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Abstract

Transmission faults allow us to reason about permanent
and transient value faults in a uniform way. However, all
existing solutions to consensus in this model are either in
the synchronous system, or require strong conditions for
termination, that exclude the case where all messages of
a process can be corrupted. In this paper we introduce
eventual consistency in order to overcome this limitation.
Eventual consistency denotes the existence of rounds in
which processes receive the same set of messages. We
show how eventually consistent rounds can be simulated
from eventually synchronous rounds, and how eventually
consistent rounds can be used to solve consensus.

Depending on the nature and number of permanent and
transient transmission faults, we obtain different condi-
tions on n, the number of processes, in order to solve con-
sensus in our weak model.

1 Introduction

Consensus is probably the most fundamental problem in
fault-tolerant distributed computing. Consensus is related
to the implementation of state machine replication, atomic
broadcast, group membership, etc. The problem is defined
over a set of processes Π, where each process p ∈ Π has
an initial value vi, and requires that all processes agree on
a common value.

Most research on consensus algorithms is considering
component fault models, where faults are attached to a
component that is either a process or a link. With respect
to process/link faults, consensus can be considered with
different fault assumptions. On the one end of the spec-
trum, processes/links can commit so called benign faults
(processes fail only by crashing and links only loose mes-

sages); on the other end, faulty processes/links can exhibit
an arbitrary behavior. Furthermore, in the context of a
component fault model, faults are mainly permanent: if a
process or link commits a fault, the process/link is consid-
ered to be faulty during whole execution. It follows that
not all components can be faulty, which is referred to as
static faults. This explains that most research on consen-
sus is about tolerating permanent and static process and/or
link faults.

There are two major problems of a priori blaming some
component for the failure [27, 28, 11]. First, it may lead
to undesirable consequences: for example, in the classi-
cal Byzantine fault model, where a bounded number of
processes can behave arbitrarily (even maliciously), the
entire system will be considered faulty even if only one
message from each process is received corrupted. Second,
when solving consensus, faulty processes are typically not
obliged to make a decision or they are allowed to decide
differently than correct processes. Furthermore, when a
process q receives a corrupted message from p, it makes
no difference for q whether p is faulty and therefore sends
a message that was not consistent with the protocol, or the
message is corrupted by the link between p and q. Actu-
ally, for q these two cases are indistinguishable.

These observations led to the definition of the trans-
mission fault model that captures faults without blaming
a specific component for the fault [27]. The transmis-
sion fault model is well-adapted to dynamic and transient
faults. A transient fault is a non-permanent fault; a dy-
namic fault is a fault that can affect any process/link in the
system — as opposed to static faults that affect at most f
out of n processes per run [5].

Consensus under transmission faults in a synchronous
system has been considered initially in [27] and later
in [30]. In [11], this work combined with ideas from [14],
is extended to non-synchronous systems with only benign
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transmission faults, leading to the Heard-Of Model (HO
model). The paper gives several consensus algorithms un-
der benign transmission faults.

In [5], the HO model for benign faults is extended to
value faults. There, consensus under transmission faults
(both benign and value faults) is solved the first time in a
non-synchronous setting. This was achieved by separat-
ing liveness conditions from safety conditions. For safety,
only the number of corrupted messages is restricted, that
is, in each round r of the round based model, every pro-
cess p receives at most α corrupted messages1. However,
for liveness, some additional assumptions are necessary,
namely rounds in which some subset of processes does
not receive any corrupted messages.2 This means that, de-
spite the possibility to handle dynamic and transient value
faults in a non-synchronous system, [5] cannot tolerate
permanent faults located at a process p, where all mes-
sages from p might be (always) corrupted.

This raises the following question: is it possible to de-
sign a consensus algorithm in the general transmission
fault model, with non-synchronous assumptions, that does
not require such a strong condition for liveness? If yes,
such an algorithm would allow us to tolerate dynamic and
transient faults, but also static and permanent faults. Fur-
thermore, such an algorithm can be applied to a variety of
system models: a partially synchronous system [12] with
Byzantine processes, a partially synchronous system with
Byzantine processes eventually restricted to ”symmetrical
faults” [31] (also termed ”identical Byzantine” in [22]), a
partially synchronous system with Byzantine processes,
where, before stabilization time, in every round processes
can receive some (bounded) number of corrupted mes-
sages from correct processes, etc. This spectrum of inter-
pretations shows the benefit of considering the consensus
problem in a model with (only) transmission faults.

Contribution. We give a positive answer to the above
question by presenting several consensus algorithms for
transmission faults (both benign and value faults) that do
not require the strong conditions for liveness that exclude
permanent faults. The key insight in achieving this goal
is the introduction of the notion of eventual consistency,
that turns out to be fundamental building block for solving
consensus under transmission faults. Informally speak-
ing, for round-based algorithms, eventual consistency de-
notes the existence of rounds in which processes receive
the same set of messages.

We illustrate the relevance of eventual consistency by

1This assumption potentially allows corrupted messages on all links
in a run; therefore it models dynamic faults.

2This assumption makes sense in the context of transient faults.

presenting three consensus algorithms for the transmis-
sion fault model that are inspired by well-known con-
sensus algorithms [12, 10, 20] defined for the classical
Byzantine fault model [18]. All our algorithms require
a round in which consistency eventually holds (processes
receive the same set of messages). This round is used to
bring the system in the univalent configuration, and later
rounds are used to “detect” that the system entered a uni-
valent configuration and allows processes to decide. Fur-
thermore, we show how eventually consistent rounds can
be simulated from eventually synchronous rounds in the
presence of both static and dynamic value faults. Finally,
we comment that eventual consistency can be achieved us-
ing authentication (e.g., digital signatures), a mechanism
used for example in [20].

Organization of the paper. The rest of the paper is
structured as follows. We describe the transmission fault
model we consider in Section 2. The consensus problem
is defined in Section 3, and in Section 4 we introduce the
communication predicates that we consider in the paper,
including eventual consistency. Section 5 shows how to
simulate eventual consistency under weak communication
predicates, while Section 6 shows how to solve consen-
sus with eventual consistency. In Section 7 we discuss
in detail the combination of one of the consensus algo-
rithms and the eventual consistency simulation. As we
show in Section 8, eventual consistency can be achieved
also directly with authentication. In Section 9 we argue
that Byzantine faults and permanent value faults located
at a process are indistinguishable, and thus our algorithms
also work (but not only) in a partial synchronous model
with Byzantine processes. We refer to related work in
Section 10 and conclude the paper in Section 11.

2 Model
We use a slightly extended version of the round-based
model of [5]. In this model, we reason about faults only as
transmission faults, without looking for a “culprit” for the
fault [5]. Therefore there are no “faulty” processes and no
state corruption in our model. 3

Computations in this model are structured in rounds,
which are communication-closed layers in the sense that
any message sent in a round can be received only in that
round. 4 An algorithm A is specified by sending func-
tion Srp and transition function T rp for each round r and

3Nevertheless, as explained in Section 9, the model can be used to
reason about classical Byzantine faults.

4Note that the round structure of the model does not imply limits on
the asynchrony of the system.
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process p. We now give a formal definition of the round-
based model considered, and introduce the notions of (i)
the heard-of set HO(p, r), which captures synchrony and
benign faults, (ii) the safe heard-of set SHO(p, r), which
handles corruptions, i.e., captures communication safety
properties, and (iii) consistency CONS(r), which is true
in round r, if all processes receive the same set of mes-
sages at round r.

2.1 Heard-Of Sets and Consistent Rounds
Let Π be a finite non-empty set of cardinality n, and let ~M
be a set of messages (optionally including a null place-
holder indicating the empty message). To each p in Π,
we associate a process, which consists of the following
components: A set of states denoted by statesp, a sub-
set initp of initial states, and for each positive integer
r called round number, a message-sending function Srp
mapping statesp to a unique message from ~M , and a
state-transition function T rp mapping statesp and partial
vectors (indexed by Π) of elements of ~M to statesp. The
collection of processes is called an algorithm on Π. In
each round r, a process p: (1) applies Srp to the current
state and sends the message returned to each process,5 (2)
determines the partial vector ~µ rp , formed by the messages
that p receives at round r, and (3) applies T rp to its current
state and ~µ rp . The partial vector ~µ rp is called the reception
vector of p at round r.

Computation evolves in an infinite sequence of rounds.
For each process p and each round r, we introduce two
subsets of Π. The first subset is the heard-of set, denoted
HO(p, r), which is the support of ~µ rp , i.e.,

HO(p, r) =
{
q ∈ Π : ~µ rp [q] is defined

}
.

The second subset is the safe heard-of set, denoted
SHO(p, r), and defined by

SHO(p, r) =
{
q ∈ Π : ~µ rp [q] = Srq (sq)

}
,

where sq is q’s state at the beginning of round r. In ad-
dition, for each round r, we define the consistency flag,
denoted CONS(r), which is true if all processes receive
the same set of messages in round r, i.e.,

CONS(r) = (∀p, q ∈ Π2 : ~µ rp = ~µrq).

From the sets HO(p, r) and SHO(p, r), we form the al-
tered heard-of set denoted AHO(p, r) as follows:

AHO(p, r) = HO(p, r) \ SHO(p, r).

5W.l.o.g., the same message is sent to all.

For any round r, and for any set of rounds Φ, we further
define the safe kernel of r resp. Φ:

SK(r) =
⋂
p∈Π

SHO(p, r) SK(Φ) =
⋂
r∈Φ

SK(r)

The safe kernel consists of all processes whose messages
were received correctly by all processes. We use also
SK = SK(N). Similarly, the altered span (of round r)
denotes the set of processes from which at least one pro-
cess received a corrupted message (at round r):

AS(r) =
⋃
p∈Π

AHO(p, r) AS =
⋃
r>0

AS(r)

We also extend the notion of CONS in a natural way to a
set Φ of rounds, i.e., CONS(Φ) =

∧
r∈Φ CONS(r).

2.2 HO Machines
A heard-of machine for a set of processes Π is a pair
(A,P), where A is an algorithm on Π, and P is a com-
munication predicate, i.e., a predicate over the collection

((HO(p, r), SHO(p, r))p∈Π ,CONS(r))r>0

A run of an HO machine M is entirely determined
by the initial configuration (i.e., the collection of process
initial states), and the collection of the reception vectors(
~µ rp
)
p∈Π, r>0

.

2.3 Simulation of communication predi-
cates

In the paper we will need to simulate6 communication
predicates P ′ using some HO machine M = (A,P). In-
tuitively, in such a simulation, several rounds ofM will be
used to simulate one round in which predicate P ′ holds.
If the run of M consists of k rounds, then algorithm A is
a k round simulation of P ′ from P .

Formally, let k be any positive integer, and let A be an
algorithm that maintains a variable mp∈ ~M and Msgp ∈
~Mn at every process p. We call macro-round ρ the se-

quence of the k consecutive round k(ρ−1)+1, . . . , kρ. The
variable mp is an input variable that can be set externally
in every macro-round.7 The value of mp at the beginning

6The notion of a simulation differs from the notion of a translation
of the HO model for benign faults. A translation establishes a relation
purely based on connectivity, while with value faults, also some com-
putation is involved. Because of this, we decided thus to use the term
simulation instead.

7The sending function in a simulation algorithm is thus a function
that maps statesp and the input from ~M to a unique message from ~M ;
while the state-transition function T rp is a function that maps statesp,
the input from ~M , and a partial vector (indexed by Π) of elements of ~M
to statesp.
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of macro-round ρ is denoted m(ρ)
p , and the value of Msgp

at the end of macro-round ρ is denoted Msg(ρ)
p . For the

macro-round ρ, we define in analogy to the definitions of
Section 2.1:

HO(p, ρ) =
{
q ∈ Π : Msg(ρ)

p [q] is defined
}

SHO(p, ρ) =
{
q ∈ Π : Msg(ρ)

p [q] = m(ρ)
q

}
CONS(ρ) = (∀p, q ∈ Π2 : Msg(ρ)

p = Msg(ρ)
q )

We say that the HO machine M = (A,P) simu-
lates the communication predicate P ′ in k rounds if for
any run of M , the collection (HO(p, ρ), SHO(p, ρ))p∈Π,
CONS(ρ))ρ>0 satisfies predicate P ′.

Given a simulation A of P ′ from P , any problem that
can be solved with P ′ by algorithmA′ can be solved with
P instead by simply simulating rounds of the algorithm
A′ using algorithm A. In such a composed algorithm, the
input variable m(ρ)

p of algorithm A is set at each macro-
round ρ to the value returned by the sending function of
A′, and the transition function of A′ is applied to the out-
put Msg(ρ)

p of algorithm A.

3 Consensus
Let V be (non-empty) totally ordered set. In the consensus
problem every process p has an initial value initp ∈ V
and decides irrevocably on a decision value, fulfilling:

Integrity: If all processes have the same initial value this
is the only possible decision value.

Agreement: No two processes may decide differently.

Termination: All processes eventually decide.

Since, contrary to classical approaches, there is no devi-
ation according to T rp , and thus we do not have the notion
of a faulty process, the upper specification makes no ex-
emption: all processes must decide the initial value in the
Integrity clause, and all processes must make a decision
by the Termination clause.

Formally, an HO machine (A,P) solves consensus, if
any run for which P holds, satisfies Integrity, Agreement,
and Termination. To make this definition non-trivial, we
assume that the set of HO and SHO collections for which
P holds is non-empty.

4 Communication predicates
In this section we introduce the communication predicates
that will be used in the paper. As already mentioned, we

reason about faults only as transmission faults. This al-
lows us to deal with both permanent and transient faults,
but also with static and dynamic faults.

4.1 Predicates that capture static and dy-
namic value faults

A dynamic fault is a fault that can affect any link in the
system — as opposed to static faults that affect the links
of at most f out of n processes per run [5]. We start with
static faults:

Pfstat :: |AS| ≤ f (1)

with f ∈ N andN = {0, . . . , n}. Pstat is the name of the
predicate, and f is a free parameter. Pfstat is a safety pred-
icate that models static faults, where corrupted messages
are received only from a set of f processes. In Section 9
we will argue that such an assumption corresponds to a
system with at most f Byzantine processes.

For our algorithms we will also consider the weaker
safety predicate Pfdyn (∀f ∈ N , Pfstat implies Pfdyn ) that
restricts the number of corrupted messages only per round
and per process:

Pfdyn :: ∀r > 0,∀p ∈ Π : |AHO(p, r)| ≤ f

with f ∈ N and 0 ≤ f ≤ n. Predicate Pfdyn potentially
allows corrupted messages on all links in a run, it there-
fore models dynamic value faults.

4.2 Predicates that restrict asynchrony of
communi- cation and dynamism of
faults

Predicates Pstat and Pdyn only restrict the number of
value faults; however, it does not tell us anything about
liveness of communication. From [13] we know that we
cannot solve consensus in an asynchronous system if all
messages sent by one process may be lost. On the other
hand, Santoro and Widmayer [27] showed that consensus
is impossible to solve in a synchronous system if, at each
time unit, there is one process whose messages may be
lost. Therefore, in order to solve consensus we need to
restrict asynchrony of communication and dynamism of
faults.

A synchronous system could be modeled as follows:

PfSK :: |SK| ≥ n− f
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PfSK requires that there is a set of processes (safe kernel)
of size n − f whose messages are correctly received in
every round. From

∀f ∈ N, PfSK ⇒ P
f
stat

it follows that PfSK implies static faults only. However,
we want to study consensus with dynamic faults. We con-
sider therefore the following predicate:

Pf,k�SK :: ∀r > 0 ∃ro > r, Φ = {r0, . . . , r0 + k − 1} :

|SK(Φ)| ≥ n− f

with f ∈ N and k > 0. This predicate (repeatedly) re-
quires a safe kernel of size n−f only eventually and only
for k rounds. It also restrict the dynamism of value faults
during these k round; i.e., corrupted messages can only be
received from at most f processes.

In the paper we will consider P�SK always in conjunc-
tion, either with Pstat or Pdyn . When we assume P�SK
with Pstat, i.e., Pf,k�SK ∧ P

f
stat, transmission value faults

are static (benign transmission faults are not restricted, so
they can be dynamic). On the other hand, when we as-
sume P�SK with Pdyn , i.e., Pf,k�SK ∧ Pαdyn with f ≤ α,
transmission value faults are no more static: Pf,k�SK alone
does not imply Pf

′

stat for any f ′ < n.

4.3 Permanent versus Transient Faults

Both predicates, Pstat ∧ P�SK and Pdyn ∧ P�SK allow
permanent faults. Consider for example a run and a pro-
cess p, where every process receives a corrupted message
from p in every round:

∀q ∈ Π, r > 0 : p 6∈ SHO(q, r)

and all other messages are received correctly. Such a run
is included in the set of runs given by Pstat ∧ P�SK and
Pdyn ∧ P�SK , and thus our algorithms can solve con-
sensus in such a run. More precisely, Pfstat ∧ P

f
�SK and

Pfdyn ∧ P
f
�SK permits the existence of up to f such pro-

cesses. As pointed out in Section 9, this allows our al-
gorithms to solve consensus also, e.g., in classical mod-
els with Byzantine faults. This contrasts with previous
work [5], where, although alsoPdyn is considered (named
Pα there), eventually there has to be a round, where a
sufficiently large subset of processes do not receive any
corrupted messages. There, (most) faults have to be tran-
sient.

4.4 Eventual Consistency

In this section we introduce the notion of eventual consis-
tency that turns out to be a fundamental building block for
solving consensus under transmission value faults. Even-
tual consistency abstracts the major complexity present
when solving consensus under the weak communication
predicates presented above. Therefore eventual consis-
tency allows us to express consensus algorithms in a very
concise and elegant way.

Informally speaking, eventual consistency combines
the requirement of a consistent round (CONS(r) in our
model) with some requirements on liveness and safety of
communication. It can be seen as an eventual version of
interactive consistency [23]. An algorithm that solves in-
teractive consistency allows correct processes to come to
a consistent view of the initial values of the processes, i.e.,
all processes agree on a vector, where n − f entries cor-
respond to the initial values of the respective process (f
is the number of faulty processes in a model with process
faults, and just a parameter in our case).

Interactive consistency, when seen as a communication
primitive, can be captured by the following predicate:

PfIC :: |SK| ≥ n− f ∧ ∀r > 0 : CONS(r)

When we express the result of [23] in our model, their
algorithm allows a f + 1 round simulation of PfIC from
PfSK if n > 3f . Note that ∀f ∈ N , PfIC ⇒ P

f
stat.

Instead of PIC , we introduce a weaker predicate. We
call the predicate eventual consistency and define it as fol-
lows:

Pf�cons :: ∀r > 0 ∃ro > r : |SK(r0)| ≥ n−f ∧ CONS(r0)

This predicate requires that there is always eventually a
consistent round with a safe kernel of size n− f . In con-
trast to PfSK and PIC , this predicate requires these safe
kernels only eventually and then only for a single round.
Also faults are no more static: Pf�cons alone does not im-
ply Pf

′

stat for any f ′ < n. Note that Pf�cons is a stronger
predicate than Pf,1�SK : although both predicates require a
safe kernel of size n−f and both restrict the dynamism of
value faults for a single round, Pf�cons in addition requires
that consistency holds during this round, i.e., for any two
processes p and q we have ~µp = ~µq .

However, P�cons can be simulated from P�SK . In the
next section, we give two such simulations, and then es-
tablish the link to solving consensus.
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p1

p2

p3

p4

3ρ− 2

v2

v2

v2

v2

3ρ− 1 3ρ

Figure 1: Algorithm 1 from the point of view of v2 sent
by p2 (p1 is the coordinator, n = 4, f = 1).

5 Simulating eventual consistency
P�cons from eventually safe kernels
P�SK

In this section we give two simulations of P�cons from
P�SK , one in the presence of only static value faults
(Pstat), and the other in the presence of dynamic (and
static) value faults (Pdyn ). As we show, the first simu-
lation requires a smaller number of processes in order to
tolerate a given number of transmission value faults. Then
we introduce a generic predicate P�cons⊕SK that can be
simulated from P�SK . The predicate P�cons⊕SK , in con-
junction with Pdyn or Pstat, is later used in Section 6 to
solve consensus.

5.1 Simulation in the presence of only static
value faults

Algorithm 1 is a 3-round simulation of Pf�cons ∧ Pfstat
from P3(f+1)

�SK ∧ Pfstat inspired by [10]. It ensures con-
sistency during a sequence of rounds where the size of
the kernel is at least n − f (the corrupted messages can
be received only from at most f processes). Moreover, it
preserves Pfstat, i.e., if Pfstat holds for basic rounds, then
Pfstat holds also for the macro-rounds obtained by the 3-
round simulation using Algorithm 1. It requires n > 3f .
As already mentioned in Section 2.3, a simulation is an
algorithm that maintains at each process p two variables:
an input variable mp that is set at the beginning of ev-
ery macro-round ρ (line 7), and an output variable Msgp
whose value is considered at the end of every macro-round
ρ (lines 24 and 26). The special value ⊥ represents the
case when a (reception) vector does not contain a message
from the respective process.

Algorithm 1 is a coordinator-based algorithm, where

Algorithm 1 Simulation of Pf�cons ∧ Pfstat from
Pf,3(f+1)
�SK ∧ Pfstat

1: Initialization:
2: Msgp ← (⊥, . . . ,⊥) /* Msgp is the output variable */
3: /* ⊥ represents the absence of message */
4: coordp = ρ mod n+ 1

5: Round r = 3ρ− 2:
6: Srp :
7: send mp to all
8: T rp :
9: receivedp ← ~µrp

10: Round r = 3ρ− 1:
11: Srp :
12: send receivedp to all
13: T rp :
14: if p = coord then
15: for all q ∈ Π do
16: if∣∣{q′ ∈ Π : ~µrp[q

′][q] = receivedp[q]}
∣∣ < 2f + 1

then
17: receivedp[q]← ⊥

18: Round r = 3ρ:
19: Srp :
20: send 〈receivedp〉 to all
21: T rp :
22: for all q ∈ Π do
23: if (~µrp[coordp][q] 6= ⊥) ∧∣∣{i ∈ Π : ~µrp[i][q] = ~µrp[coordp][q]}

∣∣ ≥ f + 1
then

24: Msgp[q]← ~µrp[coordp][q]
25: else
26: Msgp[q]← ⊥

the coordinator is chosen using a rotating coordinator
strategy: the coordinator of macro-round ρ is process
ρ mod n + 1; in Algorithm 1 the variable coord refers
to this process. We describe Algorithm 1 from the point
of view of the message v2 that is sent by process p2 using
Figure 1. Assume that process p1 is the coordinator. In
round 3ρ − 2, process p2 sends the message v2 to all. In
rounds 3ρ − 1 and 3ρ of Algorithm 1, the processes send
messages that contain a vector of those messages received
in round 3ρ−2. In this description we focus only on those
elements of the vectors that are related to message v2 that
is sent by process p2 in macro-round ρ. In round 3ρ − 1,
all processes send the value received from p2 to all. 8 The
coordinator then compares the value received from p2, say
v2, in round 3ρ−2 with the value indirectly received from

8At line 16, the reception vector ~µrp is a vector of vectors: ~µrp[q′]
is the vector p has received from q′, and ~µrp[q′][q] is element q of this
vector.

6



the other processes.
If at least 2f + 1 values v2 have been received by the

coordinator p1, then p1 keeps v2 as the message received
from p2. Otherwise p1 sets the message received from
p2 to ⊥ (line 17). This guarantees that if p1 keeps v2,
then at least f + 1 processes have received v2 from p2 in
round 3ρ − 2. Finally, in round 3ρ every process sends
the value received from p2 in round 3ρ − 2 to all. The
final value adopted as message received from p2 at the
end of round 3ρ (and therefore at the end of macro-round
ρ) is computed as follows at each process pi. Let vali
be the value received from coordinator p1 in round 3ρ. If
vali = ⊥ then pi receives ⊥ from p2. Process pi receives
⊥ from p2 in another case: if pi did not receive f + 1
values equal to vali in round 3ρ. Otherwise, at least f + 1
values received by pi in round 3ρ are equal to vali, and pi
adopts vali as message received from p2 in macro-round
ρ.

Algorithm 1 relies on a coordinator for ensuring
Pf�cons: all processes assign to Msgp the value received
from the coordinator in round 3ρ (see line 24). This is
achieved during a macro-round in which the size of the
safe kernel is at least n − f , with the coordinator in the
safe kernel. The rotating coordinator strategy ensures the
existence of such a macro-round. Consider Figure 2 that
illustrates the mechanism for ensuring consistency from
the point of view of the message sent by process p4 and
received by process p3. The coordinator adopts value v1

as the message sent by process p4 in round 3ρ−1 (line 16)
since it is forwarded by 2f + 1 processes. This ensures
that the value v1 sent by the coordinator in round 3ρ is
also sent by at least f more processes from the safe kernel
in round 3ρ. Therefore, the value sent by the coordina-
tor satisfies the condition of line 23 at all processes and is
therefore assigned to Msgp[p4] by all processes at line 24.

Using Figure 3, we now explain how Algorithm 1 pre-
serves Pfstat. Figure 3 considers message v2 sent by p2

and received by p3; again, process p1 is the coordinator.
Messages received from p2 in round 3ρ − 2 are not cor-
rupted, and we show that the message received by p3 from
p2 in macro-round ρ can only be v2 or ⊥. In round 3ρ,
process p3 does not “blindly” adopt the value received
from the coordinator (the message received can be cor-
rupted). The value received in round 3ρ from the coordi-
nator is adopted by p3 only if the same value is received
from at least f additional processes (line 23). This en-
sures that at least one such message is not corrupted. In
Figure 3, process p3 adopts ⊥ as message received from
p2 in macro-round ρ, since it did not received f + 1 mes-
sages equal to value v′2 received from the coordinator.

Lemma 1. If n > 3f then Algorithm 1 preserves Pfstat.

p1

p2

p3

p4

3ρ− 2

v1

v2

v1

v3

3ρ− 1

v1

v2

v1

v1

3ρ

v1

v2

v1

v5

Figure 2: How Algorithm 1 ensures Pf�cons: point of view
of message sent by p4 and received by p3. Process p1 is
the coordinator, n = 4, f = 1, only messages received
from p4 can be corrupted.

p1

p2

p3

p4

3ρ− 2

v2

v2

v2

3ρ− 1

v′2
v2

3ρ

v′2
v2

v2

Figure 3: How Algorithm 1 preservesPfstat: point of view
of v2 sent by p2 and received by p3. Process p1 is the co-
ordinator, n = 4, f = 1, only messages received from p1

can be corrupted. Absence of arrows represents message
loss. Process p3 can only receive v2 or ⊥ from p2 (here
⊥).

Proof. To avoid ambiguities, let in this proof ASρ =⋃
ρ>0 AS(ρ) denote the altered span with respect to

macro-rounds implemented by Algorithm 1, while AS =⋃
r>0 AS(r) denotes the altered span with respect to the

rounds of Algorithm 1.
We need to show that |ASρ| ≤ f given that |AS| ≤

f . It is thus sufficient to show ASρ ⊆ AS. Assume by
contradiction that there is a process p ∈ Π, a process s 6∈
AS, and a macro-round ρ so that s ∈ AHO(p, ρ), i.e., s
sends message m in macro-round ρ and p receives m′ 6=
m.

Then, because of line 23, forQ = {q : ~µ3ρ
p [q][s] = m′}

we have |Q| ≥ f + 1. Because of |AS| ≤ f , there is a
i ∈ Q that has received i[s] = m′. Moreover, this implies
that ~µ3ρ−2

i [s] = m′. Since s sentm, this is a contradiction
to s 6∈ AS.
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Lemma 2. If n > 3f then Algorithm 1 simulates Pf�cons
from Pf,3(f+1)

�SK .

Proof. Let ρ denote a macro-round, let Φ =
{3ρ− 2, 3ρ− 1, 3ρ} be the set of rounds of ρ, and
let c0 = ρ mod n+ 1 be the coordinator of ρ such that

c0 ∈ SK(Φ) ∧ |SK(Φ)| ≥ n− f.

Such a macro-round exists, because (i) Pf,3(f+1)
�SK holds

and (ii) the coordinator is chosen using a rotating coor-
dinator scheme (the coordinator of macro-round ρ is pro-
cess ρ mod n + 1). We show that with Algorithm 1 (i)
CONS(ρ) and (ii) |SK(ρ)| ≥ n− f .

(i) Assume by contradiction that for two processes p
and q, Msg(ρ)

p and Msg(ρ)
q differ by the message of pro-

cess s ∈ Π, that is Msg(ρ)
p [s] 6= Msg(ρ)

q [s]. By round
3ρ, every process adopts the value of c0 or sets Msg(ρ)[s]

to ⊥; when c0 ∈ SK(Φ) it follows that Msg(ρ)
p [s] or

Msg(ρ)
q [s] is ⊥. W.l.o.g. assume that Msg(ρ)

p [s] = v and
Msg(ρ)

q [s] = ⊥. For rounds r ∈ [3ρ− 1, 3ρ], let

Rrp(v, s) :=
{
i ∈ Π : ~µ rp [i][s] = v

}
represent the set of processes from which p receives v at
position s in round r. Similarly, for rounds r ∈ [3ρ −
1, 3ρ], let

Qr(v, s) := {i ∈ Π : Sri (sri )[s] = v}

represent the set of processes that sent v at position s in
round r.

By line 23, if Msg(ρ)
p [s] = v, then |R3ρ

p (v, s)| ≥ f + 1,
and c0 ∈ R3ρ

p (v, s). Since c0 ∈ SK(Φ), we have c0 ∈
Q3ρ(v, s) and thus, by line 16, |R3ρ−1

c0 (v, s)| ≥ 2f + 1.
From this and |SK(Φ)| ≥ n− f , we have |R3ρ−1

c0 (v, s) ∩
SK(Φ)| ≥ f + 1. Therefore, at least f + 1 processes p′ in
SK(Φ), including c0, have receivedp′ [s] = v. It follows
that |R3ρ

q (v, s)| ≥ f+1, and c0 ∈ R3ρ
q (v, s). This contra-

dicts the assumption that the condition in line 23 is false
for process q.

(ii) For every process p ∈ Π and q ∈ SK(Φ), by defini-
tion we have receivedp[q] = mq at the end of round 3ρ−2.
In round 3ρ− 1, c0 receives receivedq′ [q] = mq from ev-
ery process q′ ∈ SK(Φ), and thus there is no q ∈ SK(Φ)
s.t. c0 sets receivedc0 [q] to ⊥ (*). In round 3ρ, since
c0 ∈ SK(Φ), every process p receives the message from
c0. In addition, since n > 3f and |SK(Φ)| ≥ n− f , every
process receives the message from n−f > f+1 processes
in SK(Φ). By (*) and line 23, for all processes p and all
q ∈ SK(Φ), we have Msgp[q] = mq . Thus SK(Φ) ⊆
SK(ρ), which shows that |SK(ρ)| ≥ n− f .

Corollary 1. If n > 3f , Algorithm 1 is a simulation of
Pf�cons ∧ Pfstat from Pf,3(f+1)

�SK ∧ Pfstat.

Remark 1. Algorithm 1 can easily be extended to pre-
serve also the following predicate:

|HO(p, r)| ≥ n− f

Intuitively, such an assumption is typical for algorithms
that are designed to work in a system with reliable chan-
nels. The modified simulation algorithm then uses the
reception vector of the first round as Msg in case there
would be less than f elements in Msg . It is easy to show
that this does not affect Corollary 1, while preserving the
above predicate. Since our algorithms do not need this
assumption, we do not detail this extension further.

Remark 2. Interestingly there is also decentralized (i.e.,
coordinator-free) solution to this simulation. The algo-
rithm is presented in [8] in terms of Byzantine faults but
can be easily adapted to our framework. Such a simula-
tion requires f + 1 rounds. In some cases this approach
can be beneficial [7].

5.2 Simulation in the presence of dynamic
value faults

In this section we show a simulation ofP�cons fromP�SK
and the weaker predicate Pdyn that (partially) preserves
Pdyn . More precisely, we show a simulation fromPf�SK∧
Pαdyn into Pf�cons∧Pβdyn with β ≥ α: the simulation may
only partially preserve Pαdyn in the sense that the number
of corruptions in the simulated rounds may increase from
α to β ≥ α, depending on n.

The simulation requires four rounds, as shown by Al-
gorithm 2. As we can see, β is not a parameter of the
algorithm. Fixing β leads to some requirement on n.
More precisely, given f , α ≥ f , β ≥ α, Algorithm 2
requires n > (β+1)(α+f)

β−α+1 . Similarly to Algorithm 1, it is
coordinator-based.

The communication pattern of Algorithm 2 is very sim-
ilar to Algorithm 1 with the addition of one “all-to-all”
round (see Figure 4, to be compared with Figure 1). We
explain Algorithm 2 from the point of view of the mes-
sage sent by process p2. In round 4ρ−3, process p2 sends
message v2 to all.9 In round 4ρ− 2, all processes send to
all the value received from p2, and then compare the value

9Similar as in the description of Algorithm 1, in case of messages
that contain a vector of messages, we focus only on those elements of
the vectors that are related to the message sent by process p2.
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Algorithm 2 Simulation of Pf�cons ∧ Pβdyn from Pf,4(f+1)
�SK ∧ Pαdyn

1: Initialization:
2: Msgp ← (⊥, . . . ,⊥) /* Msgp is the output

variable */
3: coordp = ρ mod n+ 1

4: Round r = 4ρ− 3:
5: Srp :
6: send mp to all /* mp is the input variable */
7: T rp :
8: firstp ← ~µ rp
9: conf p ← (⊥, . . . ,⊥)

10: Round r = 4ρ− 2:
11: Srp :
12: send firstp to all
13: T rp :
14: for all q ∈ Π do
15: if

∣∣{i ∈ Π : ~µrp[i][q] = firstp[q]
}∣∣ ≥ n − f

then
16: conf p[q]← firstp[q]

17: Round r = 4ρ− 1:
18: Srp :
19: send conf p to all
20: T rp :
21: if p = coordp then
22: for all q ∈ Π do
23: if

∣∣{i ∈ Π : ~µrp[i][q] = conf p[q]
}∣∣ < α+ f + 1 then

24: conf p[q]← ⊥

25: Round r = 4ρ:
26: Srp :
27: send conf p to all
28: T rp :
29: for all q ∈ Π do
30: if

∣∣{i ∈ Π : ~µ rp [i][q] = ~µ rp [coordp][q]
}∣∣ ≥ α+ 1 then

31: Msgp[q]← ~µrp[coordp][q]
32: else
33: Msgp[q]← ⊥

p1

p2

p3

p4

p5

4ρ− 3

v2

v2

v2

v2

v2

4ρ− 2 4ρ− 1 4ρ

Figure 4: Algorithm 2 from the point of view of v2 sent
by p2; p1 is the coordinator, n = 4, f = 1.

v2 received from p2 in round 4ρ − 3 with the value indi-
rectly received from the other processes in round 4ρ − 2.
If at least n − f values v2 have been received by process
p, then p keeps v2 as the message received from p2. Oth-
erwise, the message received from p2 is ⊥ (line 9). As
explained later, rounds 4ρ− 3 and 4ρ− 2 filter the values
for rounds 4ρ − 1 and 4ρ in order to ensure Pβdyn from
Pαdyn . Rounds 4ρ − 1 and 4ρ are very similar to rounds
3ρ− 1 and 3ρ in Algorithm 1.

Algorithm 2 relies on a coordinator for ensuring
Pf�cons: all processes assign to Msgp the value received
from the coordinator in round 4ρ (see line 31). This is
achieved during a macro-round in which the size of the

p1

p2

p3

p4

3ρ− 2

v2

v′2

v′3

v3

3ρ− 1 3ρ

v′2,v′3

v′2,v3

v′3

Figure 5: Algorithm 1 does not preserves Pαdyn ; from the
point of view of p2 and p3, that sends correspondingly v2

and v3 in round 3ρ − 2, and reception of process p4 of
messages sent by p2 and p3. n = 4, f = α = β =
1 and p1 is coordinator. Message received by p4 from
coordinator in round 3ρ is corrupted; other messages are
correctly received. Absence of arrows represents message
loss.

safe kernel is at least n − f , with the coordinator in the
safe kernel. Since consistency is ensured under the same
conditions as with Algorithm 1, we use exactly the same
mechanism in Algorithm 2.

The additional complexity of Algorithm 2 comes from
the part responsible for ensuring Pβdyn . We start by ex-
plaining on Figure 5 why Algorithm 1 does not preserve
Pαdyn for the simplest case f = α = 1, n = 4. Ac-
cording to P1

dyn , every process can receive at most one
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corrupted message per round. In round 3ρ − 2, process
p3 receives the corrupted message v′2 from p2, and p4 re-
ceives the corrupted value v′3 from p3. These values are
sent to the coordinator p1 in round 3ρ − 1. Finally, in
round 3ρ, process p4 receives v′2, v′3 from p1, v′2, v3 from
p3, and v′3 from itself. Since there are f+1 values equal to
those sent by coordinator, p4 considers v′2, respect. v′3, as
messages received from p2, respect. p3, in macro-round ρ,
violating P1

dyn . The problem comes from the fact that dy-
namic faults have a cumulative effect, i.e., messages that
are corrupted in round 3ρ − 2 add to corrupted messages
from round 3ρ.

We now explain why the addition of round 4ρ−2 allows
us to cope with this issue. Informally speaking, the role
of round 4ρ − 2 in Algorithm 2 is to transform dynamic
faults into some maximum number of static faults, i.e.,
into some maximum number of faults localized at some
fixed set of processes. Consider rounds 4ρ−3 and 4ρ−2,
with n = 4, α = f = 1. In round 4ρ− 3, predicate Pαdyn
ensures that, in total, at most n · α = 4 corrupted values
are received. In other words, among the vectors firstp1 to
firstp4 received (line 8), at most n · α = 4 elements can
be corrupted (see Figure 6, where × represents possible
corrupted values). In round 4ρ− 2, each process pi sends
vector firstpi to all processes. Consider the reception of
these four vectors by some process pj . Since α = 1, one
of these vectors can be received corrupted at pj . Figure 7
shows four examples, two starting from Figure 6 left, two
starting from Figure 6 right.

To understand which value p adopts from q (lines 15
and 16) we need to look at column q in Figure 7. From
line 16, p adopts a corrupted value from q only if column q
contains at least n− f = 3 corrupted values. In the upper
case, no column satisfies this condition, i.e., p adopts no
corrupted value. In the lower case, columns 2 and 1 satisfy
this condition, i.e., corrupted values can be adopted from
p2 or p1. It is easy to see that in the case n = 4, f =
α = 1, corrupted values can be adopted from at most one
process. In other words, rounds 4ρ − 3 and 4ρ − 2 has
transformed α = 1 dynamic fault into at most β = 1
static faults. However, in the case n = 5, f = α = 2,
rounds 4ρ− 3 and 4ρ− 2 transform α = 2 dynamic fault
into at most β = 3 static fault.

Transforming α dynamic faults into β ≥ α static faults
allows us to rely on the same mechanism as in Algo-
rithm 1 for the last two rounds of the simulation. Note
that in rounds 4ρ− 1 and 4ρ of Algorithm 2 we have dy-
namic faults, while in rounds 3ρ− 1 and 3ρ of Algorithm
1 faults were static. Nevertheless the same mechanisms
can be used in both cases.

Theorem 1. If n > (β+1)(α+f)
β−α+1 , n > α + f , α ≥ f , and

firstp1 firstp1
firstp2 firstp2
firstp3 firstp3
firstp4 firstp4

×
×
×
×

×
×
×
×

Figure 6: After round 4ρ − 3: Two examples (left and
right) of corrupted values (represented by X).

~µpj [p1] ~µpj [p1]

~µpj [p2] ~µpj [p2]

~µpj [p3] ~µpj [p3]

~µpj [p4] ~µpj [p4]

× × × ×
×
×
×

×
×
×

× × × ×

(a)

~µpj [p1] ~µpj [p1]

~µpj [p2] ~µpj [p2]

~µpj [p3] ~µpj [p3]

~µpj [p4] ~µpj [p4]

× × × ×
×
×
×

×
×
×

× × × ×

(b)

Figure 7: After round 4ρ−2: (a) Two examples of vectors
received by some pj starting from Fig. 6 left; (b) Two
examples of vectors received by some pj starting from
Fig. 6 right (corrupted values are represented by ×).

β ≥ α, then Algorithm 2 simulates Pf�cons ∧ Pβdyn from

Pf,4(f+1)
�SK ∧ Pαdyn .

The theorem follows directly from Lemmas 3 and 4:
the first lemma considers Pβdyn and Pαdyn , the second

Pf�cons and Pf,4(f+1)
�SK .

Lemma 3. If n > (β+1)(α+f)
β−α+1 and β ≥ α, then Algo-

rithm 2 simulates Pβdyn from Pαdyn .

Proof. We need to show that for every macro-round ρ,
and every process p, we have |AHO(p, ρ)| ≤ β, i.e., at
most β messages are corrupted.

Assume by contradiction that there is a process p so that
|AHO(p, ρ)| > β. That is, we have |S| ≥ β + 1 for

S =
{
s ∈ Π : Msgp[s] 6= ms and Msgp[s] 6= ⊥

}
For all s ∈ S, letm′s denote Msgp[s]. The output Msgp[s]
is set at line 31. Because of line 30, this implies that

∀s ∈ S :
∣∣{i ∈ Π : ~µ4ρ

p [i][s] = m′s
}∣∣ ≥ α+ 1.

Because of |AHO(p, 4ρ)| ≤ α, at the end of round 4ρ− 1
we have

∀s ∈ S,∃is ∈ Π : conf is [s] = m′s.
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Since in round 4ρ − 1 the elements of conf can only be
set to⊥, the same condition needs to holds also at the end
of round 4ρ− 2. Because of line 15, this implies

∀s ∈ S, ∃is ∈ Π,∃Qs ⊆ Π, |Qs| ≥ n− f, ∀q ∈ Qs :

~µ4ρ−2
is

[q][s] = m′s.

Because of |AHO(p, 2)| ≤ α, at the end of round 4ρ − 3
we have

∀s ∈ S,∃Q′s ⊆ Π, |Q′s| ≥ n− f − α : ∀q ∈ Q′s :

firstq[s] = m′s.

Note that firstq = ~µ4ρ−3
q . The number of tuples (q, s)

such that ~µ4ρ−3
q [s] = m′s is thus at least (β+1)(n−f−α).

From this it follows that there is at least one process q0

where the number of corrupted messages in the first round
is⌈

(β + 1)(n− f − α)

n

⌉
= α+

⌈
(β + 1)(n− f − α)− nα

n

⌉
> α,

where the last inequation follows from n > (β+1)(α+f)
β−α+1

and β ≥ α, which ensures (β+ 1)(n− f −α)−nα > 0.
Therefore AHO(q0, 4ρ − 3) > α, which contradicts the
assumption AHO(q0, 4ρ− 3) ≤ α.

Lemma 4. If n > α + f and α ≥ f , then Algorithm 2
simulates Pf�cons from Pf,4(f+1)

�SK .

Proof. Let ρ denote a macro-round, let Φ =
{4ρ− 3, . . . , 4ρ} be the set of rounds of ρ, and let
c0 = ρ mod n+ 1 be the coordinator of ρ such that

c0 ∈ SK(Φ) ∧ |SK(Φ)| ≥ n− f.

Such a macro-round exists, because (i) Pf,4(f+1)
�SK holds

and (ii) the coordinator is chosen using a rotating coor-
dinator scheme (the coordinator of macro-round ρ is pro-
cess ρ mod n + 1). We show that with Algorithm 2 (i)
CONS(ρ) and (ii) |SK(ρ)| ≥ n− f .

(i) Assume by contradiction that for two processes p
and q, Msg(ρ)

p and Msg(ρ)
q differ by the message of pro-

cess s ∈ Π, that is Msg(ρ)
p [s] 6= Msg(ρ)

q [s]. By round
4ρ, every process adopts the value of c0 or sets Msg(ρ)[s]

to ⊥; when c0 ∈ SK(Φ) it follows that Msg(ρ)
p [s] or

Msg(ρ)
q [s] is ⊥. W.l.o.g. assume that Msg(ρ)

p [s] = v

and Msg(ρ)
q [s] = ⊥. For rounds r ∈ [4ρ − 1, 4ρ], let

Rrp(v, s) :=
{
q ∈ Π : ~µ rp [q][s] = v

}
represent the set of

processes from which p receives v at position s. Similarly,
for rounds r ∈ [4ρ− 1, 4ρ], let

Qr(v, s) :=
{
q ∈ Π : Srq (srq)[s] = v

}

represent the set of processes that sent v at position s.
By line 30, if Msg(ρ)

p [s] = v, then |R4ρ
p (v, s)| ≥ α+ 1,

and c0 ∈ R4ρ
p (v, s). Since c0 ∈ SK(Φ), we have c0 ∈

Q4ρ(v, s) and thus, by line 23, |R4ρ−1
c0 (v, s)| ≥ α+f+1.

From this and |SK(Φ)| ≥ n− f , we have |R4ρ−1
c0 (v, s) ∩

SK(Φ)| ≥ α+ 1. Therefore, at least α+ 1 processes p′ in
SK(Φ), including c0, have conf p′ [s] = v. It follows that
|R4ρ
q (v, s)| ≥ α+ 1, and c0 ∈ R4ρ

q (v, s). This contradicts
the assumption that the condition in line 30 is false for
process q.

(ii) For every processes p ∈ Π and q ∈ SK(Φ), by
definition we have firstp[q] = mq at the end of round
4ρ − 3. In round 4ρ − 2, for every process s ∈ SK(Φ),
firsts is received. Therefore, by line 15 since |SK(Φ)| ≥
n − f , at every process p ∈ Π we have conf p[q] = mq ,
for all q ∈ SK(Φ) (*). In round 4ρ − 1 , c0 receives
conf q′ [q] = mq from every process q′ ∈ SK(Φ), and thus
there is no q ∈ SK(Φ) s.t. c0 sets conf c0 [q] to ⊥ (**).
In round 4ρ, since c0 ∈ SK(Φ), every process p receives
the message from c0. In addition, since n ≥ f + α + 1
and |SK(Φ)| ≥ n− f , every process receives the message
from n− f ≥ α+ 1 processes in SK(Φ). By (*), (**) and
line 30, for all processes p and all q ∈ SK(Φ), we have
Msgp[q] = mq . Thus SK(Φ) ⊆ SK(ρ), which shows that
SK(ρ) ≥ n− f .

Corollaries 2 and 3 follow from Lemma 3.

Corollary 2. If n > (α + 1)(α + f), then Algorithm 2
preserves Pαdyn .

By Corollary 2, preserving Pαdyn leads to a quadratic
dependency between n and α. Corollary 3 shows the sur-
prising result that, allowing more than α corruptions in
the simulated round, leads instead to a linear dependency
between n and α. Note that the simulation mentioned in
Corollary 3 is not useful if

⌊
η
η−1α

⌋
≥ n.

Corollary 3. For any η ∈ R, η > 1, if n > η(α + f),

then Algorithm 2 simulates Pb
η
η−1αc

dyn from Pαdyn .

Proof. Let ξ = η
η−1 . From bξαc > ξα − 1 = α η

η−1 −
1 = αη−η+1

η−1 it follows that bξαc+1
bξαc−α+1 < η. The corollary

follows from Lemma 3 by setting β = bξαc.

5.3 Generic predicate
In Section 6 we solve consensus using the following
generic predicate, which combines P�cons and P�SK :

Pf,b,k�cons⊕SK ::∀φ > 0,∃φ0 ≥ φ,
CONS((φ0 − 1)k + 1) ∧ |SK(Φ)| ≥ n− f,
where Φ = {(φ0 − 1)k + 1− b, . . . , φ0k}
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It defines a phase with k rounds, where the first round
of some phase φ0 is consistent and all rounds of phase
φ0 plus the preceding b rounds have safe kernel of size at
least equal to n− f .

Obviously, P�cons⊕SK can be simulated from P�SK
and Pstat using Algorithm 1, and from P�SK and Pdyn

using Algorithm 2. In both cases, Algorithm 1 or Algo-
rithm 2 simulate the first round of a phase, and a trivial
simulation (where messages are just delivered as received)
are used for the other rounds. Ensuring that the coordina-
tor is in the safe kernel requires f + 1 phases. In case of
Algorithm 1, the first macro-round of a phase requires 3
rounds, and the others k−1 only 1 round. Therefore f+1
phases correspond to (k + 2)(f + 1) rounds. This leads
to:

Corollary 4. If n > 3f , then Pf,b,k�cons⊕SK ∧ P
f
stat can be

simulated from Pf,K�SK ∧ P
f
stat, where K = (k + 2)(f +

1) + b+ (k + 1).

Note that the additional term k + 1 for K stems from
the fact that the rounds with a safe kernel are not neces-
sarily aligned to the phases of Pf,b,k�cons⊕SK . In case of Al-
gorithm 2, since the first macro-round requires 4 rounds,
we have:

Corollary 5. If n > (β+1)(α+f)
β−α+1 , n > α+ f , α ≥ f , and

β ≥ α, then Pf,b,k�cons⊕SK ∧ P
β
dyn can be simulated from

Pf,K�SK ∧Pαdyn , where K = (k+ 3)(f + 1) + b+ (k+ 2).

Here the additional alignment term in K is k + 2.

6 Solving consensus with eventual
consistency

In this section we use the generic predicate P�cons⊕SK to
solve consensus. In all consensus algorithms below, the
notation #(v) is used to denote the number of messages
received with value v, i.e.,

#(v) ≡
∣∣{q ∈ Π : ~µrp[q] = v

}∣∣ .

6.1 The BOTR algorithm
We start with the simplest algorithm, namely the

BOTR algorithm. The basic technique of this algorithm
is that a value that is decided is locked in the sense that a
sufficiently high quorum of processes retain this value as
estimate. A similar algorithmic scheme can be found in

Algorithm 3 The BOTR algorithm
1: Initialization:
2: votep ← initp ∈ V

3: Round r = 2φ− 1:
4: Srp :
5: send votep to all
6: T rp :
7: if |HO(p, r)| ≥ T then
8: votep ← min {v : 6 ∃v′ ∈ V s.t. #(v′) > #(v)}

9: Round r = 2φ:
10: Srp :
11: send votep to all
12: T rp :
13: if ∃v̄ 6= ⊥ : #(v̄) ≥ T then
14: DECIDE v̄

algorithms for benign [9, 24, 16, 11] and arbitrary [20, 5]
faults.

The code of BOTR is given as Algorithm 3. It con-
sists of a sequence of phases, where each phase φ has two
rounds 2φ − 1 and 2φ. Every process p maintains a sin-
gle variable votep initialized to p’s initial value. In every
round, every process p sends votep to all. In round 2φ−1,
if a process p receives at least T messages then it updates
votep, and sets votep to the smallest most often received
value of the current round. In round 2φ, if a process p
receives at least T times the same value v then it decides
on v.10

We will show that BOTR is safe (in the sense that it
fulfills integrity and agreement) for appropriate choices of
T when Pαdyn holds (or Pαstat, since Pαstat implies Pαdyn ).
The value of threshold T is chosen such that if some pro-
cess decides v at line 14 of round r, then in any round
r′ ≥ r, at all processes only v can be assigned to any vote ,
and hence only v can be decided. Termination is achieved
in both cases if in addition the following predicate holds:

PfBOTR :: ∀φ, ∀p,∃φ0 > φ :

CONS(2φ0 − 1) ∧ |HO(p, 2φ0 − 1)| ≥ n− f
∧ (∃φ1 ≥ φ0 : |SHO(p, 2φ1)| ≥ n− f)

Obviously, Pf,0,2�cons⊕SK implies PfBOTR. Eventual con-
sistency ensures the first part of the predicate, namely the
existence of a consistent round 2φ0 − 1 where in addi-
tion every process receives enough messages. This guar-
antees that at the end of round 2φ0−1 all processes adopt

10The two rounds of BOTR algorithm can be merged in a single
round in which the code of both state-transition functions is executed at
once. We have split them in two rounds to emphasize on the different
communication predicates required.
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the same value for votep. The second part of the predi-
cate forces every process to make a decision at the end of
round 2φ1.

6.1.1 Correctness of the BOTR algorithm

First we introduce some piece of notation. For any vari-
able x local to process p, we denote x(r)

p the value of xp at
the end of round r. For any value v ∈ V and any process
p, at any round r > 0, we define the setsRrp(v) andQrp(v)
as follows:

Rrp(v) :=
{
q ∈ Π : ~µ rp [q] = v

}
Qrp(v) :=

{
q ∈ Π : Srq (p, sq) = v

}
.

where sq denotes q’s state at the beginning of round r. The
set Rrp(v) (resp. Qrp(v)) represents the set of processes
from which p receives v (resp. which ought to send v
to p) at round r. Since at each round of the consensus
algorithm, every process sends the same message to all,
the sets Qrp(v) do not depend on p, and so can be just
denoted by Qr(v) without any ambiguity.

We start our correctness proof with a general basic
lemma:

Lemma 5. For any process p and any value v, at any
round r, we have:

|Rrp(v)| ≤ |Qr(v)|+ |AHO(p, r)|

Proof. Suppose that process p receives a message with
value v at round r > 0 from process q. Then, either the
code of q prescribes it to send v to p at round r, i.e., q
belongs to Qr(v) and thus q is also in SHO(p, r), or the
message has been corrupted and q is in AHO(p, r). It fol-
lows that Rrp(v) ⊆ Qr(v) ∪ AHO(p, r), which implies
|Rrp(v)| ≤ |Qr(v)|+ |AHO(p, r)|.

As an intermediate step to argue agreement, our next
lemma introduces a condition on T that ensures no two
processes can decide differently at the same round:

Lemma 6. If T > n
2 + α then in any run of the HO

machine 〈BOTR,Pαdyn〉 there is at most one possible de-
cision value per round.

Proof. Assume by contradiction that there exist two pro-
cesses p and q that decide on different values v and v′

in some round r > 0. From the code of BOTR, we
deduce that |Rrp(v)| ≥ T and |Rrq(v′)| ≥ T . Then
Lemma 5 ensures that |Qr(v)| ≥ T − |AHO(p, r)| and
|Qr(v′)| ≥ T − |AHO(q, r)|.

Since each process sends the same value to all at each
round r, the sets Qr(v) and Qr(v′) are disjoint if v and v′

are distinct values . Hence |Qr(v)∪Qr(v′)| = |Qr(v)|+
|Qr(v′)|. Then from T > n

2 +α and since Pαdyn holds, we
have |AHO(p, r)| ≤ α and |AHO(q, r)| ≤ α. Therefore,
we derive that |Qr(v) ∪ Qr(v′)| > 2(T − α) > n, a
contradiction.

The next lemma shows that once a sufficently high
number of processes have the same vote , no other value
will be adopted in later rounds by any process:

Lemma 7. If T > 2
3 (n + 2α), then in any run of the

HO machine 〈BOTR,Pαdyn〉, if |{p′ ∈ Π : vote
(r−1)
p′ =

v}| ≥ T − α, every process q that updates its variable
voteq at round r sets it to v.

Proof. Since vote is only updated in the first round of
a phase, it sufficies to consider the case r = 2φ − 1.
Since q updates voteq in round r, because of line 13,
|HO(q, r)| ≥ T . Let Qr(v̄) denote the set of processes
that, according to their sending functions, ought to send
messages different from v at round r, and let Rrq(v̄) de-
note the set of processes from which q receives values
different from v at round r. Since each process sends
a message to all at each round, Qr(v̄) = Π \ Qr(v),
and thus |Qr(v̄)| = n − |Qr(v)|. Similarly, we have
Rrq(v̄) = HO(q, r) \Rrq(v), and since Rrq(v) ⊆ HO(q, r),
it follows that |Rrq(v̄)| ≤ T −Rrq(v).

Because of the assumption of the Lemma, and the fact
that processes send their current value of vote in ev-
ery round, we have |Qr(v)| ≥ T − α. It follows that
|Qr(v̄)| ≤ n − (T − α). With an argument similar to
the one used in the proof of Lemma 5, we derive that
|Rrq(v̄)| ≤ |Qr(v̄)| + |AHO(q, r)|. Therefore, we obtain
|Rrq(v̄)| ≤ n− T + α+ |AHO(q, r)|.

Since Pαdyn holds, it follows that |Rrq(v̄)| ≤ n − T +

2α. It follows that because of T > 2
3 (n + 2α), we have

|Rrq(v̄)| < 1
3 (n + 2α), and therefore |Rrq(v)| > |Rrq(v̄)|.

This implies that v is the most frequent value received
by q at round r. Then the code entails q to set voteq to
v.

We now extend the statement of Lemma 7 to hold also
for any phase φ > φ0:

Lemma 8. If T > 2
3 (n + 2α), then in any run of the

HO machine 〈BOTR,Pαdyn〉 such that process p decides
some value v at some phase φ0 > 0, every process q that
updates its variable voteq at some phase φ > φ0 neces-
sarily sets it to v.

Proof. Assume process p decides value v at round r0 =
2φ0 of phase φ0. We prove by induction on r that:

∀r ≥ r0, |{q ∈ Π : vote(r−1)
q = v}| ≥ T − α.
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Then Lemma 7 ensures this Lemma.
Basic case: r = r0. Since p decides v at round r0, then

|Rr0p (v)| ≥ T . By Lemma 5, we have |Qr0(v)| ≥ T − α
when Pαdyn holds. From the code of BOTR, we have

Qr0(v) = {q ∈ Π : vote
(r0−1)
q = v}, and so the basic

case follows.
Inductive step: r > r0. Assume |{q ∈ Π :

vote
(r−1)
q = v}| ≥ T − α. Lemma 7 ensures that

for any process q, voteq is updated only to v. Thus
|{q ∈ Π : vote

(r)
q = v}| ≥ |{q ∈ Π : vote

(r−1)
q =

v}| ≥ T − α.

With the help of the previous lemmas, we can show the
agreement clause of consensus:

proposition 1 (Agreement). If T > 2
3 (n+2α), then there

is at most one possible decision value in any run of the HO
machine 〈BOTR,Pαdyn〉.

Proof. Let φ0 be the first phase at which some process p
makes a decision, and let v be p’s decision value. Assume
that process q decides v′ at phase φ. By definition of φ0,
we have φ ≥ φ0.

We proceed by contradiction, and assume that v 6=
v′. Since T > n

2 + α, by Lemma 6, we derive that
φ > φ0. Since p decides v at round 2φ0 and q de-
cides v′ at round 2φ, Lemma 5 ensures that |Q2φ0(v)| ≥
T − |AHO(p, 2φ0)| and |Q2φ(v′)| ≥ T − |AHO(q, 2φ)|.

Since T > 2
3 (n + 2α), Lemma 8 implies that Q2φ0(v)

and Q2φ(v′) are disjoint sets. Therefore,

|Q2φ0(v) ∪Q2φ(v′)| = |Q2φ0(v)|+ |Q2φ(v′)|.

Because of T > 2
3 (n + 2α), we have |Q2φ0(v) ∪

Q2φ(v′)| > n, which is a contradiction.

Now we show that the HO machines 〈BOTR,Pαdyn〉
satisfies the integrity clause of consensus for T > 2α.

proposition 2 (Integrity). If T > 2α, then in any run of
the HO machine 〈BOTR,Pαdyn〉 where all the initial val-
ues are equal to some value v0, the only possible decision
value is v0.

Proof. Consider a run of the HO machine
〈BOTR,Pαdyn〉 such that all the initial values are
equal to v0.

First, by induction on r, we show that:

∀r > 0 : Qr(v0) = Π

Note that according to the code of BOTR, p belongs
to Qr(v0) if and only if vote(r−1)

p = v0, and so Qr(v0) =

{p ∈ Π : vote
(r−1)
p = v0}.

Basic case: r = 1. All the initial values are equal to
v0. Therefore, every process sends a message with value
v0 at round 1.

Inductive step: r > 1. Suppose that Qr−1(v0) = Π.
Let p be a process that updates its variable xp at round
r − 1. Since AHO(p, r − 1) ≤ α, each process p receives
at most α values distinct from v0 at round r−1. Therefore,
either p does not modify votep at the end of round r which
remains equal to v0, or p receives at least T messages at
round r, and thus at least T − α messages with value v0

and at most α values different from v0. In the latter case, p
sets votep to v0 since T > 2α. This shows that definitely,
vote

(r−1)
p = v0. Therefore, Qr(v0) = Π.

Let p be a process that makes a decision at some round
r0 > 0. We have just shown that Qr0(v0) = Π. When
|AHO(p, r0)| ≤ α holds, p receives at most α messages
with value different to v0. Since T > α, the code entails
p to decide v0 at round r.

For liveness, as already stated the communication pred-
icate PfBOTR ensures that (i) voteq are eventually identi-
cal, and (ii) each process then hears of sufficiently many
processes to make a decision.

proposition 3 (Termination). If n > 4α + 3f and
T > 2

3 (n + 2α), then any run of the HO machine
〈BOTR,PfBOTR∧Pαdyn〉 satisfies the Termination clause
of consensus.

Proof. Since n > 4α + 3f , we have n − f ≥ T . By
PfBOTR, there exists a phase φ0 such that for all processes
p |HO(p, 2φ0−1)| ≥ n−f ∧CONS(2φ0−1). Therefore,
in round 2φ0 − 1, for any two processes p and q, we have
~µ2φ0−1
p = ~µ2φ0−1

q , and |HO(p, 2φ0 − 1) ∩ HO(q, 2φ0 −
1)| ≥ n − f ≥ T . The code of BOTR algorithm (see
line 8) implies that for all processes p at the end of round
2φ0 − 1 we have votep set to the same value v0.

Because of T > 2
3 (n + 2α), a similar argument as

the one used in Lemma 8 shows that every process q
that updates voteq at round r′ > r0 definitely sets it to
v0. Moreover, from PfBOTR we have ∀p ∈ Π, ∃φ1 ≥
φ0 s.t. |SHO(p, 2φ1)| ≥ n− f ≥ T . Therefore, there ex-
ist a round 2φ1 such that every process p in Π eventually
receives at least T messages with value v0 at round 2φ1,
and so decides v0.

Combining Propositions 1, 2, and 3, we get the follow-
ing theorem:

Theorem 2. If n > 4α+3f and T > 2
3 (n+2α), then the

HO machine 〈BOTR,PfBOTR∧Pαdyn〉 solves consensus.

Similar reasoning can be used to show:
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Algorithm 4 BLV algorithm

1: Initialization:
2: votep ← initp ∈ V
3: tsp ← 0
4: historyp ← {(initp, 0)}

5: Round r = 3φ− 2:
6: Srp :
7: send 〈votep, tsp, historyp〉 to all
8: T rp :
9: selectp ← FBLVT,β(~µrp)
10: if selectp 6= null then
11: historyp ← historyp ∪ {(selectp, φ)}

15: Round r = 3φ− 1:
16: Srp :
17: if ∃(v, φ) ∈ historyp then
18: send 〈v〉 to all
19: T rp :
20: if #(v) ≥ T then
21: votep ← v
22: tsp ← φ

23: Round r = 3φ:
24: Srp :
25: if tsp = φ then
26: send 〈votep〉 to all
27: T rp :
28: if ∃v̄ 6= ⊥ : #(v̄) ≥ T then
29: DECIDE v̄

Corollary 6. If α = f , n > 5f and T > 2
3 (n + f),

then the HO machine 〈BOTR,PfBOTR ∧ Pαstat〉 solves
consensus.

6.2 The BLV algorithm
The next algorithm we present is called BLV . It is

based on the last voting mechanism [11] that was first in-
troduced in the seminal Paxos algorithm by Lamport [15]
for benign faults. This mechanism is also at the core of the
PBFT algorithm by Castro and Liskov [10], the Byzantine
variant of the Paxos algorithm.
BLV is designed to work both under Pαstat and Pαdyn .

It requires n > 2(α+f) and T > n
2 +α in the presence of

dynamic value faults (Pαdyn ), or n > 3f , α = f , and T >
n+f

2 if value faults are only static (Pαstat). Termination is
achieved with Pαdyn or Pαstat if in addition the following
predicate holds:

PfBLV ::∀φ > 0,∃φ0 > φ : CONS(3φ0 − 2)

∧ ∀r ∈ {3φ0 − 2, . . . , 3φ0} : |SK(r)| ≥ n− f

Obviously, Pf,0,3�cons⊕SK implies PfBLV . Eventual con-
sistency ensures that at the end of round 3φ0 − 2, all pro-
cesses select the same value. The condition that there ex-
ists a large enough safe kernel in phase φ0 finally forces
every process to make a decision at the end of round 3φ0.

The code of BLV is given as Algorithm 4. It consists
of a sequence of phases, where each phase φ has three
rounds 3φ−2, 3φ−1 and 3φ. The last voting mechanism
uses a timestamp variable ts in addition to to the variable
vote . Whenever a process p updates votep in round 3φ−
1, tsp is set to φ (line 21 and 22). If enough processes
update vote in round 3φ − 1, then a decision is possible
in phase 3φ. This is the same mechanism as in Paxos.
Note the condition at line 20. It ensures that in round
3φ − 1, all processes that update vote, update it to the
same value. As in Paxos, this ensures that in round 3φ,
processes attempt to decide on one single value, which is
necessary for agreement.

In order to deal with value faults, BLV maintains also
a history variable, which stores pairs (v, φ). Having
(v, φ) ∈ historyp means that p added (v, φ) to historyp
in phase φ (line 11). The history variable ensures that
a corrupted message with invalid values for vote and tsp
will not affect the safety properties of the algorithm. It is
mainly used in round 3φ−2, which has two roles, the first
related to agreement and integrity, and the second related
to termination:

1. Safety role:

(a) Agreement: If a process p has decided v in
some phase φ0, then for any process q, only v
can be assigned to selectq at line 9 in phases
φ > φ0.

(b) Integrity: If all process have the same initial
value v, then only v can be assigned to selectp
at line 9.

2. Termination role: In a consistent round with safe ker-
nel of size n− f , all processes must assign the same
value to select at line 9.

Line 9 refers to the selection functionFBLVT,β , which
takes as input the messages received in round 3φ− 2. We
explain now this function (Algorithm 5):

• Line 30 (together with line 31) ensures 1a. More pre-
cisely, it ensures selection of the most recent vote
in the history of some process. This is basically
the same mechanism as in Paxos, adapted to trans-
mission value faults. Selecting the most recent vote
among the set of majority processes can be expressed
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Algorithm 5 Function FBLVT,β( ~M)
30:

possibleV ←
{

(v, ts) : ∃i ∈ Π : (v, ts) = ~M [i] ∧
∣∣∣{q : ~M [q] = (v′, ts ′,−) ∧ ((v = v′ ∧ ts = ts ′) ∨ ts > ts ′)}

∣∣∣ ≥ T
}

31: confirmedV ← {v : (v, ts) ∈ possibleV ∧ |{q : ~M [q] = (−,−, history) ∧ (v, ts) ∈ history}| > α }

32: if |confirmedV | ≥ 1 then
33: return min(confirmedV )
34: else if {q : ~M [q] = (−, 0,−)} ≥ T then
35: return minimal v, such that ∃(v, 0,−) ∈ ~M and 6 ∃(v′, 0,−) ∈ ~M s.t. #((v′, 0,−)) > #((v, 0,−))
36: else
37: return null

in Paxos as follows:

mostRecentV ←
{

(v, ts) : (v, ts) ∈ ~µrp ∧

|{q : ~µrp[q] = (v′, ts ′) ∧ ts ≥ ts ′)}| > n

2

}
In Paxos, this selection rule ensures agreement since
most recent vote is a single value. In BLV, a cor-
rupted message can contain (vote, ts) with ts equal
to the highest timestamp of a process, but with a
different vote . Therefore, the above selection rule
does not ensure 1a, since several values can sat-
isfy the condition of lines 30 and 31. The solu-
tion consists in transforming condition ts ≥ ts ′ into
(v = v′ ∧ ts = ts ′) ∨ ts > ts ′ and using a higher
threshold (T > n

2 + f or T > n+f
2 ).

With this, if a process has previously decided v̄, then
only v̄ can be in confirmedV .11

• Line 31 prevents from returning a value v from a
pair (v, ts) that is from a corrupted message: the pair
must be in the history of at least one process. There-
fore, a pair (v, ts) is considered only if it is part of the
history in at least α+ 1 messages received. Together
with line 30, it also ensures 1b: when all processes
have the same initial value, no other value is in the
historyp variable of processes.

We consider now lines 32 and 33 of Algorithm 5. As we
just explained, if a process has previously decided v̄, then

11Consider two phases φ0 and φ0+1, such that a process has decided
v̄ in phase φ0. We consider the more general case in the presence of
dynamic faults, and we assume that n = 5, f = α = 1 and T = 4. This
means that at least T − α = 3 processes have ts = φ0 and vote = v̄.
Consider in phase φ0 + 1 that (v, ts) ∈ possibleVp at p with v 6= v̄.
This means that p, in round 3(φ0+1)−2, has received T = 4 messages
with either (v, ts,−), or (−, ts′,−) and ts′ < ts . Since n = 5 and
T = 4, at least one of these messages is from a process c such that
votec = v̄ and tsc = φ0. Since v 6= v̄, we must have φ0 < ts .
However, in phase φ0 + 1, no process p can have (v, ts) with ts > φ0
in historyp. Therefore, by line 31, we will not have v ∈ confirmedV .

only v̄ can be in confirmedV , that is, |confirmedV | =
1. In this case, by line 33, the function FBLVT,β re-
turns v̄. If no correct process has decided, we can have
|confirmedV | > 1. In this case, if some round 3φ − 2
is a consistent round with safe kernel of size n − f , then
all processes consider the same set confirmedV , which
ensures 2. Lines 34 and 35 are for the case where not all
processes have the same initial value. Termination would
be violated without these lines.

6.2.1 Correctness of the BLV algorithm

In this section we use the same definition of R(v) and
Q(v) as in Section 6.1.1.

Definition 1. A value v is locked in a phase φ by process
p if votep = v and tsp = φ at the end of round 3φ− 1.

Lemma 9. If T > n
2 + α, then in any run of the HO

machine (BLV,Pαdyn) there is at most one locked value
per phase.

Proof. Assume by contradiction that there exist two pro-
cesses p and q that lock different values v and v′ in
some phase φ0 > 0. From line 20 we deduce that
|R3φ0
p (v)| ≥ T and |R3φ0

q (v′)| ≥ T . Then Lemma 5
(note that this lemma holds also for BLV) ensures that
|Q3φ0(v)| ≥ T − α and |Q3φ0(v′)| ≥ T − α when Pαdyn
holds.

Since each process sends the same value to all at each
round, the sets Q3φ0(v) and Q3φ0(v′) are disjoint if v and
v′ are distinct values. Hence,

|Q3φ0(v)∪Q3φ0(v′)| = |Q3φ0(v)|+|Q3φ0(v′)| ≥ 2T−2α.

Consequently, since T > n
2 + α, we derive that

|Q3φ0(v) ∪Q3φ0(v′)| > n, a contradiction.

Lemma 10. If T > α, then in any run of the HO machine
(BLV,Pαdyn) there is at most one possible decision value
per phase.
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Proof. Assume by contradiction that there exist two pro-
cesses p and q that decide on different values v and v′

in some phase φ0 > 0. From line 28 we deduce that
|R3φ0
p (v)| ≥ T and |R3φ0

q (v′)| ≥ T . Then Lemma 5 and
Pαdyn ensure that |Q3φ0(v)| ≥ T − α and |Q3φ0(v′)| ≥
T − α.

Since each process sends the same value to all at each
round, the sets Q3φ0(v) and Q3φ0(v′) are disjoint since v
and v′ are distinct values. Hence, when T > α, the sets
Q3φ0(v) and Q3φ0(v′) are not empty, and so by line 25,
there exist two processes p′ and q′ that have votep′ = v,
tsp′ = φ0, voteq′ = v′ and tsq′ = φ0 . A contradiction
with Lemma 9.

Lemma 11. If T > n
2 + α, then in any run of the HO

machine (BLV,Pαdyn), if process p decides v in phase
φ0 > 0, then for all later phases φ > φ0 and all processes
q, (v, φ) is the only pair that can be added to historyq .

Proof. Assume by contradiction that φ1 > φ0 is the first
phase where a pair (v1, φ1) with v1 6= v is added to the
historyq at process q. This implies that if history at some
process contains a pair (v′, φ′) with v′ 6= v, then φ′ ≤ φ0

(*).

Since by our assumption q added (v′,−) to historyq in
phase φ1, this implies that FBLVT,β returns v′ at line 9
in phase φ1. Therefore, either (i) line 33 or (ii) line 35 of
Algorithm 5 was executed by q in phase φ1.

In case (ii), the condition of line 34 has to be true.
This implies that |R3φ1−2

q ((−, 0,−))| ≥ T , and thus, by
Lemma 5, |Q3φ1−2((−, 0,−))| ≥ T − α.

We prove that in phases φ such that φ0 ≤
φ < φ1, we have |{q ∈ Π : vote3φ−1

q =

v ∧ ts3φ−1
q ≥ φ0}| ≥ T − α. Since p de-

cides v in phase φ0, |R3φ0
p (v)| ≥ T , and thus

by Lemma 5, we have |Q3φ0(v)| ≥ T − α.
From the code of the BLV algorithm, we have
Q3φ0(v) = {q : vote3φ0−1

q = v ∧ ts3φ0−1
q =

φ0}, therefore the claim holds for phase φ0.

We now show that any process that locked value
v in phase φ0 (see Definition 1) and updates
vote in phase φ such that φ0 < φ < φ1,
sets it to v. This ensures the claim. Assume
by contradiction that one of these processes q′

sets voteq to v′ in round 3φ − 1. By line 20,
|R3φ−1
q (v′)| ≥ T . Then Lemma 5 ensures that

|Q3φ−1(v′)| ≥ T − α. Since T > α, we have
|Q3φ−1(v′)| > 0, i.e. at least one process sent
v′ at line 18. Therefore, by line 17 at least one

process has (v′, φ0 + 1) in history , a contra-
diction with the assumption that φ1 is the first
phase where a pair (v′,−) is added to history
at some process.

So we have also |
⋃

ts≥φ0
Q3φ1−2((v, ts,−))| ≥ T −

α. Since in each round, every process sends the
same value to all, and φ0 > 0, the sets X(v) =⋃
ts≥φ0

Q3φ1−2((v, ts,−)) and Q3φ1−2((−, 0,−)) are
disjoint. Hence,

|X(v) ∪Q3φ1−2((−, 0,−))| =
|X(v)|+ |Q3φ1−2((−, 0,−))| ≥ 2T − 2α.

Together with T > n
2 + α, we derive that |

⋃
ts≥φ0

Q3φ1−2((v, ts,−)) ∪ Q3φ1−2((−, 0,−))| > n, a contra-
diction.

In case (i), the condition at line 32, has to be true, i.e.,
v′ need to be part of confirmedV set at line 31. Value v′

can be part of the set confirmedV only if (v′, ts′) is part
of the set possibleV at line 30. We show that if (v′, ts′)
is part of the set possibleV at line 30, v′ cannot be part
of the set confirmedV at line 31, which establishes the
contradiction.

If the pair (v′, ts′) is added to the set possibleV at
line 30, then HO(q, 3φ1 − 2) ≥ T . Since 2T − α >
n+α, |HO(q, 3φ1−2)∩

⋃
ts≥φ0

Q3φ1−2((v, ts,−))| > α.
Therefore, since Pαdyn holds, any set of messages of size
T contains at least one message m with m.vote = v and
m.ts ≥ φ0 (**). So we have |{m′ ∈ ~µrq : (m′.ts <
ts ′)}| ≥ T and, because of (**), ts ′ > φ0.

The value v′ is added to the set confirmedV at line 31
only if there are at least α+ 1 messages m in ~µ3φ−2

q such
that: (v, φ) ∈ m.history and φ ≥ ts ′ and v = v′. Since
ts′ > φ0, by (*), q receives at most α such messages, a
contradiction.

proposition 4 (Agreement). If T > n
2 + α, then no two

processes can decide differently in any run of the HO ma-
chine (BLV,Pαdyn).

Proof. Let a phase φ0 > 0 be the first phase at which
some process p makes a decision, and let v be the p’s de-
cision value. Assume that process q decides v′ at phase
φ′. By definition of φ0, we have φ′ ≥ φ0.

We proceed by contradiction and assume that v 6= v′.
By Lemma 10, we derive that φ′ > φ0. Since q decides
at round 3φ′, by line 28 we have |R3φ′

q (v′)| ≥ T . By
Lemma 5, we have |Q3φ′(v′)| ≥ T − α. Since T > α,
there is at least one process p′ that sends v′ in round 3φ′.
By line 25 and line 22 we have that process p′ sends it’s
current vote in round 3φ′ only if vote is updated in round
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3φ′ − 1. Therefore, |R3φ′−1
p′ (v′)| ≥ T , i.e. by Lemma 5,

we have |Q3φ′−1(v′)| ≥ T − α. Since T > α, at least
one process q′ sends v′ in round 3φ′ − 1. By line 17, if q′

sends v′ in round 3φ′ − 1, then ∃(v′, φ′) ∈ history3φ′−2
q′ ,

a contradiction with Lemma 11.

Lemma 12. If T > 2α, then in any run of the HO ma-
chine (BLV,Pαdyn) where all the initial values are equal
to some value v, for all processes q, historyq contains
only pairs (v,−).

Proof. Since all processes have v as their initial value,
history at all processes is initialized to (v, 0). Assume by
contradiction that φ0 is the first phase where a pair (v′,−)
is added to historyp at some process p (*). This implies
that FBLVT,β returns v′ at line 9. Therefore, either (i)
line 33 or (ii) line 35 of Algorithm 5 was executed by p in
phase φ0.

For (i), the condition at line 32 has to be true, i.e., v′

needs to be in confirmedV at line 31. This means that p
received more than α messages m = (−,−, historym)
with (v′, ts) ∈ historym in round 3φ0 − 2. By Lemma 5
and Pαdyn , at least one process sends a message m =
〈−,−, historym〉 with (v′, ts) ∈ historym in round
3φ0 − 2, a contradiction with (*).

For (ii), the condition of line 34 has to be true. If this
condition is true, this implies that |HO(p, 3φ0 − 2)| ≥ T .
Since T > 2α, Pαdyn holds, and all processes have the
same initial value v, v is returned at line 35 and (v, φ0) is
added to the historyp. A contradiction.

proposition 5 (Integrity). If T > 2α, then in any run of
the HO machine (BLV,Pαdyn) where all the initial values
are equal to some value v, the only possible decision value
is v.

Proof. By contradiction, assume that phase φ0 > 0 is the
first phase in which some process p decides v′ 6= v.

Since p decides at round 3φ0, by line 28 we have
|R3φ0
p (v′)| ≥ T . By Lemma 5 and Pαdyn , we have

|Q3φ0(v′)| ≥ T − α. Since T > α, there is at least
one process q that sends v′ in round 3φ0. By line 25 and
line 22, we have that process q sends it’s current vote in
round 3φ0 only if vote is updated in round 3φ0−1. There-
fore, |R3φ0−1

q (v′)| ≥ T , i.e., by Lemma 5 and Pαdyn , we
have |Q3φ0−1(v′)| ≥ T − α. Since T > α, at least one
process q′ sends v′ in round 3φ0 − 1. By line 17, if q′

sends v′ in round 3φ0−1, then ∃(v′, φ0) ∈ history3φ0−2
q′ ,

a contradiction with Lemma 12.

proposition 6 (Termination). If n > 2(f + α), T >
n
2 + α and f ≤ α, then any run of of the HO machine

(BLV,Pαdyn ∧ P
f
BLV ) satisfies the Termination clause of

consensus.

Proof. By PfBLV , there exists a phase φ0 such that

CONS(3φ0−2)∧∀r ∈ {3φ0−2, . . . , 3φ0} : SK(r) ≥ n−f.

Therefore, in round 3φ0−2, for any two processes p and q,
we have ~µrp = ~µrq , and |SHO(p, 3φ0− 2)∩ SHO(q, 3φ0−
2)| ≥ n− f .

Part A. We now prove that select3φ0−2
p will be the

same at all processes p, i.e., that FBLVT,β returns the
same value at all processes, and all processes add the same
pair to history in round 3φ0 − 2. There are two cases to
consider: (i) some process p ∈ SK(φ0) locked a value in
some phase smaller than φ0, or (ii) there is no such pro-
cess in SK(φ0).

Case (i): Let φ < φ0 be the largest phase in which some
process p locked some value v (line 21). By Lemma 9
and since Q > n

2 + α, all processes that lock a value in
phase φ, lock the same value v. Since n > 2(f + α) and
T > n

2 + α, n − f ≥ T ; therefore in case (i) at least
a pair (v,−) is added to the set possibleV at line 30 of
Algorithm 5 (*).

We consider now line 31 of Algorithm 5. If p locked
value v in phase φ, then |R3φ−1

p (v)| ≥ T , i.e., by
Lemma 5, we have |Q3φ−1(v)| ≥ T − α when Pαdyn
holds. Because of line 17 of Algorithm 4, at least T − α
processes have (v, φ) in history . By assumption, n >
2(f + α) and T > n

2 + α, therefore n− f + T > n+ α.
Therefore, because of |SK(φ0)| ≥ n− f , any set of mes-
sages received in round 3φ0−2 contains more than αmes-
sages m with (v, φ) ∈ m.history . Since n > 2(f + α)
and T > n

2 + α, n − f ≥ T (***), and therefore v is
added to the set confirmedV at line 31 of Algorithm 5
(**).

From (*) and (**), it follows that the condition of
line 32 of Algorithm 5 is true at all processes in phase
φ0. Moreover, since function FBLVT,β is deterministic
and CONS(3φ0 − 2) holds, for any two processes p and
q, we have selectp = selectq at line 9. Therefore p and q
add the same pair to history at line 11.

Case (ii): By hypothesis, for all processes p ∈ SK(φ0),
we have tsp = 0. By (***) n − f ≥ T and therefore the
condition at line 34 of Algorithm 5 is true at each process.
Moreover, by CONS(3φ0 − 2) we have for any two pro-
cesses p and q ~µrp = ~µrq . Therefore, the value returned at
line 35 of Algorithm 5 is the same at all processes, and
they will add the same pair to history at line 11 of Algo-
rithm 4.

Part B. From Part A, there exists a value v such that at
all processes p we have (v, φ0) ∈ historyp at the begin-
ning of round 3φ0 − 1. Therefore all processes send v to
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all at line 18. By |SK(3φ0 − 1)| ≥ n− f we have that all
processes receive at least n− f messages equal to v, and
since by (***) n−f ≥ T , they all set votep to v (line 21)
and send v to all at line 26. By |SK(3φ0)| ≥ n − f and
the same reasoning we can show that all processes receive
n−f messages equal to v in round 3φ0, and since by (***)
n− f ≥ T , decide v at line 29 in phase φ0.

Combining Propositions 4, 5, and 6, we get the follow-
ing theorem:

Theorem 3. If n > 2(α + f) and T > n
2 + α, then the

HO machine 〈BLV,PfBLV ∧ Pαdyn〉 solves consensus.

Similar reasoning can be used to show:

Theorem 4. If α = f , n > 3f and T > n+f
2 , then the

HO machine 〈BLV,PfBLV ∧ Pαstat〉 solves consensus.

6.3 The BLK algorithm
The third algorithm we present is calledBLK. It is based
on locking/unlocking mechanism that was first introduced
in the seminal consensus algorithm for benign and arbi-
trary faults given by Dwork, Lynch and Stockmayer [12].

It requires n > 2(α + f) and T > n
2 + α in the pres-

ence of dynamic value faults (Pαdyn ), or n > 3f , α = f

and T > n+f
2 if value faults are only static (Pαstat). The

code of BLK is given as Algorithm 6. It consists of a
sequence of phases, where each phase φ has three rounds
3φ − 2, 3φ − 1, and 3φ. In addition to the variable vote ,
and similarly to BLV , the algorithm maintains a times-
tamp ts and a history variable. In round 3φ − 2, every
process p sends 〈votep, initp〉 to all, where initp is p’s
initial value. It is maybe surprising to see that also the
initial value initp is sent in the first round. The initial
value is used only when votep = NONE, as can be seen
in the selection function FBLKT (Algorithm 7). A value
selected in round 3φ − 2 (lines 9 and 15) is sent to all in
round 3φ − 1. If in round 3φ − 1, a process p receives
at least T messages equal to some value v, it sets votep
to v and tsp to φ (lines 18 and 19). Then we say that
process p locked value v in phase φ. If votep = NONE
then process p has not locked any value. In round 3φ,
a process p sends 〈votep, tsp, historyp〉 to all processes.
If some value v is locked in phase φ by sufficiently high
quorum of processes, then a decision is possible in phase
φ (line 24).

A value can be unlocked by process p in round 3φ, if p
learns that some process q locked different value in higher
phase (tsq > tsp ∧ voteq 6= votep). In addition to
vote and ts , BLK maintains the history variable, which
stores pairs (v, φ). Having (v, φ) ∈ historyp means that

Algorithm 6 BLK algorithm

1: Initialization:
2: votep ← initp ∈ V
3: tsp ← 0
4: historyp ← ∅

5: Round r = 3φ− 2:
6: Srp :
7: send 〈votep, initp〉 to all
8: T rp :
9: selectp ← FBLKT (~µrp)
10: if selectp 6= NULL then
11: historyp ← historyp ∪ {(selectp, φ)}

12: Round r = 3φ− 1:
13: Srp :
14: if ∃(v, φ) ∈ historyp then
15: send 〈v〉 to all
16: T rp :
17: if #(v) ≥ T then
18: votep ← v
19: tsp ← φ

20: Round r = 3φ:
21: Srp :
22: send 〈votep, tsp, historyp〉 to all
23: T rp :
24: if ∃v̄ 6= ⊥ : #(〈v̄, φ,−〉) ≥ T then
25: DECIDE v̄
26: if((∃〈v′, ts, −〉 ∈ ~µrp s.t. votep 6= v′ ∧ ((ts >

tsp) ∨ tsp = 0) and
(|{m : m ∈ ~µrp ∧ (v′, ts) ∈ m.history}| > α)) or
(received at least T 〈 v, 0, −〉 s.t.
6 ∃v : |〈v, 0,−〉| > α) then

27: votep ← NONE

28: tsp ← 0

p selected v in round 3φ− 2 and added (v, φ) to historyp
in phase φ (line 11). It is used to filter out corrupted pairs
(vote, ts) at round 3φ.

It can be shown, using similar technique as for BLV ,
that BLK is safe (it fulfills integrity and agreement) for
appropriate choice of T when Pαdyn holds (or Pαstat, since
Pαstat implies Pαdyn ). Termination is achieved in both
cases if in addition the following predicate holds:

PfBLK ::∀φ > 0,∃φ0 > φ : CONS(3φ0 − 2)

∧ ∀r ∈ {3φ0 − 3, . . . , 3φ0} : |SK(r)| ≥ n− f

Obviously, P1,3
gen implies PfBLK . Eventual consistency

ensures that at the end of round 3φ0 − 2, all processes
set selectp to the same value. PfBLK also ensures a large
enough safe kernel in the last round of the previous phase
φ0 − 1. The role of this round is to ensure that all pro-
cesses either lock the same value (those with the highest
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Algorithm 7 Function FBLKT ( ~M)

1: validV ← {m.vote s.t. m ∈ ~M and |m′ ∈ ~M s.t. m′.vote = m.vote or m′.vote = NONE| ≥ T}
2: if |validV | > 0 then
3: if NONE ∈ validV then
4: return minimal v, such that ∃(−, v) ∈ ~M and 6 ∃(−, v′) ∈ ~M s.t. #((−, v′)) > #((−, v))
5: else
6: return min(validV )
7: else
8: return NULL

timestamp), or they do not lock any value. The condition
that there exists a large enough safe kernel in phase φ0 fi-
nally forces every process to make a decision at the end of
round 3φ0.

The proof of correctness follows a similar pattern as for
BLV and is not repeated here.

BLK versus BLV. There are strong similarities between
BLV and BLK: three rounds per phase, only round 3φ−2
must eventually be a consistent round, the history vari-
able. However, the mechanisms for agreement differ:
BLV uses a last voting mechanism, while BLK employs
a locking mechanism. The two mechanisms are used in
round 3φ− 2, when assigning a value to select (line 9):

• The last voting mechanism uses vote and ts (mech-
anism of PBFT and Paxos).

• The locking mechanism uses only vote (mechanism
introduced in [12]).

This difference has consequences in the information
sent in round 3φ − 2: in BLV, 〈votep, tsp, historyp〉 is
sent; in BLK, only 〈votep, initp〉 is sent. The initial value
is only needed when several correct processes do not have
a locked value (vote = NONE) as can be seen in Algo-
rithm 7 (see line 3 and 4).

To illustrate the difference between the two mecha-
nisms, consider the case with dynamic value faults where
n = 5, α = f = 1, T = 4 and some process p1 has de-
cided v1 at the end of phase φ1. A possible configuration
of processes p1 to p5 for the two algorithms at the end of
phase φ1 is the following:

(v1, φ1), (v1, φ1), (v1, φ1) (v2, φ2), (v2, φ2)

where each tuple represents the states (vote, ts) and φ2 <
φ1. 12 The history at T−α = 3 processes contains the pair
(v1, φ1). In round 3(φ1 +1)−2 of the BLV algorithm, let

12Process p1 decided v1 by receiving correctly messages from pro-
cesses p1,p2 and p3 and the corrupted message 〈v1, φ1,−〉 from p4.

a process p2 receive, from processes p1 to p5 (the message
received from process p5 is corrupted):

(v1, φ1,−), (v1, φ1,−), (v1, φ1,−), (v2, φ2,−), (v2, φ1,−).

With the last voting mechanism, we have v1 ∈
confirmedV (there are 4 messages with vote = v1 or
ts < φ1 and (v1, φ1) is in history of the message sent
by three processes), and selectp is set to v1. Assume that
similarly, in round 3(φ1 + 1) − 2 of the BLKalgorithm,
process p2 receives, from processes p1 to p5 (all messages
are correctly received):

(v1,−), (v1,−), (v1,−), (v2,−), (v2,−).

With the locking mechanism, validV in Algorithm 7 is
empty (there are no four messages with vote = v1), and
NULL is returned. With the locking mechanism, processes
p1, p2 and p3 have “locked” v1, while processes p4 and p5

has “locked” v2. It is clear that as long as processes p4

and p5 have locked v2, no additional process can decide.
Therefore, an unlocking mechanism is needed. This is
the role of lines 26 and 28 of Algorithm 6. If process p4

receives a message (v, ts,−) from a process with (v, ts)
in history of α + 1 messages received, and votep4 6= v,
tsp4 < ts , then process p4 unlocks votep4 by setting the
variable to NONE (line 28). The second part of condition
at line 26 is for the case where not all processes have the
same initial value (termination would be violated without
it). Now in round 3(φ1 + 1) − 2, let a process receive,
from processes p1 to p5:

(v1,−), (v1,−), (v1,−), (NONE,−), (v2,−).

This leads to have v1 ∈ validV , and selectp is set to v1.
Observe that the unlocking mechanism requires

historyp (line 22). Therefore, we can also summarize the
two mechanisms by saying that the last voting mechanism
requires historyp in phase 3φ−2, while the locking mech-
anism requires historyp in phase 3φ (for unlocking).
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7 Deriving the overall resilience of
BLV

In this section we look at the overall resilience of the
BLV consensus algorithm together with the PfBLV pred-
icate simulation algorithm. A similar derivation can be
done for the BOTR and BLK algorithms.

When solving consensus in the presence of (only) static
value faults (P�SK ∧ P

f
stat), both algorithms (BLV and

the simulation algorithm) require n > 3f . This follows
from Theorem 4, Corollary 4 and the fact that Pf,0,3�cons⊕SK
implies PfBLV . However, these algorithms have different
requirements on n in the presence of dynamic value faults
(P�SK ∧ P

f
dyn ).

From Corollary 5 and the fact that Pf,0,3�cons⊕SK implies
PfBLV we get:

Corollary 7. If n > (β+1)(α+f)
β−α+1 , n > α+ f , α ≥ f , and

β ≥ α, then Algorithm 2 simulates PfBLV ∧ P
β
dyn from

P6(f+1)+5
�SK ∧ Pαdyn .

From Corollary 7 for any β ≥ α, we can simulate
PfBLV ∧ P

β
dyn from Pf,6(f+1)+5

�SK ∧ Pαdyn if

n >
(β + 1)(α+ f)

β − α+ 1
∧ n > α+ f

On the other hand, from Theorem 3 we know that we
can solve consensus with BLV under PfBLV ∧ P

β
dyn if

n > 2(β + f).

Combining these conditions and setting β = kα, where
k ∈ R, k ≥ 1, we can solve consensus with Algorithm 4
and Algorithm 2 under Pf,6(f+1)+5

�SK ∧Pαdyn if the follow-
ing two conditions hold:

n >
(kα+ 1)(α+ f)

kα− α+ 1
(2)

n > 2(k − 1)α+ 2(α+ f). (3)

We first consider α > 1, then α = 1.

Case α > 1: We can obtain different resilience bounds
depending on the choice of k.

Choosing k = 1 leads to the quadratic dependency
from Corollary 2, and is thus not what we want to achieve
here.

For k ≥ 2, condition (3) implies condition (2) for any
α > 1, because kα+1

kα−α+1 ≤ 2. Thus, when choosing k ≥
2, the smallest n is obtained with k = 2:

n > 4α+ 2f.

In case 1 < k < 2, the optimal choice of k depends
on α and f . As special case we get for k = 1.5 from
condition (2), n > 3α+2

α+2 (α+ f), i.e.,

n > 3(α+ f)

while from condition (3) we get

n > 3α+ 2f

Since both conditions should hold, it follows that n >
3(α+ f).

Case α = 1: For the special case α = 1 and f = 1,
conditions (3) and (2) become n > 2(k− 1) + 4 and n >
2(k+1)
k . We obtain the smallest value for n by choosing

k = 1, which leads to n > 4.

Discussion: The results show that k = 1 (i.e. β = α)
leads to the smallest value of n only when α = 1. In
cases where α > 1, a better choice is e.g. k = 1.5 (i.e.
β = 1.5α). This is a non intuitive result.

8 Direct implementation of eventual
consistency using authentication

In Section 5 we gave two simulations of P�cons from
P�SK . In this section we show that in some systems we
can get P�cons with sufficiently high coverage without
such a simulation, but simply using authentication. Au-
thentication has been introduced very early in distributed
computing research to solve consensus. Nevertheless,
people were always struggling to give a rigorous formal
definition of authentication.

The first observation is that in a transmission fault
model, the introduction of authentication makes the model
in fact benign: if every process signs its messages and
upon reception only correctly signed messages are pro-
cessed, no corruptions can occur. This implies that with
authentication (whatever it means) transmission faults are
not able to capture Byzantine process faults. However,
even if we consider process faults, it is hard to formalize
authentication in a precise manner. A possible approach
to this open question is, instead of trying define authenti-
cation, state what can be achieved with authentication. As
we will show, (eventual) consistency is what we naturally
get from authentication assuming (eventual) synchrony.
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8.1 Ensuring PIC from synchrony and cor-
rect leader using authentication

Consistency, namely PfIC (Sect. 4.4), can be achieved
with high probability using cryptographic signatures in a
synchronous system with f Byzantine processes (note that
we are then no more in the scope of the transmission fault
model; for a discussion for the relation between these two
models see Section 9). To that end, in every round that
should be consistent, every process signs its messages be-
fore sending it to the (correct) leader. The leader collects
all the messages it receives and forwards them to all pro-
cesses. The processes deliver all correctly signed mes-
sages that are received from the leader as the messages of
this round. Technically this procedure requires two “sub-
rounds” that can be obtained in a similar way as the nor-
mal round structure. However, the algorithm is not a sim-
ulation as in the previous section, since the correctness is
conditional.

Assuming the (i) signatures cannot be forged, (ii) the
system is synchronous and (iii) the leader is correct, it is
easy to see that (a) all processes have the same reception
vector, and (b) all processes receive at least n − f mes-
sages. Therefore, PfIC holds.

8.2 Ensuring P�cons from eventual syn-
chrony and eventual correct leader us-
ing authentication

The above leader-based procedure can be used, with a
small modification, to ensure P�cons from eventual syn-
chrony. It is sufficient to replace the fixed correct leader
with a rotating leader. This ensures an eventual correct
leader when synchrony holds. The result follows directly.

9 Communication predicates and
corresponding systems

In the HO model, there are no faulty processes and no
state corruption. Nevertheless, for predicates that charac-
terize permanent faults, the model can be used to reason
about classical Byzantine faults. This implies that the al-
gorithms in this paper can be used also to solve consensus
in the classical Byzantine fault model. We develop this
observation first for a synchronous system (for simplic-
ity), and then extend it to our model.13

Let Sf denote a synchronous system with reliable links
and at most f Byzantine processes, and consider on the

13This observation was made already in [19] and [5], but without giv-
ing algorithms supporting the observation.

other hand an HO machine with |SK| ≥ n − f . For cor-
rect processes, a run in Sf is indistinguishable from a run
of the HO machine. Therefore, an algorithm that solves
consensus with |SK| ≥ n − f allows in Sf correct pro-
cesses to solve consensus. Note that in Sf faulty processes
do not follow the protocol. It is then natural that they do
not follow the specification of consensus.

The same indistinguishability argument can be applied
to (i) the weaker partial synchronous system [12] with at
most f Byzantine processes and (ii) the HO model with
Pfstat∧P

f,∞
�SK . For correct processes in the model (i), a run

is indistinguishable from a run in model (ii), and so an HO
algorithm that solves consensus allows correct processes
in the fault-prone system to solve consensus.

The predicate Pαdyn ∧ P
f,k
�SK , α ≥ f , can correspond to

a partially synchronous system with at most f Byzantine
processes, where in addition, before stabilization time, in
every round processes can receive α − f corrupted mes-
sages from correct processes. This spectrum of interpre-
tations, which includes permanent faults (see Sect. 4.3)
contrary to [5], shows the benefit of considering the con-
sensus problem in a model with (only) transmission faults.

10 Related work
Most research on consensus algorithms under arbitrary
faults is considering component fault models, where faults
are attached to a component that is either a process or
a link. Furthermore, faults are mainly permanent: if a
process or link commits a fault, the process/link is con-
sidered to be faulty during whole execution. It follows
that not all components can be faulty, which is referred
to as static faults. This explains that most research on
consensus under arbitrary faults is about tolerating per-
manent and static process and/or link faults. Moreover,
most of the literature considers only process faults, e.g.,
the classical Byzantine fault model where at most f pro-
cesses can behave arbitrarily. We can cite the early work
of Lamport, Shostak and Pease [23, 18], which consid-
ers a synchronous system and gives algorithms for In-
teractive Consistency and Byzantine agreement together
with matching lower bounds. Consensus in the partially
synchronous model with Byzantine faults is considered
in [12, 2, 21, 26]. Byzantine variants of Paxos [15] in-
clude [10, 19, 1, 20, 17].

A few authors solve consensus in the synchronous sys-
tem model where, in addition to Byzantine processes, a
small number of links connecting correct processes may
be arbitrary faulty during the entire execution of a consen-
sus algorithm [25, 29, 33]. However, only a very limited
number of links can be faulty.
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An alternative approach to component fault models is
the transmission fault model that considers faults without
trying to identify their cause. Pioneer work was done by
Santoro and Widmayer in [27], with the introduction of
transmission faults in synchronous systems. The trans-
mission fault model is well-adapted to dynamic and tran-
sient faults. Santoro and Widmayer show in [27] that con-
sensus cannot be solved if in every round as little as bn/2c
messages are corrupted. The problem comes from the
dynamic nature of faults, which can affect different pro-
cesses in every round. The particularly problematic case
is when these faults occur in blocks, i.e., in every round
the outgoing links of one process are affected. Schmid et
al. [30] give a lower bounds on link failures. They show
the necessity of n > 4f`, where f` is the maximum num-
ber of transmission faults that occur per sender and per
receiver. In our model this can be expressed as

∀p ∈ Π,∀r > 0 : |SHO(p, r)| ≥ n− f` ∧
|STT (p, r)| ≥ n− f`,

where STT (p, r) represents safe talked-to sets [11], de-
fined as STT (p, r) =

{
q ∈ Π : ~µrq[p] = Srp(sp)

}
.

One approach to circumvent the impossibility result of
Santoro and Widmayer is to restrict, per round, the num-
ber of transmission faults that correct processes may ex-
perience (both for outgoing and incoming messages) in
order to avoid block of faults. This approach is considered
in [32, 4, 6] to solve consensus in the synchronous system
model. The model considered is the hybrid fault model
for synchronous systems, which extends the process fault
model with communication failures. In this model, every
process is allowed to commit up to fsal arbitrary send link
failures and experience up to fral arbitrary receive link
failures without being considered as arbitrary faulty. This
synchronous system model corresponds to a strong com-
munication predicate where a large number of messages
must be transmitted correctly in every round. Further-
more, tolerating additional fs send and fr receive omis-
sions (i.e., message loss) requires to increase the number
of processes by small multiples of fs and fr.

An alternative approach to circumvent the impossibility
results of [27, 30] is to distinguish between the safety and
liveness conditions, as done by Biely et al. [5]. There,
consensus under transmission faults (both benign and
value faults) is solved the first time in a non-synchronous
setting. For safety, only the number of corrupted mes-
sages is restricted, that is, in each round r of the round
based model, every process p receives at most α corrupted
messages. However, for liveness [5] assumes that there
is a sufficiently large set Π0 so that eventually there is
a round r where SHO(p, r) = HO(p, r) = Π0, for all

processes p in a sufficiently large set Π1. This means
that processes from a sufficiently large set Π1 cannot re-
ceive even a single corrupted message in round r. There-
fore, although the algorithms presented in [5] solve con-
sensus under dynamic value faults for the first time in
non-synchronous settings, they cannot tolerate permanent
value faults located at a process, i.e., these algorithms
do not solve consensus in systems with arbitrary process
faults.

Our algorithms can also be used in the model con-
sidered in [5]. Note that for f = 0, the predicate
PfBLV satisfies the above liveness condition (SHO(p, r) =
HO(p, r) = Π for all processes p ∈ Π). Therefore, our
algorithm BLV solves consensus in the model of [5] if
n > 2α (see Theorem 3, Section 6.2.1), in contrast to al-
gorithm AT,E in [5], which requires n > 4α. Algorithm
UT,E,α in [5] requires n > 2α but, contrary to BLV ,
requires for safety a permanent condition on liveness of
communication: in every round every process receives
sufficient number of correct messages. The algorithms
presented in this paper are still correct even if processes
does not receive any correct message in some rounds.

To summarize, the consensus algorithms presented in
this paper avoid the drawbacks of previous approaches:

• By considering the transmission fault model, the al-
gorithms can tolerate dynamic and transient faults in
addition to only permanent and static faults of the
component failure model. More precisely, the algo-
rithms can tolerate arbitrary process faults and arbi-
trary link faults, where all links can be corrupted at
some point during the system lifetime (contrary to
only a few links in the algorithms designed for the
component fault models).

• Contrary to most of the related work, our consen-
sus algorithms can also be used in the partially syn-
chronous system model and not just in the syn-
chronous system model, weakening therefore the
conditions on liveness of communication.

• Contrary to the algorithms in [5], our algorithms can
also be used in systems with arbitrary faulty pro-
cesses, which can potentially send corrupted mes-
sages in every round.

Finally, despite the similarity in title, [3] addresses a
different topic. The paper investigates the possibility of
designing protocols that are both self-stabilizing and fault-
tolerant in an asynchronous system.
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11 Conclusion
The transmission fault model allows us to reason about
permanent and transient value faults in a uniform way,
which makes the model very attractive. However, all ex-
isting solutions to consensus in this model are either in
the synchronous system, or require strong conditions for
termination that exclude the case where all messages of a
process can be corrupted. The paper has shown that this
limitation can be overcome thanks to the eventual consis-
tency predicate that states the existence of a round where
all processes receive the same set of messages. Two simu-
lations of eventual consistency have been given, both from
a predicate that corresponds to a partially synchronous
system parameterized with α (in every round each process
can receive up to α corrupted messages) and f (at most
f processes are corrupted). The first simulation, which
refers only to the parameter f , is for static faults. The sec-
ond simulation, which refers to the parameters f and α,
includes static and dynamic faults, and is compatible with
permanent and transient faults. The paper has pointed out
two options for this second simulation: preserving or not
the number of corrupted messages in each round. The first
option requires n > (α+1)(α+f). The second option re-
quires n > η(α+ f). Combining the BLV consensus al-
gorithm with this second simulation leads to n > 3(α+f)
for α > 1 and n > 4 for α = 1.
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