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Abstract—Consensus is one of the key problems in fault-tolerant distributed computing. Although the solvability of consensus is now

a well-understood problem, comparing different algorithms in terms of efficiency is still an open problem. In this paper, we address

this question for round-based consensus algorithms using communication predicates, on top of a partial synchronous system that

alternates between good and bad periods (synchronous and nonsynchronous periods). Communication predicates together with the

detailed timing information of the underlying partially synchronous system provide a convenient and powerful framework for

comparing different consensus algorithms and their implementations. This approach allows us to quantify the required length of a

good period to solve a given number of consensus instances. With our results, we can observe several interesting issues, such as the

number of rounds of an algorithm is not necessarily a good metric for its performance.

Index Terms—Distributed systems, fault tolerance, distributed algorithms, round-based model, consensus, system modeling.
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1 INTRODUCTION

CONSENSUS is one of the key problems in fault-tolerant
distributed computing. The problem is related to

replication and appears when implementing atomic broad-
cast, group membership, or similar services. Consensus is
defined over a set of processes �, where each process pi 2 �
has an initial value vi: all processes must agree on a common
value that is the initial value of one of the processes.

Consensus cannot be solved deterministically in an
asynchronous system with faults, as established by the FLP
impossibility result [9]. Later, it was shown that consensus
can be solved in a partially synchronous system with a
majority of correct processes [8]. Roughly speaking, a
partially synchronous system may initially be asynchronous,
but eventually becomes synchronous; links may be initially
lossy, but eventually become reliable. The failure detector
model was introduced a few years later [3]. The model is
defined as an asynchronous system “augmented” with a
device called failure detector, defined by some completeness
and accuracy properties (see [3] for details). Over the years,
the failure detector model has become very popular.

Now that solving consensus is well understood, it
remains to understand the efficiency of consensus algo-
rithms. In other words, a quantitative comparison of
consensus algorithms is relevant. Existing work is refer-
enced in Section 2; the paper goes beyond this work and
proposes a more detailed timing analysis of some consensus
algorithms. The paper considers a partially synchronous
system that alternates between periods of synchrony and
periods of asynchrony (which includes the original defini-
tion), and compares, for various consensus algorithms, the
window of synchrony that allows processes to decide. Such

a timing analysis requires a model with time, which
explains our choice of the partially synchronous model.
Moreover, in order to decouple the timing analysis from
irrelevant details of consensus algorithms, we do our
analysis for a round-based model built on top of a partially
synchronous system [8]. Such a modular approach allows
us not only to reuse the same timing analysis for different
consensus algorithms, but also to compare various round
implementations for the same round-based consensus
algorithm. Note that our results do not necessarily apply
to nonround-based algorithms, for instance, to consensus
protocols driven by message reception like Paxos [12].
Section 9 discusses this issue in more detail.

Specifically, we express and analyze consensus algo-
rithms in the round-based model described in [5], which
combines the transmission fault model of Santoro and
Widmayer [15] with communication predicates introduced
by Gafni [10]. For each consensus algorithm and different
round implementations, we express the minimal period of
synchrony, also called good period, that allows the algorithm
to solve x instances of consensus as initializationþ x � per-
consensus. In a good period, the initialization time is a one
time duration that allows processes to synchronize to a
specific round of the consensus algorithm; while per-
consensus is the recurring duration for solving one instance
of consensus. This allows us to highlight two extreme cases:
“short” and “long” periods of synchrony. If the period of
synchrony is long, the initialization cost is amortized over all
instances of consensus, and can thus be ignored. This is not
the case if the period of synchrony is short.

One important observation from our results is that the
number of rounds of an algorithm is not necessarily a good
metric for its performance. This justifies the detailed
performance analysis done in the paper. Our results also
allow us to quantify the influence of the clock precision. We
show that a large clock skew, as it is the case when using,
e.g., step counting, has only limited influence for algorithms
that try to resynchronize in every round, but can become
unacceptable for algorithms that resynchronize less often.

The paper is structured as follows: Section 2 discusses
related work. In Section 3, we recall the concept of
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HO machines and communication predicates, together with
the corresponding algorithms, which form the basis for our
analysis. Implementation of communication predicates is the
topic of the subsequent sections. After defining our system
model for our implementations in Section 4, we give an
abstract algorithm that may serve as a generic implementa-
tion for many predicates, and which is used by all our
implementations. After that, in Sections 6 to 8, we describe
how our predicates can be implemented using different
strategies. Different strategies lead to different lengths of the
good period that is necessary to guarantee the predicate, and
to different numbers of messages. We finally analyze our
results in Section 9 and conclude the paper in Section 10.

2 RELATED WORK

The problem of analytical quantitative evaluation of
consensus algorithms was initially addressed in [8], in the
context of a partially synchronous system. For the
algorithms proposed in the paper, the authors compute
upper bounds for the time needed after Global Stabilization
Time (GST), i.e., the time at which the system becomes
synchronous, for all correct processes to decide. However,
the algorithms in [8] and ours are different.1 Moreover,
rounds in [8] are implemented on top of a clock
synchronization algorithm, and while the algorithms are
polynomial in the constants n, �, and �, the authors made
no effort to optimize these constants. This makes the
comparison with our work hard. After this early work,
analytical performance evaluation of consensus algorithms
did not receive much attention for a while. This is probably
due to the advent of failure detectors, which led to consider
an asynchronous system as the underlying model, and to
ignore timing analysis. One of the first papers to reinitiate
analytical performance study of consensus algorithms in
nonsynchronous systems is [16]. The paper considers
failure detectors, and uses as metric the minimum number
of communication steps for deciding in a “nice” run, i.e., a
run with no crashes and no false suspicions.

Later, Dutta et al. [6], Keidar and Shraer [11], and
Alistarh et al. [1] study the performance of consensus
algorithms expressed in a round-based computational
model. The performance metric is the number of rounds
needed for processes to decide once the system has become
synchronous. However, as pointed out in [11], the efficiency
expressed in terms of number of rounds does not predict
the time it takes to decide after the system stabilizes. This
observation is not followed in [11] by any analysis, even
though the authors note that this is an interesting subject
for further studies. Such a timing analysis is done in [7] for
a modified version of Paxos. The authors show that, with
their modified Paxos algorithm, consensus can be solved in
Oð�Þ after the system stabilizes (actually 17�), where � is the
upper bound on message delivery time after stability is
reached (� includes the time needed to process a message
after reception). Timing analysis is also done in [14] for
Paxos, but only for an execution started during a good
period, and leader election outside of the Paxos algorithm
(it uses a failure detector implementation in which every
process sends periodically messages to all).

3 BACKGROUND

3.1 Round-Based Model and Consensus

We consider a round-based computational model in order
to express our consensus algorithms. The round-based
model was introduced in [8], as a convenient computational
model on top of a partially synchronous system model. The
round-based model was later extended by Gafni [10] with
the notion of predicates. In [5], it was shown how a round-
based model extended with predicates can unify all benign
faults (i.e., handles faults, being static or dynamic, perma-
nent or transient, in a unified way). We use here the
notations from [5].

In a round-based model, an algorithm consists, for each
round r and process p 2 �, of a sending function Srp and a
transition function Trp . Let sp denote the current state of
process p. For each round r and each p, the sending function
SrpðspÞ determines a vector of messages to be sent, one
message for each process (null if there is no message for this
process). At the end of a round r, p makes a state transition
according to Trp ð~�; spÞ, where ~� is the partial vector of
messages received in round r. Rounds are communication
closed: a message sent in round r to q and not received by q in
round r is lost.

We denote by HOðp; rÞ the set of processes (including
itself) from which p receives a message at round r:HOðp; rÞ is
the heard of set of p in round r. If q 62 HOðp; rÞ, then the
message sent by q to p in round rwas subject to a transmission
failure (this includes the case where qdoes not send a message
in round r because it has crashed). Communication pre-
dicates are expressed over the sets ðHOðp; rÞÞp2�;r>0. Com-
munication predicates restrict transmission failures, for
example, the predicate 8p;8r : jHOðp; rÞj > n=2 ensures that
every process receives at least n=2 messages in every round.

A tupleA ¼ hSrp; T rp i is called an HO algorithm. Let P be a
communication predicate. A tuple A;Ph i is called an HO
machine, and can be used to solve a distributed problem
over the set of processes. We consider the consensus problem
in the paper. With consensus, each process p has an initial
value vp and decides irrevocably. The problem is specified by
the following conditions:

. Integrity. Any decision value is the initial value of
some process.

. Agreement. No two processes decide differently.

. Termination. All processes eventually decide.

A coordinated HO (CHO) machine is an extension of an
HO machine that includes the notion of coordinator. This
allows the specification of coordinator-based algorithms, by
giving predicates not only over the HO sets but also over
the current coordinator. In a CHO machine, Coordðp; rÞ
denotes the process that p considers to be the coordinator at
round r, henceforth called the coordinator of p in round r.
The functions Srp and Trp take the current coordinator as an
additional parameter, reflecting the fact that the messages
to be sent and the state transitions depend also on the
coordinator.

Consensus algorithms, including coordinator-based al-
gorithms, consist of a sequence of one or more rounds that
are repeatedly executed. This sequence of one or more
rounds is called a phase. Typically, the coordinator is
changed only at the beginning of a phase. This is the case of
all the coordinated algorithms we consider here; therefore,
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we will use the notation Coordðp; �Þ to refer to the
coordinator of process p during all the rounds of phase �.

3.2 Consensus Algorithms Analyzed

In this paper, we analyze three consensus algorithms that are
safe by design (i.e., they never violate the integrity or agree-
ment properties of consensus) despite benign (non-Byzan-
tine) faults, but require some predicate to ensure liveness.

3.2.1 Variant of Paxos: LastVoting in Four Rounds

(LV-4)

The first consensus algorithm we consider is a variant of
Paxos [12], called LastVoting [5] (see Algorithm 1). It is a
variant of Paxos in the sense that the algorithm is expressed
here in a round model, which is not the way Paxos has been
expressed [12]. LastVoting is coordinator based, and each
phase of LastVoting consists of four rounds 4�� 3 to 4�,
where � denotes the current phase. Roughly speaking,
round 4�� 3 corresponds to phase 1b of Paxos, round 4��
2 to phase 2a, and round 4�� 1 to phase 2b. Phase 1a of
Paxos is hidden in the implementation of round 4�, for
leader election. The termination property of consensus is
guaranteed by the existence of a phase � such that following
predicate holds:

Plv4ð�Þ :: 9�0 � � s:t: j�0j > n=2; 9c 2 �; 8p 2 �0 :

Coordðp; �Þ ¼ c ^
jHOðc; 4�� 3Þj > n=2 ^ c 2 HOðp; 4�� 2Þ ^
�0 � HOðc; 4�� 1Þ ^ c 2 HOðp; 4�Þ;

which ensures, loosely speaking, agreement on the coordi-
nator c during one phase �, and communication between c
and a majority of processes during phase �.

Algorithm 1. LV-4: LastVoting in four rounds [5].
1: Initialization:
2: xp :¼ vp 2 V =� vp is the initial value of p �=
3: votep 2 V [ f?g, initially ?
4: commitp a Boolean, initially false

5: readyp a Boolean, initially false

6: tsp 2 IN, initially 0

7: Round r ¼ 4�� 3:
8: Srp:
9: send hxp; tspi to Coordðp; �Þ

10: Trp :
11: if p ¼ Coordðp; �Þ and number of �; �h i received

> n=2 then
12: let � be the largest � from h�; �i received
13: votep :¼ one x such that hx; �i is received
14: commitp :¼ true

15: Round r ¼ 4�� 2:

16: Srp:

17: if p ¼ Coordðp; �Þ and commitp then

18: send votep
� �

to all processes
19: Trp :

20: if received vh i from Coordðp; �Þ then

21: xp :¼ v
22: tsp :¼ �

23: Round r ¼ 4�� 1:
24: Srp:

25: if tsp ¼ � then

26: send ackh i to Coordðp; �Þ

27: Trp :

28: if p ¼ Coordðp; �Þ and number of ackh i received

> n=2 then

29: readyp :¼ true

30: Round r ¼ 4�:

31: Srp:

32: if p ¼ Coordðp; �Þ and readyp then

33: send votep
� �

to all processes

34: Trp :

35: if received vh i from Coordðp; �Þ then

36: DECIDEðvÞ
37: commitp :¼ false

38: readyp :¼ false

3.2.2 Variant of Paxos: LastVoting in Three Rounds

(LV-3)

LastVoting in three rounds is a well-known variant of Paxos
in which the last two rounds of a phase are aggregated in a
single round [12], as shown by Algorithm 2: in round 3�, all
processes send their ack message directly to all other
processes, instead of via the coordinator. LV-3 terminates in
a phase � satisfying the following predicate:

Plv3ð�Þ :: 9�0 � � s:t: j�0j > n=2; 9c 2 �; 8p 2 �0 :

Coordðp; �Þ ¼ c ^ j HOðc; 3�� 2Þj > n=2 ^
c 2 HOðp; 3�� 1Þ ^ �0 � HOðp; 3�Þ:

Algorithm 2. LV-3: LastVoting in three rounds [4].
1: Initialization:
2: xp :¼ vp 2 V =� vp is the initial value of p �=
3: votep 2 V [ f?g, initially ?
4: commitp a Boolean, initially false

5: tsp 2 IN, initially 0

Round 3�� 2: identical to round 4�� 3 of Algorithm 1.

Round 3�� 1: identical to round 4�� 2 of Algorithm 1.

6: Round r ¼ 3�
7: Srp:
8: if tsp ¼ � then
9: send ack; xp

� �
to all processes

10: Trp :
11: if 9v such that number of ack; vh i received

> n=2 then
12: DECIDEðvÞ
13: commitp :¼ false

3.2.3 OneThirdRule (OTR)

Contrary to LV-4 and LV-3, which are both coordinator-

based algorithms, Algorithm 3 does not use a coordinator.
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This algorithm, called OneThirdRule, appears in [5]. It has
similarities with a fast round of the Fast Paxos algorithm
[13]. Every round of OTR has the same sending and
transition function. Decision can be reached in one round if
all initial values are identical; otherwise, decision can be
reached in two rounds. For liveness, two distinct rounds
(not necessarily consecutive) that satisfy the following
predicate are needed:

PuðrÞ :: 9�0 � � s:t: j�0j > 2n=3; 8p 2 �0 :

HOðp; rÞ ¼ �0:

Informally, this predicate ensures that a “large enough” set
of processes all receive the same set of messages. Such a
round is called uniform with cardinality 2n=3; we use the term
uniform round when the cardinality is clear from the context.
The predicate Potr will denote the existence of two distinct
rounds (not necessarily consecutive) that satisfy PuðÞ.

Algorithm 3. The OneThirdRule algorithm [5].

1: Initialization:

2: xp  vp =�vp is the initial value of p�=

3: Round r:

4: Srp:

5: send xp
� �

to all processes

6: Trp :

7: if jHOðp; rÞj > 2n=3 then

8: xp :¼ the (smallest) most frequently received value
9: if more than 2n=3 values received are equal to x then

10: DECIDEðxÞ

Remark. The algorithms and predicates given in this section
ensure a decision of a majority of processes (two-thirds
majority in the case of OTR). However, with a small
modification, all processes that are eventually reachable
will decide: since our agreement property is a uniform
property (there are no “faulty” processes that are
exempted from agreement), processes—once they have
decided—can simply communicate their decision to all
other processes. Once this communication is successful,
also these processes will decide.

3.3 Implementation of Predicates

In this paper, we are interested in the question of how an
HO machine A;Ph i, where P is some predicate, can be
implemented in a “classical” message-passing model. Fig. 1
illustrates how these parts work together in a system. The
top layer, the HO Algorithm A, is defined solely in terms of
the sending function Srp and transition function Trp , and

assumes some communication predicate P. The commu-
nication predicate P is implemented by the Predicate
Implementation layer, which builds on top of the system
model. These two layers are independent, apart from the
interface defined by the communication predicate. This
enforces a clear separation between the high-level computa-
tional model of the HO Algorithm and the low-level system
model and allows each layer to be developed indepen-
dently. In the rest of this paper, we give implementations
for the communication predicates specified above (sum-
marized in Table 1).

Given an implementation for some predicate P, we are
looking for the length of a good period, i.e., the duration the
system has to be synchronous at some arbitrary point in
time in order to ensure the predicate.

Note that for coordinator-based algorithms, the predicate
implementation layer is also responsible for electing the
coordinator. This is in contrast to failure detector-based
solutions, in which the failure detectors (or the leader
election oracle) are provided by some external service. Such
a service typically uses heartbeat messages. No such
external service is used here. The difficulty is, during a
good period, to elect a common coordinator, resynchronize
the processes, and exchange the necessary messages to
ensure the predicate, within a time as short as possible, and
using as few messages as possible.

4 SYSTEM MODEL

We describe now the system model for the implementation
of the predicate layer. We consider a similar model as in [8],
with some modification to reflect good periods of bounded
length. Further, we use clocks instead of a bound on the
maximum speed of processes, a more general approach, as
we explain later.

Let � ¼ fp1; . . . ; png be the set of processes, with n > 2.
Processes are connected by a communication network,
modeled for each p 2 � by a variable bufferp, which
contains all messages that have been sent to p but were not
yet received by p. Processes proceed by making steps,
where a step is either a receive step or a send step:

. In a send step, a single message can be sent to another
process in the system, that is, when process p executes
sendð mh i; qÞ, the tuple m; ph i is placed in bufferq.

. In a receive step, some messages are received, that is,
when process p executes receiveðSÞ, a set S �
bufferp is removed from bufferp, and delivered to
p. Note that S may be empty.

In each step, some computation can be done, and the
local clock CpðtÞ of process p at real time t can be read. We
assume that local clocks are monotonically nondecreasing at
any time. Real time and the local clock take values from IR.
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TABLE 1
Algorithms and Predicate Implementations Studied



Definition 1 (�-Timely Message). A message m sent at time t

by some process to a process p is called �-timely, if it is

received at the latest by the first receive step of p at or after

time tþ�.

A link between processes p and q is said to be �-timely in

an interval I if every message sent by p to q at a time t 2 I is

a �-timely message, provided that tþ� 2 I.
Process synchrony is ensured by making steps at a

minimum rate. Note that in contrast to [8], there is no

restriction on the maximum speed of processes, since we will

use clocks instead of step counting in order to measure time.

Definition 2 (�-Synchronous Process in Interval I). A

process is said to be �-synchronous in interval I if there is a

bound � such that in any subinterval of I of length �, p takes

at least one step.

Definition 3 (Local ð�; �Þ Bounded-Drift Clock in Interval

I). A local clock CpðtÞ has a bounded drift in a time interval I,

if there are a priori known constants � and � with 0 < � � �,

so that for any two times t1, t2 2 I s:t: 0 < t1 < t2:

Cpðt2Þ � Cpðt1Þ
t2 � t1

2 ½�; ��: ð1Þ

Note that our clock definition is very general, since it

encompasses other definitions like the classical bounded-

drift clocks (� ¼ 1� 	, � ¼ 1þ 	), whereas the values

� ¼ 1=�, � ¼ 1 are obtained asymptotically if step counting

is used for measuring time (this would require an upper

bound on the frequency of steps, of course).

Definition 4 (Good Period). Let �0 � � be a set of processes.

An interval I is a good period for �0, if there are a priori

known bounds �;� 2 IN, and �; � 2 IR, with � > 0,

0 < � � �, such that

1. in I, all processes in �0 are �-synchronous and have a
local ð�; �Þ bounded-drift clock in I,

2. no process that is not in �0 makes a step,
3. all links between processes in �0 are �-timely, and
4. no messages from processes not in �0 are received by a

process in �0.

A k-good period is a good period for some arbitrary �0

with j�0j � k. In the sequel, when k is clear from the

context, we will use only the term good period.
Note that we do not specify why processes outside �0

do not make steps; they might have crashed, be just
temporarily unavailable, or be mute for any other reason.
Therefore, the notion of correct or faulty process is not
suitable in our context; however, with respect to some �0-
good period, we say a process is up in this good period iff
it is in �0, else it is down.

Due to clock drift, a timeout measured by a process does

not necessarily match the elapsed real time. Nevertheless,

during good periods the clock drift is bounded, which

allows us to bound the time measured by a process within a

real-time envelope. The following lemma shows the relation

between real time and process time, which will be used in

the rest of the paper to set process timeouts:

Lemma 1. In a good period, a time interval of length 
C ¼ �
L,
measured by some process p, corresponds to a real-time
interval of length in [
L; 
U ], with 
U ¼ �

� 
L.

Proof. Let ½t1; t2� be a real-time interval. Then, Cpðt2Þ �
Cpðt1Þ ¼ 
C is the duration of the interval as measured by
p, and t2 � t1 the real-time duration. From (1), we have
t2 � t1 � ½Cpðt2Þ � Cpðt1Þ�=� ¼ 
L, and t2 � t1 � ½Cpðt2Þ �
Cpðt1Þ�=� ¼ �

� 
L, which proves the result. tu

We will keep the notation of 
L, 
C , and 
U consistent
within the paper to denote these different kind of durations.

5 THE GENERIC PROTOCOL

We give in this section a generic algorithm for the predicate
layer, an algorithm that is parametrized by four abstract
functions. The instantiation of these functions will allow us
to devise three different algorithms for the predicate layer
that differ mainly by the message pattern and the way the
coordinator is elected. The first method is called Full
Synchronization (Section 6); it ensures uniform rounds,
thereby allowing the implementation of all predicates
considered in this paper. Phase Synchronization (Section 7)
is an optimized implementation for Plv3, where round
synchronization takes place only once per phase. Finally,
Synchronization by a Coordinator (Section 8), where synchro-
nization uses only messages from coordinator process(es),
is specialized for Plv4.

The generic Algorithm 4 follows the subsequent pattern.
One iteration of the while loop (line 6) corresponds to one
round: the sending function is called at line 9 and the
transition function is called at line 20. Messages are sent at
line 14: the abstract function Dest (line 10) specifies the set
of processes to which a message is sent in the current round.
Message reception occurs at line 17. The receive statement is
executed repeatedly until NextRound returns true (line 16).
This typically happens when a timer has expired or when a
message from some higher round is received. Note also that
some rounds may be totally skipped (no message sent, no
message received): this happens whenever the function
SkipRound (line 8) returns true, which typically occurs if
process p in round rp receives a message from some round
r0 > rp. In this case, p skips all rounds from rp to r0 � 1.
Finally, function ElectCoord specifies how a coordinator for
each round is determined.

Algorithm 4. Generic algorithm of the predicate layer
1: Rcvp  ; /* set of messages received */

2: rp  1 /* round number */

3: sp  initp /* state of the process p */

4: coordp  ? /* coordinator of process p */

5: tp  CpðÞ /* timer */

6: while true do

7: coordp  ElectCoordðp; rp; CpðÞ � tp; coordp; RcvpÞ
8: if :SkipRoundðp; rp; CpðÞ � tp; coordp; RcvpÞ then

9: msgs S
rp
p ðsp; coordpÞ

10: for all q 2 Destðp; rp; CpðÞ � tp; coordp; RcvpÞ do

11: if p ¼ q then

12: Rcvp  Rcvp [ f msgs½p�; p; rp
� �

g
/* local delivery */
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13: else

14: send( msgs½q�; rp
� �

; q)

15: tp  CpðÞ
16: while :NextRoundðp; rp; CpðÞ � tp; coordp; RcvpÞ do

17: receive(S)

18: for all messages x; rh i; qh i 2 S do

19: Rcvp  Rcvp [ f x; q; rh ig
20: sp  T

rp
p ðf x; qh i j x; q; rp

� �
2 Rcvpg; sp; coordpÞ

21: rp  rp þ 1

6 FULL SYNCHRONIZATION

Our first implementation is given as Parameterization 1 for

the generic algorithm. The implementation ensures uniform

rounds in a good period, which “almost” ensures Plv4 (for

LV-4) and Plv3 (for LV-3); only the election of the

coordinator is missing. However, a uniform round r allows

the election of a unique coordinator for round rþ 1 (the

coordinator can be determined through a deterministic

function on the HO sets of round r). Thus, uniformity of

round 4�0 and of the four rounds of phase �0 þ 1 allows us

to ensure Plv4, and uniformity of round 3�0 and of the three

rounds of phase �0 þ 1 allows us to ensure Plv3. More

generally, 2y consecutive uniform rounds ensure y instances

of Potr, in the worst case 4yþ 4 consecutive uniform rounds

ensure y instances of Plv4, and 3yþ 3 consecutive uniform

rounds ensure y instances of Plv3.
With Parameterization 1, every process sends a message

to every other process in all rounds (see function Dest).
While sending to all in all rounds seems natural for Potr,
where every process must hear from every alive process,
this induces some overhead for Plv3 and Plv4, since these
predicates only require one-to-all or all-to-one patterns on
some of their rounds. This is shown in Fig. 2 for predicate
Plv3, where the full lines represent messages required by the
predicate and dotted lines represent the additional mes-
sages sent by Parameterization 1.

In Sections 7 and 8, we provide implementations for Plv3
and Plv4 with lower message complexity. The reminder of
the section describes Full Synchronization in more detail,
computes the timeout 
C , and the length of a good period.

Parameterization 1. A generic parameterization using full

synchronization; where hoðrÞ :¼ fq j h�; q; ri 2 Rcvg
NextRoundðp; r; 
; coord;RcvÞ :¼
_(

9h�;�; r0i 2 Rcv : r0 > r

 � 
C

SkipRoundðp; r; 
; coord;RcvÞ :¼ 9h�;�; r0i 2 Rcv : r0 > r

Destðp; r; 
; coord;RcvÞ :¼ �

ElectCoordðp; r; 
; coord;RcvÞ :¼

(
minð�Þ : r ¼ 1
minðhoðr� 1ÞÞ : hoðr� 1Þ 6¼ ;
coord : else

6.1 Outline of Full Synchronization

As shown by function NextRound in Parameterization 1,
there are two ways for a process p to leave round r: 1) by
receiving a message from a higher round r0 > r, or 2) by
expiration of a timeout. In both cases, there is at least one
process whose timeout for round r expires; this makes the
protocol driven by timeout. In case 1, the process goes
directly to round r0. Note that the function SkipRound and
the first condition of NextRound play together to achieve
this. In case 2, the timeout 
C is chosen to ensure
uniformity, i.e., PuðÞ, in a good period (see Lemma 2
below). As shown by the function ElectCoord, the
coordinator for some round r is the smallest process
(min ) in the HO set of round r� 1 (whenever this HO set
is nonempty). Note the definition of the macro hoðrÞ given
in the caption of Parameterization 1; we will also use this
notation in the following sections. This ensures a unique
coordinator in good periods where rounds are uniform.
For noncoordinated predicates, like PuðÞ, no coordinator is
needed and the function ElectCoord can be ignored.

6.2 Timeout 
C
We first assume that a good period, which starts at some
time tg, holds forever, and show that the timeout 
C ¼
½2�þ ð2n� 1Þ��� ensures PuðÞ for processes that are up in
this good period. In the next section, we compute the length
of a good period that is sufficient to ensure PuðÞ.
Lemma 2 (Timeout 
C). Consider Parameterization 1 with the

timeout 
C ¼ ½2�þ ð2n� 1Þ���. Assume that a k-good
period starts at time tg and holds forever, and that round r0

is the highest round started by any process in �0 by time tg.
Then, every new round r > r0 started after time tg is uniform
(PuðrÞ) with cardinality k.

Proof. We show that in round r, for every process p 2 �0,
we have: 1) p receives a message from all processes in �0,
but 2) not from any process not in �0.

We start with point 2. Assume that p received a round
r message from a process q that is not in �0. By the
definition of a good period, p could not have received
this message after tg. If p had received this message
before tg, then p would have advanced to round r
immediately, which contradicts our assumption that no
process in �0 has entered round r by tg.

To prove point 1, assume some process p1 is the first
to finish sending its round r messages at time ts > tg
(see Fig. 3). These messages are ready for reception at
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each process in �0 (p2 in Fig. 3), the latest at ts þ�, since
messages are �-timely. These messages are received in
the next receive step, which occurs the latest after n� 1
send steps (in the case, the process was just starting
executing send steps). Since a step takes up to � time,
p1’s message is received by all processes in �0 the latest
at ts þ�þ n�. Each process that receives this message
jumps to round r, if not already there, and thus, by time
ts þ�þ ð2n� 1Þ� has performed n� 1 send steps and
has sent its round r message to all. This message is
ready for reception by the latest at time te ¼ ts þ 2� þ
ð2n� 1Þ�.

The timeout 
C ¼ ½2�þ ð2n� 1Þ���, together with
Lemma 1, ensure that no timeout of length 
C started at
time ts expires before te. So when the timeout expires, all
messages for round r are either received or ready to be
received. Before calling the transition function for
round r, a receive step is performed; thus in round r,
every process in �0 receives a message from every
process in �0. tu

6.3 Length of a Good Period

The next theorem computes the required duration of a good
period in order to ensure x consecutive uniform rounds. The
special case x ¼ 0 gives the initialization time, which for Potr
is the time from the start of the good period until the
beginning of the first uniform round, which is �

� ð2� þ
ð2n� 1Þ�Þ þ 2n�þ�. Also from the formula, we can
compute the time required for each uniform round after
stabilization, which is �

� ð2�þ ð2n� 1Þ�Þ þ n�.

Theorem 1. In any good period of length

ðxþ 1Þ �
�
ð2�þ ð2n� 1Þ�Þ þ n�

� �
þ�þ n�;

the generic algorithm with Parameterization 1 ensures x

consecutive rounds that fulfill PuðÞ.
Proof. Assume a good period starts at time tg and at this

time, process p1 has the highest round number r among
the processes in �0. We distinguish two cases: 1) tg is
during these n� 1 send steps (not shown in Fig. 4) of
round r ¼ 3�. 2) tg after these send steps (see Fig. 4). It
can be shown that case 2 is worse than case 1 in terms of
length of the good period; thus, we consider case 2.
Round rþ 1 is the first round that all processes in �0

start after tg. According to Lemma 2, round rþ 1, rþ 2,
etc., are uniform if the good period is long enough. We
compute the maximum time it takes for any process p2 to
complete round rþ x. As shown by Fig. 4, p2 starts
round rþ 1 at latest at time tg þ 
U þ 2n�þ� (end of
“initialization” in Fig. 4). This expression is obtained as
follows: by the definition of p1, no message of a round
larger than r is received before p1’s timer expires, and


U ¼ �
� 
L is the time elapsed for a timeout 
C ¼ 
L�;

when the timeout expires, p1 executes a receive step (�),
moves to round rþ 1, executes n� 1 send steps
(ðn� 1Þ�); in the worst case, the message to p2 is sent
in the last of these send steps; � later the message is
ready for reception on p2; at this time, p2 may be
executing n send steps (ðn� 1Þ�) before the reception
step (�) in which p1’s message is finally received; at this
point, p2 moves to round rþ 1.

We now show that case 1 leads to a shorter good
period. Here, by time tg þ ðn� 2Þ�, at least one message
of round r was sent by p1. By time tg þ ðn� 2Þ� þ
�þ n�, this message is received by some process, and at
the latest ðn� 1Þ� time later, this process has sent its
round r messages to all. Thus, after time tg þ 2� þ
ð4n� 4Þ�, every process has performed its send steps for
round r. Consequently, doing now the same analysis as
in case 2, it cannot be the case anymore that a process is
performing send steps when the message for round rþ 1
is ready for reception. This leads to the fact that also in
this case, p2 starts round rþ 1 not after time tg þ 
U þ
�þ 2n�.

Process p2 needs at most n�þ 
U to complete round
rþ 1 (see “regular round” in Fig. 4): n� 1 send steps
(ðn� 1Þ�), timeout 
U (in the worst case, no message of a
larger round is received), one receive step (�).

Summing up the duration of “initialization” and of x
“regular rounds” leads to ðxþ 1Þ½
U þ n�� þ�þ n�.
Replacing 
U with �

� 
L, and 
L with 2�þ ð2n� 1Þ� (see
Lemma 2) establishes the result. tu

As mentioned at the beginning of Section 6, in the
worst case for y instances of predicate Potr, we need 2y
uniform rounds, for y instances of Plv3, we need 3yþ 3
uniform rounds, and for y instances of Plv4, we need 4yþ
4 uniform rounds. It follows that the initialization time of
LV-3 Full Sync corresponds to the initialization time to get
uniform rounds, plus the duration of three uniform
rounds. After initialization, each instance of LV-3 Full
Sync requires three uniform rounds. Applying a similar
reasoning to LV-4, we have

Corollary 1. Let # ¼ �
� ð2�þ ð2n� 1Þ�Þ þ n�. The initializa-

tion time of LV-3 Full Sync, resp. LV-4 Full Sync, is

4#þ�þ n�, resp. 5#þ�þ n�. After initialization, the

duration of one instance of LV-3 Full Sync, resp. LV-4 Full

Sync, is 3#, resp. 4#.

7 PHASE SYNCHRONIZATION

Full synchronization sends extra messages with respect to

the “natural message pattern” induced by the predicates

Plv3 and Plv4. In this section, we give an implementation

for Plv3 that uses only the “natural” messages, which are

the following:
Here, processes are synchronized only at round 3� of

every phase �. As in the case of full synchronization, round

3� allows the election of the coordinator for phase �þ 1.

7.1 Outline of Phase Synchronization

The “natural” message pattern depicted in Fig. 5 is

generated by the function Dest in Parameterization 2.
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Parameterization 2. LV-3 using phase synchronization;

where hoðrÞ :¼ fq j h�; q; ri 2 Rcvg

NextRoundðp; r; 
; coord;RcvÞ :¼

_ 9h�;�; r0i 2 Rcv : r0 > r
r mod 3 ¼ 1 ^ ð
 � 
C1 _ jhoðrÞj > n=2Þ
r mod 3 ¼ 2 ^ 
 � 
C2

r mod 3 ¼ 0 ^ 
 � 
C3

8>><
>>:

SkipRoundðp; r; 
; coord;RcvÞ :¼ 9h�;�; r0i 2 Rcv : r0 > r

Destðp; r; 
; coord;RcvÞ :¼(
coord : r mod 3 ¼ 1
� : r mod 3 ¼ 0 _ ðr mod 3 ¼ 2 ^ p ¼ coordÞ
; : else

ElectCoordðp; r; 
; coord;RcvÞ :¼
minð�Þ : r ¼ 1
minðhoðr� 1ÞÞ : r mod 3 ¼ 1 ^ hoðr� 1Þ 6¼ ;
coord : else

8<
:

Round 3� of phase � is identical to a round in the full
synchronization case: all processes wait for the timeout
before electing a new coordinator and moving to the first
round of the next phase. According to function NextRound,
only round 3�� 2 (line 2 in NextRound) may be terminated
by the reception of messages. Rounds 3�� 1 and 3�
terminate by expiration of the timeout as before.

Round 3�� 1 requires some clarification. In this round,
processes only need to receive a message from the
coordinator; thus, it seems natural for a process to advance
to round 3� as soon as it receives such message. But this
solution is not correct as shown by the following scenario.
Consider processes p1, p2, and pc, with pc being the
coordinator. Process p1 receives pc’s message for round
3�� 1, advances to round 3�, and sends its round 3�
message to all. This message is delivered quickly to p2, which
receives it before the round 3�� 1 message from pc. If p2

advances immediately to round 3�, it will miss the round
3�� 1 message from pc that arrives later. Algorithm 2 avoids
this problem by delaying the start of round 3� until all
processes had time to receive the round 3�� 1 message from
the coordinator. Another solution, based on piggybacking, is
described at the end of Section 7.

7.2 Timeouts 
C1, 
C2, 
C3

We now compute values for 
C1, 
C2, and 
C3 that ensure
Plv3 during a sufficiently long good period; the required
length of a good period is proven in Section 7.3.

Lemma 3 (Timeout 
C1). Consider Parameterization 2 with

C1 ¼ ½2�þ ð2nþ 1Þ��� þ 
C3ð��� 1Þ. Assume every pro-
cess starts round 3ð�� 1Þ in a ðnþ1

2 Þ-good period and phase �
has a unique coordinator. Then, the coordinator hears from a
majority of processes in round 3�� 2.

Proof. Let p3 be the first process that starts the timeout for
round r ¼ 3ð�� 1Þ at time ts3 (see Fig. 6). By time ts3 þ
�þ n� all other processes, e.g., p2, are in round 3ð�� 1Þ.
After sending their round 3ð�� 1Þ messages, which
takes at most ðn� 1Þ� time, their timeout 
C3 ¼ 
L3� will
expire by time ts3 þ�þ ð2n� 1Þ�þ 
L3

�
� . A receive and

a send step later, each process has sent its round 3�� 2
message to the coordinator (p1 in Fig. 6), which is by time
ts3 þ�þ ð2nþ 1Þ�þ 
L3

�
� . This message is ready for

reception at the coordinator � time later. Thus, if the
coordinator executes the receive step and the transition
function for round 3�� 2 not before time ts2 ¼ ts3 þ
2�þ ð2nþ 1Þ�þ 
L3

�
� , the set of messages passed to the

transition function includes the messages of round 3��
2 from a majority.

Because p3 is the first process to start the timeout for
round 3ð�� 1Þ, no timeout 
C3 for this round expires at
any process (including the coordinator) before ts3 þ 
L3.
Therefore, no process (including the coordinator) starts
round 3�� 2 before ts1 ¼ ts3 þ 
L3, and executes the
transition function for round 3�� 2 before ts1 þ 
L1. The
timeout 
C1 as given by the lemma ensures that ts1 þ 
L1

is not before ts2. Thus, the coordinator p1 receives the
round 3�� 2 messages from all processes in �0. tu

Lemma 4 (Timeout 
C2). Consider Parameterization 2 with
the timeout 
C2 ¼ ½3�þ ð3nþ 1Þ��� þ 
C3ð��� 1Þ � 
C1.
Assume a phase � with a unique coordinator, where round
3ð�� 1Þ starts in a ðnþ1

2 Þ-good period. Then, in round
3�� 1, every process in �0 hears from the coordinator.

Proof. Let p3 be the first process that starts the timeout for
round r ¼ 3ð�� 1Þ at time ts3. By a similar reasoning as for
Lemma 3, each process has sent its round 3�� 2 message
to the coordinator by time ts3 þ�þ ð2nþ 1Þ�þ 
L3

�
� .

Then, at most �þ � later, the coordinator has received
this message from every process in �0, thus achieved the
majority condition in line 2 of NextRound, and therefore
sends its round 3�� 1 message to all. The latter takes at
most ðn� 1Þ� time, and this message will be ready for
reception � time later. At this time, te ¼ ts3 þ 3� þ
ð3nþ 1Þ�þ 
L3

�
� , the timeout 
C2 may safely expire at

any process. Because p3 is the first process that starts round
3ð�� 1Þ, no process starts round 3�� 1 before ts2 ¼
ts3 þ 
L3 þ 
L1. Thus, choosing 
C2 as in the lemma ensures
that 
C2 does not expire before time te at any process. tu

Lemma 5 (Timeout 
C3). Consider Parameterization 2 with the
timeout 
C3 ¼ ½2�þ ð2n� 1Þ���. Assume that a k-good
period starts at time tg and that round r0 is the highest round
started by any process in �0 by time tg. Then, every new round
3� > r0 started after time tg is uniform with cardinality k.
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Proof. Similar to Lemma 2. tu
Corollary 2. Parameterization 2 with the timeout 
C1 ¼ 2�� þ

�2

� ½2�þ ð2n� 1Þ��, 
C2 ¼ ½�þ n���, and 
C3 ¼ ½2�þ
ð2n� 1Þ��� ensures a Plv3ð�Þ, if round 3ð�� 1Þ starts in a
ðnþ1

2 Þ-good period.

Proof. By Lemma 5, round 3ð�� 1Þ is uniform. Thus by the
definition ofElectCoord, every process in �0 has the same
coordinator. Applying the Lemmas 3 to 5 and replacing
the equations for 
C1, 
C2, and 
C3 yields the result. tu

7.3 Length of a Good Period

We are now ready to compute the required duration of a
good period in order to ensure y consecutive phases of
Plv3ðÞ. For the predicate Plv3ðÞ, the initialization time is the
time from the start of a good period until all processes start
the first round of phase � satisfying Plv3ð�Þ. This can be
computed from the formula below, by setting y ¼ 0. After
initialization, the time required for each consensus instance
is given by the multiplication factor of y.

Theorem 2. In any good period of length

y ð2�þ ð2n� 1Þ�Þ �
2

�2
þ ð3�þ ð3nþ 1Þ�Þ �

�
þ ð2nþ 2Þ�

� �

þ ð2�þ ð2n� 1Þ�Þ �
2

�2
þ ð5�þ 5n�Þ �

�
þ�þ 5n�;

the generic algorithm with Parameterization 2 and timeouts
according to Corollary 2 ensures y consecutive phases that
fulfill Plv3ð�Þ.

Proof. It can be shown that the “initialization” period (see
Fig. 7) is the longest in the case tg starts just after the
first send step of some round 3ð�� 2Þ, and round 3ð��
2Þ is not uniform (only round 3ð�� 1Þ is uniform). The
end of round 3ð�� 1Þ corresponds to the end of the
“initialization” period. By time tg þ ð2nþ 1Þ�þ 
U3 þ

U1 þ 
U2 round 3ð�� 1Þ is started at some process p1.
This round 3ð�� 1Þ ends for all processes in �0 at the
latest ð3n� 1Þ�þ 
U3 þ� time later (end of “initializa-
tion” period) using the same argument as in Theorem 1.
By Corollary 2, we have Plv3ð�Þ. Every “regular” phase
then takes at most time 
U1 þ 
U2 þ 
U3 þ ð2nþ 2Þ�. The
result follows by replacing the timeouts with the
expressions from Corollary 2. tu

7.4 Piggybacking

We have explained in Section 7.1 why we choose round
3�� 1 to terminate by the expiration of a timeout instead of
terminating it by reception of a message from the
coordinator. The other solution, based on piggybacking,
requires some changes to our generic implementation.
Thus, we present only the overall idea and the results.

In this approach, a process p piggybacks all the messages
it received for a round r on its message for round rþ 1. If

some process q receives the round rþ 1 message from p
before entering round rþ 1, q can include these round r
messages to its received set before ending round r. In some
cases, this shortens the length of a good period.

In general, this mechanism can be used if all processes
wait for the same quorum in some round, e.g., in the second
round of LV-3, where all processes wait for a single
message from the same process, i.e., the coordinator.

This mechanism leads to an improved version of phase
synchronization, called Piggybacking, in which the second
round message of LV-3 is piggybacked to the third round
message. By this optimization, the length of a good period
for LV-3 can be reduced approximately by one �, while the
message size is increased only by a small constant factor.
The expression can be calculated by applying a similar
analysis as before

y ð2�þ ð2n� 1Þ�Þ �
�
þ 2�þ ð2nþ 2Þ�

� �

þ ð2�þ ð2n� 1Þ�Þ �
2

�2
þ ð5�þ 5n�Þ �

�
þ�þ 5n�:

The other benefit of piggybacking is to speed up best
case scenarios, where �0 ¼ � in a good period. In this case,
the implementation of the predicate does not rely on any
timeout, and the length of a good period depends only on
the actual transmission delay of messages, and no more on
�. However, applying piggybacking in every round
induces an important overhead and can considerably
increase the effective message transmission delay.

8 SYNCHRONIZATION BY A COORDINATOR

If we use full synchronization or phase synchronization to
implement Plv4, LV-4 will never perform better than LV-3 in
terms of message complexity or length of the good period,
because LV-4 requires one more round per phase. In this
section, we give another implementation that achieves a
message complexity of OðnÞ instead of Oðn2Þ per regular
phase during a good period, at the cost of a slightly larger
length of the good period.

The predicate Plv4, contrary to Plv3, does not require any
round where all processes hear from each other. Without
such a round, we need to send additional messages in some
round in order to synchronize processes and choose a
coordinator, like we do for Plv3. As for Plv3, we do this only
once per phase, in the last round of a phase. This leads to
the message pattern depicted in Fig. 8.

The messages represented by a full line are required
by Plv4, while the messages represented by a dotted line
in round 4� are only for synchronization and election of a
coordinator.

Section 8.1 describes the implementation in more detail.
The values for timeouts are presented in Section 8.2 and the
length of a good period is proved in Section 8.3.
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8.1 Outline of Synchronization by a Coordinator

Our algorithm requires only n messages in round 4� during
a good period. This optimization is based on the following
two observations: 1) to choose a coordinator, it is enough
for the HO sets to be nonempty, as long as the round is
uniform, and 2) to synchronize to the same round in a good
period, it is enough if all processes receive a message from
the process with the highest round.

Based on these observations, it is easy to see that in
addition to the coordinator, only the processes that entered
round 4� by timeout need to send a message to all (line 3 of
Dest in Parameterization 3). Otherwise, if a process p

receives a round 4� message while in a lower round, p can
advance to round 4� silently, since there is at least another
process that sent a message to all in round 4� and,
therefore, can be chosen as coordinator. This strategy
results in a message complexity of cn for the election in
round 4�, where c is the number of processes that compete
to become coordinator. After the first election in a regular
phase during a good period, we have c ¼ 1, since all
processes will receive a round 4� message from the
coordinator while in round 4�� 1.

To reduce the time needed to start a phase in which Plv4
might hold, our algorithm skips some rounds of phase � if it
detects that Plv4ð�Þ cannot hold. This can happen in two
cases: 1) in round 4�� 2 by the coordinator if it does not
receive a majority of messages during round 4�� 1
(SkipRound, line 2), and 2) in round 4�� 1 by any process
if it does not receive a message from the coordinator in
round 4�� 2 (SkipRound, line 3).

Parameterization 3. LV-4 using synchronization by coordi-

nator; where hoðrÞ :¼ fq j h�; q; ri 2 Rcvg

NextRoundðp; r; 
; coord;RcvÞ :¼

_ 9h�;�; r0i 2 Rcv : r0 > r
r mod 4 ¼ 0 ^ 
 � 
C4

r mod 4 ¼ 1 ^ ð
 � 
C1 _ jhoðrÞj > n=2Þ
r mod 4 ¼ 2
r mod 4 ¼ 3 ^ ð
 � 
C3 _ jhoðrÞj > n=2Þ

8>>>><
>>>>:

SkipRoundðp; r; 
; coord;RcvÞ :¼
_ 9h�;�; r0i 2 Rcv : r0 > r

r mod 4 ¼ 2 ^ ðp ¼ coord ^ jhoðr� 1Þj � n=2Þ
r mod 4 ¼ 3 ^ coord 62 hoðr� 1Þ

8<
:

Destðp; r; 
; coord;RcvÞ :¼

coord for r mod 4 2 f1; 3g
� for r mod 4 ¼ 2 ^ p ¼ coord
� for r mod 4 ¼ 0 ^ hoðrÞ ¼ ;
; else

8>><
>>:

ElectCoordðp; r; 
; coord;RcvÞ :¼
minð�Þ for r ¼ 1
minðhoðr� 1ÞÞ for r mod 4 ¼ 1 ^ hoðr� 1Þ 6¼ ;
coord else

8<
:
8.2 Timeouts 
C1, 
C3, 
C4

Lemmas 6, 7, and 8 below establish results about timeouts

C1, 
C3, and 
C4. The proofs are similar to those in Section 7,
and can be found in the supplemental appendix, available
on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TDSC.2011.48.

Lemma 6 (Timeout 
C1). Consider Parameterization 3 with

C1 ¼ ½3�þ 3n��� þ 
C4ð��� 1Þ: Assume every process
starts round 4ð�� 1Þ in an ðnþ1

2 Þ-good period and phase �
has a unique coordinator c. Then, 1) c hears from a majority of
processes in round 4�� 3, and 2) all processes in �0 hear from
c in round 4�� 2.

Lemma 7 (Timeout 
C3). Consider Parameterization 3 with the
timeout 
C3 ¼ ½3�þ 2n���. Assume every process starts
round 4ð�� 1Þ in an ðnþ1

2 Þ-good period, and � has a unique
coordinator c. Then, 1) c hears from a majority of processes
in round 4�� 1, and 2) all processes in �0 hear from c in
round 4�.

Lemma 8 (Timeout 
C4). Consider Parameterization 8 with the
timeout 
C4 ¼ ½2�þ ð2n� 3Þ���.2 Assume that a k-good
period, k � 1, starts at time tg and that round r0 is the
highest round started by any process in �0 by time tg. Then,
every round 4� > r0 started after time tg is uniform with
nonzero cardinality.

Corollary 3. Parameterization 3 with the timeout 
C1 ¼ ½� þ
ðnþ 3Þ��� þ ½2�þ ð2n� 3Þ�� �2

� , 
C3 ¼ ½3�þ 2n���, and


C4 ¼ ½2�þ ð2n� 3Þ��� ensures Plv4ð�Þ, if round 4ð�� 1Þ
starts in an ðnþ1

2 Þ-good period.

Proof. By Lemma 8, round 4ð�� 1Þ is uniform with nonzero
cardinality. Thus by the definition of ElectCoord, every
process in �0 has the same coordinator. Applying
Lemmas 6 to 8 and solving the equations for 
C1, 
C2,
and 
C4 yields the result. tu

8.3 Length of a Good Period

The next theorem computes the required duration of a good
period in order to ensure y consecutive phases of Plv4ð�Þ.
Just like with the predicate Plv3ð�Þ, the initialization time is
given by setting y ¼ 0, and the time per phase by the
multiplication factor of y.

Theorem 3. In any good period of length

y ð2�þ ð2n� 3Þ�Þ �
�
þ 4�þ ð2nþ 5Þ�

� �

þ ð2�þ ð2n� 3Þ�Þ �
2

�2
þ ð5�þ ð5n� 3Þ�Þ �

�

þ�þ ð3nþ 1Þ�;

the generic algorithm with Parameterization 3 ensures y

consecutive phases � that fulfill Plv4ð�Þ.
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2. Note that the timeout is different from the one in Lemma 2, since in
some cases, processes do not send messages in this round.

Fig. 8. Message pattern of synchronization by coordinator.



We first present an informal correctness argument for the
length 6y�þ 8� (we ignore the � terms). Then, we present
the complete proof.

Initialization period. It can be shown that the “initializa-
tion” period is the longest in the following case: 1) tg starts
just after the first send step of the highest round 4ð�� 2Þ
reached by some process p, and 2) round 4ð�� 2Þ is not
uniform (only round 4ð�� 1Þ is uniform). In this case, p will
go through the full timeouts of round 4ð�� 2Þ and
4ð�� 1Þ � 3, which takes 5�. By this time, say t0, if no
other process has started round 4ð�� 1Þ, process p will do
so, skipping rounds 4ð�� 1Þ � 2 and 4ð�� 1Þ � 1 (see
lines 2 and 3 of SkipRound in Parameterization 3). At latest
at t0 þ�, the coordinator will start round 4ð�� 1Þ; its
round 4ð�� 1Þ message is ready for reception � later.
Round 4ð�� 1Þ terminates by the expiration of a timeout
(2�), see lines 2 of NextRound in Parameterization 3, which
means that the coordinator message will be received only at
t0 þ 3�. So latest at t0 þ 3�, all processes in �0 have
finished round 4ð�� 1Þ, which ends the initialization
period and starts a regular phase. Thus, the initialization
period lasts for 8� and a regular phase starts at tg þ 8�.

Regular phase. We show that the duration of a regular
phase is 6�. Rename the regular phase to �. Let the last
process enter the regular phase � at time tr. Then by tr þ�,
the coordinator has a majority of round 4�� 3 messages,
and 2� later, the coordinator receives the round 4�� 1
messages from all processes in �0. By tr þ 4�, the
coordinator message of round 4� is ready for reception at
all processes in �0. Round 4� terminates by the expiration
of a timeout (2�). So by tr þ 6�, all processes have decided.

Proof. We first compute the time by which all processes
have entered the first round of a good phase, which we
will call the initialization period. The duration a phase �
is measured as the time since the last process enters
round 4�� 3 until the last process ends the round 4�.

Assume a good period starts at time tg (see Fig. 9). We
start by computing the latest time a process p will enter a
new round 4ð�� 1Þ after tg.

After tg, there will be a process p1 that will either start
1) a new round 4ð�� 2Þ, or 2) a new round 4ð�� 1Þ � 2
before any other process which depends on p1’s round at
tg. If p1 is in round two or three of a phase, then the case 1
happens first, the latest by ts4a ¼ tg þ n�þ 
L3

�
� , which

is the time required to complete rounds two and three of
a phase. If p1 is in round four or one of a phase, then
case 2 happens first. The time by which it happens
depends on whether p1 advances to round 4ð�� 1Þ � 2
by timeout or by receiving messages.

Process p1 advances by timeout (line 3 of NextRound).
Then, p1 will skip rounds 4ð�� 1Þ � 2 and 4ð�� 1Þ � 1.
If p1 is a coordinator, then by line 2 of SkipRound, it will
skip the round without executing send steps. Otherwise,
the Dest function ensures that p1 will not send to anyone
and line 4 of NextRound makes it advances immediately
to round 4ð�� 1Þ � 1. In either case, p1 will skip round
4ð�� 1Þ � 1 by line 3 of SkipRound, since no round
4ð�� 1Þ � 2 was sent at this time. Thus, p1 starts round
4ð�� 1Þ immediately, proposing itself as coordinator
because of line 3 of Dest. This happens the latest by
ts4b ¼ tg þ ðnþ 1Þ�þ ð
L4 þ 
L1Þ �� , which is the max-
imum time required to complete rounds 4ð�� 2Þ and
4ð�� 1Þ � 3.

Process p1 advances by receiving messages. This may
happen either by receiving a message from round 4ð��
1Þ � 2 (line 1 of NextRound) or by receiving a majority of
messages in round 4ð�� 1Þ � 3 (line 3 of NextRound).
The former could not have happened in this situation,
because p1 is the first process to enter round 4ð�� 1Þ � 2,
so no round 4ð�� 1Þ � 2 message was sent by this time.
In the latter case, p1 may be the coordinator. If it is not,
then it will skip round 4ð�� 1Þ � 2 and 4ð�� 1Þ � 3 for
the same reasons as if p1 had advanced by timeout.

Otherwise, if p1 is the coordinator, letM0 be the set of
processes from which p1 received round 4ð�� 1Þ � 3
messages. Processes in M0 must have started round
4ð�� 2Þ before tg, since by assumption, no process started
a new round 4ð�� 1Þ between tg and p1. Thus, the latest
by tg þ n�þ 
L4

�
� they are in round 4ð�� 1Þ � 3, and

�þ � time later the message was received by the
coordinator. Therefore, the latest by tg þ�þ ðnþ 2Þ�þ

L4

�
� the coordinator has received a majority of messages

and n�þ� later, the round 4ð�� 1Þ � 2 messages of p1

are ready for reception at all processes. If all alive
processes are still in round 4ð�� 1Þ � 2 or lower when
the messages arrive, and if they have as coordinator p1

(recall that the phase is not necessarily well coordinated),
then they will receive the message, advance to round
4ð�� 1Þ � 1, and reply to p1. Since we are in a good
period, the remaining rounds of the phase will complete
successfully and the phase will satisfy the predicate.
Since this case does not correspond to the longest it takes
to satisfy the predicate, we will not consider it. If there is a
process q that doesn’t have p1 as coordinator, or that
ended round 4ð�� 1Þ � 3 before receiving p1’s message,
then by lines 2 and 3 of SkipRound, q will advance to
round 4ð�� 1Þ and send a message to all, by line 2 of
ElectCoord. This happens the latest at ts4c ¼ tg þ 2�þ
ð2nþ 2Þ�þ 
L4

�
� , which is the time by which p1’s

messages are received by all processes.
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Fig. 9. Synchronization by a coordinator: Theorem 3.



Considering all the cases above, and taking the
maximum of ts4a, ts4b, and ts4c, we can conclude that by
time tg þ ðnþ 2Þ�þ ð
L4 þ 
L1Þ �� , there is a process p that
started a new round 4ð�� 1Þ. ðn� 1Þ�þ� time later,
every process has a round 4ð�� 1Þ message ready to be
received and n steps later, all processes will have
received it and started round 4ð�� 1Þ. 
U4 þ � later all
processes will have entered round 4�� 3, which marks
the end of the initialization. This happens by te ¼ tg þ
�þ ð3nþ 1Þ�þ ð2
L4 þ 
L1Þ �� .

We can use Corollary 3 to show that Plv4ð�Þ will be
true since round 4ð�� 1Þ starts in a good period. Using
the timeouts specified in Corollary 3, the algorithm is able
to complete y phases before the end of the good period
specified in this theorem, then by Corollary 3, all those
phases will satisfy Plv4ð�Þ, which proves this theorem.

The duration of the good phase can be computed as
follows starting from te. Rounds 4�� 3 to 4�� 1 are
message driven, consisting of two participants-coordi-
nator-participants message exchange, each taking
2�þ ðnþ 2Þ�. Therefore, at time te þ 4�þ ð2nþ 4Þ�,
all processes have advanced to round 4�, and 
L4

�
�þ �

later have completed round 4�. Therefore, the first phase
ends at te þ 4�þ ð2nþ 5Þ�þ 
L4

�
� . By applying the

same reasoning, we can show that the following phases
will take the same time. Therefore, y good phases will
complete by te þ y½4�þ ð2nþ 5Þ�þ 
L4

�
��. By expanding

and simplifying this expression, we show that the
duration of the good period specified in this theorem is
enough to complete y phases of Plv4. tu

9 COMPARISON

In this section, we compare quantitatively the algorithms
analyzed above. However, before doing so, we would like to
clarify the scope of our results. Our analysis and conclusions
are valid for the round-based algorithms above and can be
easily adapted to other round-based algorithms. However,
the results do not apply directly to failure detector-based
algorithms [3] or Paxos-like protocols [12]. The key difference
is that round-based protocols—like the ones presented in this
paper—are usually driven by timeouts, i.e., these protocols
require at least one process to expire its round timeout in
every round, in order to proceed to the next round. In
contrast, algorithms for the asynchronous or partially
synchronous model usually proceed as fast as messages are
sent and received, i.e., they are message driven [3], [12].

9.1 Impact of Clock Precision

First, we analyze the impact of the clock on 
good, the
duration of a good period that is sufficient to solve
consensus. In order to simplify the comparison, we make
the reasonable assumption �	 �; this allows us to ignore
the terms in �. The results are shown in Fig. 10. The x-axis
corresponds to �=� (see Section 4). Larger values of �=�
correspond to larger variations in clock skew (worse clock
precision); identical clock skew (including perfect clocks for
which � ¼ � ¼ 1) corresponds to �=� ¼ 1.

The y-axis corresponds to 
good=�, which is the duration
of a good period expressed using � as the time unit.

Fig. 10 shows that OTR is less sensitive to clock
imprecision than the other algorithms. It shows another
interesting result, namely, that with perfect clocks, the
different implementations of the LastVoting algorithm lead
to almost the same result. This is no more the case with
large clock imprecision (which occurs, for instance, when
clocks are built from step counting and � large). We note
also that the performance of algorithms that synchronize
more often (like LV-3 with full synchronization) degrades
less quickly with less precise clocks.

9.2 Analysis of the Results for Precise Clocks

We do now a finer analysis of the different algorithms for
the case �=� ¼ 1. We compare algorithms not only in terms
of the duration of a good period, but also in terms of the
duration of initialization after a good period starts.

9.2.1 Overview

Table 2 is an overview of the results obtained in the paper
for all three algorithms (OTR, LV-3, and LV-4). For OTR
(predicate Potr), we have one single option to consider,
namely, two uniform rounds (Pu). For LV-3 (predicate Plv3),
we have three options: three uniform rounds (line 2), Phase
Sync (line 3), and Piggybacking (line 4). Finally for LV-4
(predicate Plv4), we have two options: four uniform rounds
(line 5) and Coord Sync (line 6), which is designed
specifically for Plv4. For each option, Table 2 shows the
initialization time, the time for each consensus after
initialization, and the number of messages required for
initialization and for each consensus. The time until the first
decision after the beginning of a good period can be
determined by summing the columns initialization and per
consensus.

Line 1 (OTR) follows from the beginning of Section 6
(e.g., Theorem 1 with x ¼ 0 for the initialization time, time
for two rounds for consensus). Line 2 (LV-3, 3
 Pu) follows
from Corollary 1. Line 3 (LV-3, Phase Synch) follows from
the beginning of Section 7. Line 4 (LV-3, Piggybacking)
follows from the expression in Section 7.4 (y ¼ 0 for the
initialization time, the multiplying factor of y for the
duration of one instance of consensus). Line 5 (LV-4,
4
 Pu) follows from Corollary 1 and, finally, line 6 (LV-4
Coord Synch) follows from the beginning of Section 8.3.

9.2.2 Impact of the Round Implementation

We see from Table 2 that the performance of our algorithms,
in terms of the length of a good period, varies significantly
depending on the round implementation. For example, the
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Fig. 10. Duration of good period as a function of clock drift.



generic implementations of Plv3 and Plv4, based on uniform
rounds (lines 2 and 5), perform clearly worse than the
implementations designed specifically for the correspond-
ing predicates (lines 3, 4, and 6). More precisely, for �	 �,
the initialization time of Plv3 over uniform rounds is 9� and
the decision time is 6� (line 2), while an improved
implementation of this predicate (Piggybacking) achieves
8� and 4�, respectively (line 4), while sending a smaller
number of messages.

This shows that the round layer implementation plays a
crucial role in the performance of round-based algorithms.
Specifically, the simplest option (generic uniform rounds)
does not lead to the most efficient solution. This is because
algorithms like LV-3 and LV-4 do not require uniformity in
all rounds. For these two algorithms, the first two rounds of
a phase only require sending messages between a coordi-
nator and all processes, which as shown can be implemen-
ted more efficiently (both in terms of length of a good
period and message complexity) than generic uniform
rounds. Moreover, looking at the rounds of a phase together
instead of separately provides additional cross-round
optimization opportunities.

A consequence of using round implementations tailored
to the communication predicate is that the number of
communication rounds of an algorithm is no longer a good
metric of its performance. When using a generic round
implementation (like Pu), where every round is of the same
duration, the performance can be easily estimated as
ðround durationÞ 
 ð#rounds of algorithmÞ. But this is no
longer the case with optimized round implementations like
Phase Sync, Piggybacking, or Coord Sync, where the
duration of a round differs between predicate implementa-
tions and between rounds of the same algorithm. This is
confirmed by Table 3, which shows the average round
duration (“�=rounds”) for each of our algorithms, con-
sidering the best round implementation for LV-3 and LV-4
(both in terms of length of a good period and message
complexity). The table shows the results both for short good
periods and long good periods. As we have mentioned in

Section 1, a period of synchrony is “short” if it allows only a
few decisions, in which case the initialization time is
important. A period of synchrony is “long” if the number
of decisions taken is large enough so that the initialization
time is amortized over many consensus instances, and can
be ignored. The results show some variation on the average
duration for short good periods, ranging from 3:5� (OTR
and LV-4) to 4� (LV-3), and a large variation for long good
periods, from 1:3� (LV-3) to 2� (OTR).

9.2.3 Quantitative Comparison of OTR, LV-3, and LV-4

Let us go back to Table 2 in order to compare the best
implementations of our three consensus algorithms: OTR
(only one implementation), LV-3 (Piggybacking), and of
LV-4 (Coord Sync). We consider again the (reasonable)
assumption �	 �. OTR with 2
 Pu is the algorithm with
the shortest initialization time, namely 3�, compared to 8�
for LV-3 and LV-4. OTR has also the shortest time until the
first decision (7�) and the shortest time per consensus after
initialization (4�). However, this comes at the cost of
requiring a greater number of replicas (3f þ 1 for OTR,
compared to 2f þ 1 for LV-3 and LV-4), and of a slightly
higher message complexity (2n2 for OTR, n2 þ 2n for LV-3
and 4n for LV-4). Among the algorithms that have a
resilience of 2f þ 1, LV-3 has the same initialization time as
LV-4 (Coord Sync), but a lower per consensus time (4�
instead of 6�). This is to be expected, as LV-3 and LV-4
differ on the last rounds: one all-to-all round for LV-3
versus two rounds for LV-4 (all-to-coordinator and an
coordinator-to-all). On the other hand, LV-4 (Coord Sync) is
the algorithm with the lowest message complexity, with
only 4n messages per consensus, while all other algorithms
have at least one round with n2 messages.

The analysis clearly shows that none of the algorithms is
the best choice in every situation. In unstable networks,
where the good periods are of short duration, OTR is the
best algorithm, as it requires the shortest good period for the
first decision. On stable networks, with long good periods,
OTR and LV-3 are similar in terms of time per consensus.
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Average Round Duration (�=� ¼ 1, �	 �)

TABLE 2
Summary of Results for �=� ¼ 1



Since LV-3 is more resilient and has a slightly lower message
complexity, it is a better choice. If the number of messages is
important and the network is stable, then it is worth
considering LV-4, as it requires only 4n messages.

10 CONCLUSION

The paper has derived analytical performance results for
several round-based consensus algorithms (OTR, LV-3,
LV-4) in a system that alternates between good and bad
periods. We have considered different implementations of
rounds, and have computed for each algorithm 1) the time
from the beginning of a good period until the first decision,
and 2) the time for each additional decision. The results
show that the performance of round-based algorithms
largely depends on the implementation of rounds. The
results also show that the number of rounds of an algorithm
is not always a good metric for the performance of an
algorithm. Finally, we can observe trade-offs in resilience,
minimum duration of a good period, decision time in the
case of long good periods, and message complexity.

As the next step, we plan to extend the analysis to
nonround-based consensus algorithms, in order to under-
stand the performance trade-offs between round-based and
nonround-based consensus algorithms, and to understand
whether the overall conclusions would be similar or very
different.
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