000174972 001__ 174972
000174972 005__ 20190316235313.0
000174972 0247_ $$2doi$$a10.1109/TDSC.2011.48
000174972 02470 $$2ISI$$a000299280300008
000174972 037__ $$aARTICLE
000174972 245__ $$aQuantitative Analysis of Consensus Algorithms
000174972 269__ $$a2012
000174972 260__ $$c2012
000174972 336__ $$aJournal Articles
000174972 520__ $$aConsensus is one of the key problems in fault-tolerant distributed computing. Although the solvability of consensus is now a well-understood problem, comparing different algorithms in terms of efficiency is still an open problem. In this paper, we address this question for round-based consensus algorithms using communication predicates, on top of a partial synchronous system that alternates between good and bad periods (synchronous and nonsynchronous periods). Communication predicates together with the detailed timing information of the underlying partially synchronous system provide a convenient and powerful framework for comparing different consensus algorithms and their implementations. This approach allows us to quantify the required length of a good period to solve a given number of consensus instances. With our results, we can observe several interesting issues, such as the number of rounds of an algorithm is not necessarily a good metric for its performance.
000174972 6531_ $$aDistributed systems
000174972 6531_ $$afault tolerance
000174972 6531_ $$adistributed algorithms
000174972 6531_ $$around-based model
000174972 6531_ $$aconsensus
000174972 6531_ $$asystem modeling
000174972 700__ $$0243463$$aBorran, Fatemeh$$g149659
000174972 700__ $$0243462$$aHutle, Martin$$g172802
000174972 700__ $$aSantos, Nuno
000174972 700__ $$0241767$$aSchiper, Andre$$g106377
000174972 773__ $$j9$$q236-249$$tIeee Transactions On Dependable And Secure Computing
000174972 8564_ $$s1184570$$uhttps://infoscience.epfl.ch/record/174972/files/TDSC-2012.pdf$$yn/a$$zn/a
000174972 909C0 $$0252206$$pLSR$$xU10411
000174972 909CO $$ooai:infoscience.tind.io:174972$$pIC$$particle$$qGLOBAL_SET
000174972 917Z8 $$x106377
000174972 937__ $$aEPFL-ARTICLE-174972
000174972 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000174972 980__ $$aARTICLE