 fir6 g721 hpoly H.264 ME m9x9 m18x18 m24x24 m36x36 Avg.

Ternary MaxPD MaxAPD MaxAD
St

ra
ti

x-
II

I:
 A

re
a

(L
A

B
s)

Figure 3.9: Area usage (LABs) of the four synthesis methods on Stratix-III.

Figure 3.8 shows that that Ternary has the maximum critical path delay for all benchmarks

except g721. For g721, MaxAD has a slightly larger critical path delay than Ternary, but the

critical path delays of both MaxPD and MaxAPD, which include critical path delay as part of

the GPC prioritization scheme, are significantly smaller. On average, MaxPD is 30% faster than

Ternary.

Logic delays, i.e., the delay through LUTs and carry chains, rather than routing delay, is the

primary reason that Ternary has greater logic delay than the compressor trees; this is due,

primarily, to the long ripple-carry chains that are formed using the Stratix-III ALM’s Shared

Arithmetic Mode. Logic delay is more prominent for benchmarks having the greatest height,

such as add2I and m36x36. On the other hand, benchmarks such as g721 and H.264 ME have

shorter adder trees, but wide-bitwidth final carry-propagate adders; thus, they exhibit little

disparity between adder and compressor trees in terms of delay.

MaxPD achieves the smallest critical path delay for most benchmarks, as it uses the LUT-only

(0,6;3) base GPC having highest priority. The delay of this GPC is less than that of the base

GPCs for MaxAPD and MaxAD; this explains MaxPD’s advantage in terms of delay. On average,

MaxAPD’s critical path delay is 7.6% greater than MaxPD’s.

In terms of area, both MaxAPD and MaxAD require fewer LABs than Ternary, most notably

fir3 and fir6. MaxPD uses more LABs than the other compressor tree synthesis methods,

because its base (0,6;3) GPC has a large LUT-only implementation–requires three ALMs—

compared to the (0,7;3) base GPC of use by MaxAPD and MaxPD, which requires 2.5 ALMs

when implemented with carry chains. Ternary requires more LABs than MaxAPD and MaxAD

because each LAB has limited input bandwidth, which inhibits the ability to use all ALMs in

a LAB to implement a Ternary adder. Each LAB contains ten ALMs, and six inputs per ALM

are used in Shared Arithmetic Mode, so 60 inputs are required to implement a 10-bit 3-input

adder in a LAB, but the actual LAB bandwidth is less than 60 and we observed that only half

39

Chapter 3. Mapping using Carry Chains

0

1

2

3

4

5

6

7

8

9
T

e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

T
e
rn

a
ry

M
a

x
P

D
M

a
x
A

P
D

M
a

x
A

D

add2I add2Q dct fir3 fir6 g721 hpoly H.264 ME m9x9 m18x18 m24x24 m36x36 Avg.

Routing Delay Logic Delay

V
ir

te
x-

5
: C

ri
ti

ca
l P

at
h

 D
el

ay
 (

n
s)

Figure 3.10: The critical path delay of Ternary, MaxPD, MaxAPD, MaxAD decomposed into
logic and routing delay after synthesis on Virtex-5.

0

500

1000

1500

2000

2500

add2I add2Q dct fir3 fir6 g721 hpoly H.264 ME m9x9 m18x18 m24x24 m36x36 Avg.

Ternary MaxAPD MaxPD MaxAD

V
ir

te
x-

5
: A

re
a

(S
lic

e-
LU

Ts
)

Figure 3.11: Area usage (LUTs) of the four synthesis methods on Virtex-5.

of the ALMs in the LAB are used; in contrast, it is possible to fit six 6-input GPCs into a LAB,

requiring only 36 inputs, which is below the LAB input bandwidth.

To summarize, MaxAPD offers the best trade-off between critical path delay and area usage.

MaxPD should only be used when the compressor tree constrains the critical path delay of the

entire system and there are extra LABs to spare. MaxAD is clearly the best synthesis mode if

area reduction is a priority.

3.5.4 Results: Virtex-5

Figure 3.10 and Figure 3.11, respectively, report the critical path delay and area for each

benchmark using each of the four synthesis methods for the Xilinx’s Virtex-5 FPGA.

Like Stratix-III, Ternary has the largest critical path delay for most benchmarks, although

there are some exceptions such as hpoly, ME, and m18x18, where MaxAD and Ternary are

approximately equal. MaxPD achieves the smallest delay among all benchmarks other than

dct and m9x9. The disparity of the critical path delays between MaxPD, MaxAPD, and MaxAD

40

3.6. Related Work

is smaller for Virtex-5 than Stratix-III; this is due to the differences in the architectural features,

such as different carry chains and unavailability of LAB-like clusters of LUTs with fast local

routes in Virtex-5. On average, MaxPD is 25%, 8% and 12% faster than Ternary, MaxAPD and

MaxAD, respectively.

Like Stratix-III, Ternary has the largest logic delay, due to ripple-carry propagation. The base

GPC for MaxPD is a (0,6;3) GPC implemented using LUTs alone, while MaxAPD and MaxAD

use a (0,7;3) GPC implemented using LUTs and carry chains as their base GPCs; thus, MaxAPD

and MaxAD have larger logic delays than MaxPD.

The area results are somewhat different than Stratix-III; in particularly, MaxPD does not

suffer from particularly poor area utilization for Virtex-5. On average, Ternary and MaxPD

are comparable in terms of area and thus, MaxPD is preferable due to its reduced critical

path delay; while MaxAPD and MaxAD achieve less pronounced, but noticeable, average

improvements in area, while remaining comparable to one another.

To summarize, critical path delay, and not area, distinguishes the four synthesis heuristics

for Virtex-5. Ternary is not competitive in terms of critical path delay for Virtex-5, while

offering no area advantage, unlike Stratix-III. On average MaxPD achieves slightly better

critical path delays than MaxAPD and MaxAD, but uses slightly more area; MaxAPD and

MaxAD are comparable in terms of both critical path delay and area. If the compressor tree lies

on the critical path of a design, then MaxPD should be used; otherwise, MaxAPD or MaxAD

would be more appropriate choices.

3.5.5 Integer Linear Programming (ILP)

To assess the quality of the heuristic, we compared it with an Integer Linear Program (ILP) that

computes a near-optimal compressor tree implementation. Ideally, one could formulate the

ILP to exploit the GPC delay and area information reported in Table 3.1, combined with all

packing possibilities discussed in Section 3.3.2 to obtain an overall optimal solution for any of

the three design objectives; however, we found that the search space is too large and that the

ILP does not converge in a reasonable amount of time, as opposed to our previous work [67],

where we had smaller GPCs.

3.6 Related Work

3.6.1 Compressor Tree Synthesis for FPGAs

Conventional wisdom has held that adder trees are superior to compressor trees on FPGAs.

For example, Altera’s manual for Stratix II notes that the Shared Arithmetic Mode of the

ALM was introduced to facilitate implementation of adder trees using 3-input, rather than

2-input, adders [7], which reduces the height of an N -input adder tree from dlog N
2 e to dl og N

3 e.

Our experiments have shown that compressor trees can be more effective than adder trees

41

Chapter 3. Mapping using Carry Chains

in practice, and that Shared Arithmetic Mode can actually be quite useful for constructing

compressor trees.

Poldre and Tammemae [74] developed a method to synthesize a 4 : 2 compressor on the Xilinx

Virtex Slice architecture; a layer of 4 : 2 compressors can reduce four integers to two without

carry propagation [89]. Similarly, 4 : 2 compressors have also been synthesized on the Slice

architecture used in Xilinx Virtex-2 and -4 and Spartan-2 and -3 [64, 44], Altera Cyclone III [44]

and Altera’s Adaptive Logic Module (ALM) [65]. A 4 : 2 compressor only requires four input

bits per LUT, which is a good implementation choice for older and lower-end FPAs whose

logic [65] cells are based on 4-LUTs with carry chains; however, as modern FPGAs now contain

fracturable 6-LUTs [41] better I/O utilization can be achieved using the larger GPCs advocated

in this work.

Three prior pieces of work have proposed to synthesize compressor trees on FPGAs using

LUT-only GPCs [66, 67, 59]. The experimental results (MaxPD) in this chapter indicate that

this approach improves critical path delay, but requires more resources compared to adder

tree (Ternary) implementation, and, as a consequence, may not yield an ideal design choice.

3.6.2 Compressor Tree Synthesis for ASICs

Compressor trees were introduced as an efficient method for partial product reduction for

parallel multipliers using networks of full- and half-adders [88, 26]. This was soon followed by

the notion of parallel counters [83] and GPCs [82], which are constructed using full- and half-

adders as building blocks. An optimal compressor tree synthesis algorithm, which repeatedly

chooses the three bits from each column having the smallest arrival times, and connects them

to the input of a full-adder, was introduced more recently [80, 85]. The design of the final adder

is then tailored to the delay profile of the compressor tree outputs [63, 81]. These approaches

do not work well for FPGAs for two reasons: (1) routing delays are difficult to predict during

synthesis; and (2) the presence of carry chains influences the structure of both GPCs and the

final adder.

3.7 Conclusion

In this chapter, we introduced a new approach for the synthesis of compressor trees on

commercial high performance FPGAs. For this purpose, we exploit the carry chains and

adder circuitry that exist in current FPGA logic blocks. The approach involves two stages:

an architecture-specific GPC library instantiation phase, and an architecture-agnostic com-

pressor tree synthesis phase, which constructs a compressor tree using components from the

library. The results of experiments, targeting both FPGAs from Altera and Xilinx, indicate that

compressor trees can improve both critical path delay and area compared to the existing state

of the art: synthesis of multi-operand addition using trees of 3-input adders.

42

3.7. Conclusion

Altogether, the compressor tree synthesis algorithm presented here can help users and CAD

tool developers to improve the arithmetic capabilities of FPGAs. This is a cheap way of

increasing the functionality of the current hard-logic that is coupled with the soft-logic of

FPGAs. The consequence is that several new applications, which are based on the compressor

trees, can be enhanced using these dedicated resources.

Despite the low-cost advantage of the presented mapping technique, the achievable improve-

ment is limited, due the fact that the carry chains are exclusively designed for carry-propagate

adders. The mapping contribution, however, helped us to explore the hardware constraints

of the current architecture; using this experience, in the next chapter, we will present a new

architecture for the FPGAs logic block, which has non-propagating carry chains, in addition

to the current propagating carry chain. This new chain requires few new resources and is

optimised for compressor trees.

43

4 Non-propagating Carry Chains

In the previous chapter, we presented a mapping technique to increase the functionality of

the hard-logic that is coupled with the soft-logic of FPGAs–i.e., carry chains and adder logic.

Adding more functionality to the hard-logic of FPGAs follows the first direction of the thesis

roadmap, in which the goal is to increase the number of applications that can take advantage

of the dedicated resources of FPGAs. The mapping technique of the previous chapter does not

require any hardware modifications, and thus can be immediately employed for the current

FPGAs. However, the mapping challenges motivated us to revise the structure of the logic

block (slightly), which can enhance both performance and area of the compressor trees on

FPGAs.

In this chapter, we present a new FPGA logic block, which has new carry chains optimized for

carry-save arithmetic. In contrast to the existing carry chains of FPGAs, our proposed carry

chains have non-propagating nature. To support these carry chains, we add a few dedicated

gates to the existing resources. Moreover, these new resources are added in a way that the

original functionality of the logic block is maintained, and minimum overhead is imposed. To

map on this new logic block, we extend the mapping heuristic of the previous chapter to take

advantage of the new hard-logic structure.

4.1 Introduction

Previously, in this thesis, we argued that a compressor tree is a fundamental arithmetic struc-

ture that needs to be enhanced on FPGAs. Generally, the architecture of modern FPGAs is not

well-suited to compressor trees. The logic clusters of the recent high-end FPGAs from Altera

and Xilinx can be configured to implement ternary (3-input) addition using fast carry chains.

The primary advantage of the carry chains is that the carry bits are propagated directly from

one cell to its adjacent neighbor, thereby avoiding the overhead of the routing network. This

design point favors the use of ternary adder trees rather than compressor trees.

In Chapter 3, we showed that compressor trees can be synthesized on FPGAs carry chains

45

Chapter 4. Non-propagating Carry Chains

using a circuit called Generalized Parallel Counter (GPC). The GPC Mapping approach yields

compressor trees whose delays are significantly lower than ternary adder trees, despite the

latter’s use of the carry chains; however, there is some noticeable increase in the number of

logic blocks required. The main reason is that current carry chains in FPGAs have not been

designed to support carry-save arithmetic, and this limits the achievable enhancement.

In this chapter, we introduce new carry chains for FPGAs that are tailored for compressor

trees and require slight modification of the original logic block structure. This new logic

block is the revised version of the Altera ALM logic block—refer to Chapter 2 for the ALM

structure—which has additional carry chains and can be configured as a 7 : 2 compressor;

this compressor belongs to a well-known class of circuits that have been used for successful

synthesis of ASIC multipliers in the past [89, 78, 63]. The 7 : 2 compressor has fast carry-chains

and are constructed from dedicated adders, similar to those used for ternary addition in

modern FPGAs. Unlike prior carry chains, however, the carry chains in 7 : 2 compressor does

not propagate beyond two logic blocks.

By combining the strengths of the GPC mapping with the use of 7 : 2 compressors, when

possible, faster compressor trees can be realized on the FPGA. In the experiments, we observed

that the compressor trees are approximately 35% faster than ternary adder trees, and they

slightly require more resources.

4.2 Compressors

The new FPGA logic block, which is described in this chapter, can be configured as a 7 : 2

compressor; the 7 : 2 compressor generalizes the 4 : 2 compressor cell, which was introduced in

Section 2.3.4 of Chapter 2. These compressors—not to be confused with compressor trees—are

arithmetic constructs that have explicit carry-in and carry-out bits, and when they are chained

through the carry bits, no ripple carry propagation occurs in contrast to carry propagate

adders. Figure 4.1a shows the basic I/O structure of the 7 : 2 compressor. This compressor has

seven inputs, two outputs, two carry inputs, and two carry outputs. All the inputs, including

the carry bits, have the same rank, 0; like all compressors, there is redundancy between the

carry outputs and normal outputs, as two of them have the same rank, 1.

Figure 4.1b shows the circuit-level architecture. In total, five 3 : 2 counters are used in the

structure of the 7 : 2 compressor. The remarkable feature of this circuit is the fact that no

logical path exists between the carry inputs and carry outputs of the compressor. This implies

that no carry-propagation occurs when several compressors are chained.

Figure 4.1c shows the interconnect structure, when 7 : 2 compressors are chained. Consider the

i th compressor in sequence. The rank 1 carry output bit (cout ,0) connects to carry-input ci n,0

of the (i +1)s t compressor; also, the rank two carry output bit (cout ,1) connects to carry-input

ci n,1 of the (i +2)nd compressor.

46

4.3. Logic Block Design

Figure 4.1: (a) 7 : 2 compressor I/O diagram; (b) 7 : 2 compressor architecture; (c) illustration
of the interconnection pattern between consecutive 7 : 2 compressors.

4.2.1 Compression Ratio

Let I and O be the number of inputs and outputs produced by a counter, GPC, or compressor;

for compressors, I and O do not include the carry-in and carry-out bits. The Compression

Ratio (CR) is defined as C R = I /O. For example, a 7-input, 3-output GPC has CR = 7/3 = 2.5,

while a 7 : 2 compressor has CR = 7/2 = 3.5. The C R tends to be higher for compressors than

counters. Figure 4.2a shows compression using 7 : 3 counters; which produce three output

bits per column, while 7 : 2 compressors, shown in Figure 4.2b, produce two output bits per

column; the other output bits are propagated down the carry chain.

4.3 Logic Block Design

Figure 4.3 shows our proposed new FPGA logic block, which is presented as an extension of

the ALM used in the Altera’s Stratix II-V line of high-end FPGAs. The components required for

Shared Arithmetic Mode—refer to Chapter 2 the operating modes of the ALM—are also shown

in this figure. The left-hand side of Figure 4.3a shows four 3-LUTs, which are part of Altera’s

fracturable 6-LUT architecture. The carry chain on the right-hand-side is the traditional

47

Chapter 4. Non-propagating Carry Chains

Figure 4.2: Compression ratio difference between counters and compressors. (a) Covering a
set of columns with 7 : 3 counters yields three bits per column in the output; (b) using 7 : 2
compressors reduces the number of bits per column to two. Contiguous columns covered
with 7 : 3 counters can be converted to 7 : 2 compressors.

carry chain that is used to implement ternary addition, using the four 3-LUTs configured

as a carry-save adder. The novel features of the new logic block are the carry chains in the

center—gray background—which can implement a 7 : 2 compressor, and the two multiplexers

shown in gray on the right-hand side of Figure 4.3a, which selects between the outputs of the

two carry chains. Similar to ternary addition, the new carry chains require the four 3-LUTs

to be configured as a carry-save adder. To implement a 7 : 2 compressor, three additional

full-adders (and a seventh LUT input) are required.

Three carry-in/carry-out bits are also required; they are labeled X, Y, and Z in Figure 4.3a.

The carry-out labeled X/Y/Z connects to the corresponding carry-in labeled X/Y/Z of the next

compressor in the chain. A detailed picture of the carry chains across several logic blocks is

shown in Figure 4.3b.

In principle, the full-adders used in the two carry chains could be shared; this design choice

was illustrated by us in [68]; although doing this could slightly reduce area, it requires that

multiplexers be inserted into the carry chains, significantly increasing the critical path delay;

as our goal is to increase performance, this design point is not ideal, especially since the area

of the multiplexers offsets the area savings from sharing full-adders.

There are two primary advantages of providing an FPGA logic block that can be configured

as a compressor compared to synthesizing GPCs on LUTs. The first advantage, which was

illustrated in Figure 4.3, is that a k : 2 compressor will have a higher compression ratio than a

k-input GPC.

In some, but certainly not all cases, this can reduce the number of levels of logic in the

48

4.3. Logic Block Design

Figure 4.3: Logic block architecture with new hard-logic.(a) Enhanced version of the Shared
Arithmetic Mode of the Altera ALM; new carry chains, shown in gray, allow the ALM to be
configured as a 7:2 compressor. Two additional multiplexers are required to select between
the two sum outputs of the 7 : 2 compressor and ternary adder—already present in the ALM;
(b) pattern of carry-propagation for the 7 : 2 compressor.

compressor tree. The second advantage involves area utilization. Referring to the Table 3.1 in

Chapter 3, to implement a (0,7;3) GPC, 2.5 ALMs are required, while only one of our proposed

logic blocks, which is marginally larger than an ALM, is required to realize a 7 : 2 compressor.

Reducing the number of logic blocks, moreover, may allow for a tighter placement of logic

blocks on the device, which, in turn, reduces wire-length and routing delay; our experiments

confirm this hypothesis.

Consider the i th compressor in the chain. Carry-in bits ci n,0 and ci n,1 are driven by the rank

1 carry-out of the (i −1)st compressor and the rank 2 carry-out of the (i −2)nd compressor,

respectively; likewise, the rank 1 and carry-out of the i th compressor drives carry-in, ci n,0, of

the (i +1)st compressor, and the rank 2 carry-out drives carry-in, ci n,1, of the (i +2)nd .

When an ALM is configured as a 2-bit ternary adder in shared arithmetic mode, six input bits

are used; the 7 : 2 compressor, in contrast, requires an extra input bit. This is not a problem, as

the ALM contains eight architecturally visible inputs; either of the two remaining inputs can

be used as the seventh input when the ALM is configured as a 7 : 2 compressor.

49

Chapter 4. Non-propagating Carry Chains

4.4 Compressor Tree Synthesis on the New Logic Block

This section describes a mapping heuristic that can synthesize compressor trees targeting the

logic block shown in Figure 4.3a. This heuristic is an extension of the mapping algorithm that

was presented in Chapter 3, which targeted the Altera Stratix-III FPGA.

Compressor trees synthesized using an ASIC design flow produce two outputs that are summed

using a CPA. Since ternary CPAs are available in Stratix-III for the same delay and area as binary

CPAs, the heuristic outputs compressor trees that produce three outputs instead of two. The

remainder of the compressor tree is synthesized using GPCs of Table 3.1 in Chapter 3. This

section extends the mapping heuristic to include the possibility of configuring the logic blocks

as 7:2 compressor as well. In principal, the mapping heuristic has three major steps:

1. Covering the bits in current level of compressor using GPCs

2. Replacing a subset of GPCs by 7 : 2 compressors.

3. Exploiting the final CPA for computing the result.

Note that, the first two steps are repeated until a certain number of bit rows remain, and then

the third step is performed.

The mapping heuristic generates one level of the compressor tree at a time. A subset of the

input bits is covered by GPCs and possibly 7 : 2 compressors. The output bits produced by

each GPC are propagated to the next level of the compressor tree, along with the bits from the

current level that are not covered. Since the rank of each GPC output bit is known, a new set of

columns—array of integers—is generated for each level of the tree. A new level in the tree is

generated until there are at most three rows of bits remaining, i.e., each column of the next

level has at most three input bits. A ternary CPA completes the tree.

Once the GPC mapping of one level in the compressor tree is accomplished, the heuristic

attempts to replace some GPCs with 7 : 2 compressors. For this purpose, each contiguous

sequence of (0,7;3) GPCs is replaced with a contiguous sequence of 7 : 2 compressors—or

smaller single column GPCs, if (0,7;3) GPC does not exist—similar in principle to Figure 4.2.

Note that this transformation reduces the number of bits in the following level; aggregated

over several levels, the use of compressors rather than counters can reduce the total number

of logic levels in the compressor tree. Figure 4.4 shows an example, where a set of bits are

first mapped by the GPCs and then the contiguous single column ones are chained, and thus

replaced by the 7 : 2 compressors. To chain the GPCs, priority is given to the eligible ones that

have a higher compression ratio, i.e., (0,7;3) GPCs. The chaining continues until no single

column GPC remains for the next bit position in the chain. Several chains of 7 : 2 compressors

can be formed at each level of the compressor tree.

Next, the current level of the compressor tree is mapped onto logic blocks. GPCs are mapped

onto ALMs, while 7:2 compressors require the logic block to be configured to use the carry

50

4.5. Experimental Setup

GPC

7:2

Figure 4.4: Mapping to the logic block of Figure 4.3a. The first step is to cover the bits with
the GPCs, using the mapping heuristic of Chapter 3. The second step is to replace contiguous
single column GPCs with 7 : 2 compressors.

chains shown in Figure 4.3a. Additionally, the outputs of the GPCs and compressors from

the preceding level of the compressor tree are connected to the inputs of the GPCs and

compressors in the current level. The last step is to generate the columns for the next level of

the compressor tree.

The final step is to compute the result using the CPA. The final CPA uses the carry chains

that are present on modern high-performance FPGAs. In the case of the Altera Stratix II-V

series FPGAs, shared arithmetic mode permits the ALMs in the carry chains to be configured

as ternary (3-input) CPAs with no additional cost over 2-input CPAs. To exploit this device

family-specific feature, the compressor tree produces three outputs, rather than two. The CPA

itself is comprised of a carry-save adder (implemented in LUTs) followed by a ripple-carry

adder (implemented using the carry chains).

4.5 Experimental Setup

To evaluate the new FPGA logic block, we use the academic placement and routing tool, VPR

[12, 13], which is widely used in FPGA research areas. Although it is a very useful tool, it still

does not support carry chains. However, we tried to pack logic blocks into logic clusters to be

able to use VPR to model the carry chains. The drawback of this approach is that a limited

number of logic blocks could be placed in a cluster, as the resulting cluster will demand huge

bandwidth. In the following, we first describe the logic block modeling by VPR, and then we

explain the packing step.

51

Chapter 4. Non-propagating Carry Chains

4.5.1 VPR

The publicly available Versatile Place-and-Route (VPR) tool [12, 13] was used to evaluate the

new FPGA logic blocks proposed in Section 4.3. The algorithm in Section 4.4 was used to

map each compressor tree onto the new FPGA. This determines the number of logic blocks

required to realize the circuit. VPR was then used to place and route the circuit; afterwards,

VPR reported the critical path delay, including its decomposition into logic and routing delays,

wire-length, and the minimum number of routing tracks per channel for which the design is

routable.

VPR models an island-style FPGA, where each island is a cluster, containing one (or more)

Basic Logic Elements (BLEs). Each BLE consists of a programmable LUT, a flip-flop connected

to the LUT output, and multiplexer. The selection bit of the multiplexer is programmed, such

that it can select the LUT output for combinational logic or the flip-flop output for sequential

logic. BLEs within the same cluster connect to each other by a fast local routing network. The

global routing network, which is slower, connects BLEs in different clusters. The cluster in an

Altera Stratix-series FPGA is called a Logic Array Block (LAB), and contains several ALMs.

We used VPR version 4.30 to model logic blocks and logic clusters that resemble Altera’s ALMs

and LABs. Each LAB in our architecture contains four ALMs. Since VPR does not model carry

chains between LABs, we model each carry chain output as being provided by an additional

LUT inside the LAB, whose delay is specified appropriately. Another difference between VPR

4.30 and realistic FPGAs involves the routing network: Stratix II-V organizes LABs into columns

with nonuniform routing in the x- and y- directions; the baseline VPR architecture, in contrast,

has uniform routing.

We modeled a clone of the Altera ALM in VHDL, and added the extra carry chains and two

multiplexers shown in Figure 4.3a, along with one additional configuration bit, which is only

set when the ALM is configured as a compressor; two different versions of the modified ALM

were created, that, respectively, support configurations as 7 : 2 compressor. Using Shared

Arithmetic Mode, the ALM can be configured as a 2-bit ternary adder; each LAB contains four

ALMs, and can be configured as an eight-bit ternary ripple-carry adder. The global routing

network can be used to build larger ripple-carry adders.

The ALM clones were synthesized with Synopsys Design Compiler using a 90nm Artisan

standard cell library based on a TSMC design kit. The delays of the paths through the ALM

clone were input into the VPR architecture configuration file to model the logic and carry

chains delays. We estimated the size of each cell in terms of 2-input gates; 22 additional

gates were required to implement the carry chains for the 7:2 compressor, including the two

multiplexors in Figure 4.3a, and the extra configuration bit; this increased the area of the ALM–

excluding the routing resources–by less than 5%. Figure 4.5 shows the delays of the output

bits of the ALMs in a LAB; when configured as a 6-LUT, the delay of each output is always

0.69ns; for other configurations, the delay depends on the position along the carry chains. VPR

generates an FPGA whose dimensions are sized specifically for each benchmark circuit. This

52

4.5. Experimental Setup

Figure 4.5: Combinational delays of the ALM outputs in a LAB, including propagation delays
along the carry chains.

tends to minimize the routing delays from the FPGA’s input pads to the circuit inputs, and

from the circuit outputs to the FPGA’s output pads. The FPGA generated by VPR must have at

least as many LABs as the packed circuit, and must satisfy an aspect ratio specified by the user.

For example, if the user specifies an aspect ratio of 1, and the circuit requires 23 LABs, then

the FPGA generated by VPR will be a 5×5 array. An aspect ratio of 1 was used throughout our

experiments.

VPR uses a binary search to determine the minimum number of tracks for which a legal route

can be found for each circuit. For a given placement, let tx and ty be the number of routing

tracks used in the x and y directions, and let tz = max tx , ty . VPR stops the binary search when

it finds the minimum value of tz for which a legal route is found.

To model routing delays, the per-unit resistance and per-unit capacitance of the wires must be

specified in the VPR architecture configuration file. We selected per-unit resistance and per-

53

Chapter 4. Non-propagating Carry Chains

unit capacitance values based on the TSMC 90nm CMOS technology, under the assumption

that metal-6 is used for wires.

4.5.2 Packing

Technology mapping for FPGAs maps a circuit implemented in terms of basic gates—e.g.,

AND, OR, XOR, etc—onto appropriate FPGA components: LUTs, carry chains, DSP blocks,

etc. The compressor tree synthesis heuristic described in Section 4.4 is a form of technology

mapping that is specific to compressor trees mapped onto ALMs that have been modified as

shown in Figure 4.3a.

Packing is the process of assigning each ALM in a technology mapped netlist to exactly one

LAB. The number of ALMs assigned to the same LAB cannot exceed the maximum number of

ALMs per LAB, which is an architecture-specific parameter.

Technology mapped ALMs that are connected by a carry chain must be mapped to the same

LAB; otherwise, the carry chains cannot be used.

VPR 4.30 includes a packing tool called T-VPack; as VPR 4.30 does not support BLEs with carry

chains, T-VPack cannot enforce the constraint described above, because it is unaware of the

presence of carry chains.

Instead of using T-VPack, we wrote our own packing software that is specific to the compressor

trees produced by our mapping heuristic. The packer is greedy: it always selects the longest

carry chains, and packs up to four ALMs along the chain into the same cluster. If the length of

the chain is k > 4, then the first four ALMs in the chain are packed together, and the chain is

broken after them; this yields a new chain of length k −4, which is reinserted into the set of

carry chains. When no carry chains remain, the remaining ALMs are packed arbitrarily. After

packing, VPR performs placement and routing.

4.5.3 Benchmarks

To evaluate the new FPGA logic block, we used the same benchmarks that was used in Chap-

ter 3—refer to Section 3.5.2 for the description of the benchmarks that are used for the

experiments of this chapter.

4.6 Experimental Results

4.6.1 Overview of Experimental Comparison

Throughout our experiments, each compressor tree was synthesized three times. Table 4.1

summarizes the three different approaches: Ternary, GPC, and 7:2+GPC. For the GPC mapping,

we used MaxPD method of Chapter 3, in which the primary objective is to minimize the

54

4.6. Experimental Results

Synthesis Method Description

Ternary Ternary Adder Tree
GPC Standard GPC mapping (MaxPD in Chapter 3)
7:2+GPC Compressor tree mapping using 7:2 mode (Section 4.4)

Table 4.1: Description of the three synthesis methodologies used in the experiments.

0

5

10

15

20

25

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

add2I add2Q dct fir3 fir6 g721 hpoly H.264 ME m9x9 m18x18 m24x24 m36x36 Avg.

C
ri

ti
ca

l P
at

h
 D

el
ay

 (
n

s)

Figure 4.6: The critical path delay for each benchmark and compressor tree synthesis method-
ology, shown with a 95% confidence interval.

delay. As described in Section 4.4, each compressor tree produces three outputs that are

summed with a ternary ripple carry adder. The Ternary and GPC synthesis methods target

high-performance FPGAs that contain 6-LUTs, carry chains, and support for ternary addition;

this includes Altera Stratix II-V, as well as Xilinx Virtex 5-6. 7:2+GPC target FPGAs containing

the modified ALM in Figure 4.3a.

The heuristic used to build ternary adder trees is similar in principle to the GPC mapping

strategy introduced in Section 4.4; the primary difference is that the component library

contains just one component: a ternary adder, i.e., a 3 : 1 CPA. When there are several choices

of input bits to add at a level of the tree, then priority is given to the widest possible CPA with

the longest carry chain.

In Chapter 3, we have already compared Ternary and GPC on the Altera Stratix-III FPGAs.

GPC yielded compressor trees with faster critical path delay; however, these compressor trees

required more ALMs. Similar trends are observed here. The experiments presented here

evaluate the benefit of extending these logic blocks to be configurable as a 7 : 2 compressor.

As discussed in the preceding section, we estimate that this new logic block is at most 5%

larger than the ALM–excluding the routing resources–in the Stratix II-V FPGAs. The benefits

obtained using the new logic block, as reported here, must be weighed against a uniform

increase in the area of all logic blocks in the FPGA, including a great many that will not be

configured as a 7 : 2 compressor for any specific circuit.

55

Chapter 4. Non-propagating Carry Chains

0%

20%

40%

60%

80%

100%
T

e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

T
e
rn

a
ry

G
P

C
7
:2

+
G

P
C

add2I add2Q dct fir3 fir6 g721 hpoly H.264 ME m9x9 m18x18 m24x24 m36x36 Avg.

Lo
gi

c
vs

. R
o

u
ti

n
g

D
el

ay

Logic Delay Routing Delay

Figure 4.7: On average, the percentage of critical path delay due to logic and routing for each
benchmark.

4.6.2 Critical Path Delay

First, we measure the critical path delay for each benchmark and decompose it into logic

delays within the compressor tree and final CPA, and routing delays. We synthesized each

benchmark ten times using VPR, using a different random number seed each time. Figure 4.6

shows the average critical path delay of the ten runs, including a 95% confidence interval for

each benchmark and synthesis method.

In contrast to what we observed in Chapter 3, for some benchmarks such as fir3 and fir6,

Ternary is faster than GPC. While in Chapter 3, we observed that GPC is always faster than

Ternary. These incompatibility between the results is the due to the fact that we use different

FPGA tools in these two chapters. In this chapter, we have to use VPR, which is an academic

tool and has many constraints, for modeling the FPGA and performing place and route, while

in Chapter 3, we used matured FPGA commercial tools.

The delay results in Figure 4.6 reveals that 7:2+GPC offers a definitive advantage over Ternary

and GPC. This is, indeed, what we expected, as 7 : 2 compressors have higher compression

ratio—see Figure 4.2—and have less pressure on the routing network—carry chains replace

the routing wires. Among the benchmarks, H.264 ME is the smallest one with the shallowest

compressor trees; hence, there is little differentiation between the results of the compressor

tree synthesis methods for these three benchmarks.

Figure 4.7 decomposes the average critical path delay into percentages due to logic (including

carry chains) and routing. Typically, logic delays consumed 30-45% of the overall delay,

for each benchmark and synthesis method. For each benchmark, Ternary had the highest

percentage of logic delay, which can be attributed to the use of carry chains at each level of the

tree; taken in aggregation, the carry chains within the adder tree start from the least significant

input bit to the most significant output bit of the final CPA, although the critical path is not

guaranteed to include the final CPA.

In contrast, GPC and 7:2+GPC, include logic delays through some portion of the compressor

56

4.6. Experimental Results

tree, followed by some, but not all, of the final CPA. On average, the critical path of GPC

subsumed a slightly greater percentage of routing delay than 7:2+GPC, however, this trend did

not occur uniformly across all benchmarks.

Among the ten runs for each benchmark and synthesis method, the standard deviation of the

logic delays was always non-zero. Along any specific path through the circuit, the logic delay

will always be fixed, but the routing delay differs, depending on the placement. The non-zero

standard deviations of the logic delays indicate that random changes in the placement, i.e.,

variation in routing delays due to different random number seeds used by VPR, can change

which paths become critical.

In ASIC technologies, the arrival time of each compressor tree output bit at the CPA can be

predicted from synthesis and used to optimize the CPA design [63]; the non-zero standard

deviations for logic delays in our results indicate that for FPGA design flows, variations in

routing delays make this process inexact. Hence, methods to simultaneously optimize the

compressor tree output delay profile and the final CPA design for FPGAs, i.e., those that are

analogous to Oklobdzija and Villeger’s, are unpredictable prior to placement and routing due

to variations in routing delay. Moreover, due to the specific features of FPGA logic architectures,

including carry chains, the hybrid final CPAs proposed by Oklobdzija and Villeger [63] may

be an inappropriate choice for FPGAs. For this reason, we chose to implement the final CPAs

using ripple-carry chains. Alternative CPAs, such as carry-select adders, will require more

ALMs. Although they are superior in terms of logic delay, they may be inferior when the

additional costs of routing are taken into account. A detailed investigation into final CPA

design for compressor trees in FPGA technologies is left open for future work.

4.6.3 Critical Path Analysis

For GPC and 7:2+GPC, the logic delay includes a few layers of logic blocks (LB layers) in the

compressor tree, followed by some number of bits in the CPA. As the specific critical path

varies from run to run, we focus on individual runs. In particular, we select the minimum

critical path among the ten runs for each benchmark and synthesis method for an analysis of

the components that contribute to logic delay. This analysis does not make sense for Ternary,

because the critical paths in the adder tree may include long carry chain delays at each level

of the tree, not just the final CPA.

Figure 4.8 decomposes the critical path delay into logic delays within the compressor tree and

CPA, and routing delays, for GPC and 7:2+GPC. Generally, 7:2+GPC has shorter logic delay—

due to higher compression ratio, thus having fewer logic levels—and routing delay—due to

reducing the stress on the routing network through the extensive use of new carry chains as

well as utilizing less logic blocks.

7 : 2 compressors can lead to different phenomena that impacts critical path delay; For add2I,

for example, the use of 7 : 2 compressors reduces the LB layers on the critical path in the

57

Chapter 4. Non-propagating Carry Chains

0

2

4

6

8

10

12

14

16

18

20
G

P
C

7
:2

+
G

P
C

G
P

C

7
:2

+
G

P
C

G
P

C

7
:2

+
G

P
C

G
P

C

7
:2

+
G

P
C

G
P

C

7
:2

+
G

P
C

G
P

C

7
:2

+
G

P
C

G
P

C

7
:2

+
G

P
C

G
P

C

7
:2

+
G

P
C

G
P

C

7
:2

+
G

P
C

G
P

C

7
:2

+
G

P
C

G
P

C

7
:2

+
G

P
C

G
P

C

7
:2

+
G

P
C

G
P

C

7
:2

+
G

P
C

add2I add2Q dct FIR3 FIR6 g721 hpoly H.264 ME m9x9 m18x18 m24x24 m36x36 Avg.D
ec

o
m

p
o

se
d

 C
ri

ti
ca

l P
at

h
 D

el
ay

 (
n

s)

Compressor Tree Logic Delay CPA Logic Delay Routing Delay

Figure 4.8: The minimum critical path for each benchmark and synthesis method, decom-
posed into logic delays within the compressor and CPA, and routing delay.

compressor tree, but increases the number of bits on the critical path in the CPA.

For add2Q, 7:2+GPC reduces the number of LB layers in the compressor tree from three to

one, but incurs a greater delay through the CPA than the GPC. The logic delay of 7:2+GPC, is

comparable to that of GPC.

For dct, fir3, hpoly, m9x9, m18x18, and m24x24 the critical path of 7:2+GPC, in contrast to

GPC, passes through fewer LABs in the compressor tree and fewer final CPA bits.

For fir6 and hpoly, the critical path of 7:2+GPC includes fewer bits in the final CPA, and

significant reductions in routing delay, compared to GPC.

Among all benchmarks, g721 has the largest final CPA bitwidth, 39, and would thus be the

most likely to benefit from techniques that can synthesize faster CPAs than ripple-carry adders.

Its critical path includes one LB layer in the compressor tree, but 37 bits of the CPA. 7:2+GPC

achieves a far superior reduction in logic delay, as its critical path goes through just one LAB

in the compressor tree, and fourteen bits in the final CPA, and also benefits from the smallest

routing delay as well.

H.264ME is the smallest benchmark evaluated here. As shown in Figure 4.6, Ternary actually

achieves the best critical path delay, while Figure 4.7 shows that this is because routing delays

account for a smaller fraction of the overall critical path delay for Ternary than GPC and

7:2+GPC. The critical path of 7:2+GPC goes through more bits in the final CPA than GPC, and

this tends to dominate the logic delay.

For m36x36, 7:2+GPC achieves a smaller critical path delay compared to GPC due to reduced

routing delay.

On average, the critical path of GPC goes through 2.7 LB layers in the compressor tree and 13.2

bits in the CPA; the critical path of 7:2+GPC goes through 1.9 LABs in the compressor tree and

58

4.6. Experimental Results

0

20

40

60

80

100

120

140

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

add2I add2Q dct fir3 fir6 g721 hpoly H.264 ME m9x9 m18x18 m24x24 m36x36 Avg.

A
re

a
(L

A
B

s)

Figure 4.9: The area (LABs) required for each benchmark and compressor tree synthesis
method.

11.5 bits in the final CPA. On average, the routing delay of GPC is 6.3ns and the routing delay

of 7:2+GPC is 4.2ns. Altogether, the reductions in routing delay tend to have a greater impact

on critical path delay that differences in logic delay.

To summarize, the benefits of the 7 : 2 compressors, in terms of logic delay, vary from bench-

mark to benchmark; there is no uniform or universal answer. The logic delay of the compressor

tree may increase or decrease compared to other methods; the same is also true for the delay

through the CPA. At no point, however, do both the compressor tree and CPA logic delays

increase for 7:2+GPC over GPC. 7:2+GPC also retains advantages in terms of routing delay

compared to GPC.

4.6.4 Area Utilization

Figure 4.9 shows the area—number of LABs—required for each benchmark. In general, Ternary

achieve the smallest area, because ALMs in shared arithmetic mode have a compression ratio

of 3, whereas, 6-input, 3-output GPCs have a compression ratio of 2, while requiring two ALMs.

Although 7 : 2 compressors have compression ratios of 3.5, the use of GPCs in addition to the

compressors causes 7:2+GPC to use more ALMs than Ternary. GPC, consequently, requires the

most area uniformly across the benchmark suite.

Figure 4.8 showed that GPC tends to have larger routing delays than 7:2+GPC. Now, Figure 4.9

shows that GPC tends to require more LABs than 7:2+GPC as well. This suggests that one reason

for the higher GPC’s routing delay is the higher area utilization. Each GPC requires several

ALMs, while each 7 : 2 compressor requires just one. Consequently, the use of compressors

instead of GPCs tends to reduce the number of ALMs used in a design. This, in turn, leads to

a tighter placement, which tends to reduce wire-length. As each wire crosses through fewer

switch and connection boxes, routing delays tend to reduce as well.

Lastly, each wire that connects to a GPC has a higher fanout than a wire connecting to a 7 : 2

compressor, as multiple ALMs are required to implement the GPC. This can be another reason

for the wire-length reduction shown in the next section.

59

Chapter 4. Non-propagating Carry Chains

0

1

2

3

4

5

6

7

8

9
Te

rn
ar

y
G

P
C

7
:2

+G
P

C

Te
rn

ar
y

G
P

C
7

:2
+G

P
C

Te
rn

ar
y

G
P

C
7

:2
+G

P
C

Te
rn

ar
y

G
P

C
7

:2
+G

P
C

Te
rn

ar
y

G
P

C
7

:2
+G

P
C

Te
rn

ar
y

G
P

C
7

:2
+G

P
C

Te
rn

ar
y

G
P

C
7

:2
+G

P
C

Te
rn

ar
y

G
P

C
7

:2
+G

P
C

Te
rn

ar
y

G
P

C
7

:2
+G

P
C

Te
rn

ar
y

G
P

C
7

:2
+G

P
C

Te
rn

ar
y

G
P

C
7

:2
+G

P
C

Te
rn

ar
y

G
P

C
7

:2
+G

P
C

Te
rn

ar
y

G
P

C
7

:2
+G

P
C

add2I add2Q dct fir3 fir6 g721 hpoly H.264 ME m9x9 m18x18 m24x24 m36x36 Avg.

W
ir

e
Le

n
gt

h
: M

u
lt

ip
le

s
o

f
LA

B
 L

en
gt

h

Figure 4.10: Average wirelength per net for each benchmark and compressor tree synthesis
method.

4.6.5 Wire-length and Routability

This section compares and contrasts Ternary, GPC, and 7:2+GPC in terms of wire-length and

routability. Our VPR architecture configuration contains a mixture of segments of different

lengths. In the architecture we studied, 90% of wires have span two LABs, while the remaining

10% span four LABs; buffered routing switches were always used.

Figure 4.10 reports the average wire-length per net for each benchmark and synthesis method.

The wire-length reported in Figure 4.10 accounts for the varying lengths of the different

segments.

For each benchmark, the average net wire-length of GPC was larger than that of Ternary and

7:2+GPC. Figure 4.9 has shown that GPC requires more LABs than 7:2+GPC; Figure 4.10 shows

that the tighter packing achieved by 7:2+GPC is able to reduce the average net wire-length,

which in turn, reduces the overall critical path delay.

Admittedly, Figure 4.10 does not compare the wire-lengths on the critical path; however,

routing delay can affect which paths are critical, as discussed in subsections 4.6.2 and 4.6.3.

Thus, it is reasonable to assume that the critical path will have longer wires for GPC compared

to 7:2+GPC for each benchmark, as the average net wire-length of GPC tends to be longer as

well.

Recall from Section 4.5.1 that VPR repeatedly places and routes the circuit using a binary

search, stopping when it finds the minimum channel width for which it can achieve a legal

route. Figure 4.11 reports the minimum channel width in the x and y directions found by VPR

for each benchmark. GPC tends to achieve routability with narrower channels than Ternary

and 7:2+GPC. As GPC requires more LABs than the other synthesis methods, the overall circuit

is spread across a greater portion of the FPGA area. This tends to reduce congestion in the

routing network, and hence, competition for routing tracks in the most congested area [27].

60

4.7. Related Work

0

10

20

30

40

50

60

70

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

T
e

rn
a

ry
G

P
C

7
:2

+
G

P
C

add2I add2Q dct fir3 fir6 g721 hpoly H.264 ME m9x9 m18x18 m24x24 m36x36 Avg.

C
h

an
n

el
 W

id
th

Horizontal Channel Width Vertical Channel Width

Figure 4.11: The minimum channel width in the x and y directions for which each benchmark
is routable for each compressor tree synthesis method.

Jamieson and Rose [43] have suggested that 180 routing tracks per channel is typical for

modern FPGAs. Figure 4.11 shows that all of our benchmarks require no more than 60 routing

tracks per channel, indicating that routability of the benchmarks studied here would not be a

concern, with or without the modified logic block presented in this chapter.

4.7 Related Work

This section describes a number of proposals to improve the arithmetic and logical capabilities

of FPGA logic blocks. The most enduring idea has been the integration of carry chains into

FPGA logic blocks along with LUTs. Carry chains include fast connections between adjacent

logic blocks that are used for carry propagation; this permits the elimination of most of the

routing delays that would otherwise be present.

Hauck et al. [35] proposed the complicated carry chains that can implement Brent-Kung, carry-

select, and carry-lookahead addition. Different logical constructs were needed for different

cells in the chain, making them nonuniform. This creates integration challenges because it

is difficult to layout a regular fabric consisting of irregular cells. This would require a large

manual effort to design each individual cell at the transistor level, and would complicate the

layout process for the entire chip.

Frederick and Somani [31] proposed a uniform logic block with carry chains that could ef-

ficiently implement a carry-skip adder; a similar bi-directional carry-skip chain was earlier

proposed by Cherepacha and Lewis [17]. Kaviani et al. [47] and Leijten-Nowak and van Meer-

bergen [54] developed ALU-like blocks that support arithmetic functions such as addition,

subtraction and (partial) multiplication.

Distributed Arithmetic (DA) [60] is a paradigm for implementing effective hardware for DSP

systems that uses LUTs instead of multipliers. Grover et al. [34] developed a special DA-

oriented LUT structure (DALUT) specifically for Multiply-Accumulate (MAC) operations. In

61

Chapter 4. Non-propagating Carry Chains

addition to two 4-input LUTs, their DALUT cell included arrays of XOR gates, bit-level adders

and shift accumulators, shift registers, and a CPA to add partial summations and carries.

The first generations of ALtera Stratix [5] and Cyclone [3] FPGAs had carry-select adders and

carry chains, while these carry chains were replaced by ripple carry chains in the subsequent

FPGA generations.

A K -input macro gate [23] is similar to an LUT, but it cannot implement all 2K logic functions,

and therefore has reduced delay and area. Hu et al. [39] suggested that FPGA cells could

benefit from the inclusion of both LUTs and macro gates. Similar to Kastner et al. [45], they

developed an automated method to profile a set of applications to find good macro-gate

candidates. They did not, however, consider arithmetic-dominated functions or fast carry

chains between macro gates.

4.8 Conclusion

In this chapter, we introduced a new FPGA logic block that has new carry chains and can be

configured as a 7 : 2 compressor. We showed that due to its higher compression capability and

area efficiency, the 7 : 2 compressor is a better building block for implementing compressor

trees on FPGAs, compared to GPCs that were introduced in the previous chapter. Compressor

tree synthesis using GPC mapping—see Chapter 3—reduces the critical path delay compared

to synthesis using ternary adder trees; however, GPC mapping requires more ALMs. The logic

block proposed in this chapter significantly improves the situation. Used in conjunction with

the GPC mapping, the new logic block offers a moderate average reduction in critical path

delay and total wire-length compared to GPC mapping using standard ALMs, while using

significantly less logic blocks.

With this new carry chains, which are realized by (partially) reusing the current resources—

few extra gates are only added—the functionality of this type of the hard-logic is expanded,

and this way a larger subset of applications could benefit from these dedicated and efficient

resources. This conforms to the first defined path of the thesis roadmap, in which the goal is

to increase the generality of the hard-logic of FPGAs.

As a conclusion, the implementation of the carry-save arithmetic circuits on FPGAs can be

improved (considerably) using the new carry chains that were introduced in this chapter.

These new carry chains add little area and delay overheads to the current logic blocks. These

overheads, indeed, can be justified considering the importance of multi-input addition in

applications and the great benefits of new carry chains for implementing multi-input additions.

However, the FPGA vendors may argue that even these little overheads can be critical for the

applications that do not use these carry chains, and thus they might be unwilling to change

the structure of the logic blocks. In this case, the mapping approach that was presented in the

previous chapter will be the best (soft-logic) option to implement compressor trees.

62

5 Versatile DSP Blocks

As explained in Chapter 2, there are two types of hard-logic in FPGAs: (1) the one that is

coupled with the soft-logic, and (2) the one that is stand-alone in island-style FPGAs. The

latter type is external to the soft-logic clusters and has a coarse grained structure. This type

of hard-logic includes DSP blocks, memory blocks, and hard processors. DSP blocks are

typically intended to accelerate critical arithmetic operations such as parallel multipliers.

These dedicated resources are highly efficient when they are used (properly); however, due to

their inflexible structure, DSP blocks and the expensive routing resources around them can be

wasted, when they are not used. Hence, based on the first direction of the thesis roadmap, it is

essential to increase the generality and flexibility of DSP blocks, such that, more applications

take advantage of these useful resources.

Current FPGAs DSP blocks are inherently ASIC-like integer multipliers, which also support

few other arithmetic operations. The multiplier bit-widths that are supported by the DSP

blocks are generally very limited, and this can result in having poor implementation of other

multiplication bit-widths [50]. Moreover, due to their rigid structure, it is not feasible to use

the DSP blocks resources for different purposes, e.g., using the Partial ProductRreduction

Tree (PPRT) of the multipliers for performing multi-input addition. In ASIC design, for the

PPRT of multipliers, compressor trees built from carry-save adders are used, e.g., Wallace [88]

and Dadda [26] trees. In the DSP blocks, however, these compressor trees are not directly

accessible to the programmer.

In this chapter, we present a versatile DSP block for FPGAs that is more flexible and provides

extra features allowing reuse of the available resources. This new DSP block, indeed, is

constructed on top of a base skeleton that supports the basic features of current DSP blocks.

Meanwhile, this base structure is designed such that additional flexibility and features are

added with minimum extra costs. To design this FPGA DSP block, we used our prior experience

concerning the challenges that we faced in designing different DSP blocks for implementing

carry-save arithmetic. The DSP block that will be presented in this chapter, easily supports

various multiplication bit-widths as well as carry-save arithmetic, reusing the multiplier

resources.

63

Chapter 5. Versatile DSP Blocks

5.1 Introduction

FPGAs performance is lacking for arithmetic circuits. Generally, arithmetic circuits do not

map well onto LookUp Tables (LUTs), the primary building block of the soft-logic of FPGAs. To

address this concern, FPGAs offer two solutions: firstly, LUTs are now tightly integrated with

fast carry chains that perform efficient carry-propagate addition; secondly FPGAs contain DSP

blocks that perform multiplication and multiply-accumulation. Although an improvement

over LUTs alone, these enhancements lack generality; specifically, they only support limited

multiplication bit-widths and they cannot effectively accelerate carry-save arithmetic that is

required for compressor trees.

As discussed earlier in this thesis, compressor trees naturally occur in many signal processing

and multimedia applications, such as FIR filters, and, in the more general case, their use

can be maximized through the application of high-level transformations to arithmetically

intensive data flow graphs [86]. Such transformations rearrange the operations in the data

flow graphs to favor the use of carry-save arithmetic. Although the PPRTs of the multipliers in

DSP blocks are designed using compressor trees, they are not accessible and usable for the

implementation of the compressor trees of applications. Hence, the mentioned applications

cannot take advantage of DSP blocks for this purpose.

In addition, the DSP blocks of current have a fixed bit-width multiplier as the base; some

architectures do not support any other bit-width [92], and some only support limited bit-

widths that are formed on top of the base multiplier [7]. Therefore, when a different bit-width

is required, normally little or no gain is obtained from DSP blocks, and in some cases, it is

even better to use the soft-logic for the implementation [50].

Prior to this work, we designed DSP blocks that exclusively perform multi-input addition using

carry-save arithmetic [71, 14]. Although these DSP blocks can implement the PPRT unit of the

multipliers, to implement the Partial Product Generator (PPG) of multipliers, the soft-logic is

involved. Consequently, these DSP blocks are not appropriate for implementing multipliers

compared to existing DSP blocks. In another work [70], we added PPG logic to one of these

DSP blocks [14] to improve multipliers implementation. Though, the problem with this DSP

block is that due to its inherent structural limitation, fewer and smaller multipliers can be

supported compared to the existing DSP blocks. However, this experience helped us to design

a versatile DSP block that not only supports carry-save arithmetic, but also can efficiently

implement various multiplication bit-widths.

In the subsequent sections, we first briefly review the architecture of the DSP blocks that we

designed exclusively for carry-save arithmetic, and then we present a versatile DSP block that

efficiently support various multiplication bit-widths, in addition to carry-save arithmetic for

multi-input addition.

64

5.2. Overview of DSP Blocks for Multi-input Addition

Figure 5.1: Architecture of an m-input, n-output programmable GPC. The programmable GPC
is the building logic block of FPCA.

5.2 Overview of DSP Blocks for Multi-input Addition

As mentioned in the previous section, prior to this work, we designed two different architec-

tures for accelerating multi-input addition. In this section, we briefly review these two designs.

The first architecture includes specialized logic blocks that are grouped into logic clusters

with local routing. This architecture is called Field Programmable Counter Array (FPCA). The

second architecture, in contrast, does not include any internal routing, and its logic blocks

are interconnected through fixed carry chains. This architecture is called Field Programmable

Compressor Tree (FPCT). Both architectures exclusively support multi-input addition; hence,

to implement a multiplier or any circuit that is a mixture of normal logic and multi-input

addition, both the soft-logic—i.e., LUTs—and the hard-logic—these DSP Blocks—are involved.

5.2.1 FPCA Architecture Overview

FPCA is an array of programmable logic blocks that are specifically designed for implementing

multi-input addition. The logic blocks are configurable Generalized Parallel Counters (GPCs),

to which a wide variety of GPCs that meet the IO constraints are mappable. As shown in

Figure 5.1, each configurable GPC consists of an m : n counter and a configuration layer. This

configuration layer allows the user to select the desired GPC to implement. For example, a

programmable GPC with m = 15 and n = 4 should be able to implement the functionality of

both a 15 : 4 counter and a (5,5;4) GPC, among others.

Based on the GPC definition in Chapter 2, each GPC can add bits with different ranks. There-

fore, to implement a GPC, the m : n counter performs the addition part, where some input

bits are added redundantly based on their rank. For example, a bit with rank one is added

two times. Hence, the configuration layer consists of some multiplexers that specify the right

inputs of the m : n counter based on the GPC configuration. As many GPCs are supported,

65

Chapter 5. Versatile DSP Blocks

Figure 5.2: FPCT structure, consisted of 8 CSlices. (a) I/O interface to a CSlice (b) and an
8-CSlice FPCT.

the configuration layer would have a complicated structure with many multiplexer layers.

Though, by exploring a symmetry property in the GPCs designs, we proposed a design for the

configuration layer that is only comprised of one layer of 2 : 1 multiplexers. For details of this

design, refer to [71].

In FPCA architecture, we have an array of configurable GPCs, which are connected through

a local programmable routing network. In a sense, our intention to embed an FPCA into an

FPGA is similar in principle to a cluster of the soft-logic blocks in conventional FPGAs—e.g., a

Logic Array Block (LAB) in the Altera Stratix series FPGAs. A LAB (or group of adjacent LABs)

could be replaced with an FPCA. The role of a programmable GPC within an FPCA is analogous

to the role of an ALM within a LAB—refer to Chapter 2, Section 2.2.1 for the LAB and ALM

structures.

5.2.2 FPCT Architecture Overview

FPCT is an alternative design to FPCA, in which the building blocks are called Compressor

Slices (CSlices) and are connected by hard-wired carry chains rather than local routing network.

Although FPCT is less flexible than FPCA, due to the fixed connection of its building blocks, it

is more efficient than FPCA. FPCT is comprised of eight CSlices, as shown in Figure 5.2b. Each

CSlice, as shown in Figure 5.2a, takes as input 16 bits to sum along with 15 carry-in bits, and

produces up to six output bits, depending on its configuration, along with 15 carry-out bits.

The 8-CSlice FPCT, shown in Figure 5.2b, takes 128 input bits (16 per CSlice) along with 15

carry-in bits for the lowest order (rightmost) CSlice; it produces up to 48 output bits (six per

CSlice), and the highest order CSlice (leftmost) produces 15 carry-out bits.

Within a CSlice, compression is performed by a network of GPCs of varying size. The CSlice

includes a bypassable CPA: it can produce one, two, or three output bits when using the CPA,

or two, four, or six output bits in the carry-save form, bypassing the CPA; the latter is used

when building large, multi-FPCT compressor trees. More details about the FPCT architecture

66

5.3. Proposed Versatile DSP Block

can be found in [14].

The 15-carry-out bits connect to subsequent CSlices using a limited carry chain; depending

on the configuration of the CSlice, some of these bits may be 0; likewise, the rank of each

carry-out bit depends on the configuration.

5.3 Proposed Versatile DSP Block

Both types of DSP blocks, current ones and the ones that we designed for carry-save arith-

metic, suffer from the same problem, which is the lack of generality; applications that have

multiplication as the base operation will not benefit from the migration to an FPGA containing

FPCAs or FPCTs, and applications that have multi-input addition cannot benefit from current

DSP blocks. This means that to satisfy both classes of applications FPGAs should contain a

mixture of FPCAs/FPCTs and DSP blocks.

However, adding new hard-logic—e.g., FPCA or FPCT— to FPGAs can make the gap problem

even worse, if they are not used. That being said, the primary focus of this chapter is to design

a DSP block that can be used for both multiplication and carry-save arithmetic, rather than

having separate DSP blocks for each. Moreover, the other goal is to increase the flexibility of

DSP blocks in supporting various multiplication bit-widths.

In one attempt [70] as explained earlier, we modified the FPCT structure such that a by-

passable PPG unit was added to avoid the soft-logic for the PPG implementation. The resulting

DSP block can perform multi-input addition as well as multiplication. This new DSP block

can be configured as only two 9×9 multipliers, due to the original constraints of the FPCT,

despite the available bandwidth. While, the current DSP blocks in the Altera Stratix-series

FPGAs, with the same bandwidth, can be configured up to eight 9×9 multipliers.

The experience of designing the DSP blocks for carry-save arithmetic and trying to adapt them

for multiplication, motivated us to design a new DSP block starting from a base structure that

has the basic features of current DSP blocks. In other words, the key idea of this chapter is to

design a DSP block that maintains the original features of current ones, and on top of that,

we will be able to add new features with minimum extra costs. For this purpose, we take the

DSP block of the Altera Stratix-series FPGAs as the base reference structure, and we redesign it

such that new functionalities can be supported with little overhead.

5.3.1 Architecture of the Base DSP Block

As shown in Figure 5.3, the fundamental building block of our base DSP block, similar to DSP

blocks of the Altera Stratix-series FPGAs, consists of two paired 18×18 multipliers followed by

an optional adder stage. The adder unit is either used for complex arithmetic multiplication

or for constructing larger multipliers by combining the smaller ones [6].

67

Chapter 5. Versatile DSP Blocks

X X X X

+ +

+

18 18 18 18 18 18 18 18

9:2 Compressors

4:2 Compressors

CPA

multiplier pairs

Figure 5.3: Conceptual illustration of the reference DSP block architecture. Four 18× 18
multiplies along with the adders that are required for either constructing larger multipliers or
complex arithmetic multipliers.

For the multipliers implementation, we chose the Radix-4 Booth [73] algorithm—refer to

Chapter 2 for the definition—which is a well-known and widely used technique for signed

multiplication. There are two reasons for selecting the Radix-4 Booth multiplier: (1) by modi-

fying the PPG structure of the Radix-4 Booth multiplier and performing some transformations

on the sign extension parts of the PPs, we can significantly reduce the costs of adding new

multiplier bit-widths to the base architecture, and (2) the PPRT of the Radix-4 multiplier has

half the PPs compared to other parallel multipliers, and this allows the PPRT unit for efficient

implementation of compressor trees. The latter advantage is a key factor in designing com-

pressor trees for multi-input addition. We will provide more details about these advantages

of the Radix-4 Booth multiplier, once we unveiled the complete architecture in subsequent

sections.

In the following, we give a brief overview of the base DSP block architecture, as it is needed to

understand the modifications that we will make to increase the flexibility. There is a couple

of differences from the standard Radix-4 architecture in the way that we design the PPG and

PPRT units. For the PPG, to multiply the multiplicand by 1, 2, or 0, all that is needed is to shift

the multiplicand using a few multiplexers, which have a delay time that is independent of the

size of the inputs. The only complexity relates to negating a 2’s complement number, where a

1 is added to an inverted number. This complexity can be avoided in the PPG, if we move the

summation part into the PPRT unit. For this purpose, a correction bit corresponding to each

PP is added to the PPRT. Figure 5.4 illustrates the PPG unit of the Radix-4 multiplier. For each

PP, one Booth encoder is required, while for each bit of PP, we need a Booth Selector unit shown

in this figure, where all the Booth Selector units of a PP are controlled by the same signals.

68

5.3. Proposed Versatile DSP Block

 Xi-1 Xi 0

1 0

1 0

1 0

Two

Non-Zero

Neg

Y2j+1 Y2j Y2j-1

PPk

B
o

o
th

 R
e

c
o

d
e

r U
n

it

Correction

Term

Booth Selector

Figure 5.4: The Radix-4 Booth PPG unit. Booth encoder is shared between all PPs bits, but
each bit of PP needs a separate Booth Selector unit.

For a Radix-4 Booth 18×18 multiplier, the PPRT unit is 36-bit wide and its height is nine, since

we have nine PPs. Hence, we propose to exploit a layer of 9 : 2 compressors followed by a final

CPA for the PPRT unit. In this layer, there is a 9 : 2 compressor per each column, and thus for

the 18×18 multiplier, thirty-six 9 : 2 compressors are required. Figure 5.5 shows the proposed

circuit level design of the 9 : 2 compressor. All of its inputs, including the carry bits, have the

same rank, i.e., i . The two outputs also have rank i , but the carry outputs have rank i +1. The

delay of 9 : 2 layer is independent of the layer width, since no ripple carry path exists in the

layer. The longest path that a carry can propagate contains three cells, as show in Figure 5.6.

Since the compressor layer will be reused for other DSP block configurations, the 9 : 2 layers

of all 18×18 multipliers in the base DSP block are chained, but at the multiplier boundaries,

there is the option to separate two 9 : 2 layers, setting the carry input bits of the each layer to 0

by simple AND gates.

As explained, besides the PPs, we have a number of Correction Bits (CBit) that need to be

added to the PPRT unit. Each CBit is aligned with the first bit of the corresponding PP. Due to

the shifting of the PPs, there is always a free place in the 9 : 2 layer for every CBit, except for

the ninth one. This means that one column of the PPRT will have ten bits, and thus requires

10 : 2 compressor instead of 9 : 2 to compress that column. In addition, inserting the 10 : 2

compressor, necessitates to change all the subsequent compressors to 10 : 2 as well, and this

increases the delay of the PPRT unit. To avoid the use of 10 : 2 compressors, we merge the

ninth CBit with the first PP as shown in Figure 5.7. In this figure, S is the sign bit of the PP, and

C is the CBit. Since the CBit is aligned with the seventeenth bit of the PP, the MSB bits are

modified from that bit position, as shown.

In addition to 9 : 2 layer, we need a 4 : 2 layer to sum the results of the two paired 18×18

multipliers according to the structure of the base DSP block that was shown in Figure 5.3.

A 4 : 2 compressor is structurally similar to the 9 : 2 compressor, but it has fewer number of

69

Chapter 5. Versatile DSP Blocks

FA

FA

FA FA

FA

FA

FA

Carry Inputs

Carry Outputs

Outputs

Inputs

i9 i8 i7 i6 i5 i4 i3 i2 i1

o2 o1

Figure 5.5: Structure of the 9 : 2 compressor in the proposed DSP block. This compressor
has nine inputs and two outputs, in addition to the carry inputs and outputs. All the inputs,
including the carry inputs, have the same rank.

inputs and carry bits. This layer is added between the 9 : 2 layer and the final CPA. This layer is

36 bits wide for each multiplier pair, as shown in Figure 5.8.

5.3.2 Supporting Various Multiplier Bit-widths

In this section, we will describe how we can reduce the costs of adding new multiplier bit-

widths to the base DSP block. For this purpose, we modify the PPG unit of the Radix-4 Booth

multiplier and remove the sign extension parts of the PPs. To support various multiplication

bit-widths, we modified the PPG to be able to reuse the PPRT for all the configurations. The

PPG, indeed, provides the required inputs for the PPRT, based on the DSP block configuration.

This flexibility of the PPG, however, can increase the complexity of the PPG significantly. For

instance, as shown in Figure 5.9, when a new bit-width is added to the base DSP block, for a

certain bit position, we may need to select between a Booth encoded bit or a sign bit. This

requires extra multiplexers for the selection of the right input bit of the PPRT.

In Figure 5.9, the PPG corresponding to the first PP of an 18×18 multiplier is illustrated on

the top. Within the same number of bits, two 9×9 multipliers can fit. In the same figure, the

PPGs of the two 9×9 multiplies are shown below that of the 18×18 multiplier. Since both

configurations use the same PPRT unit, we need to exploit several multiplexers to choose

between these two configurations. These multiplexers select between the encoded bit or the

70

5.3. Proposed Versatile DSP Block

FA

FA

FA FA

FA

FA

FA

FA

FA

FA FA

FA

FA

FA

FA

FA

FA FA

FA

FA

FA

Figure 5.6: A chain of three 9 : 2 compressors. The longest path that a carry output can
propagate includes two compressors, as shown in this figure. Hence, the delay of a 9 : 2
compressor layer remains constant when the number of compressors in the layer varies.

+
S S S S P16 P15

C

.

(C+P16) S (C+P16) S (C+P16) S C P16+S C+P16 P15
.

Figure 5.7: Merging the ninth carry bit with the first PP. MSB bits of the PP from bit 16 are
modified.

sign bit of two different multiplier configurations. However, some parts of the multipliers

encoders can overlap, and thus only some multiplexers at the inputs of the encoders are

required, instead. In the example of Figure 5.9, such an overlap occurs for the first nine bits,

and since the encoder inputs are the same, no extra multiplexer is required for these bits.

Since, in most of the cases, multiplexers are required to select between a sign bit and another

bit, one efficient technique for reducing the complexity of the PPG is to eliminate the sign

extension parts of the PPs. For this purpose, we use a technique similar to the one that is used

in Baugh-Wooly multipliers [73]. In this technique, as the first step, the sign extension part of

each PP is first added with +1 and then with −1. As shown in Figure 5.10, the whole sign part

is reduced to a single inverted sign bit, when it is added with +1. Hence, the sign extension

part of each PP is transformed to a single inverted sign bit, which needs to be added with −1.

After applying this rule to the sign extension parts of all N PPs, we will have N constant

numbers—unaligned −1s—and N single inverted sign bits. Now, we can reduce the N constant

numbers to only one number, by summing them up, as shown in Figure 5.11. Since the first

bit of the resulting constant number is aligned against the inverted sign bit of the first PP, we

can append the constant number to the first PP, as shown in Figure 5.12.

71

Chapter 5. Versatile DSP Blocks

9
 : 2

9
 : 2

9
 : 2

2
 : 2

2
 : 2

2
 : 2

2
 : 2

3671

Partial Product Generator

4
 : 2

4
 : 2

4
 : 2

9

4

2

0

35 0S

9
 : 2

Cout, i

Cin, i+1

18x1818x18

Figure 5.8: The compressor tree structure of each multiplier pair in Figure 5.3. The compressor
tree includes one layer of 9 : 2 compressors followed by one layer of 4 : 2 compressors and
the final CPA adder. The 9:2 layer can be split into independent 9:2 layers at the multipliers
boundaries by disconnecting the carry paths using the shown AND gates.

With this technique, the sign extension parts of all the PPs is eliminated, except for the first

PP, in which the sign part will include three sign bits appended by a constant value. In this

case, the PPG unit, which supports various bit-widths, should select between constant bits—0

or 1—single sign bits (inverted or non-inverted), and the normal Booth encoded bits. To

design such a PPG, instead of using multiplexers, we modified the Booth Selector unit of the

Radix-4 Booth PPG in Figure 5.4 and added two extra control signals as shown in Figure 5.13.

Compared to the original design, two control signals, Const and Inv, and two 2-input gates are

added on the selection logic of the last two multiplexers in Booth Selector. When Inv signal is

set to 1, the output of Booth Selector is inverted, and when Const bit is set to 1, 0 is selected as

the output of the second multiplexer. Table 5.1 shows the operation modes of the modified

PPG based on these two control signals.

With the modified Booth Selector, to generate a constant value—either 0 or 1—the Const signal

should be set to 1, and Inv will specify the constant value. To produce the inverted sign bit, we

only need to set Inv to 1. For a normal encoding, the two control signals are set to 0.

In contrast to PPG, the PPRT unit does not require any major modification. The PPRT was

72

5.3. Proposed Versatile DSP Block

F0F17

F8 F0F17 F9

Sign ExtensionSign Extension

Sign Extension

18-bit Multiplier PPG

9-bit Multiplier PPG9-bit Multiplier PPG

Compressor Tree

Figure 5.9: Overlap between the PPG of two different multiplier configurations. Since the
same PPRT is used for both configurations, several multiplexers are required to select between
either the encoded or the sign bits of the two configurations.

+

+

S S S S S S
1

1 1 1 1 1 1

S
1 1 1 1 1 1

. . .

. . .

. . .

Figure 5.10: Reducing the repetitive sign bits by adding with ±1.

designed in a way that can be reused for various bit-widths. For the bit-widths smaller than

18, since the number of PPs is less than nine, the 9 : 2 layer suffices to compress the bits.

Nevertheless, for the larger bit-widths up to 36, we should split the PPs into two sets and

compress each set separately by two disjoint chunks of 9 : 2 compressors. Then, we need to

sum the results of the two chunks. For this purpose, we use the 4 : 2 layer of the base DSP

block. The number of 9 : 2 slices that are required for a set of PPs is obtained from Equation 5.1.

In this equation, MulBW represents the multiplier bit-width.

Sl i ceBW = MulBW +2×Numo f PPs (5.1)

As an example, in 36×36 multiplier there are 18 PPs, and thus two independent chunks of

the 9 : 2 layer are used to compress each 9 PPs. The width of each chunk is 54–number of

9:2 slices–which is determined using Equation 5.1. In total, we need to allocate 108 slices of

the 9:2 layer to the 36×36 multiplier. Similarly, for a 24×24 multiplier, we need 72 slices, in

73

Chapter 5. Versatile DSP Blocks

+

. . .

.

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 0 0 0

. . .

. . .
. . .

 1 0 1 0 1 1

Figure 5.11: Reducing the constant numbers to one number.

+ S
 1 0 1 0 1 1.

 1 0 1 S S S.

Figure 5.12: Merging the constant number into first partial product.

which we have 12 PPs that are compressed using two independent 9 : 2 chunks that have 42

and 30 9 : 2 slices, respectively. Next, we need to add the results of the two chunks in these two

multipliers using the 4 : 2 layer and the final CPA.

5.3.3 Supporting Multi-input Addition

In VLSI, multi-input adders are realized as compressor trees, such as Wallace [88] and Dadda

[26] trees. The building block of compressor trees can be carry-save adders, counters, or

compressors, as described in Section 2.3 of Chapter 2. In principal, smaller building blocks

are preferable, as they are rarely underutilized and they build more efficient compressor trees.

From the multi-input addition perspective, the advantage of the Radix-4 Booth multiplier over

parallel array multipliers is its fewer PPs; hence, the compressors that are used in the PPRT

design would have smaller size, which can result in having faster compressor trees. Moreover,

the PPG unit should be bypassable to be able to access the PPRT for implementing multi-input

additions. This is a missing feature in current FPGAs DSP blocks.

Assuming that there is no connectivity constraint between the DSP block inputs and the

Const Inv Func

0 0 PPk

0 1 PPk

1 0 0
1 1 1

Table 5.1: Operation modes of the modified Radix-4 Booth PPG.

74

5.3. Proposed Versatile DSP Block

 Xi-1 Xi 0

1 0

1 0

1 0

Two

Non-Zero

Neg

Y2j+1 Y2j Y2j-1

PPk

B
o

o
th

 R
e

c
o

d
e

r U
n

it

Correction

Term

Modified Booth Selector

Const

Inv

Figure 5.13: The modified Radix-4 Booth PPG encoder for resolving the conflicts of PPG parts
of various multiplier bit-widths.

Block Height Width

0 9 8
1 8 9
2 7 10
3 6 12
4 5 14
5 4 18
6 3 24

Table 5.2: Different rectangular blocks that are used for the mapping of the inputs bits of the
adder tree.

inputs of the PPRT, a properly designed PPRT can be utilized to efficiently map any regular

and irregular multi-input addition. However, such a connectivity requires a fully populated

crossbar, which is extremely costly. Therefore, the real challenge is to bypass the PPG and use

the inherent flexibility of the PPRT compressor tree with minimum overhead.

Our solution for this problem is to define a set of fixed ReCtangular (RC) blocks within the

9 : 2 layer of the PPRT–see Figure 5.14–that have predefined connectivity to the inputs of the

DSP block. This fixed connectivity reduces the overhead of accessing the PPRT for performing

multi-input addition and removes the need for any crossbar. Moreover, having different

RC-blocks enables more flexible mapping of the bits that need to be compressed. In other

words, based on the bits pattern that have to be compressed, a different combination of the

RC-blocks is used.

Table 5.2 shows the dimensions of each RC-block within the 9 : 2 layer of Figure 5.8. Figure 5.14

indicates how different RC-blocks are aligned and overlapped. The maximum height of an

75

Chapter 5. Versatile DSP Blocks

Figure 5.14: The indices of the DSP Block inputs that are connected to each Rectangular (RC)
block. RC-blocks are aligned for maximum input sharing, and each RC-block is connected to
distinct DSP block inputs.

RC-block is nine, since it should fit into the 9 : 2 layer. The width of an RC-block in this table,

determines the required number of chained slices to map the RC-block. Assuming that there

are two (connected) 9 : 2 layers in the DSP block, one per multiplier pair, the RC-blocks of

Figure 5.14 shows alignment of the RC-blocks that reside in the right 9 : 2 layer. For the left

one, the alignment of the RC-blocks is mirrored, provides the opportunity to form larger RC-

blocks as well as non-RC-blocks. For example, RC-block 0 in the right layer can be chained to

RC-block 5 in the left layer, which forms a non-RC-block for covering the input bits; similarly,

two identical RC-blocks can be chained and form a wider RC-block with the same height.

Figure 5.14 shows which inputs of the DSP block are connected to each RC-block that resides

in the right 9 : 2 layer–this corresponds to the right multiplier pair of Figure 5.3. In this figure,

due to the lack of space, only the first four RC-blocks in Table 5.2 are shown. The numbers

inside each RC-block specify the DSP block input indices. The RC-blocks of the right layer

take the first 72 and the ones in the left layer take the last 72 inputs of the DSP block–the figure

only shows the indices of the RC-blocks in the right layer. Note that the PPG unit should be

bypassed for the indicated bit positions. Therefore, we insert some multiplexers into the PPG

unit for this purpose. To minimize the number of multiplexers, the RC-blocks are maximally

overlapped, as shown in this figure.

5.3.4 Multi-input Addition Mapping Algorithm

In this section, the mapping algorithm of multi-input addition is described. Mapping algo-

rithm has a significant impact on the quality of the results, since efficient covering of the input

bits should be achieved by the appropriate selection of the RC-block.

To decide which block is more efficient for mapping a set of bits, we evaluate each block by its

ability to compress the input bits, considering the utilization efficiency. For this, we define

76

5.3. Proposed Versatile DSP Block

Figure 5.15: Block refinement. The underutilized column in the RC-block provides the oppor-
tunity to cover more bits in other columns. The circled indices are the mapping candidates,
from which two can be covered.

Compression Ratio (CR) parameter for a block, which is defined as follows:

C R =
∑Wb

i=0 hi

2×Wb
(5.2)

In this equation, Wb is the width of the bits that are generated by a block and hi is the number

of bits in the i th column of the block. The higher the CR is, the greater the overall compression

ratio of the block will be. Blocks with higher CRs tend to compress more. Here, the block can

be a single RC-block or any combination of two RC-blocks. Using this metric, all possible

blocks are examined for the mapping.

Although, the maximum height of a column for a specific RC-block is limited to the numbers

illustrated in Table 5.2, in certain situations, more bits can be mapped to some columns that

have less than nine bits, if the heights of the other columns do not reach the expected height.

As an example in Figure 5.15, RC-block 3 covers a set bits, where all of block’s columns are

filled, except the right most column—columns 1 to 11 cover six bits, while column 12 covers

only four bits, as there is not enough bits to fill the column. This provides the opportunity

to add more input bits to other columns—outside the RC-block—using the available input

bandwidth of the PPRT. This is possible, for the columns that have common index with column

12–see the circled indices, which are the mapping candidates. Hence if there is any uncovered

bit in these columns, then two of them can be covered. By using this trick, we can improve the

coverage of the mapping block. This process is called block refinement.

The mapping algorithm of multi-input addition has three key steps: In the first step, the best

block for covering a set of input bits is determined. This block can be either a single RC-block

or two joined RC-blocks, as explained. The best block is the one that has the highest CR after

the block refinement. Next, the covered bits are removed from the uncovered set of bits and

this step is repeated until we meet the termination condition. Termination condition is either

77

Chapter 5. Versatile DSP Blocks

covering all the input bits or being unable to find a block with more than 50% covering ratio

for the mapping.

The second step of the mapping is generating the output bits of the blocks that were used for

the mapping in the first step. For this, the CPA of the DSP block is used, if no other levels of

DSP blocks is required to compute the results; otherwise, the final adder is skipped, and the

output will remain in the form of carry and save.

Finally, in the third step of the mapping, we bind the selected blocks for the mapping to

the PPRT of the DSP blocks, and we specify the interconnection of the DSP blocks, based

on the mapping. Each DSP block can hold two RC-blocks, one in each half; hence, each

two independent RC-blocks can be placed in the same DSP block. Meanwhile, the joined

RC-blocks should be placed in the same DSP block, where the two halves are chained.

5.4 Experiments

To evaluate the proposed DSP block, we designed a sample base DSP block with 144 inputs

and outputs. This is a typical IO bandwidth of a DSP block in the Altera Stratix series FPGAs [7].

Since we use 90nm CMOS technology for the DSP block design and we have to estimate the

inter DSP block net delays for our experiments, Stratix-II [6] was selected for the comparison,

which is fabricated in 90nm process technology. Considering the above IO bandwidth, we

designed a DSP block that contains two of the building blocks shown in Figure 5.8, one per

each 18×18 multiplier–the 9 : 2 layer is 144 bits wide in this DSP block.

For the experiments, we add 9/12/24/36 multiplier bit-widths to the base DSP block and we

evaluate the overhead of adding each. We also measure the overhead of supporting multi-

input addition. Based on the available bandwidth and resources, the designed DSP block can

implement up to eight 9×9, six 12×12, two 24×24, and one 36×36 multipliers. To implement

the 36×36 multiplier, as explained in Section 5.3.3, 108 slices of the 9 : 2 compressor layer are

used. Hence, it is possible to use the rest of the slices for multi-input addition in parallel with

the 36×36 multiplier.

We modeled the sample DSP block in Verilog and used Synopsys Design Compiler with 90nm

Artisan standard cell library for the synthesis. The mapping algorithm of the multi-input

addition was developed in C++ programming language. To estimating the delay of the DSP

block interconnection wires, we used Altera Quartus II tool. For this purpose, we used the

virtual embedded block methodology [38], where we replaced our DSP blocks in the netlist

with the Stratix-II DSP blocks, and we performed the placement and routing.

5.4.1 Results

To measure the overhead of supporting each multiplication bit-width and multi-input addition,

we first synthesized the base DSP block, and then we added the features one by one. Table 5.3

78

5.4. Experiments

DSP block Features Delay (ns) Area (µm2)

Base DSP block 3.11 41439 (1.00)
Base DSP block+9×9 3.11 43269 (1.04)
Base DSP block+9×9/12×12 3.12 44633 (1.07)
Base DSP block+9×9/12×12/24×24 3.14 45852 (1.11)
Base DSP block+9×9/12×12/24×24/36×36 3.15 46271 (1.12)
Base DSP block+9×9/12×12/24×24/36×36 and MADD 3.15 46973 (1.13)

Table 5.3: Overhead of adding new features to the base DSP block. The delay numbers show
the 18×18 multiplier delay in each case.

Multiplier Our DSP block Stratix-II DSP block

9×9 1.89 2.99
12×12 2.43 -
18×18 3.15 3.17
24×24 4.01 -
36×36 5.17 4.57

Table 5.4: Delay comparison of the multipliers in our DSP block with the Stratix-II DSP block.
For our DSP block, these numbers are achieved when all features presented in Table 5.3 are
included.

presents the synthesis results of our DSP block, before and after supporting of each feature.

The delay values show the delay of the 18×18 multiplier in each case, and the area is the total

area of the DSP block after supporting a certain feature. The interesting point is that the delay

overhead of adding new features to the base DSP block is remarkably low; while the total area

overhead of supporting all bit-widths is 11%; this means that, on average, less than 3% area

overhead is imposed by supporting each multiplication bit-width. Finally, the area overhead

of supporting multi-input addition is only 2%.

Table 5.4 shows the combinational delay of each multiplier in the final DSP block with all

features included. These numbers can further be improved by inserting some pipeline registers

between the layers of the DSP block. In Stratix-II, the combinational delays of 9×9, 18×18,

and 36×36 multipliers are 2.99ns, 3.17ns, and 4.57ns, respectively. Note that, the delay of the

9×9 multiplier of the DSP block in [70] is 1.71ns, which confirms that the delay overhead of

supporting various configurations in our DSP block is low.

To evaluate the multi-input addition feature, we synthesized the multi-input addition portions

of some real arithmetic, multimedia and signal processing applications on the soft-logic of the

Stratix-II FPGA—using the mapping technique of Chapter 3—and FPCT for the comparison

purpose. Note that, the DSP blocks of current FPGAs are not usable for implementing multi-

input addition. Table 5.5 shows the delay results. Compared to FPCT, our DSP block has a

lower delay for the FIR benchmarks. On average, our DSP block is around 4% slower than

79

Chapter 5. Versatile DSP Blocks

Benchmark Soft-Logic FPCT Our DSP block

dct 4.32 2.46 3.08
H.264 ME 4.2 1.5 2.09
g721 4.31 3.22 3.79
adpcm 2.41 1.41 1.83
fir3 5.21 3.76 3.21
fir6 6.79 4.53 3.39
hpoly 5.55 3.36 3.81
Avg. 4.68 2.89 3.02

Table 5.5: Delays (ns) of multi-input addition benchmarks, when they are mapped on different
logic blocks.

Benchmark Soft-Logic (LAB) FPCT (DSP block) Our DSP (DSP block)

dct 17 (374 mm2) 2(112 mm2) 2.5(134 mm2)
H.264 ME 11(242 mm2) 4(224 mm2) 1(48 mm2)
g721 22(484 mm2) 3(168 mm2) 2.5(134 mm2)
adpcm 3(66 mm2) 1(56 mm2) 0.5(24 mm2)
fir3 35(770 mm2) 6(336 mm2) 3(144 mm2)
fir6 76(1672 mm2) 8(448 mm2) 6(288 mm2)
hpoly 35(770 mm2) 3(168 mm2) 3.5(182 mm2)

Table 5.6: Areas of multi-input addition benchmarks, when they are mapped on different logic
blocks.

FPCT, which exclusively performs multi-input addition. Compared to the soft-logic, our DSP

block has a lower delay for all the benchmarks and on average is 35% lower.

Area comparison of these three methods is not that straight forward. Table 5.5 presents the

area of each benchmark in terms of the basic blocks that are used. For the soft logic, the

area indicates the number of LABs, for FPCT and our DSP block, the numbers represent the

number of DSP blocks. The area of a LAB is 22000µm2 [90]; the area of FPCT is approximately

56000µm2, while ours is less than 48000µm2, with all mentioned features.

5.5 Related Work

Fixed-function ASIC intellectual property cores [96], such as the aforementioned DSP block,

are widely integrated into FPGAs. Our work seeks to enhance the functionality of these blocks

so that they can perform multi-operand addition as efficiently as they currently perform

multiplication and MAC. Other recent academic proposals suggest the integration of floating-

point units, shifters, multiplexors, and crossbars [10, 18, 38, 42, 43].

80

5.6. Conclusion

5.6 Conclusion

DSP blocks are typically adapted to critical arithmetic operations of applications, such as

multipliers. However, these DSP blocks have little flexibility—i.e., they support only few multi-

plication bit-widths or they do not support multi-input addition—and thus few applications

can benefit from them. In this chapter, we presented a versatile architecture for the DSP blocks

of FPGAs, starting from a base DSP block with basic features of the current FPGAs DSP blocks.

This base DSP block was structurally designed in a way that new features, such as different

multiplication bit-widths and carry-save-based multi-input addition, can be supported with

little extra overhead. For this purpose, we used our prior experience in designing DSP blocks

for carry-save arithmetic and the challenges we faced for adding the features current FPGAs

DSP blocks. This was the main reason that we started from a DSP block with the current basic

features.

In this work, we chose the Radix-4 Booth multiplication technique, and by modifying its Booth

encoder and removing the sign extension parts of its PPs, we provided the opportunity in

the base design to support new multiplication bit-widths with low cost. Moreover, by proper

design of the multiplier’s PPRT and bypassing the PPG, we could support multi-input addition.

Since each DSP block contains multiple base multipliers, our DSP block has the option of

concatenating the PPRTs of all its internal multipliers to form a configurable compressor tree

pool for performing carry-save arithmetic.

Experimental results revealed that using the presented DSP block for implementing compres-

sor trees significantly reduces their delay and area, compared to the soft-logic implementations

of the compressor trees that were presented in Chapters 3 and 4. Therefore, the first choice for

implementing the compressor trees on FPGA is using the presented DSP block. However, the

number of DSP blocks in an FPGA is limited, and it is still crucial to have efficient soft-logic

implementation of the compressor trees on FPGAs, when no free DSP block exist. This justifies

the contributions of Chapters 3 and 4.

To summarize, having a DSP block that can be adapted to the needs of a richer set of appli-

cations follows the first goal of this thesis, which increases the generality of the hard-logic in

FPGAs. Although our DSP block is more versatile than the current ones and has extra features,

there is still room to increase the functionality of these useful logic blocks and they can be

enriched with other arithmetic and non-arithmetic operations based on the new requirements

of the emerging applications; this maximizes the use of these expensive hard-logic logic blocks

as well as the costly routing resources that surround these blocks.

81

6 Logic Chains

In the last three chapters, we presented our contribution in increasing the flexibility of the

FPGAs hard-logic by adding more functionalities to them. That was the first step for reducing

the FPGAs and ASICs efficiency gap according to the thesis roadmap that was presented in

Chapter 1. Meanwhile, based on this roadmap, the second goal of the thesis is enhancing the

efficiency of the FPGAs soft-logic. This is a crucial step, as each application that is mapped to

FPGAs fully or partially uses the soft-logic for its implementation. Hence, the soft-logic is the

primary efficiency bottleneck in FPGAs, which needs to be improved.

In contrast to the hard-logic, the soft logic of FPGAs is so flexible, which allows to implement

any circuit. This flexibility, however, comes at a price, which is the soft-logic inefficiency.

Our approach to improve the soft-logic of FPGAs is based on the fact that there are logic and

connection patterns in applications, which we can take advantage of to reduce the excess

flexibility of the soft-logic to enhance its efficiency. In contrast to the hard-logic, which is

typically adapted to the pre-synthesis operations, here we look for the logic and connection

patterns that appear post-synthesis. The main reason is that when applications pass through

logic synthesis, the probability of finding common patterns increases.

In this chapter, we introduce logic chain idea, which can replace the interconnecting routing

wires in long chains of logic that are observable after logic synthesis and even after technology

mapping. Generally, due to the long delay of the routing wires, the circuits paths that include

more number of routing wires become more critical in the FPGA implementation. Hence, it is

crucial to replace such costly wires by fast hard-wired connections. Inspiring from the carry

chains, we present logic chains, which are more general than carry chains and can be used for

the generic logic synthesis. Logic chains can replace the interconnecting routing wires, and

thus they reduce the stress on the routing network and provide the opportunity to make these

costly resources lighter in the future FPGAs. Moreover, using the logic chains, the logic density

of the FPGA logic blocks is improved, as extra input and output bandwidth is afforded without

changing the logic block interface with the routing network.

83

Chapter 6. Logic Chains

6.1 Introduction

The programmable interconnect fabric dominates silicon area in modern high-performance

FPGAs. The fraction of silicon dedicated to programmable routing increases with each succes-

sive technology generation, because transistors scale more effectively than wires. This trend

directly impacts the performance and power consumption of FPGAs. Moreover, the feasibility

of synthesizing a circuit onto an FPGA can be limited by the availability of routing resources,

rather than programmable logic.

Due to the fine-grained nature of the soft-logic of FPGAs, routing wires have a considerable

impact on the soft-logic implementation of a circuit. For example, a circuit delay has a direct

relation with the number of logic levels, where an interconnecting routing wire is used to

connect the logic of two different levels. To reduce the negative impact of routing resources, a

number of architectural innovations have been proposed in recent years. Having FPGAs with

more coarse-grained soft-logic blocks, which have more and larger LUTs, is one solution that

we see as a trend in recent FPGAs. This allows to fit more logic in each logic block, and thus

the number of logic levels is reduced and less routing wires are used.

The other solution is to divide the routing network into global and local components. This

enables to have fast local routing within clusters of logic—e.g., Logic Array Blocks, or LABs

in the Altera’s FPGAs—and reduces the demand for global routing resources between the

clusters. Moreover, the introduction of carry chains within logic clusters allows for the efficient

propagation of arithmetic carries along a fixed wire, native to the carry chain; consequently,

these wires are entirely moved out of the programmable interconnect.

Our solution to reduce the demand for programmable routing resources is based on replacing

the routing wires with hard-wired connections that are established among the soft-logic blocks.

Indeed, exploring long and independent chains of logic that appears in the post synthesis

netlists of applications, motivated us to integrate fixed local connections between the soft-

logic blocks of FPGAs; this so-called logic chain is similar in principle to a carry-chain, but

connects programmable logic resources rather than fixed-function gates that can only perform

carry-propagate addition. Through effective decomposition and mapping algorithms, it is

possible to map logic functions of nontrivial size onto the dedicated logic chains, rather than

using programmable interconnect. This reduces pressure on the routing network, as nets from

the technology-mapped circuit are moved onto dedicated wires in the logic chain.

The other benefit of the logic chain is that it enhances the utilization efficiency of the LUTs

in the logic block by providing more bandwidth; though, the logic block interface with the

programmable routing network does not change, which is an advantage. Efficient utilization of

the logic block resources, indeed, improves the logic density of the logic blocks. Nevertheless,

all these benefits are achieved by adding a few multiplexers and configuration SRAMs to the

structure of the logic block.

The following section begins with a simple example to illustrate the main idea.

84

6.1. Introduction

5-LUT

3-LUT

routing wire

4-LUT

5-LUT

F(i0,i1,..,i12) F(i0,i1,..,i15)

(a) (b)

logic

chain

5-LUT

5-LUT

0

1

4

5

6

7

5-LUT

3-LUT

5

7

1

3

0

7

4

6

5

i0
i1

i4

i5
i6

i7

i10

i11

i12

i0
i1

i3

2

6

i2

i4
i5

i7

i6

1

3

0

7

4

5

i8
i9

i11

2

6

i10

i12

i13

i15

i14

2

3

0

1

4

2

3

i2
i3

i8
i9

Figure 6.1: Key idea. (a) Two logic blocks, each has eight inputs and two base 5-LUTs. Many
13-input logic functions can be mapped to a linear cascade of the base LUTs; routing resources
are required to connect adjacent LUTs in the cascade. (b) A dedicated logic chain between
adjacent LUTs eliminates the overhead due to routing resources and increases the input
bandwidth of logic block. Many 16-input logic functions can be mapped with the same
number of available LUTs.

6.1.1 Key Idea

The motivation behind logic chains comes from the observation that there are long chains of

logic that appear after logic synthesis, and even when the technology mapping is performed,

we still see long and independent chains of logic functions that are mapped to LUTs. Based

on our experiments, on average, 85% of the LUTs are chainable to the logic block structure

that we present in this chapter. Suppose that a circuit has been synthesized in such a manner

that four LUTs are cascaded linearly and form a chain. Figure 6.1 illustrates how this circuit is

differently implemented on two different FPGAs, one with a conventional logic block and the

other with the new logic block that has the dedicated logic chain.

In Figure 6.1 (a), there are two FPGA logic blocks, each having eight inputs and a fracturable

LUT structure. In the fracturable LUT structure, each logic block has two base 5-LUTs, and a

larger 6-LUT is formed using the two sub-LUTs—5-LUT—followed by a multiplexer, which is

not shown in this figure.

85

Chapter 6. Logic Chains

3-LUT

+

cin

+

i0
i1
i2

i4
i5
i6

i3

i7 cout

3-LUT

3-LUT

3-LUT

A

B

Macrocell

ALM

Figure 6.2: Proposed configuration for the ALM, using the adder and the carry chain for generic
logic synthesis. Each ALM can implement two chained 5-input functions with non-shared
inputs.

One drawback of this particular architecture is that the routing resources must be used to

connect one sub-LUT to its successor in the cascade. The other drawback is that the second

sub-LUT in each logic block is underutilized, because of the input bandwidth constraint of the

logic block. The first five inputs are used by the first sub-LUT, and the remaining three inputs

are used by the second sub-LUT. This means that a 5-LUT is used to implement a 3-input

function.

Figure 6.1 (b) has the dedicated logic chains within the cluster so that the output of each sub-

LUT connects directly to the input of the subsequent sub-LUT along the chain; in principle,

this is similar to the interconnection structure of arithmetic carry chains in current commercial

FPGAs. The introduction of these direct connections eliminates the need to use the global

routing network to synthesize the cascade. This has several advantages: reduced pressure on

the routing network, reduced critical path delay and reduced power consumption. Moreover,

the logic chain provides a way that the available sub-LUTs are utilized more efficiently, since

the input bandwidth of the logic block is increased by the logic chain without any change in

the local routing network of the soft-logic clusters.

Comparing these two figures, we see that with the new logic block we can map bigger functions

to the same number of logic blocks. The logic blocks in Figure 6.1 (a) can implement many

functions with 13 inputs, while the logic blocks in Figure 6.1 (b) can implement many 16-input

functions.

6.1.2 Carry Chain Option

Prior to this work, we also explored that the ALM in the Altera Stratix-II/V FPGAs can be

configured to a unintended operating mode, which enables it to implement two cascaded

86

6.2. New Logic Chain

5-input functions—refer to Chapter 2 for the ALM structure and its operating modes. In

this new configuration, as shown in Figure 6.2, each ALM is split into two macrocells with

distinct inputs. In contrast to Arithmetic and Shared Arithmetic modes of the ALM, no sharing

between the inputs of the two halves of the ALM is occurred; each macrocell takes four of

the ALM’s inputs and the carry input to each macro cell is considered as the fifth input. The

output of this macrocell is the carry output.

Although each macrocell is a 5-input block, a subset of 5-input functions can be mapped

to this cell. Therefore, for the mapping purpose, one main step is to verify whether a given

function (originally targeted to a universal LUT) is mappable to the macrocell. Consequently,

we introduced a new Boolean matching technique [72], in which we construct a library that

represents all mappable functions. To construct this library, we used the regularity of the

macrocell structure, which reduces the size of the library; this makes the Boolean matching

process memory efficient and fast.

Once we selected the candidates, we used a chaining heuristic similar to the one that is

presented in this chapter to map chains of logic on the carry chain. Since, only a subset

of functions with five or fewer inputs are mappable to this structure and the inputs of the

macrocell are not fully permutable, few chains of logic functions can be mapped on this carry

chain.

Moreover, as the delay between the adder inputs and its carry-out, as well as the delay between

the adder’s carry-in and its sum output, are long compared to the carry-in to carry-out delay

of the adder in an ALM, having short chains of logic functions is not economical and may

deteriorate the overall performance of designs. In other words, the adders in ALMs have been

optimized to have real fast carry-in to carry-out paths, by relaxing their other paths that are

not critical for carry propagate addition.

However, using the carry chains for generic logic synthesis saves the usage of the routing

wires as carry chains replace the interconnecting routing wires. This, indeed, can improve the

routability of the circuits on FPGAs, especially the complicated ones that suffer from lack of

routing resources despite the availability of the logic resources.

To summarize, current carry chains can be exploited for the mapping of generic logic, but due

to their inherent constraints and the fact that they are not designed for generic logic synthesis,

no performance benefit can be obtained from them. This indicates the need for having fixed

connections similar to the carry chains, which are suitable for generic logic synthesis. The

potential benefits of these generic chains include improved performance and logic density, in

addition to reduced pressure on routing network of FPGAs.

87

Chapter 6. Logic Chains

3-LUT

routing wire

7-input

function

5-LUT

5-LUT 9-input

function

logic cell

routing

wire

logic cell

5-LUT

5-LUT

(a)

5-LUT

5-LUT

(b)

logic cell

(c) (d)

logic cell

5-LUT

9-input

function

Figure 6.3: (a) The Altera’s ALM configured to implement two 5-input logic functions; ALM
imposes the constraint that the two functions must share two inputs. (b) Using fracturable
LUTs, a subset of 7-input logic functions can be synthesized on an ALM, but this requires
routing a signal from one sub-LUT to the next. (c) To implement two cascaded 5-input
functions with no common inputs, two ALMs are required. (d) All three of the preceding logic
functions can be synthezed on the proposed logic block using the logic chain and without
using the global routing network; moreover, the proposed cell can implement a subset of
9-input logic functions.

6.2 New Logic Chain

Figure 6.3 (a) illustrates the structure of the ALM when it is configured as two independent

5-LUTs, which have two shared inputs; the two shared inputs are necessary because the input

bandwidth of the ALM is eight. Consequently, if a user wishes to map two logic functions

without shared inputs onto an ALM, the only possibilities are to use two 4-LUTs or a 5-LUT

and a 3-LUT.

Figure 6.3 (b) illustrates a way that an ALM can realize a limited subset of 7-input logic

functions: the 5-LUT is cascaded with the 3-LUT, however, the interconnection between the

two requires the usage of the routing network. On the other hand, if a user wants to cascade

two 5-LUTs with one another, then two ALMs are required, as shown in Figure 6.3 (c), once

again using the routing network; if the two ALMs are placed within the same Logic Array Block

(LAB), then the fast local routing network could be used instead of the global routing network.

The Altera’s ALM is fracturable, meaning that several small (sub) LUTs exist natively in the

ALM and can be concatenated together, via multiplexers, to form larger LUTs. Here, we use

this approach to build larger LUTs out of the sub-LUTs along the dedicated vertical connection

that we call logic chain. The basic idea is to cascade the current sub-LUTs in the ALM to form

larger LUTs along a fixed connection similar to carry chains. Figure 6.3 (d) illustrates the main

idea. The modified logic block now contains two 5-LUTs that are cascaded; one input of each

of the 5-LUTs comes from the preceding 5-LUT in the logic chain; thus, only eight input signals

are provided from the routing network, keeping the design within the bandwidth constraints

88

6.2. New Logic Chain

of the ALM. This allows the new logic block to implement a subset of 9-input logic functions,

without requiring the routing network and assuming that one of the inputs comes from the

preceding logic block along the logic chain; if the vertical input is unavailable, then it can

still implement a subset of 8-input logic functions without using the routing network. This is

significantly more powerful than the ALM, which can implement any 6-input logic function

and limited 7-input crossbar switch without using the routing network.

The logic chain borrows many ideas from arithmetic carry chains, which also employ vertical

connections between adjacent logic blocks. The goal of carry chains, however, is to improve the

resource usage and critical path delay of addition/subtraction operations, which are common,

but limited. One of the key benefits of these carry chains was that carry propagation was

performed along the vertical connections, and therefore did not enter the routing network—

this can avoid contention of routing resources. The vertical connections are shorter and do

not have additional delays caused by configuration elements placed periodically along them;

hence the critical path delay and power consumption is reduced. By integrating LUTs into

the vertical connections, it is possible to synthesize a wide variety of operations, including

addition/subtraction, onto the logic chains. Figure 6.4 shows how the fracturable structure

of ALMs is used to embed the logic chain and form larger LUTs along the logic chain. Each

half-ALM contains two 4-LUTs, which can form a 5-LUT using a multiplexer controlled by a

fifth input; all inputs between the two 4-LUTs are shared. This design is effectively a Shannon

decomposition. The shaded area of the figure illustrates the logic chain. Using a similar idea,

we instantiate a vertical multiplexer, which is controlled by the logic chain, at the outputs of

each pair of 4-LUTs; this forms a new 5-LUT along the logic chain. This provides us with the

option to form either a horizontal or a vertical 5-LUT in each half-ALM. The output of the

vertical 5-LUT propagates along the logic chain. In Figure 6.4, there is no way to access the

output of the LUTs that are placed in the logic chain; this severely limits the ability to use the

logic chain when an LUT placed in the chain has a fanout that exceeds one. The logic block of

an FPGA already contains several multiplexers on its output: one to select between the LUT

and carry chain outputs, and one to select the flip-flop’s output, allowing for sequential circuits.

We embed an additional multiplexer, as shown in Figure 6.5, to select between the carry chain

output and the logic chain output. The shaded area in the figure indicates the additional logic

that we add to the half-ALM to support the logic chains. The additional multiplexer that we

have added will not increase the critical path delay of the non-arithmetic modes of the ALM,

since it does not lie along those paths.

To estimate the area overhead of the new logic, we coarsely compare the transistor count

of new logic and a simplified ALM. We have added four multiplexers and two configuration

SRAMs; based on the components that are known to exist already in the Stratix-III ALM

architecture [7], we are confident that the area overhead is less than 3%.

89

Chapter 6. Logic Chains

4-LUT

4-LUT

4-LUT

4-LUT

5-LUT

5-LUT

5A

5A

Figure 6.4: Integrating the logic chain into the ALM’s structure. The shaded area indicates the
logic chain. Existing 4-LUTs are cascaded using multiplexers to form vertical 5-LUTs along the
logic chain. The fifth input of the 5-LUTs is the output of the preceding vertical 5-LUT, which
is actually the logic chain. The key point of this structure is that the ALM input bandwidth
remains the same, therefore two cascaded 5-LUTs with no shared inputs can be mapped to
the new cell.

6.3 Chaining Heuristic

The objective of the mapping heuristic is to identify chains of logic having the maximum

possible lengths. The input is a Direct Acyclic Graph(DAG), in which each node represents

a logic function and each edge represents the input and output dependencies among the

functions. The DAG is generated after technology mapping, so each node is a prospective

function that can map onto the LUTs. The number of inputs of each node in the DAG, K ,

cannot exceed the number of LUT inputs; each node has K child nodes and one or more

parents based on the fanout of the node output.

The mapping heuristic visits the DAG nodes in Depth First Search (DFS) order, starting from

the outputs and working back toward the inputs. The heuristic recursively assigns a depth to

each node in the DAG.

Definition 6. A node is chainable, if it has at most K inputs and is not part of another chain.

Definition 7. The depth of a node is the number of chainable nodes that can be accessed

90

6.3. Chaining Heuristic

4-LUT

4-LUT

+

S

carry chain logic chain

5A

S

Figure 6.5: The logic chain integrated with the carry chain. In addition to the vertical multi-
plexer, a horizontal multiplexer is added to select between the sum output of the full-adder
and the logic chain fanout; this multiplexer gives access to any point of the logic chain.

consecutively through that node; the depth of an internal node is the maximum depth among

all input nodes from which it is reachable.

Once the depth of all nodes were determined, we can decide to map which node to the logic

chain. In particular, we search for the longest chain of nodes in the DAG, which is a chain

whose head node has the maximum depth. This chain is then mapped onto a logic chain in

of FPGA; the head of the chain can be either a DAG output or a child of a node that is not

chainable.

Figure 6.6 (a) shows a simple example. In this figure, there are two chaining candidates, each

having a length of five; the chains intersect at node N2. As each node can be part of only

one chain, N2 is arbitrarily chosen for one of the chains, i.e., the left chain. As shown in

Figure 6.6 (b), the second chain—the right one—is then broken into a chain of three nodes

and a singleton node, which itself is not part of a chain. The pseudocode of the chaining

heuristic is shown in Algorithm 1. The loop in the main function recursively traverses the DAG

using the DFS method to compute the depth of each node in the DAG, starting from the DAG’s

output nodes. To compute the depth of each node, the maximum depth of the node’s inputs is

computed and is increased by one. The depth of the DAG’s input nodes and non-chainable

nodes is set to 0. Figure 6.7 illustrates an example, in which each node is marked by its depth.

The shaded nodes are not chainable, as they have been previously assigned to other chains.

The depth information then allows the heuristic to identify the logic chains using the SortChains

function in Algorithm 1. The node with the greatest depth in a chain is considered as the head

of that chain. When a chain is selected for mapping, all the nodes in the chain are marked as

CHAINED, to avoid placing a node in more than one chain. This process repeats until no chain

with a length greater than a threshold value is found. The time complexity of the heuristic is

91

Chapter 6. Logic Chains

N0

N2

N1

N3 N4

N5 N6

N7 N8

N0

N2

N1

N3 N4

N5 N6

N7 N8

(b)(a)

Figure 6.6: (a) Two chains intersecting at a shared node. (b) The shared node is assigned to
one of the chains, breaking the other chain into two smaller sub-chains.

O(nh), where n is the number of nodes in the DAG and h is the depth of the DAG.

6.4 Tool Chain Flow

Figure 6.8 presents the tool chain flow that we use for our experiments. For logic synthesis,

we use Altera Quartus-II tool, which generates a Verilog Quartus Mapping (VQM) file netlist;

Next, the VQM file is parsed and a DAG corresponding to the input circuit is created. This

DAG is fed to the chaining heuristic. Once the chains are identified, a new atom-level netlist

is generated, which represents the new mapped circuit. Lastly, the new netlist is fed back to

Quartus-II for placement and routing, targeting the Altera Stratix-III FPGA—it will be shown

later in this section that the ALM can be used to model our logic block with the logic chain. To

have the right timing results, however, the timing report produced by Quartus-II is analyzed

by our timing revision tool. The PowerPlay Early Power Estimator tool is employed to extract

the power consumption. Details of the key steps are presented in the following subsections.

6.4.1 DAG Generator

Quartus-II synthesizes the benchmarks and maps them onto LUTs. Quartus-II’s synthesizer

generates the VQM file in ASCII text, which contains a node-level (or atom-level) netlist. Since

our proposed logic block is a modified version of the Stratix-III ALM, we felt that Quartus-II

was the most appropriate mapper to use. We also considered the possibility of using Berkeley’s

ABC synthesis tool [11]; however, ABC is a more general technology mapper and does not

consider many ALM-specific features, such as fracturable LUTs.

92

6.4. Tool Chain Flow

Algorithm 1: FindLogicChains(pDAG)

while termination condition not met do
for i = 0 to nD AGOut put s do

FindNodeDepthRec(pDAG−>out[i]);
end
SortChains();
MarkNodesInLongestChain();

end
Function FindNodeDepthRec (pNode)
pNode−>MaxDepth = 0;
for i = 0 to nLeaves −1 do

if pNode−>Leaves[i] == DAGInput then
pNode−>Depth[i] = 0;
break;

else
pTmpNode = pNode−>Leaves[i];

end
depth = FindNodeDepthRec(pTmpNode);
if pNode−>Chainable then

pNode−>Depth[i] = depth + 1;
else

pNode−>Depth[i] = 0;
end
if pNode−>MaxDepth > depth + 1 then

pNode−>MaxDepth = depth + 1;
end

end
return pNode−>MaxDepth;

We implemented a VQM parser with the C++ programming language, which produces a DAG

corresponding to the netlist. Each node in the DAG corresponds to an FPGA logic cell in

the VQM netlist, and the edges between the DAG nodes represent data dependencies. Each

DAG node is a C++ class object. Some of the class members are initialized when the VQM file

is parsed; the other members are initialized by the chaining heuristic: the depth of a node;

whether a node has been assigned to a chain; the id of the chain to which a node has been

assigned; and the order of the node in the chain.

6.4.2 Placement and Routing

Once the circuits have been mapped to the new FPGA logic blocks using the logic chain, we

need to place-and-route the mapped circuit to obtain accurate estimates of the area, critical

path delay, and power consumption. Our area metric includes the number of logic blocks that

are used and the amount of local and global routing resources required to realize the circuit.

We considered the possibility of modifying VPR [57, 13] as our experimental platform; however,

93

Chapter 6. Logic Chains

N6

N4

N7

N1 N2

N0

N5

N8

1

1

1

3

2

2

N3

2

Input / Output

Figure 6.7: The depths of different nodes in a sample DAG. The shaded nodes are part of other
chains and hence not chainable.

two problems caused us to look for other alternatives. Firstly, VPR’s architectural model does

not include carry chains and its packing, placement, and routing algorithms would be unable

to handle their presence if they are supported architecturally; secondly, a comparison between

VPR and Quartus-II is not meaningful, as these are two different frameworks; it is difficult to

say whether a disparity in favor of either the baseline FPGA or our modified FPGA would be

due to architectural superiority or differences between Quartus-II and VPR.

Fortunately, we discovered a way to let Quartus-II model our new FPGA logic block; this

allowed us to use Quartus-II’s placement and routing algorithms, rather than developing our

own algorithms to better exploit the modified ALM architecture that we propose. The basic

idea is to leave the ALM structure alone and to simply "pretend" that existing carry chains

represent the logic chains that we want to introduce. This is possible because the carry output

of the adder is a function of the carry input and four ALM inputs, which is similar in principle

to our proposed logic chain in terms of connectivity. Therefore, we can assume that the output

of the vertical 5-LUT in Figure 6.4 is the carry output of the adder; when we have a fanout that

exceeds one, we can take the sum output of the adder as the fanout connection.

Consequently, it is necessary to configure the ALM in a way that the nodes on the logic chain

are mapped to the carry chain in a corresponding fashion. To do so, we instantiate the ALM

cells and provide the connections and configurations as explained previously; for the other

nodes that are not on any chain, we write the original cell description that was obtained from

94

6.4. Tool Chain Flow

Synthesis and LUT Mapping

DAG Generation

Chain Heuristic

Netlist Generation

Place and Route

Critical Path Finding Power Estimation

Quartus-II

VQM Parser

Quartus-II

Figure 6.8: Tool chain flow used for the experiments.

synthesis back to the final netlist. The output, therefore, is a netlist of the ALM cells, similar to

the original VQM file; nodes that use the logic chain are configured in arithmetic mode, while

others are mapped using the ALM’s normal mode. Quartus-II then proceeds to place and

route the resulting netlist. This gives precise estimates of the usage of logic blocks and routing

resources; however, some additional work is required in order to model the critical path delay

accurately. To obtain the most dense implementation, we lock the logic in rectangular regions

and shrink the region size to the extent that the tool is not able to fit the logic. This guarantees

that we have the most packed implementation for both original netlist and the modified one.

6.4.3 Timing Analysis

As described in the preceding section, we effectively use the carry chains that are present in

the Stratix-III FPGA to mimic the logic chains we have proposed for the purposes of placement

and routing; however, the critical path delays that are obtained from Quartus-II are based

on the delays of the full-adders on the carry chains, rather than the multiplexers that we

introduced in the logic chain. Therefore, the delay of each adder in the carry chain should be

replaced with the delay of the multiplexer instead. Our experiments revealed that the delay

95

Chapter 6. Logic Chains

Benchmark 3-LUT 4-LUT 5-LUT 6-LUT 7-LUT

alu4 163 89 413 32 6
pdc 431 214 538 139 5
misex3 179 99 376 43 1
ex1010 166 148 336 419 1
ex5p 149 89 234 60 0
des 134 89 159 110 0
apex2 206 101 284 108 2
apex4 127 74 354 119 1
spla 258 229 719 114 2
seq 205 150 356 96 2

Average 201 128 376 124 2

Table 6.1: Distribution of LUT sizes in different benchmarks.

between the ALM inputs and the outputs of the adder are significantly greater than the delay

of a 5-LUT in the same ALM. Consequently, we take the delay of the normal 5-LUT in the ALM

to be the delay of the 5-LUT that is realized in the logic chain; as a result, this reduces the

overall delay compared to the timing report produced by Quartus-II.

This analysis has to be performed on a path-by-path basis. The critical path, as identified

by Quartus-II’s timing report, may no longer be critical once the delays of the logic chain

have been properly accounted for. To solve this problem, we repeatedly adjust the delays of

subsequent critical paths until we identify a path that includes no nodes mapped onto the

logic chains. We wrote a script to perform this task for a specific number of critical paths;

the delay adjustment stops when the first path that does not include an adder on the carry

chain is found. The paths are then sorted based on their adjusted critical path delays, and the

maximum is returned as the critical path delay of the circuit synthesized on a Stratix-III style

FPGA that has been modified to include our proposed logic chain.

6.4.4 Power Estimation

To estimate the dynamic power consumption of the mapped circuits, we use PowerPlay Early

Power Estimator [4] provided by Altera. This tool obtains the amount of resources used by

each benchmark, the clock frequency after synthesis, the average fanout, the device type and

the toggle rate of the wires and estimates the dynamic power consumption of the circuit. The

power that is reported is broken down into routing power, logic block power and total power.

Here, we assume that the dynamic power of the new logic block is approximately equal to the

dynamic power of the standard ALM. One potential source of error could be the difference

between the toggle rate of the adder output that we use for modeling and the toggle rate of the

logic in our carry chain. To observe the difference, we modeled the real cell and the ALM in

VHDL and applied several stimulus vectors to each and computed the average toggle rates.

96

6.5. Experimental Results

Benchmark Chainable Chained Max Chain Avg Chain

alu4 94% 39% 12 5.2
pdc 89% 53% 9 5.8
misex3 93% 42% 9 5.1
ex1010 60% 47% 8 5.3
ex5p 88% 46% 7 5.2
des 77% 20% 4 3.1
apex2 84% 39% 8 4.9
apex4 82% 59% 8 4.3
spla 91% 46% 11 5.3
seq 88% 43% 6 4.9

Average 85% 44% 8.2 4.9

Table 6.2: Chaining heuristic statistics for different benchmarks.

0

100

200

300

400

500

600

700

800

900

alu4 pdc misex3 ex1010 ex5p des apex2 apex4 spla seq Avg.

N
u

m
b

er
 o

f
Lo

gi
c

B
lo

ck
s

New Cell Stratix-III New Cell Stratix-III

Figure 6.9: Number of logic blocks (ALMs) that are used in each method. On average, the
introduction of our logic chain reduces the ALM usage by 4%.

Our results validated our assumption that toggle rates are approximately equal, on average.

6.5 Experimental Results

We evaluate the modified ALM-style logic block with the new logic chain; we consider several

factors, including critical path delay, the ALM usage, routing resource usage and dynamic

power consumption. We used the MCNC benchmarks for our experiments and only selected

the combinatorial benchmarks; to synthesize the sequential circuit benchmarks, it is necessary

to separate the combinational cones of logic that are placed between the registers and apply

the chaining heuristic to each cone.

The Stratix-III ALM can be configured with logic functions having up to 7-inputs; any 6-input

97

Chapter 6. Logic Chains

0

100

200

300

400

500

600

700

800

900

alu4 pdc misex3 ex1010 ex5p des apex2 apex4 spla seq Avg.

N
u

m
b

er
 o

f
Lo

ca
l W

ir
es

New Cell Stratix-III

Figure 6.10: The number of local interconnection wires—i.e., within a LAB—used for each
benchmark. On average, the introduction of the logic chain reduces the number of local wires
used by 37%.

0

1000

2000

3000

4000

5000

6000

7000

8000

alu4 pdc misex3 ex1010 ex5p des apex2 apex4 spla seq Avg.

To
ta

l N
u

m
b

er
 o

f
 W

ir
es

New Cell Stratix-III

Figure 6.11: The number of global and local interconnection wires used for each benchmark,
scaled by the length of the wires. On average, the introduction of the logic chain reduces the
total number of wires used by 12%.

logic function can be mapped onto the ALM, along with a subset of 7-input logic functions.

Table 6.1 reports the distribution of functions in terms of the number of inputs for the different

benchmarks. The majority of the functions have five or fewer inputs—on average, 85% of

functions; we have selected logic functions having at most five inputs for mapping onto the

chains, as 5-LUTs are formed along the logic chain in the proposed logic block–see Figure 6.4.

Table 6.2 summarizes the chaining heuristic. The column labeled as Chainable indicates the

percentage of the synthesized functions that are eligible to be mapped to the logic chain—

functions that have five or less inputs; on average, 85% of logic functions are chainable. The

column labeled Chained reports the percentage of eligible functions that are placed onto the

logic chain, which is 44%, on average; we set the minimum chain length to 4 for all benchmarks,

except for apex4 and sec, where we allowed minimum chain length of three. The chain length

is the number of the 5-LUts that are in the chain. The last two columns of the table report

98

6.5. Experimental Results

0

2

4

6

8

10

12

14

16

alu4 pdc misex3 ex1010 ex5p des apex2 apex4 spla seq Avg.

R
o

u
ti

n
g

P
o

w
er

 (
m

W
)

New Cell Stratix-III

Figure 6.12: Dynamic power consumption estimates for the routing network; as the logic chain
reduces the number of programmable wires used, an average savings of 18% is obtained.

0

5

10

15

20

25

30

35

alu4 pdc misex3 ex1010 ex5p des apex2 apex4 spla seq Avg.

To
ta

l P
o

w
er

 (
m

W
)

New Cell Stratix-III

Figure 6.13: Total (logic plus routing network) power consumption estimates; the logic chain
reduces total power consumption by 10%, on average.

the maximum and average chain lengths for each benchmark. The longest chain among the

benchmarks is for alu4, which has 12 chained 5-LUTs.

Quartus-II is used to place-and-route each circuit. To evaluate the new logic block, we compare

against the Stratix-III FPGA as a baseline; as described earlier, we take a netlist that has been

mapped onto Stratix-III, identify logic chains and re-map them onto our new logic block that

includes vertical logic chains.

Figure 6.9 reports the number of logic blocks that are used; our chaining heuristic is able to

reduce the number of logic blocks used for all benchmarks other than ex5p and misex3; on

average, our approach uses 4% fewer logic blocks than Stratix-III. It is essential to note that

the Stratix-III ALM is used most effectively when it is configured to implement two 5-input

logic functions with shared inputs, as shown in Figure 6.3 (a); in such cases, which are actually

99

Chapter 6. Logic Chains

0

1

2

3

4

5

6

alu4 pdc misex3 ex1010 ex5p des apex2 apex4 spla seq Avg.

D
el

ay
 (

n
s)

New Cell Stratix-III

Figure 6.14: Critical path delay of each benchmark; the introduction of the logic chain
marginally improves the critical path delay of most benchmarks.

quite common, the introduction of our logic block with the chaining heuristic cannot offer a

significant improvement in terms of logic density.

The real benefit of using our logic block is its ability to reduce the usage of routing resources, as

reported in Figures 6.10 and 6.11. On average, our logic block and chaining heuristic reduces

the usage of local wires by 37%, with a maximum saving of 45%. On average, we reduce the

usage of global and local wires by 12%, with the local wires contributing a reduction in 3%. The

minimum saving on total wiring is 7% (apex2), and the maximum is 22% (seq). To account for

different horizontal and vertical wires with different lengths, we have scaled the wires based

on their length and, we reported their sum in Figure 6.11.

Reducing the usage of interconnect noticeably improves dynamic power consumption. A

large fraction of dynamic power is consumed in the routing network; therefore, replacing a

net that is routed on programmable interconnect with a direct connection using the logic

chain can help to reduce dynamic power consumption. Figure 6.12 compares estimates of the

dynamic power consumption of Stratix-III to our proposed FPGA that includes logic chains.

On average, we reduce dynamic power consumption in the routing network by 18%. The most

dramatic improvement is observed for seq, which had the greatest savings in total interconnect

as reported in Figure 6.11.

Figure 6.13 reports the dynamic power consumption for each benchmark, which includes

power consumption of logic resources; on average, the introduction of the logic chain reduces

dynamic power consumption by 10%. It is important to note that the power estimation

methodology used for this work is far from precise; however, our circuits are too large to use a

much more accurate methodology such as SPICE simulation. Although we do not trust the

exact numbers reported in Figures 6.12 and 6.13, we consider them a clear indication of the

obtainable savings.

100

6.6. Related Work

Lastly, we measure the logic chain’s impact on critical path delay–see Figure 6.14; an improve-

ment is observed for all benchmarks other than apex2 and apex4. The overall improvement in

delay is minimal; however, the logic chain was introduced primarily to reduce interconnect

and logic block usage, not to improve delay. We do believe that there is potential to further

improve the critical path delay, which would require much more aggressive synthesis algo-

rithms that are specific to the new logic chain. In particular, this would require a new logic

decomposition algorithm that recognizes the cascaded structure of the logic chain; such an

algorithm could be integrated with a technology mapper to make better use of the logic chains

than the relatively naive and greedy chaining heuristic described here; this is an important

research direction that is currently left open for future work.

6.6 Related Work

Different and restricted types of LUT chains exist in some FPGA devices from both Altera

and Xilinx families. Logic blocks in the Stratix [5] and Cyclone [3] FPGA devices from Altera,

have a local connection, which connects the LUT output of one logic block to the input of

the adjacent logic block. These connections allow LUTs within the same LAB to cascade

together for wide input functions. Conceptually our proposed logic chain is similar to the

mentioned local chains, but there are some fundamental differences. The main difference

is that in contrast to the above FPGAs, we do not use the available input bandwidth of the

logic block to connect the output of the adjacent logic block. This will increase the available

bandwidth, and hence wider functions can be implemented without any need to change the

logic block interface. The other difference is that the logic block in current FPGA devices has a

fracturable LUT structure, which allows to use the available LUT resources in a logic block to

implement larger functions considering our logic chain as the extra input.

The Xilinx FPGAs also have local connections between the adjacent logic blocks, which goes

through a number of multiplexers in each logic block [92]. This local connection is mainly

used for implementing carry look-ahead adders, but it can also be exploited for mapping of a

limited number of generic functions. In its most general case, it can be used to implement

the AND cascade of functions. For instance, a wide input AND function can be partitioned

into some parts that are mapped to the LUTs and cascaded through the local connection.

In contrast to such FPGAs, our logic chain is more general. The proposed logic chain goes

through an LUT and forms the last input of the LUT; therefore, no logic constraint exists for

cascading different functions.

Constructing larger LUTs by cascading smaller ones is also possible in the Virtex-5 Xilinx

FPGAs. There are some multiplexers in the Virtex-5 logic block for this purpose, and by using

such multiplexers, we can build up to 8-input LUTs. However, the routing wires are required

to connect smaller LUTs for building larger ones. Meanwhile, there is a concern about the

feasibility and usefulness of synthesizing a circuit onto such large LUTs. Prior research [1]

indicates that an LUT size of four to six provides the best area-delay product for an FPGA.

101

Chapter 6. Logic Chains

In [19], an FPGA chip was developed with the logic blocks that are comprised of cascaded

LUTs. In this work, each logic block has three 4-input LUTs hard-wired together for high

performance. In contrast to our design, the hard-wired connection is exclusively limited to

the logic blocks internal and does not cross the logic blocks boundaries.

Other relevant ideas consist of introducing carry chains into modern high-performance FPGAs

and developing advanced technology mapping algorithms that attempt to exploit carry chains.

The vast majority of carry chains that have been proposed are for different types of adders

[17, 31, 35, 47, 54]; the carry chains on commercial FPGAs available from Xilinx and Altera also

fall into this category.

Similar to our work, one recent paper has presented a non-arithmetic carry chain in which two

2-LUTs are combined to form a 3-LUT [32]; however, it was based on a carry-select structure

used in Altera’s Stratix, which has since been deprecated. Starting with Stratix II, Altera’s carry

chains have employed a ripple-carry structure.

The ChainMap algorithm attempts to map arbitrary logic functions onto the carry chain of

the Altera Stratix and Cyclone FPGAs [33]; as mentioned above, this carry chain has been

deprecated and the authors readily admit that their algorithm is not applicable to newer Altera

FPGAs or Xilinx FPGAs. Our chaining heuristic does share some principle similarities with

ChainMap, but targets the logic chain that we have proposed rather than carry chains.

Traditional formulations of the technology mapping problem focus on converting a structural

HDL implementation of a circuit into a network of K -cuts, where each K -cut can be mapped

onto a single K -LUT. These formulations assume that the programmable routing network is

used to connect the LUTs; it does not attempt to use carry chains, fracturable LUTs, embedded

multipliers, or DSP blocks; likewise, these formulations could not account for the fixed wiring

structure in the logic chain proposed here. Cong and Ding proved that minimizing the number

of LUTs on the longest path can be done in polynomial time [21]; several others have proven

that the decision problems corresponding to minimizing the total number of LUTs used in the

covering and minimizing power consumption are NP-complete [29, 30]. Many heuristics to

solve different variations of the technology mapping problem have been presented over the

years; there are far too many to enumerate here.

Additionally, several papers have tried to perform logical decompositions to optimize the

structural circuit description in conjunction with technology mapping [16, 25]; as logical

optimization is NP-complete in the general case, this formulation of the problem is NP-

complete as well, although the use of decomposition can significantly improve the quality

of the technology mapping that can be achieved. In principle, this type of decomposition

and technology mapping would be appropriate for the proposed logic chains proposed; the

decomposition could exploit the specific fixed interconnect structure between adjacent LUTs

on the logic chain; this approach is likely to be more effective than what we have done here:

searching for chainable candidates in a technology mapping solution that was produced by a

102

6.7. Conclusion

more general technology mapping algorithm that was unaware of the presence of the logic

chains.

6.7 Conclusion

This chapter has introduced the concept of logic chains as a way to improve routing resource

utilization in modern high-performance FPGAs. The dedicated wires between logic blocks in

the chain reduce pressure on the routing network. The key idea is based on the observation

that many technology mapped circuits contain linear chains of LUTs after mapping; the basic

idea is to add a direct connection between LUTs in a cluster that provide a natural mapping

target for these chains. Having the fracturable structure of LUTs in modern FPGAs, we form

larger LUTs by adding a multiplexer, which is controlled by the direct output of a preceding

LUT along the chain. This enables us to increase the input bandwidth and logic density of the

logic blocks without adding any additional inputs. Our experimental results have shown that

the proposed logic block with logic chains can reduce the total number of routing resources

required by 12%. It is estimated that this reduction saves 10% of the total dynamic power

consumption. Moreover, the number of logic blocks used is reduced by 4% and the critical

path delay is improved marginally, as well.

Having the logic chains, the soft-logic implementation of the circuits can be improved, as the

logic density of the FPGA logic blocks is increased, and less routing wires are engaged in the

implementation. Moreover, the routing network of FPGAs can be revised and made lighter as

logic chains can partially replace the routing wires. This can considerably enhance the soft-

logic implementation of circuits on FPGAs, which is the second goal of this thesis according to

the thesis roadmap. In the next chapter of the thesis, as a complementary contribution on

improving the soft-logic of FPGAs, we introduce an efficient soft-logic block for FPGAs, which

does not include LUTs, as opposed to current FPGAs.

103

7 AND-Inverter Cones

Historically, soft-logic of FPGAs is mainly comprised of Look-Up Tables (LUTs). LUTs are

generic structures with an excess flexibility, which allows one to implement any possible

circuit on FPGAs. This flexibility, however, comes at a price: LUTs are costly circuits and it

is not affordable to build FPGAs with large LUTs—rarely LUTs with more than 6 inputs have

been used. In other words, increasing the number of LUT inputs to cover larger parts of a

circuit has an exponential cost in the LUT complexity.

On the other hand, normally a small subset of functions that are supported by an LUT are

used to implement each application. Following the second direction of the thesis roadmap

that was presented in Chapter 1, we aim to reduce the excess flexibility of FPGAs soft-logic by

limiting the number of functions that can be implemented by the soft-logic block of FPGAs.

This, indeed, will allow us to design logic blocks that are much simpler than LUTs and can

provide a better compromise between hardware complexity, flexibility, delay, and input and

output counts.

In this chapter, inspired by recent trends in synthesis and verification, we explore blocks based

on And-Inverter Graphs (AIGs): they have a complexity which is only linear in the number

of inputs, they sport the potential for multiple independent outputs, and the delay is only

logarithmic in the number of inputs. Of course, these new blocks are extremely less flexible

than LUTs; yet, we show (i) that effective mapping algorithms exist, (ii) that, due to their

simplicity, poor utilization is less of an issue than with LUTs, and (iii) that a few LUTs can still

be used in extreme unfortunate cases. We show first results indicating that this new logic block

combined to some LUTs in hybrid FPGAs can reduce delay up to 22–32% and area by some

16% on average.

7.1 Introduction

Since their commercial introduction in the ’80s, FPGAs have been essentially based on LUTs.

K -input LUTs have one great virtue: they are generic blocks that can implement any logic

105

Chapter 7. AND-Inverter Cones

(a) Mapping with 6-LUTs (b) Mapping with 4-AIC

(c) Proposed FPGA architecture

depth = 2 Levels

area = 2 LUTs
depth = 1 Level

area = 1 AIC

O0

O1

i0 i1 i2 i3 i4 i5 i6 i7

O0

O1

i0 i1 i2 i3 i4 i5 i6 i7

LUT

LUT

AIC

AIC

LUT

Figure 7.1: Flexibility, bandwidth, cost, and delay. (a)–(b) And-Inverter Cones (AICs) can map
circuits more efficiently than LUTs, because AICs are multi-output blocks and cover more
logic depth due to their higher input bandwidth. (c) A possible integration of AIC clusters in
an FPGA architecture.

function of K inputs, and this makes it relatively easy to perform at least some elementary tech-

nology mapping: crudely, the problem of mapping reduces to cover the circuit with K -input

subgraphs, irrespective of the function they represent. This flexibility, and the consequent

advantages, do not come for free: LUTs tend to be large (roughly, their area grows exponentially

with the number of inputs) and somehow slow (equally roughly, the delay grows linearly with

the number of inputs). Also, the number of outputs is intrinsically one and internal fan-out in

the subgraphs used for covering is not really possible. Figure 7.1(a) suggests graphically how

the small number of inputs and the absence of intermediate outputs limit the usefulness of

LUTs.

This seems to suggest that perhaps it would be wise to look for less versatile but more efficient

logic blocks. In fact, researchers have at times looked into alternate blocks ever since FPGAs

have attracted growing research and commercial interest. Yet, naturally, these alternate

structures have been somehow related to the logic synthesis capabilities of the time, and thus

have almost universally addressed programmable AND/OR configurations in the form of small

Programmable Array Logics (PALs) (e.g., [48, 46, 23]). Traditionally, synthesis has been built

on the sum of products representation and on algebraic transformations, but new paradigms

have emerged in recent years. The one we are interested in is based on And-Inverter Graphs

(AIGs) as implemented in the well-known academic synthesis and verification framework

ABC [61]. This representation, in which all nodes are 2-input AND gates with an optional

106

7.1. Introduction

F
P

G
A

(C
A

D
(F

lo
w

F
P

G
A

(D
e

s
ig

n
(F

lo
w

LUT

LUT

LUT

LUT

LUT

LUT

AIC

LUT

Logic(Block(Design(Logic(Cluster(Design

Logic(Synthesis(Technology(Mapping Packing(

(Section(3)

(Section(2) (Section(4)

(Section(5)

Figure 7.2: The paths to design and use a novel FPGA with AICs. In this chapter, we alternate
between adapting the traditional CAD flow to our new needs and using the results to fix our
architecture. To each of the last four steps is devoted one of the sections of this chapter, as
indicated.

inversion at the output, is not new [37], but has received interest in recent years due to some

fortunate combination when used with, for instance, Boolean satisfiability (SAT) solvers. Once

a circuit is written and optimized in the form of an AIG, one can find many AIG subgraphs of

various depth rooted at different nodes in the circuit.

Thus, we introduce a new logic block that we call And-Inverter Cone (AIC). An AIC (which

is explained in detail in Figure 7.3) is essentially the simplest reconfigurable circuit where

arbitrary AIGs can be naturally mapped: it is a binary tree composed of AND gates with a

programmable conditional inversion and a number of intermediary outputs. Compared to

LUTs, AICs can be richer in terms of input and output bandwidth, because their area grows

only linearly with the number of inputs. Also their delay grows only logarithmically with the

input count and intermediate outputs are easier to implement. This makes it possible for AICs

to cover AIG nodes more efficiently, as suggested in Figure 7.1(a)-(b). In this chapter, we will

explore the value of AICs both as the sole components of new FPGAs as well as logic blocks

for some hybrid FPGA made of both LUTs and AICs, as illustrated in Figure 7.1(c). Our results

suggest that some hybrid solutions look particularly promising.

The rest of the chapter adapts the traditional CAD flow used on conventional FPGAs to the

needs of AICs and, simultaneously, uses some of the partial results to fix the structure of our

107

Chapter 7. AND-Inverter Cones

novel FPGA. Figure 7.2 suggests this graphically: Section 7.2 addresses the design of the AIC to

suit the abilities of modern AIG synthesis. Section 7.3 adapts traditional technology mapping

to the new block. Section 7.4 looks at how to combine logic blocks in larger clusters with local

routing, and Section 7.5 discusses the packing problem to complete the flow. Sections 7.6

and 7.7 then report our experimental results. We discuss related work in Section 7.8 and then

wrap up with some conclusive remarks.

7.2 Logic Block Design

A new logic block is proposed in this section. This attempts to reduce the degree of generality

provided by typical LUTs in order to obtain faster mappings. Unlike LUTs, our logic block is

not able to implement all possible functions of its inputs. In the following, the choice of logic

block is motivated and its architecture is discussed.

7.2.1 An AIG-inspired logic block

An And-Inverter Graph (AIG) is a Directed Acyclic Graph (DAG), in which the logic nodes are

two-input AND gates and the edges can be complemented to represent inverters at the node

outputs. AIGs have been proven to be advantageous for combinational logic synthesis and

optimization [61]. This graph representation format is also used for technology mapping step

in both FPGA and ASIC designs [11].

Interestingly, AIGs include various cone-like subgraphs rooted at each node with different

depths. Usually, the subgraphs with lower depths are more symmetric and resemble full binary

trees. The frequent occurrence of such conic subgraphs serves as motivation of this work,

where we propose a new logic block that can map cones with different depths more efficiently

than LUTs. The basic idea is to have a symmetric and conic block with depth D , which maps

arbitrary AIG subgraphs with depth ≤ D . This logic block is called And-Inverter Cone (AIC).

To illustrate the potential benefits of AICs with respect to LUTs, we refer to Figure 7.1, where

two levels of LUTs are required to map the same functionality that can be mapped onto a single

AIC. The reason for this is twofold: on the one hand, the LUT size is limited to six inputs and

the entire AIG (eight inputs) cannot fit into just one 6-LUT. On the other hand, even if the size

of the LUT was big enough, the mapping would still use two LUTs, as the AIG has two distinct

outputs. It is worth mentioning that increasing the LUT size to accommodate more inputs

would result in a huge area overhead. Instead, the proposed AIC inherently offers smaller area

and propagation delay than an LUT for the same number of inputs. For example, a 4-AIC

with 16 inputs requires half the area of a 6-input LUT—using the area model of Section 7.6.1

with less delay. Clearly, the fact that more wires need to be connected to the AICs creates

new routing congestion issues. However, as detailed in Section 7.4, these can be alleviated by

packing several AICs in a limited bandwidth AIC cluster with local interconnect.

108

7.3. Technology Mapping

i

O7

O0

O1 O2

O3 O4 O5 O6

O8 O9 O10 O11 O12 O13 O14

0 i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 i20 i21 i22 i23 i24 i25 i26 i27 i28 i29 i30 i31

Out

i0 i1

S

i0 i1 i2 i3 i4 i5 i6 i71 i2 i3 i4 1 11 1

O1

input assignment of AIG of Fig. 1

output assignment of AIG of Fig. 1

replicated nodes

bypass node

O0

Figure 7.3: Architecture of 5-AIC (AND-Inverter Cone), which has five levels of cells that are
programmable to either AND or NAND gates. The 5-AIC can also be configured to 2-, 3-,
and 4-AICs in many ways (highlighted cells show one possibility), without any need for extra
hardware. The AIG of Figure 7.1 is mapped onto the right-hand side. To propagate a signal,
we can configure a cell to the bypass mode (e.g., forcing one input to 1 when this is operated
as an AND). Moreover, some AIG nodes need to be replicated when the fanout of an internal
value is larger than one.

7.2.2 AND-Inverter Cone (AIC) Architecture

Figure 7.3 shows the architecture of an And-Inverter Cone (AIC), which has five levels of cells.

Each cell can be configured as either a two-input NAND or AND gate. Notice that each cell

has an AIC output, except for the cells belonging to the lowest level of the AIC. This provides

access to intermediate nodes as in the example of Figure 7.1. Moreover, these outputs enable

a bigger AICto be configured as multiple smaller ones. For example, the AIC of Figure 7.3,

implements the AIG of Figure 7.1 at the right-hand side while the left-hand side can be used

to implement other functions with various combinations of 2-, 3-, and 4-AICs. Accordingly, a

5-AIC contains two 4-AICs, four 3-AICs, or eight 2-AICs.

Generalizing, each D-AIC has 2D −1 cells, 2D inputs and 2D−1 −1 outputs. In the rest of the

chapter, we consider D-AICs with depths from three to six, and we will study the effect of the

allowed AIC depth on the mapping solution. Depths greater than six are not considered, as

they require a huge input bandwidth, which may result in major modifications of the global

routing network of current FPGAs. Table 7.1 compares different D-AICs with the conventional

6-LUT in terms of IO bandwidth, number of configuration bits and multiplexers.

7.3 Technology Mapping

During technology mapping, the nodes comprising the AIG are clustered into subgraphs that

can be mapped onto an AIC or an LUT. This can be done in multiple ways depending on the

optimization objectives including delay and area.

109

Chapter 7. AND-Inverter Cones

Block inputs outputs 2:1 mux config bits

2-AIC 4 1 3 3
3-AIC 8 3 7 7
4-AIC 16 7 15 15
5-AIC 32 15 31 31
6-AIC 64 31 63 63

6-LUT 6 1 64 64

Table 7.1: AICs have less configuration bits than LUTs, while they can implement circuits with
a much greater number of inputs (e.g., a 6-AIC includes eight times more inputs than a typical
6-LUT).

In this work, the primary optimization objective of technology mapping is delay minimization

and consequently a mapping solution is said to be optimal if the mapping delay is minimum.

Area reduction is also considered but just as a secondary optimization objective. Technol-

ogy mapping for AICs is similar to the typical LUT technology mapping but adapted to the

peculiarities of AICs, such as the fact that multiple outputs are possible. In the rest of the

section, the mapping problem is first formalized and then the main four steps of the mapping

algorithm are described in detail.

7.3.1 Definitions and Problem Formulation

A technology independent synthesized netlist (AIG format) is input to our mapping heuristic.

Such netlist is automatically produced by ABC [61]. We take the input netlist and extract the

combinational parts of the circuit and represent them by a DAG G = (V (G),E(G)). A node

v ∈ V (G) can represent an AND gate, a primary input (PI), a pseudo input (PSI, output of

a flipflop), a primary output (PO), or a pseudo output (PSO, input of a flipflop). A directed

edge e ∈ E(G) represents an interconnection wire in the input netlist. The edge can have the

complemented attribute to represent the inversion of the signal.

At a node v , the depth depth(v) denotes the length of the longest path from any of the PIs or

PSIs to v . The height hei g ht (v) denotes the length of the longest path from v to any of the

POs or PSOs. Accordingly, the depth of a PI or PSI node and the height of a PO or PSO node are

zero.

The mapping algorithm that we use in this work is a modified version of the classical depth-

optimal LUT mapping algorithm [20]. It is well known that the problem of minimizing the

depth can be solved optimally in polynomial time using dynamic programming [20, 49].

However, we also target area-minimization as a secondary objective, which is known to be

NP-hard for LUTs of size three and greater [22, 55]. We use area flow heuristic [58] for area

approximation during the mapping.

The mapping of a graph in LUTs requires different considerations. For a node v , there exist

110

7.3. Technology Mapping

O(a) AIC mapping (b) LUT mapping

v

u

O0

O1

i0 i1 i2 i3 i4

v

u

0

O1

i0 i1 i2 i3 i4

Figure 7.4: Difference between LUT and AIC mapping. Since AICs are inherently multi-output
blocks, the same cone rooted at u in (a) can also be a (free) mapping cone of v , while in LUT
mapping, no common cone exist for any two nodes (b).

several subgraphs containing v as the root, which are called cones. Accordingly, Cv is a cone

that includes node v in its root and some or all of its predecessors. For mapping Cv by an LUT,

it should be K -feasible, where i nput s(Cv) ≤ K . Moreover, the cone should be fanout-free,

meaning that the only path out of Cv is through v . If the cone is not fanout free, then the

node which provides the fanout may be duplicated and will be mapped by other LUT(s), as

the primary minimization objective is depth.

The AICs mapping cone candidates of v are extracted differently. In this case, rather than

being K -feasible, a cone Cv , to be mappable on a D-AIC block, should be depth feasible, where

depth(Cv) ≤ D . The other constraint is that the nodes at lowest depth of Cv , should not have

any path to a node outside Cv , otherwise such nodes are removed from Cv . This condition

ensures that Cv to be mappable to an AIC such as the one illustrated in Figure 7.3, in which no

AIC output is driven by the nodes at the lowest level of the AIC.

When AICs are considered as the mapping target in addition to LUTs, the definition of the

problem of mapping for depth does not change. The only difference is that the cone candidates

of AICs are added to the cone candidates of LUTs for each node in the graph. Although the

conditions of eligibility for LUTs and AICs are different, it is possible to have common cones

between the two that are treated as separate candidates.

Next, the main steps of the mapping algorithm are described in detail.

7.3.2 Generating All Cones

To generate all K -feasible cones, we use the algorithm described in [24, 76], in which the cones

of a node are computed by combining the cones of the input nodes in every possible way. This

step of the mapping takes a significant portion of the total execution time, especially when K

111

Chapter 7. AND-Inverter Cones

is a large value such as six.

The cone generation for AICs is different from the cone generation for LUTs, as the cones of

each node are produced independently from the cones of its input nodes. To generate all

possible D-AIC mappable cones for a node v , the subgraphs rooted at v are examined by

varying the cone depth from two to D. All possible subgraphs that meet the AIC mapping

conditions described in section 7.3.1, are added to the cone set of node v . If a cone Cv satisfies

the depth condition, but has a fanout node u at the lowest depth of the cone, u will be removed

from Cv ; if this still satisfies the depth condition, the cone will be added to the D-AIC mappable

cone set.

The main difference between the cone generation for AICs and LUTs is having common

cone candidates for different nodes, as shown in Figure 7.4. This is possible, as AICs are

multi-output. In this figure, the cone that has u as its root, can be used to map both v and u.

Therefore, this cone should be in the AIC cone sets of both nodes. We call this cone as a free

cone for node v , as it maps v for free when it is selected for u mapping.

The time complexity of the D-AIC cone generation is O(M ·D), where M is the number of

nodes in the graph and D is the maximum depth of an AIC block.

7.3.3 Forward Traversal

Once the cones sets of both LUTs and AICS are computed for every node in the graph, the next

step is to find the best cone of each node by traversing the graph in topological order. Since

the primary objective in this work is to minimize the depth, the best cone of node v is the one

that gives v the lowest depth. If there is more than one option, the cone which brings less area

flow to v is selected (see [58] for further details). The depth and area flow of v , when mapped

onto cone Cv , are dependent on the depth and area flow values of the Cv input nodes.

To compute the depth and area flow of node v , we use Equations 7.1 and 7.2, respectively.

Since the FPGA blocks, including K -LUTs and D-AICs, are heterogeneous and have different

depths, we should consider the interconnection wire delays for the depth computation of each

node, similar to the edge-delay model [93]. Although we have both local (intra cluster) and

global (inter cluster) routing wires, which have different delays, we assume that all wires have

the same delay equal to the average delay of the local and global wires.

d p(v) = max(d p(In(Cv))+d p(Cv)+d p(wi r e)) (7.1)

a f (v) =
nIn(Cv)∑

i=0
(a f (Ini (Cv))+ar ea(Cv) (7.2)

In the above equations, dp(Cv) and area(Cv) are the depth and area of the logic block that Cv

can be mapped on. This block can be either a K -LUT or a D-AIC. If Cv is a free cone of node v ,

112

7.3. Technology Mapping

Algorithm 2: Find the best cone for each node of the DAG

BestCv .d p =∞;
BestCv .a f =∞;
for i = 1 to nCv (LU T) do

v.setd p(Cv (i));
v.set a f (Cv (i));
cond1 =Cv (i).d p < BestCv .d p;
cond2 =Cv (i).d p = BestCv .d p;
cond3 =Cv (i).a f < BestCv .a f ;
if cond1 || (cond2 && cond3) then

BestCv =Cv (i);
end

end
for i = 1 to nCv (AIC) do

v.setd p(Cv (i));
v.set a f (Cv (i));
cond1 =Cv (i).d p < BestCv .d p;
cond2 =Cv (i).d p = BestCv .d p;
cond3 =Cv (i).a f < BestCv .a f ;
if cond1 || (cond2 && cond3) then

BestCv =Cv (i);
end
cond1 =Cv (i).d p < BestB ackupCv .d p;
cond2 =Cv (i).d p = BestB ackupCv .d p;
cond3 =Cv (i).a f < BestB ackupCv .a f ;
if Cv (i).r oot == v then

if cond1 || (cond2 && cond3) then
BestB ackupCv =Cv (i);

end
end

end

then dp(Cv) and dp(In(Cv)) will refer to the depth and inputs of the sub-AIC in Cv . And for

area flow computation, the term area(Cv) will be removed from Equation 7.2.

Algorithm 2 presents the pseudo-code of the algorithm used to find the best cone of each

AIG node. This function iterates over all generated cones for both LUTs and AICs of node v

to find the best cone that has the lowest depth. If two cones have the same depth, the one

that requires smaller area is selected. If the best cone of node v is a free cone, this cone will

be selected for the mapping, if and only if the root of the cone—which is not v—is visible in

the final mapping solution and this cone is the best cone of the root node as well. If one of

these two conditions does not hold, then we need to select another cone as the best cone for v .

Therefore, it is essential to maintain a non-free best cone—v is the root of such a cone—for v

as a backup best cone.

113

Chapter 7. AND-Inverter Cones

7.3.4 Backward Traversal

In this step, the graph is covered by the best cones of the visible nodes in the graph, which are

added to the mapping solution set S. A node is called visible, if it is an output or input node of

a selected cone in the final mapping. Initially POs and PSOs are the only visible nodes and S is

empty. The graph traversal is performed in reverse topological order from POs and PSOs to PIs

and PSIs. If the visited node v is visible, then its best cone, BCv , is selected for the mapping

and is the added to S. Then, all the input nodes of BCv become visible and the graph traversal

continues. If the BCv is a free cone and it is already in S, there is no need to add it again and

only the heights of the input nodes of v are updated. Otherwise, if the free cone is not in S,

then the backup BCv , which has v as its root, is selected for mapping and is added to S. During

the backward traversal, the height of each visible node is updated. Once a BCv is selected for

mapping, the height of its input nodes are updated by adding the height of v to the depth of v

within the target AIC or LUT.

7.3.5 Converting Cones to LUTs and AICs

The mapping solution S, which is generated during the Backward Traversal, includes all the

cones that cover the graph. The next step is mapping the cones in S to either a K -LUT or a

D-AIC. If the selected cone belongs to the K -feasible cone set of node v , then it should be

implemented by an LUT. Otherwise, the cone is a D-AIC mappable cone, which is implemented

by an AIC. The depth of the cone defines the type of the target AIC block.

7.4 Logic Cluster Design

The proposed AICs require a much higher IO bandwidth than typical LUTs. In order to alleviate

the routing problem that may result from that increase, we propose to group multiple AICs

into an AIC cluster with local interconnect.

To form an AIC cluster, we integrate NAIC D-AICs, optional flipflops at the outputs of D-AICs

to support sequential circuits, and an input and an output crossbar. The input crossbar drives

the inputs of the AICs in the cluster, and the output crossbar drives the outputs of the cluster.

Since we do not want to change the inter-cluster routing architecture of the FPGAs, we use the

same bandwidth of LUT-based clusters for AIC clusters and keep the AIC cluster area close

to the area of the reference LUT cluster, which is the Logic Array Block (LAB) in the Altera

Stratix-III—refer to Chapter 2 for the LAB structure.

To study the effect of the AIC size on the mapping results, we select different D-AICs as the base

logic block in a cluster, where D varies from three to six and can be configured to implement

the AIC blocks that have depth ≤ D . However, the number of the D-AIC blocks in the cluster,

NAIC , varies for different D values such that the number of sub-AICs in the cluster remains

the same and no changes occur in the cluster crossbars.

114

7.5. Packing Approach

The two crossbars in the AIC cluster are the main contributors to the cluster area. Crossbars

are basically constructed with multiplexers and their area depends on their density and on the

number of the crossbar inputs and outputs. Since both crossbars get the outputs of NAIC D-

AICs as the input, reducing the number of the D-AIC outputs will significantly reduce the area

share of the crossbars. Originally, each D-AIC has 2D−1 −1 outputs, but in our experiments,

we observed that in the extreme case only 2D−2 outputs are utilized and that is when a D-AIC

is configured to 2D−2 2-AICs. Hence, a very simple sparse crossbar is added at the output of

each D-AIC to reduce the number of D-AIC outputs to 2D−2.

The second technique used to reduce the crossbar area is to decrease its connectivity and

make it sparse. To trade-off the crossbar density and packing efficiency in the AIC cluster,

we measured the packing efficiency of the clusters having an input crossbar with 50%, 75%,

and 100% connectivities. The packing efficiency is the ratio of the number of AIC clusters,

assuming that each AIC cluster has unlimited bandwidth and the actual number of AIC clusters

that is obtained from packing. To calculate the number of clusters in the ideal packing, we use

Equation 7.3. In this equation, nCi is the number of cones with depth i . Figure 7.5 shows the

results of this experiment for different base AIC blocks in the cluster. The reported efficiency

is the average packing efficiency of the 20 biggest MCNC benchmarks.

nC l uster si deal =
6∑

i=2
(

nCi

NAIC ·26−i
) (7.3)

One observation from Figure 7.5 is that the packing efficiency is substantially reduced for all

the three scenarios, when the allowed cone depth in the technology mapping is reduced. This

is reasonable, as the probability of input sharing and open inputs is reduced for smaller cones.

Moreover, when smaller AICs are packed to a D-AIC, a larger number of the D-AIC outputs are

utilized, which increases the output bandwidth requirement. The second observation is that

reducing the crossbar connectivity to 75% largely maintains the packing efficiency of the full

crossbar. However, the packing efficiency for the crossbar with 50% connectivity decreases to

a larger extent. Therefore, one option to reduce the crossbar area without having a sensible

degradation in packing efficiency is to set the crossbar connectivity to 75%.

Exploiting the mentioned crossbar simplifications, and by using the area model of Section 7.6.1,

the area of the AIC cluster remains close to the area of a LAB, when three 6-AICs, six 5-AICs,

twelve 4-AICs, or twenty four 3-AICs are integrated in the AIC cluster. As mentioned, the

input/output crossbars of the AIC cluster are fixed for all scenarios.

7.5 Packing Approach

In the previous section, we defined the architecture of the AIC cluster. Given the AIC and

LUT clusters, the next step is to pack the technology mapped netlist onto the clusters. For the

packing, we use the AAPack [57] tool, which is an architecture-aware packing tool developed

for FPGAs. The input to AAPack is the technology mapped netlist with unpacked blocks, as

115

Chapter 7. AND-Inverter Cones

40

50

60

70

80

90

100

6-AIC 5-AIC 4-AIC 3-AIC 2-AIC

Pa
ck

in
g

Ef
fi

ci
en

cy
 (

%
)

Sparse(50%) Sparse(75%) Full

Figure 7.5: The packing efficiency of three crossbar connectivity scenarios: 50%, 75%, and
100%. The allowed cone depth in technology mapping is varied to study the effect of AIC size
on the packing quality.

well as a description of an FPGA architecture. The output is a netlist of packed complex blocks

that is functionally equivalent to the input netlist. Similarly, we also use AAPack to pack LUTs

in LABs.

The packing algorithm uses an affinity metric to optimize the packing. This affinity metric

defines the amount of net sharing between p, which is a packing candidate, and B , which is a

partially filled complex block. In the architecture file, the complex block should be represented

as an ordered tree. Nodes in the tree correspond to physical blocks or modes. The root of tree

corresponds to an entire complex block and the leaf nodes correspond to the primitives within

the complex block. For the D-AIC complex block, we construct a tree similar to the DSP block

multiplier tree in the original work, by which we define different configuration modes of the

D-AIC. The number of AICs in the cluster as well as the crossbars structure are also defined

in the architecture file. The information is used by the packer to group the individual blocks

in clusters. During the packing process, some routability checking are performed to ensure

(local and global) routability of the packing solution, which considers the intra-block and the

general FPGA interconnect resources.

7.6 Experimental Methodology

In this work, we use a classic area and delay model [13]: The area model is based on the

transistor area in units of minimum-width transistor area; the rationale is that to a large

extent the total area is determined by the transistors more than by the metal connections.

For the delay model, circuits are modeled using SPICE simulations for 90nm CMOS process

technology.

7.6.1 Area Model

The area modeling method requires a detailed transistor-level circuit design of all the circuitry

in the FPGA [13]. Figure 7.6 shows an AIC cluster with three 6-AICs. Table 7.2 lists the area of

116

7.6. Experimental Methodology

S
parse C

rossb
ar

A

S
parse C

rossbar

D

ro
ut

in
g

 w
ir

e
 s

e
g

m
en

t

ro
u

tin
g

 w
ir

e
 s

e
g

m
e

n
t

C
B

6-A
IC

6-A
IC

6-A
IC

1

64

1

112

1

192

1

64

1

31
16

1

1

48

1

20

FF

FF

FF

FF

FF

FF

S

S

S

S

S

S

Figure 7.6: Structure and delay paths of an AIC cluster with three 6-AICs.

Component Area (TrminW) Quantity Total(TrminW)

6-AIC block 1,512 3
6-AIC output Xbar 217 3
6-AIC FFs and muxes 1,104 3
AIC cluster input Xbar 22,072 1
AIC cluster out Xbar 2,660 1
AIC cluster buffers 1,447 1

AIC cluster with three 6-AICs 34,678

ALM 1,751 10
LAB in Xbar 16,251 1
LAB buffers 470 1

LAB with ten ALMs 34,231

Table 7.2: Areas of different components in an AIC cluster and in a LAB, measured in units of
minimum-width transistor area.

different components in the AIC cluster and in a LAB in terms of number of minimum-width

transistors. ALM stands for Adaptive Logic Module, which is the logic block in Altera Stratix-II

and in following series—refer to Chapter 2 for the ALM structure. Based on this table, the area

of an AIC cluster with three 6-AICs and the crossbars mentioned in Section 7.4 is marginally

larger than a LAB with 10 ALMs. As mentioned in Section 7.4, the AIC cluster has almost the

same area when the basic AIC block is changed.

7.6.2 Delay Model

The circuit level design of the AIC cluster suggested in Figure 7.6 is also used for accurate

modeling of the cluster delays. The crossbars in this figure are developed using multiplexers,

and for these we adopted the two level hybrid multiplexer that is used in Stratix-II [56]. Hence,

the critical path of each crossbar goes through two pass-gates, with buffers on the inputs and

117

Chapter 7. AND-Inverter Cones

Path Description Delay (ps)

A → B 6-AIC main output 496
B → C crossbar and FF-Mux 75
C → D output crossbar of cluster 50

Table 7.3: Delays of different of paths in the AIC cluster of Figure 7.6.

0

1

2

3

4

5

6

7

alu4 apex2 apex4 bigkey clma des diffeq dsip elliptic ex5p ex1010 frisc misex3 pdc s298 s38417 s38584.1 seq spla tseng

Lo
gi

c
d

el
ay

 (
n

s)

LUT LUT/3-AIC LUT/4-AIC LUT/5-AIC LUT/6-AIC 6-AIC

Figure 7.7: Logic delay of all benchmarks in the original FPGA (LUT), for the FPGA composed
only of AIC (6-AIC), and for a hybrid FPGA (LUT/6-AIC).

outputs of the components that include pass transistors.

We performed SPICE simulations with 90nm 1.2v CMOS process, to determine the delay of

all paths in the cluster shown in Figure 7.6. The results are listed in Table 7.3. For the path

between B and C, the delay number relates to the path that goes through the main output

of the 6-AIC, which has the longest path. These delay numbers are used in the technology

mapping to minimize the delay of the mapped circuit.

We also measured the delay of a LAB by SPICE simulation. Simulation results revealed that

the delay of a 6-LUT in an ALM, excluding the LAB input crossbar, in 90nm CMOS process, is

between 280ps and 500ps, taking into account that different LUT inputs have different delays.

We use the average delay (390ps) for our experiments. Based on [6], the 6-LUT delay in 90nm

process technology has a delay between 162ps to 378ps and considering the extra multiplexers

that exist on the LUT output path in the ALM structure, our delay numbers appear realistic.

7.7 Results

We contrast three architectures and various mapping strategies, using the MCNC bench-

marks [94]. We consider the original FPGA, a homogeneous FPGA exclusively composed of AIC

clusters, and a hybrid FPGA composed of both LUTs and AIC clusters as different experiment

scenarios. In the hybrid structure, we also vary the base AIC block of the AIC-cluster from

3-AIC to 6-AIC.

118

7.7. Results

0

2

4

6

8

10

12

14

alu4 apex2 apex4 bigkey clma des diffeq dsip elliptic ex5p ex1010 frisc misex3 pdc s298 s38417 s38584.1 seq spla tseng

Lo
gi

c
b

lo
ck

 le
ve

ls

LUT LUT/3-AIC LUT/4-AIC LUT/5-AIC LUT/6-AIC 6-AIC

Figure 7.8: Number of logic blocks (both LUTs and AICs) on the critical path.

Mapping Scenario Intra-cluster Wires

LUT 50%
6-AIC 34%

LUT/6-AIC 35%
LUT/5-AIC 37%
LUT/4-AIC 38%
LUT/3-AIC 40%

Table 7.4: Average ratio of intra cluster wires for the different mapping scenarios.

Figure 7.7 shows the logic delays of the benchmarks for the mentioned scenarios. The main

observation is that the lowest logic delay relates to the hybrid structure, as we have both LUTs

and AICs mapping options. Moreover, except for the ex5p and frisc benchmarks, the logic delay

is always reduced when deeper cones are allowed, which appears predictable as a general

trend. This is also visible in the number of logic-block levels on the critical path, either LUTs

or AICs, as shown in Figure 7.8; the graph gives an indication of the routing wires necessary

to connect the logic blocks of the circuits: although some logic delays are higher for deeper

cones, their total delay can be still better due to the reduced number of wires between logic

blocks. Comparing LUT-only and AIC-only implementations, we see that there are circuits

that have better logic delay when LUTs are used, but on average AIC-only implementation

has 28% less logic delay. Moreover, except for tseng and des, the number of logic blocks on the

critical path (and thus routing wires) in the AIC-only implementation is less than or equal to

that of the LUT-only one.

As the current release of VPR 6.0 does not support timing driven placement and routing, we

set a fixed delay value for the interconnecting wires in order to estimate the total circuit delay.

This delay number is different for the different mapping scenarios and its value is specified

based on the delay and used ratio of intra and inter cluster wires for each mapping scenario

that is reported in Table 7.4. Using this wire delay, we compute the routing delay of the critical

path of the circuits, using the number of logic blocks in these paths. Figure 7.9 illustrates a

rough estimation of the total average logic and routing delays of the circuits. On average, the

119

Chapter 7. AND-Inverter Cones

LUT

Logic Delay Routing Delay

 LUT/6-AIC

 LUT/5-AIC

 LUT/4-AIC

 LUT/3-AIC

 6-AIC

0.5 10.750.25

32%

27%

22%

13%

4%

Figure 7.9: Geometric mean of normalized total logic and routing delays.

0

500

1000

1500

2000

2500

lut-cone2 lut-cone3 lut-cone4 lut-cone5 lut-cone6

Number of LUTs/CONEs

cone6

cone5

cone4

cone3

cone2

lut

Figure 7.10: Number and type of logic blocks used in the various architectures and with the
various mapping strategies.

implementations on the pure 6-AIC architecture and on the hybrid architecture with 6-AIC

and 5-AIC base blocks are 27%, 32%, and 22% faster than the baseline FPGA, respectively.

Figure 7.10 presents the distribution of LUTs and AICs for the different architectures. This

figure shows that when deeper cones are allowed, less LUTs are used. Moreover, in each case

the usage of each AIC type has a reverse relation with the size of the AIC. This means that the

chance of mapping a node with smaller AIC is always higher. Since each of these LUTs and

AICs are packed into clusters, the numbers presented there do not indicate the real logic area

of the circuits. On the contrary, Figure 7.11 illustrates the number of clusters after packing:

this is proportional to the active area since the area of an AIC cluster is close to the area of

a LAB (see Table 7.2) and both have the same I/O bandwidth. For some benchmarks, either

the LUT/6-AIC hybrid architecture or the baseline FPGA display the lowest area; however, the

LUT/5-AIC architecture always results in the smallest used area at a much better delay than the

baseline FPGA and a slightly worse one than LUT/6-AIC—refer to Figure 7.9. The two hybrid

architectures define Pareto optimal points.

The hybrid structure of the proposed FPGA with the different cluster types needs to fix the

right ratio of the two flavors of logic blocks. The packing results indicate that this ratio varies

120

7.8. Related Work

0

100

200

300

400

500

600

alu4 apex2 apex4 bigkey clma des diffeq dsip elliptic ex5p ex1010 frisc misex3 pdc s298 s38417 s38584.1 seq spla tseng

LA
B

+A
IC

 c
lu

st
er

s
LUT LUT/5-AIC LUT/6-AIC

Figure 7.11: Area measured as the total number of clusters used, completely or partially. LABs
and AIC clusters occupy approximately the same area. On average, LUT/5-AIC uses 16% less
resources than LUT-only.

from one circuit to the other, making this problem not straightforward. We have made some

preliminary experiments on this front, and we have fixed the ratio of LAB columns to AIC

clusters to 1 : 4. The advantage of AICs is that any logic function that is mapped to an LUT

is mappable to one or more AICs. The reverse is also true. Therefore, it is possible to switch

to another logic block type, when we run out of one type. Moreover, considering the small

size of the AIC blocks, it is quite feasible to add them as shadow blocks of the LUTs to the LUT

clusters, by reusing the existing input crossbar. This provides the option to use either LUTs or

AICs depending on the requirements. Though, adding AICs as shadow blocks of LUTs remains

as the future work.

Table 7.5 presents the average wire length of each benchmark, in the baseline architecture (no

AIC clusters) and in the two best hybrid architectures, with the number of routing channels

fixed to 180 for all the experiments. We observe that there is a fairly high variability—but

averages are very similar (15.8, 16.1, and 17.3 respectively)—with a small trend against our

hybrid architecture.

7.8 Related Work

Leveraging the properties of logic synthesis netlist to simplify the logic block of FPGAs is a

current research topic [8, 9]. For instance, based on the observation that circuits represented

using AIGs frequently have a trimming input, a low-cost and still LUT-based logic block was

designed that requires less silicon area, but it does not improve the delay [9]. Albeit somehow

similar in its inspiration to modern synthesis, our work is more radical in using the AIGs to

inspire the new logic cell.

Although LUT-based logic blocks dominate the architectures of commercial FPGA, PAL-like

logic blocks have also been explored. In recent times, it has been shown that a fairly small

PAL-like structure, with 7–10 inputs and 10–13 product terms, obtains performance gains at

the price of an increase in area [23]. Much earlier, some authors have shown that K -input

121

Chapter 7. AND-Inverter Cones

Benchmark LUT LUT/ LUT/
5-AIC 6-AIC

alu4 14.9 10.59 11.32
apex2 16.4 15.2 12.9
apex4 15.5 16.1 14.1
bigkey 14.3 12.6 11.6
clma 20.8 22.9 25.5
des 14.6 16.1 15.1

diffeq 10.4 13.4 13.8
dsip 18.6 17.4 12.5

elliptic 15.5 16.6 16.7
ex5p 11.2 15.9 23.2

ex1010 23.8 18.2 30.3
frisc 18.8 19.35 23.2

misex3 14 12 13
pdc 22.8 23.4 21.2
s298 13.2 9.7 15.8

s38417 12.5 18.2 19
s38584.1 11.5 18.4 17.5

seq 17.1 15.5 15.5
spla 21.5 18.8 21.1

tseng 8.3 13.1 12.5

Table 7.5: Average wire length in units of one CLB segments.

multiple-output PAL-style logic blocks are more area efficient than 4-input LUTs. However,

the idea was abandoned because PAL-based implementations typically consumed excessive

static power [48]. Our solution moves away from the typical logic block natural of traditional

logic synthesis, and we have shown that it seems possible to improve both area and delay

compared to LUT-based FPGAs.

There are also numerous pieces of work which have adapted or created reconfigurable logic

blocks to specific needs, often by adding dedicated logic gates to existing LUTs. Among these,

one can mention GARP [36] and Chimaera [95] for datapath oriented processor acceleration,

macro gates [40] for implementing wide logic gates, and various sorts of fast carry chains

beyond those available commercially [69]. Although they all somehow question the pure LUT

as the most efficient building block, they tend to introduce modifications that are never real

generic alternatives.

7.9 Conclusions

As several people before us, we have recognized that LUTs have many advantages but, fre-

quently, the price to pay for these advantages is unreasonably high. We have thus explored new

122

7.9. Conclusions

logic blocks inspired by recent trends in the circuits representations used in logic synthesis:

we came to define AICs, which are simply the natural configurable circuits homologue of the

newly popular AIGs. These new logic blocks have considerably simple structure and elude the

excess flexibility of LUTs.

The alternate FPGA architecture that we proposed in this chapter is a mixture of LUTs- and

AICs-clusters keeping the original structure of the inter-cluster routing network of FPGAs. The

results of this work are encouraging: On one hand, delay is bound to decrease as both logic

delay and the number of logic blocks on the critical path reduce. With a fairly rough routing

delay model, we observe a delay reduction of up to 32%. On the other hand, the number of

logic blocks (all of similar area) consumed by the benchmark circuits is also generally reduced;

with one of our mapping approaches, the area is reduced on average by 16%. Future work

will necessarily need to address placement and routing much more precisely than we had

the chance to. Also, other less conservative architectures may prove more advantageous than

those explored. Nevertheless, we think that our first results are sufficiently encouraging for

the approach to deserve a closer inspection.

Compromising on flexibility for efficiency was the second goal of this thesis that we achieved

with the introduction of AICs. Using this new non-LUT logic block, we managed to enhance

the soft-logic implementation of FPGA circuits. This impacts any application that is mapped

to FPGAs, as soft-logic is involved in the implementation of all applications. However, we

observed that when AICs are merged with LUTs, the best performance is achieved, and a

hybrid solution is superior. Hence, the logic chain structure that was presented in Chapter 6

can still be used to improve the LUT part of FPGAs.

Finally, we observed that AICs, similar to LUTs, does not perform well for arithmetic circuits

such as multipliers and multi-input additions. Therefore, it is still essential to have the hard-

logic including the carry chains and DSP blocks for implementing such circuits. This means

that the contributions of Chapters 3, 4, and 5 are complementary to the ones in this chapter

and Chapter 6.

123

8 Conclusions and Future Work

Today, semiconductor design costs including development, manufacturing, and verification

costs limit economically the Moore’s law. This had led to the formulation of Moore’s second law,

which states that the capital cost of a semiconductor fabrication also increases exponentially

over time. Meanwhile, the potential of semiconductor programmable ICs—led by FPGA

devices—seems endless, because they can help to break the economical barrier of Moore’s

law. However, in 2010, FPGAs only captured up to 2% of the global semiconductor market,

compared to about 30% for ASICs and ASSPs, combined. The main reason for this low market

share of FPGAs is that the higher volume applications (typically above 100K units per year),

where FPGAs are less competitive, account for the majority of the revenue. In order to live up

to its promise, the programmable hardware industry will have to overcome some significant

challenges.

The major challenge with FPGAs is their poor efficiency compared to ASICs, which creates

a significant gap between FPGAs and ASICs. Current modern FPGAs are electronically pro-

grammable devices, which can implement arbitrary digital circuits. This flexibility of FPGAs

comes from having fully programmable logic blocks and a routing network. However, this

flexibility has a price, which is the mentioned efficiency gap. Generally, FPGAs have hetero-

geneous structure comprised of fully flexible soft-logic mixed with efficient and dedicated

hard-logic. The drawback of FPGAs architecture is that their soft-logic, which is used to (fully

or partially) implement any application, is inefficient, and their hard-logic goes wasted when

it is not used. In other words, current FPGAs suffer from the inefficiency and inflexibility of

their soft- and hard-logic, respectively.

In this thesis, we presented a roadmap to address the above challenges. In the proposed

roadmap, we approached the problem from two complementary directions: (1) adding more

generality to the hard-logic of FPGAs, which enables more applications to take advantage

of these efficient resources, and (2) enhancing the efficiency of the soft-logic of FPGAs by

adapting the soft-logic to applications requirements. In other words, the goal of this thesis was

to compromise on efficiency of the hard-logic for flexibility, and to compromise on flexibility of

the soft-logic for efficiency. Following this roadmap, we presented synthesis and architectural

125

Chapter 8. Conclusions and Future Work

techniques for each direction.

In principle, the hard-logic in FPGAs is adapted to critical arithmetic operations that appear

in the pre-synthesis representation of applications. Multiplication and addition are such

operations. Hence, to improve the FPGA implementation of applications, dedicated structures

are integrated within the soft-logic of FPGAs. However, as we discussed earlier, these dedicated

resources are wasted when they are not used. Hence, it is essential to expand the applicability

of these resources. In the first part of this thesis, we presented a number of synthesis and

architectural methods to approach this goal.

We categorized the hard-logic of FPGAs into two groups, depending on how closely the hard-

logic is integrated into the soft-logic, and for each category, we presented a few solutions. In

current FPGAs, we have carry chains and adders that are tightly coupled with LUTs and are

mainly intended for ripple carry addition. Such carry chains are naturally inflexible, as they are

hard-wired connections. However, we introduced a new mapping technique that can use such

carry chains for carry-save arithmetic. The basic idea is to explore primitives that are nicely

mapped to a combination of LUTs, carry logic, and carry chains. Using these primitives, we

developed a carry-save arithmetic library, which is utilized by a high-level mapping technique.

The interesting part of this work is the way that we overlap the primitives on the carry chains by

logically breaking the chain. This technique allows to increase the logic density considerably.

Moreover, we identified the limits of the carry chains, using the challenges that we faced in

the mapping contribution. This motivated us to design a new carry chain that has a non-

propagating nature and can further enhance the implementation of carry-save arithmetic

applications on FPGAs. This new carry chain requires to revise the logic blocks of FPGAs

slightly, and it can be constructed by reusing and restructuring the existing one. With this new

design, where both the conventional and the new carry chains present, the hard-logic that is

coupled with LUTs can be exploited to improve a richer subset of applications. This conforms

to the first direction of the roadmap.

On the other hand, these new carry chains add little area and delay overheads to the current

logic blocks. These overheads, indeed, can be justified considering the importance of multi-

input addition in applications and the great benefits of new carry chains for implementing

multi-input additions. However, the FPGA vendors may argue that even these little overheads

can be critical for the applications that do not use these carry chains, and thus they might be

unwilling to change the structure of the logic blocks. In this case, the mapping approach that

was presented in the Chapter 3 will be the best (soft-logic) option to implement compressor

trees.

In addition to the mentioned type of the hard-logic that is tightly coupled with the soft-logic

in FPGAs, there is the stand-alone hard-logic that is interfaced with the soft-logic through

the general routing network in the island-style FPGAs. DSP blocks, embedded memories,

and hard processor cores are some instances. DSP blocks mainly perform multiplication, in

addition to a few other arithmetic operations. The problem with these DSP blocks is that they

126

are (structurally) highly inflexible, they support very limited multiplication bit-widths, and

they lack carry-save arithmetic. In this thesis, we presented a new architecture for the DSP

blocks (1) to increase their flexibility in supporting various multiplication bit-widths, and (2)

to expand their functionality to support carry-save arithmetic, by reusing the multiplication

resources in the DSP blocks. For this purpose, we took a current DSP block as the base and

redesigned its structure to make it versatile.

Experimental results revealed that using the presented DSP block for implementing compres-

sor trees significantly reduces their delay and area, compared to the soft-logic implementations

of the compressor trees that were presented in Chapters 3 and 4. Therefore, the first choice for

implementing the compressor trees on FPGA is using the presented DSP block. However, the

number of DSP blocks in an FPGA is limited, and it is still crucial to have efficient soft-logic

implementation of the compressor trees on FPGAs, when no free DSP block exist. This justifies

the contributions of Chapters 3 and 4.

The second direction that the thesis roadmap recommends is boosting the efficiency of the

soft-logic, which may result in loosing some flexibility. To follow this path, we inspected the

post-synthesis representations of circuits to explore logic patterns that may not be visible

pre-synthesis and can be used to simplify the design of the soft-logic blocks. Passing through

technology independent logic synthesis that is similar for all applications, provides the oppor-

tunity to explore more general patterns, which are less dependent on how each application is

modeled pre-synthesis.

The first step in this direction was to bypass the routing wires in the soft-logic, using hard-

wired connections that we call logic chains. The idea of logic chains was inspired from the idea

of carry chains, and the logic chains are intended for implementing the long chains of logic

that appear in the post-synthesis netlist of applications. Logic chains are fixed connections

that cascade fracturable LUTs, by which larger LUTs are constructed along the chain. The

advantages of the logic chain include (1) reducing the pressure on the routing network of

FPGAs, (2) increasing the logic density of the soft-logic blocks without any change in the

routing interface of the block, and (3) reducing the delay of critical paths by replacing the

interconnecting wires with fast and fixed wires that have near to zero delay.

In a complementary and more disruptive work, we explored logic patterns that led to design

non-LUT soft-logic blocks for FPGAs. Most of current FPGAs soft-logic blocks are LUT-based,

and thus structurally bounded to the limitations of LUTs. Although LUTs are so general that

can implement any logic function and can simplify the mapping problem, the complexity

of their structure is high due to their excess flexibility. For instance, LUTs rarely with more

than 4-6 inputs have been used, as increasing the number of LUT inputs to cover larger

parts of a circuit has an exponential cost in the LUT complexity. Inspired by recent trends

in synthesis and verification, we explored blocks based on And-Inverter Graphs (AIGs): they

have a complexity which is only linear in the number of inputs, they sport the potential for

multiple independent outputs, and the delay is only logarithmic in the number of inputs. Of

127

Chapter 8. Conclusions and Future Work

course, these new blocks are extremely less flexible than LUTs; yet, we showed (1) that effective

mapping algorithms exist, (2) that, due to their simplicity, poor utilization is less of an issue

than with LUTs, and (3) that a few LUTs can still be used in extreme unfortunate cases.

However, we observed that AICs, similar to LUTs, does not perform well for arithmetic circuits

such as multipliers and multi-input additions. Therefore, it is still essential to have the hard-

logic including the carry chains and DSP blocks for implementing such circuits. This means

that the contributions of Chapters 3, 4, and 5 are complementary to the ones in Chapters 6

and 7.

To summarize, in this thesis, we attempted to close the existing efficiency gap—delay and area—

between FPGAs and ASICs by increasing the flexibility of the hard-logic and the efficiency

of the soft-logic of FPGAs, as shown in Figure 8.1. In our experiments, we observed that the

performance of certain arithmetic circuits could be enhanced up to 40%, when the hard-logic

of FPGAs is adapted for such circuits. On the other hand, we observed that the performance

of generic circuits could be improved up to 32%, using the presented soft-logic block—And-

Inverter Cone; moreover, up to 37% saving in the usage of local routing wires were obtained,

when the LUT-based logic chain is used. This latter achievement indicates that the routing

network of future FPGAs should be revised and lightened with the integration of such hard-

wired connections. This would reduce the silicon area that is devoted to the routing network

of FPGAs, which can close the area gap between FPGAs and ASICs.

8.1 Future Work

Adapting the hard-logic of FPGAs for the applications requirement is a research direction that

will be followed, as new applications emerge quickly. Hence, it is essential to identify the new

critical requirements of applications for revising the structure of the hard-logic in FPGAs. On

the other hand, for enhancing the soft-logic, we could explore few design points in this thesis

due to the time constraint, and we believe that these ideas deserve future investigations.

The idea of logic chain that was presented in chapter 6 is an area that needs future explorations.

In this thesis, we introduced 1-dimensional logic chains, but one research area is to generalize

and extend this idea to 2-dimensional hard-wired connections. Moreover, the presented

heuristic for finding the logic candidates that can be mapped on the logic chain simply

searches for the nodes in a technology mapped netlist, which is generated unaware of the

logic chains. While, if logic decomposition is combined with the technology mapping, then

more nodes would be eligible to be mapped on the chains. Moreover, the logic decomposition

will enable to exploit the specific fixed interconnect structure between adjacent LUTs, which

can enhance the presented chaining heuristic.

In addition, we also discovered the value of AIG-based logic blocks (AICs), which is still far

from comprehensive AIC-based design space exploration. Future work will necessarily need

to address several challenges such as adapting the routing network to AICs and using AICs as

128

8.1. Future Work

ASICsoft-logic + hard-logic
soft-logic

(hard-logic is not usable)

Average (All Applications)

Current FPGAs

GAP

GAP

Average (All Applications)

GAP

FPGAs with:
- Improved carry chains
- Versatile DSP blocks

FPGAs with:
- AIC soft-logic blocks
- LUT logic chains

FPGAs with:
- Improved carry chains
- Versatile DSP blocks

- Up to 40% faster arithmetic circuits

- Up to 32% faster circuits on the soft-logic
- Up to 37% saving in local interconnect wires

Figure 8.1: Achievements of this thesis in closing the delay and area gaps between FPGAs
and ASICs. By increasing the flexibility of the hard-logic, we improved the performance of
carry-save-based arithmetic circuits. Moreover, we enhanced both performance and area of
generic logic implementation on FPGAs, by introducing novel architectures for the soft-logic.

the shadow blocks of the current logic blocks of FPGAs. Each of these challenges are extensive

research directions, which could be focused in future. In this thesis, we simply assumed that

the routing structure of the FPGA remains unchanged for AICs, while other less conservative

architectures may be superior than those explored. Nevertheless, we think that our first results

are sufficiently encouraging for the approach to deserve a closer inspection.

129

Bibliography

[1] AHMED, E., AND ROSE, J. The effect of LUT and cluster size on deep-submicron FPGA

performance and density. IEEE Transactions on Very Large Scale Integration (VLSI) Systems

VLSI-12, 3 (Mar. 2004), 288–289.

[2] ALLEN, J. R., KENNEDY, K., PORTERFIELD, C., AND WARREN, J. D. Conversion of control

dependence to data dependence. In Proceedings of the 10th ACM Symposium on Principles

of Programming Language (Austin, Tex., Jan. 1983), pp. 177–89.

[3] ALTERA CORPORATION. Cyclone Device Handbook, vols. 1.

http://www.altera.com/literature/.

[4] ALTERA CORPORATION. PowerPlay Early Power Estimator User Guide.

http://www.altera.com/literature/.

[5] ALTERA CORPORATION. Stratix Device Handbook, vols. 1 and 2.

http://www.altera.com/literature/.

[6] ALTERA CORPORATION. Stratix II Device Handbook, vols. 1 and 2.

http://www.altera.com/literature/.

[7] ALTERA CORPORATION. Stratix III Device Handbook, vols. 1 and 2.

http://www.altera.com/literature/.

[8] ANDERSON, J. H., AND WANG, Q. Improving logic density through synthesis-inspired

architecture. In Proceedings of the 19th International Conference on Field-Programmable

Logic and Applications (Prague, Aug. 2009), pp. 105–11.

[9] ANDERSON, J. H., AND WANG, Q. Area-efficient FPGA logic elements: Architecture and

synthesis. In Proceedings of the Asia and South Pacific Design Automation Conference

(Yokohama, Japan, Jan. 2011), pp. 369–75.

[10] BEAUCHAMP, M. J., HAUCK, S., UNDERWOOD, K. D., AND HEMMERT, K. S. Architectural

modifications to enhance the floating-point performance of FPGAs. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems VLSI-16, 2 (Feb. 2008), 177–87.

131

Bibliography

[11] BERKELEY LOGIC SYNTHESIS AND VERIFICATION GROUP. ABC: A System for Se-

quential Synthesis and Verification. Berkeley, Calif., Feb. 2011. Release 10216,

http://www.eecs.berkeley.edu/~alanmi/abc/.

[12] BETZ, V., AND ROSE, J. VPR: a new packing, placement, and routing tool for FPGA

research. In Proceedings of the 7th International Conference on Field-Programmable Logic

and Applications (London, UK, Sept. 1997), pp. 213–222.

[13] BETZ, V., ROSE, J., AND MARQUARDT, A. Architecture and CAD for deep-submicron FPGAs.

Kluwer Academic, Boston, Mass., 1999.

[14] CEVRERO, A., ATHANASOPOULOS, P., PARANDEH-AFSHAR, H., VERMA, A. K., BRISK, P.,

NICOPOULOS, C., ATTARZADEH NIAKI, S. H., GURKAYNAK, F. K., LEBLEBICI, Y., AND

IENNE, P. Field Programmable Compressor Trees: Acceleration of multi-input addition

on FPGAs. ACM Transactions on Reconfigurable Technology and Systems (TRETS) 2, 2

(June 2009), 13:1–13:36.

[15] CHEN, C.-Y., CHIEN, S.-Y., HUANG, Y.-W., CHEN, T.-C., WANG, T.-C., AND CHEN, L.-G.

Analysis and architecture design of variable block-size motion estimation for H.264/AVC.

IEEE Transactions on Circuits and Systems II—Analog and Digital Signal Processing 53, 2

(Feb. 2006), 578–593.

[16] CHEN, G., AND CONG, J. Simultaneous logic decomposition with technology mapping in

FPGA designs. In Proceedings of the 9th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (Monterey, Calif., Feb. 2001), pp. 48–55.

[17] CHEREPACHA, D., AND LEWIS, D. DP-FPGA: An FPGA architecture optimized for datap-

aths. VLSI Design 4, 4 (1996), 329–43.

[18] CHONG, Y. J., AND PARAMESWARAN, S. Flexible multi-mode embedded floating-point unit

for field programmable gate arrays. In Proceedings of the 17th ACM/SIGDA International

Symposium on Field Programmable Gate Arrays (Monterey, Calif., Feb. 2009), pp. 171–180.

[19] CHOW, P., SEO, S., AU, D., FALLAH, B., LI, C., AND ROSE, J. A 1.2 µm CMOS FPGA

using cascaded logic blocks and segmented routing. In Proceedings of the International

Workshop on Field-Programmable Logic and Applications (Oxford, UK, Sept. 1991), pp. 91–

102.

[20] CONG, J., AND DING, Y. An optimal technology mapping algorithm for delay optimization

in lookup-table based FPGA designs. In Proceedings of the International Conference on

Computer Aided Design (Santa Clara, Calif., Nov. 1992), pp. 49–53.

[21] CONG, J., AND DING, Y. FlowMap: an optimal technology mapping algorithm for delay

optimization in lookup-table based FPGA designs. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 13, 1 (Jan. 1994), 1–12.

132

Bibliography

[22] CONG, J., AND DING, Y. On area/depth trade-off in LUT-based FPGA technology mapping.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2, 2 (June 1994), 137–48.

[23] CONG, J., AND HUANG, H. Technology mapping and architecture evaluation for k/m-

macrocell-based FPGAs. ACM Transactions on Design Automation of Electronic Systems

(TODAES) 10, 1 (Jan. 2005), 3–23.

[24] CONG, J., WU, C., AND DING, Y. Cut ranking and pruning: Enabling a general and

efficient FPGA mapping solution. In Proceedings of the 7th ACM/SIGDA International

Symposium on Field Programmable Gate Arrays (Monterey, Calif., Feb. 1999), pp. 29–35.

[25] CZAJKOWSKI, T., AND BROWN, S. Functionally linear decomposition and synthesis of logic

circuits for FPGAs. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 12, 27 (Dec. 2008), 2236–2249.

[26] DADDA, L. Some schemes for parallel multipliers. Alta Frequenza XXXIV (1965), 349–56.

[27] DEHON, A. Balancing interconnect and computation in a reconfigurable computing

array (or, why you don’t really want 100% LUT utilization). In Proceedings of the 7th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays (Monterey,

Calif., Feb. 1999), pp. 69–76.

[28] FADAVI-ARDEKANI, J. M×N Booth encoded multiplier generator using optimized Wallace

trees. IEEE Transactions on Very Large Scale Integration (VLSI) Systems VLSI-1, 2 (June

1993), 120–25.

[29] FARRAHI, A., AND SARRAFZADEH, M. Complexity of the lookup-tale minimization prob-

lem for FPGA technology mapping. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 13, 11 (Nov. 1994), 1319–1332.

[30] FARRAHI, A., AND SARRAFZADEH, M. FPGA technology mapping for power minimization.

In Proceedings of the 4th International Workshop on Field-Programmable Logic and

Applications (Prague, Czech Republic, Sept. 1994), pp. 66–67.

[31] FREDERICK, M. T., AND SOMANI, A. K. Multi-bit carry chains for high-performance

reconfigurable fabrics. In Proceedings of the 16th International Conference on Field-

Programmable Logic and Applications (Madrid, Aug. 2006), pp. 1–6.

[32] FREDERICK, M. T., AND SOMANI, A. K. Non-arithmetic carry chains for reconfigurable

fabrics. In Proceedings of the 25th IEEE International Conference on Computer Design

(Lake Tahoe, Calif., Oct. 2007), pp. 137–143.

[33] FREDERICK, M. T., AND SOMANI, A. K. Beyond the arithmetic constraint: depth-optimal

mapping of logic chains in LUT-based FPGAs. In Proceedings of the 16th ACM/SIGDA

International Symposium on Field Programmable Gate Arrays (Monterey, Calif., Feb.

2008), pp. 37–46.

133

Bibliography

[34] GROVER, R. S., SHANG, W., AND LI, Q. A faster distributed arithmetic architecture

for FPGAs. In Proceedings of the 10th ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (Monterey, Calif., Feb. 2002), pp. 31–39.

[35] HAUCK, S., HOSLER, M. M., AND FRY, T. W. High-performance carry chains for FPGAs.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems VLSI-8, 2 (Apr. 2000),

138–47.

[36] HAUSER, J. R., AND WAWRZYNEK, J. Garp: A MIPS processor with a reconfigurable

coprocessor. In Proceedings of the 5th IEEE Symposium on Field-Programmable Custom

Computing Machines (Napa Valley, Calif., Apr. 1997), pp. 12–21.

[37] HELLERMAN, L. A catalog of three-variable Or-Invert and And-Invert logical circuits. IEEE

Transactions on Electronic Computers EC-12, 3 (June 1963), 198–223.

[38] HO, C. H., ET AL. Virtual embedded blocks: a methodology for evaluating embedded

elements in FPGAs. In Proceedings of the 14th IEEE Symposium on Field-Programmable

Custom Computing Machines (Napa, Calif., Apr. 2006), pp. 35–44.

[39] HU, Y., DAS, S., AND HE, L. Design, synthesis, and evaluation of heterogeneous FPGA

with mixed LUTs and macro-gates. In Proceedings of the 16th International Workshop on

Logic and Synthesis (San Diego, Calif., June 2007).

[40] HU, Y., DAS, S., TRIMBERGER, S., AND HE, L. Design, synthesis, and evaluation of het-

erogeneous FPGA with mixed LUTs and macro-gates. In Proceedings of the International

Conference on Computer Aided Design (San Jose, Calif., Nov. 2007), pp. 188–93.

[41] HUTTON, M., ET AL. Improving FPGA performance and area using an adaptive logic

module. In Proceedings of the 14th International Conference on Field-Programmable

Logic and Applications (Antwerp, Belgium, Aug. 2004), pp. 135–144.

[42] JAMIESON, P., AND ROSE, J. Architecting hard crossbars on FPGAs and increasing their

area-efficiency with shadow clusters. In Proceedings of the IEEE International Conference

on Field Programmable Technology (Bangkok, Dec. 2007), pp. 57–64.

[43] JAMIESON, P. A., AND ROSE, J. Enhancing the area efficiency of FPGAs with hard circuits

using shadow clusters. IEEE Transactions on Very Large Scale Integration (VLSI) Systems

18, 12 (Dec. 2010), 1696–1709.

[44] KAMP, W., BAINBRIDGE-SMITH, A., AND HAYES, M. Efficient implementation of

fast redundant number addrs for long word-lengths in FPGAs. In Proceedings of the

IEEE International Conference on Field Programmable Technology (Sydney, Australia, Dec.

2008), pp. 239–246.

[45] KASTNER, R., KAPLAN, A., OGRENCI MEMIK, S., AND BOZORGZADEH, E. Instruction

generation for hybrid reconfigurable systems. ACM Transactions on Design Automation

of Electronic Systems (TODAES) 7, 4 (Oct. 2002), 605–27.

134

Bibliography

[46] KAVIANI, A., AND BROWN, S. D. Hybrid FPGA architecture. In Proceedings of the 4th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays (Monterey,

Calif., Feb. 1996), pp. 3–9.

[47] KAVIANI, A., VRANESIC, D., , AND BROWN, S. Computational field programmable archi-

tecture. In Proceedings of the IEEE Custom Integrated Circuit Conference (Santa Clara,

Calif., May 1998), pp. 261–64.

[48] KOULOHERIS, J. L., AND EL GAMAL, A. PLA-based FPGA area versus cell granularity. In

Proceedings of the IEEE Custom Integrated Circuit Conference (Boston, Mass., May 1992),

pp. 4.3.1–4.3.4.

[49] KUKIMOTO, Y., BRAYTON, R., AND SAWKARY, P. Delay-optimal technology mapping by

DAG covering. In Proceedings of the 35th Design Automation Conference (San Francisco,

Calif., June 1998), pp. 348–51.

[50] KUON, I., AND ROSE, J. Measuring the gap between FPGAs and ASICs. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems CAD-26, 2 (Feb. 2007),

203–15.

[51] KWON, O., NOWKA, K., AND SWARTZLANDER JR., E. E. A 16-bit by 16-bit MAC design

using fast 5:3 compressor cells. Journal of VLSI Signal Processing 31, 2 (June 2002), 77–89.

[52] LATTICE SEMICONDUCTOR CORPORATION. LatticeXP family data sheet.

http://www.latticesemi.com/lit/docs/datasheets/fpga/xp_data_sheet.pdf.

[53] LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. MediaBench: A tool for eval-

uating and synthesizing multimedia and communicatons systems. In Proceedings of

the 30th Annual International Symposium on Microarchitecture (Research Triangle Park,

N.C., Dec. 1997), pp. 330–35.

[54] LEIJTEN-NOWAK, K., AND VAN MEERBERGEN, J. L. An FPGA architecture with enhanced

datapath functionality. In Proceedings of the 11th ACM/SIGDA International Symposium

on Field Programmable Gate Arrays (Monterey, Calif., Feb. 2003), pp. 195–204.

[55] LEVIN, I., AND PINTER, R. Y. Realizing expression graphs using table-lookup FPGAs. In

Proceedings of the 30th Design Automation Conference (Dallas, Tex., June 1993), pp. 306–

11.

[56] LEWIS, D., ET AL. The Stratix II logic and routing architecture. In Proceedings of the 13th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays (Monterey,

Calif., Feb. 2005), pp. 14–20.

[57] LUU, J., ANDERSON, J. H., AND ROSE, J. Architecture description and packing for logic

blocks with hierarchy, modes and complex interconnect. In Proceedings of the 19th

ACM/SIGDA International Symposium on Field Programmable Gate Arrays (Monterey,

Calif., Feb. 2011), pp. 227–36.

135

Bibliography

[58] MANOHARARAJAH, V., AND BROWN, S. Heuristics for area minimization in LUT-based

FPGA technology mapping. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 25, 11 (Nov. 2006), 2331–40.

[59] MATSUNAGA, T., KIMURA, S., AND MATSUNAGA, Y. Multi-operand adder synthesis on

FPGAs using generalized parallel counters. In Proceedings of the Asia and South Pacific

Design Automation Conference (Taipei, Taiwan, Jan. 2010), pp. 337–342.

[60] MIRZAEI, S., HOSANGADI, A., AND KASTNER, R. High speed FIR filter implementation

using add and shift method. In Proceedings of the International Conference on Computer

Design (San Jose, Calif., Oct. 2006), pp. 1–4.

[61] MISHCHENKO, A., CHATTERJEE, S., AND BRAYTON, R. DAG-aware AIG rewriting: A fresh

look at combinational logic synthesis. In Proceedings of the 43rd Design Automation

Conference (San Francisco, Calif., July 2006), pp. 532–36.

[62] MORA MORA, H., MORA PASCUAL, J., SÁNCHEZ ROMERO, J., AND PUJOL LÓPEZ, F. Partial

product reduction based on look-up tables. In Proceedings of the 14th IEEE Symposium

on Field-Programmable Custom Computing Machines (Hyderabad, India, Jan. 2006),

pp. 399–404.

[63] OKLOBDZIJA, V. G., AND VILLEGER, D. Improving multiplier design by using improved col-

umn compression tree and optimized final adder in CMOS technology. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems VLSI-3, 2 (June 1995), 292–301.

[64] ORTIZ, M.AND QUILES, F., JORMIGO, J., JAIME, F. J., VILLALBA, J., AND ZAPATA,

E. L. Efficient implementation of carry-save adders in FPGAs. In Proceedings of the 20th

International Conference on Application-specific Systems, Architectures and Processors

(Boston, USA, July 2009), pp. 207–210.

[65] PAIDIMARRI, A., CEVRERO, A., BRISK, P., AND IENNE, P. FPGA implementation of a

single-precision floating-point multiply-accumulator with single-cycle accumulation.

In Proceedings of the 17th IEEE Symposium on Field-Programmable Custom Computing

Machines (Napa Valley, Calif., Apr. 2009), pp. 267–70.

[66] PARANDEH-AFSHAR, H., BRISK, P., AND IENNE, P. Efficient synthesis of compressor trees

on FPGAs. In Proceedings of the Asia and South Pacific Design Automation Conference

(Seoul, Korea, Jan. 2008), pp. 138–43.

[67] PARANDEH-AFSHAR, H., BRISK, P., AND IENNE, P. Improving synthesis of compressor

trees on FPGAs via integer linear programming. In Proceedings of the Design, Automation

and Test in Europe Conference and Exhibition (Munich, Mar. 2008), pp. 1256–61.

[68] PARANDEH-AFSHAR, H., BRISK, P., AND IENNE, P. A novel FPGA logic block for improved

arithmetic performance. In Proceedings of the 16th ACM/SIGDA International Symposium

on Field Programmable Gate Arrays (Monterey, Calif., Feb. 2008), pp. 171–80.

136

Bibliography

[69] PARANDEH-AFSHAR, H., BRISK, P., AND IENNE, P. An FPGA logic cell and carry chain

configurable as a 6:2 or 7:2 compressor. ACM Transactions on Reconfigurable Technology

and Systems (TRETS) 2, 3 (Sept. 2009), 19:1–19:42.

[70] PARANDEH-AFSHAR, H., CEVRERO, A., ATHANASOPOULOS, P., BRISK, P., LEBLEBICI, Y.,

AND IENNE, P. A flexible DSP block to enhance FPGA arithmetic performance. In Pro-

ceedings of the IEEE International Conference on Field Programmable Technology (Sydney,

Dec. 2009), pp. 70–77.

[71] PARANDEH-AFSHAR, H., VERMA, A. K., BRISK, P., AND IENNE, P. Improving FPGA perfor-

mance for carry-save arithmetic. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems VLSI-18, 4 (Apr. 2010), 578–90.

[72] PARANDEH-AFSHAR, H., ZGHEIB, G., BRISK, P., AND IENNE, P. Routing wire optimization

through generic synthesis on FPGA carry chains. In Proceedings of the 48th Design

Automation Conference (San Diego, Calif., June 2011). Rejected.

[73] PARHAMI, B. Computer Arithmetic: Algorithms and Hardware Designs. Oxford University

Press, New York, 2010.

[74] POLDRE, J., AND TAMMEMAE, K. Reconfigurable multiplier for virtex FPGA family. In Pro-

ceedings of the 9th International Workshop on Field-Programmable Logic and Applications

(Glasgow, Aug. 1999), pp. 359–64.

[75] ROSE, J., AND BROWN, S. Flexibility of interconnection structures for fieldprogrammable

gate arrays. IEEE Journal of Solid-State Circuits 26, 3 (Mar. 1991), 277–282.

[76] SCHLAG, M., KONG, J., AND CHAN, P. K. Routability-driven technology mapping for

lookup table-based FPGAs. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 13, 1 (Jan. 1994), 13–26.

[77] SHAMS, A., PAN, W., CHANDANANDAN, A., AND BAYOUMI, M. A high-performance 1D-

DCT architecture. In Proceedings of the IEEE International Symposium on Circuits and

Systems (Geneva, Switzerland, May 2000), pp. 521–524.

[78] SONG, P., AND DE MICHELI, G. Circuit and architecture trade-offs for high speed multi-

plication. IEEE Journal of Solid-State Circuits 26, 9 (Sept. 1991), 663–70.

[79] SRIRAM, S., BROWN, K., DEFOSSEUX, R., MOERMAN, F., PAVIOT, O., SUNDARARAJAN, V.,

AND GATHERER, A. A 64-channel programmable receiver chip for 3G wireless infrastruc-

ture. In Proceedings of the IEEE Custom Integrated Circuit Conference (San Jose, Calif,

Sept. 2005), pp. 59–62.

[80] STELLING, P. F., MARTEL, C. U., OKLOBDZIJA, V. G., AND RAVI, R. Optimal circuits for

parallel multipliers. IEEE Transactions on Computers C-47, 3 (Mar. 1998), 273–85.

[81] STELLING, P. F., AND OKLOBDZIJA, V. G. Design strategies for optimal hybrid final adders

in a parallel multiplier. Journal of VLSI Signal Processing 14 (Dec. 1996), 321–31.

137

Bibliography

[82] STENZEL, W. J., KUBITZ, W. J., AND GARCIA, G. H. A compact high-speed parallel

multiplication scheme. IEEE Transactions on Computers C-26, 10 (Oct. 1997), 948–957.

[83] SWARTZLANDER, JR., E. E. Parallel counters. IEEE Transactions on Computers C-22, 11

(Nov. 1973), 1021–24.

[84] SYNOPSYS. Creating High-Speed Data-Path Components—Application Note, Aug. 2001.

Version 2001.08.

[85] UM, J., AND KIM, T. An optimal allocation of carry-save-adders in arithmetic circuits.

IEEE Transactions on Computers C-50, 3 (Mar. 2001), 215–33.

[86] VERMA, A. K., BRISK, P., AND IENNE, P. Data-flow transformations to maximize the use

of carry-save representation in arithmetic circuits. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems CAD-27, 10 (Oct. 2008), 1761–74.

[87] VERMA, A. K., AND IENNE, P. Automatic synthesis of compressor trees: Reevaluating large

counters. In Proceedings of the Design, Automation and Test in Europe Conference and

Exhibition (Nice, France, Apr. 2007), pp. 443–48.

[88] WALLACE, C. S. A suggestion for a fast multiplier. IEEE Transactions on Electronic

Computers C-13, 2 (Feb. 1964), 14–17.

[89] WEINBERGER, A. 4-2 carry-save adder module. IBM Technical Disclosure Bulletin 23, 8

(Jan. 1981), 172.

[90] WONG, H., BETZ, V., AND ROSE, J. Comparing FPGA vs. custom cmos and the impact

on processor microarchitecture. In Proceedings of the 19th ACM/SIGDA International

Symposium on Field Programmable Gate Arrays (Monterey, Calif., Feb. 2011), pp. 5–14.

[91] XILINX INC. Virtex-4 User Guide. http://www.xilinx.com/.

[92] XILINX INC. Virtex-5 User Guide. http://www.xilinx.com/.

[93] YANG, H., AND WONG, D. F. Edge-map: Optimal performance driven technology map-

ping for iterative LUT based FPGA designs. In Proceedings of the International Conference

on Computer Aided Design (San Jose, Calif., Nov. 1994), pp. 150–55.

[94] YANG, S. Logic synthesis and optimization benchmarks user guide, version 3.0. Technical

report, Microelectronics Center of North Carolina, Research Triangle Park, N.C., Jan. 1991.

[95] YE, Z. A., MOSHOVOS, A., HAUCK, S., AND BANERJEE, P. CHIMAERA: A high-performance

architecture with a tightly-coupled reconfigurable functional unit. In Proceedings of the

27th Annual International Symposium on Computer Architecture (Vancouver, June 2000),

pp. 225–35.

[96] ZUCHOWSKI, P. S., REYNOLDS, C. B., GRUPP, R. J., DAVIS, S. G., CREMEN, B., AND TROXEL,

B. A hybrid ASIC and FPGA architecture. In Proceedings of the International Conference

on Computer Aided Design (San Jose, Calif., Nov. 2002), pp. 187–94.

138

Curriculum Vitae

Personal Data

Name: Hadi P. Afshar
Date of Birth: Nov, 1978
Nationality: Iranian
E-mail address: hadi.parandehafshar@epfl.ch

Education

Ph.D. in Computer Science
Expected: March 2012

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Advisor: Prof. Paolo Ienne
Thesis: Closing the Gap Between FPGA and ASIC: Balancing Flexibility and Efficiency

M.S. in Computer Architecture
Degree: September 2003

University of Tehran, Tehran, Iran
Advisor: Prof. Zain Navabi
Thesis: Formal verification of digital circuits with word-level structures

B.S. in Computer Engineering
Degree: June 2001

University of Tehran, Tehran, Iran
Final project: Design and Implementing of MIPS RISC processor

Honors and Awards

2012 Best Paper Award in FPGA12 (Symposium on Field-Programmable Gate Arrays), the top most conference in FPGA research
area.

2011 Invited Paper to ASILOMAR11 (Conference on Signals, Systems, and Computers).
2010 HiPEAC Paper Award from European Network of Excellence on High Performance and Embedded Architecture and

Compilation.
2009 Best Paper Award in FPL (Field Programmable and Logic) conference, a first tier conference in FPGA research area.
2001 Ranked 1 among 50 graduated computer engineering students.
1997 Ranked 136 in Iran National University Entrance Exam for B.Sc. degree among more than 300,000 participants.

Professional Research and Work Experiences

January 2007 – September 2007 / July 2008-Now
Place: Processor Architecture Laboratory (LAP), Ecole Polytechnique Fédérale de Lausanne (EPFL)
Activity: Research and Development

October 2004 – December 2006
Place: Parsé Startup Company, University of Tehran Science & Technology Park, Tehran, Iran
Activity: Research and Development

September 2001 – September 2004
Place: University of Tehran, CAD Laboratory
Activity: Research and Development

139

Presentations and Invited Talks

2012, Feb The 20th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), Monterey,
California, USA.

2012, Feb Achronix Inc., Agatelogic Inc., and Tabula Inc., Santa Clara, USA.
2011, Sep The 21

st
 International Conference on Field Programmable Logic and Applications (FPL), Crete, Greece.

2011, Jun The 20
th

 International Workshop on Logic & Synthesis (IWLS), San Diego, California, USA.
2011, Feb UCLA (Center for Customizable Domain‐Specific Computing), Berkeley (EECS Department), Xilinx Inc.(San Jose),

Mentor Graphics Inc. (Fremont), Achronix Inc. (Santa Clara).
2011, Feb The 19th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), Monterey,

California, USA.
2010, May The 18

th
 International IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), Charlotte

NC, USA.
2010, Apr Laboratoire de l'Informatique du Parallélisme, Ecole normale supérieure (ENS) de Lyon, France.
2009, Sep The 19

th
 International Conference on Field Programmable Logic and Applications (FPL), Prague, Czech Republic.

2008, Mar Design Automation & Test in Europe conference, Munich, Germany.

Teaching and Mentoring

2003-2012 Lecturer and assistant in several computer engineering courses such as computer architecture, Logic design,
digital electronics, VLSI design, Test and Testable Design and design for verification.[Places: EPFL, University of
Tehran and Rajaii University]

2008-2012 Supervisor of several students including 3 graduate and 5 undergraduate students for their master, semester
and internship projects.

2007-2012 Reviewer in several conferences and journals such as TCAS, IET, FPL, IEEE MICRO, EuroASIP, ICECS, T-COMP and
DATE.

Main Publications

 Books
b1. H. P. Afshar, “Design of Digital Circuits by Verilog”, NAS publisher, 1st Edition (Farsi), May 2004.

(This book introduces the basic concepts of Verilog HDL and is intended primarily for students and beginner designers.
Several examples implemented are discussed in this book and a sample RISC processor designed and implemented by
the author is included.)

Patent Applications

p1. H. P. Afshar, D. Novo, and P. Ienne: “Non-LUT Field Programmable Gate Arrays”, US Patent filled, Dec 2011.
p2. P. Brisk, A. Cevrero, H. P. Afshar, Frank K. Gurkaynak, and P. Ienne: “Generalized Parallel Counter Arrays”, US Patent,

20090216826, 2009.

Selected Journals

 2011

j1. H. P. Afshar, A. Neogy, P. Brisk and P. Ienne, “Compressor Tree Synthesis on Commercial High-Performance FPGAs”,
ACM Transactions on Reconfigurable Technology and Systems (TRETS), 4(4):39:1-39:19, December 2011.

 2010

j2. H. P. Afshar, A. K. Verma, P. Brisk and P. Ienne, “Improving FPGA Performance for Carry-Save Arithmetic”, IEEE
Transactions on Very Large Scale Integration (T-VLSI) Systems, 18(4):578-90, April 2010.

 2009

j3. H. P. Afshar, A. K. Verma, P. Brisk and P. Ienne, “An FPGA logic cell and carry chain configurable as a 6:2 or 7:2
compressor”, ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2(3):19:1-19:42, September
2009.

j4. A. Cevrero, P. Athanasopoulos, H. P. Afshar, A. K. Verma, P. Brisk, C. Nicopoulos, H. Attarzadeh Niaki, F. K. Gurkaynak,
Y. Leblebici, and P. Ienne, “Field programmable compressor trees: Acceleration of multi-input addition on FPGAs”,
ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2(2):13:1-13:36, June 2009.

140

 2007

j5. H. P. Afshar, M. Saneei, A. Afzali-Kusha and M. Pedram, “A Fast INC-XOR Codec for Low Power Address Buses”, IET
Computers & Digital Techniques, 1(5), Sep. 2007, 625-626.

Selected Conferences

2012

c1. H. P. Afshar, D. Novo and P. Ienne, “Rethinking FPGAs: Elude LUT Flexibility Excess with And-Inverter Cones”, To
appear in 20th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), February 2012. Best
Paper Award.

c2. Y. Moctar, N. George, H. P. Afshar, P. Ienne, G. Lemieux, P. Brisk, “Reducing the Cost of Floating-Point Mantissa
Alignment and Normalization in FPGAs”, To appear in 20th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA), February 2012.

 2011

c3. H. P. Afshar and Paolo Ienne, “Measuring and Reducing the Performance Gap Between Embedded and Soft
Multipliers on FPGAs”, Proceedings of the 21th International Conference on Field-Programmable Logic and
Applications (FPL), pages 242-49, Crete, Greece 2011.

c4. H. P. Afshar, G. Zgheib, P. Brisk and P. Ienne, “Routing Wire Optimization through Generic Synthesis on FPGA Carry
Chains”, Proceedings of 20th International Workshop on Logic & Synthesis

(IWLS), June 2011.

c5. H. P. Afshar, G. Zgheib, P. Brisk and P. Ienne, “Reducing the Pressure on Routing Resources of FPGAs with Generic
Logic Chains”, Proceedings of 19th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA),
February 2011.

 2010

c6. H. P. Afshar, A. Neogy, P. Brisk and P. Ienne, “Improved synthesis of compressor trees on FPGAs by a hybrid and
systematic design approach”, Proceedings of the 19th International Workshop on Logic and Synthesis (IWLS), pages
193-200, Anaheim, Calif., June 2010.

c7. H. P. Afshar and P. Ienne, “Highly versatile DSP blocks for improved FPGA arithmetic performance”, Proceedings of
the 18th IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 229-36, Napa Valley,
Calif., April 2010. HiPEAC Paper Award.

 2009

c8. H. P. Afshar, A. Cevrero, P. Athanasopoulos, P. Brisk, Y. Leblebici and P. Ienne, “A flexible DSP block to enhance FPGA
arithmetic performance”, Proceedings of the IEEE International Conference on Field Programmable Technology (FPT),
Sydney, December 2009.

c9. H. P. Afshar, P. Brisk and P. Ienne, “Exploiting fast carry-chains of FPGAs for designing compressor trees”,
Proceedings of the 19th International Conference on Field-Programmable Logic and Applications (FPL), pages 242-49,
Prague, August 2009. Best Paper Award.

c10. H. P. Afshar, P. Brisk and P. Ienne, “Scalable and low cost design approach for variable block size motion estimation
(VBSME)”, Proceedings of the International Symposium on VLSI Design, Automation and Test, Hsinchu, Taiwan, April
2009.

 2008

c11. H. P. Afshar, P. Brisk and P. Ienne, “A Novel Logic Block for Improved Arithmetic Performance”, Proceedings of 16th
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), February 2008.

c12. A. Cevrero, P. Athanasopoulos, H. P. Afshar, P. Brisk and P. Ienne, “Architectural Improvements for Field
Programmable Counter Arrays: Enabling Efficient Synthesis of Fast Compressor Trees on FPGAs”, Proceedings of
16th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), February 2008.

c13. H. P. Afshar, P. Brisk and P. Ienne, “Improving Synthesis of Compressor Trees on FPGAs via Integer Linear
Programming”, Design, Automation and Test in Europe Conference and Exhibition (DATE), March 2008.

c14. H. P. Afshar, P. Brisk and P. Ienne, “Efficient Synthesis of Compressor Trees on FPGAs”, Asia South Pacific Design
Automation Conference (ASPDAC), January 2008.

 2007

c15. P. Brisk, A. K. Verma, H. P. Afshar and P. Ienne, “Enhancing FPGA performance for arithmetic circuit”, Design
Automation Conference (DAC), pp. 334-337, June 4-8, 2007.

 2006

c16. H. P. Afshar, A. Tootoonchina, M. Yousefpour, O. Fatemi and M. Hashemi, “A Slice-Based Automatic
Hardware/Software Partitioning Heuristic”, 18th International Conference on Microelectronic (ICM), pp. 150-153,
December 2006.

141

	Title
	Acknowledgements
	Abstract (English/Français)
	Contents
	List of figures
	List of tables
	Introduction
	Thesis Motivation
	Thesis Organization

	Background and Preliminaries
	FPGAs Introduction
	FPGAs Architecture
	FPGAs CAD Flow

	State-of-the-art FPGAs
	Altera Stratix-III
	Xilinx Virtex-5

	Computer Arithmetic Preliminaries
	Full- and Half-Adders
	Ripple-Carry and Carry-Save Adders
	Parallel Counters
	Compressors
	Adder and Compressor Trees
	Parallel Multipliers

	Mapping using Carry Chains
	Introduction
	Hybrid Design Methodology
	Developing Compressor Tree Primitives for FPGAs
	GPC Libraries
	Efficiently Packing Adjacent GPCs Along Carry Chains

	Compressor Tree Synthesis Heuristic
	GPC Library Characterization
	Compressor Tree Synthesis Heuristic

	Experimental Results
	Experimental Methodology
	Benchmarks
	Results: Stratix-III
	Results: Virtex-5
	Integer Linear Programming (ILP)

	Related Work
	Compressor Tree Synthesis for FPGAs
	Compressor Tree Synthesis for ASICs

	Conclusion

	Non-propagating Carry Chains
	Introduction
	Compressors
	Compression Ratio

	Logic Block Design
	Compressor Tree Synthesis on the New Logic Block
	Experimental Setup
	VPR
	Packing
	Benchmarks

	Experimental Results
	Overview of Experimental Comparison
	Critical Path Delay
	Critical Path Analysis
	Area Utilization
	Wire-length and Routability

	Related Work
	Conclusion

	Versatile DSP Blocks
	Introduction
	Overview of DSP Blocks for Multi-input Addition
	FPCA Architecture Overview
	FPCT Architecture Overview

	Proposed Versatile DSP Block
	Architecture of the Base DSP Block
	Supporting Various Multiplier Bit-widths
	Supporting Multi-input Addition
	Multi-input Addition Mapping Algorithm

	Experiments
	Results

	Related Work
	Conclusion

	Logic Chains
	Introduction
	Key Idea
	Carry Chain Option

	New Logic Chain
	Chaining Heuristic
	Tool Chain Flow
	DAG Generator
	Placement and Routing
	Timing Analysis
	Power Estimation

	Experimental Results
	Related Work
	Conclusion

	AND-Inverter Cones
	Introduction
	Logic Block Design
	An AIG-inspired logic block
	AND-Inverter Cone (AIC) Architecture

	Technology Mapping
	Definitions and Problem Formulation
	Generating All Cones
	Forward Traversal
	Backward Traversal
	Converting Cones to LUTs and AICs

	Logic Cluster Design
	Packing Approach
	Experimental Methodology
	Area Model
	Delay Model

	Results
	Related Work
	Conclusions

	Conclusions and Future Work
	Future Work

	Bibliography
	Curriculum Vitae

