Student Mini-Kernel Project Based on an FPGA Board

André Schiper

Zarko Milosevic Omid Shahmirzadi

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland
first.last@epfl.ch

ABSTRACT

The paper describes a mini-kernel project in the context of
a Concurrent Programming course. The goal of the project
is to implement Java monitors and interrupt handling. The
platform for the project is an FPGA board developed ini-
tially at EPFL for Computer Architecture courses.

Keywords
Concurrent Programming, Kernel, Semaphores, Java Moni-
tors, Interrupt handling.

1. INTRODUCTION

Concurrent Programming can be taught in a CS bachelor
curriculum as part of an OS course, or as a stand-alone
course; EPFL has adopted the latter model. Such a Con-
current Programming course, apart from the theoretical part
where students learn the basic synchronization mechanisms
(locks, semaphores, monitors, etc.), often includes small prac-
tical projects where students need to apply the concepts they
have learned. Our experience with such projects is that there
are always students that produce code of poor quality, e.g.,
code with busy waiting or code that can deadlock. This
clearly shows the problems that some students have in un-
derstanding how synchronization primitives should be used.
Those students probably look at synchronization primitives
in the same way they look at functions provided by some
standard libraries in the context of sequential programming,
i.e., without an effort trying to understand the specificity of
concurrent programming. We believe that exposing con-
crete implementation of synchronization primitives might
help those students to overcome their conceptual difficul-
ties, while helping other students to have a more deep un-
derstanding of synchronization.

We describe here such a mini-kernel project for the under-
graduate Concurrent Programming course at EPFL.! The
background of the students is a first year programming course
in Java. Therefore, in addition to the classical synchroniza-
tion mechanisms, the course teaches the mechanisms pro-
vided by Java (Java monitors). This leads the mini-kernel
project to be naturally “Java oriented”. It allows students
to “touch” what Java hides, namely thread scheduling and
implementation of synchronization primitives. The project
also allows students to be exposed to interrupt handling, a
topic that cannot be covered in Java.

'The mini-kernel, as part of a standalone Concurrent Pro-
gramming course, provides only features related to concur-
rent programming (e.g., no virtual memory, file system).

54

A (mini-)kernel project requires an adequate platform. Our
hardware platform consists of an FPGA-based board [1] il-
lustrated in Figure 1. The board is a pedagogical initiative
of the School of Computer and Communication Sciences of
EPFL, developed initially for the Computer Architecture
courses. It consists of an Altera FPGA and several 10 de-
vices: 2 rows of 8 switches (Fig.1, top right), 4 buttons
(aligned vertically, see Fig.1, extreme right), and a matrix
of 8x12 LEDs (Fig.1, to the left of the buttons). The in-
put devices (switches and buttons) can be read in busy wait
mode or in interrupt mode. The board also includes a clock
that can be configured to generate interrupts at a given fre-
quency. The kernel project uses the C language. Compila-
tion is done on a PC, and the code is downloaded on the
board using a USB port. Note that some of the students
have no C experience before starting this project. We pro-
vide these students material to go from Java to C.

EP2C20F484C8N
K CAASTO607A

15425328008-611
ISST 5600 oges

Figure 1: The FPGA4U board (10cm x 6cm) [1]

Related work: In [6] the authors describe a programming
project where the students have to write a user-level thread
library, similar to the POSIX pthread library, for a Unix or
Linux system. In contrast, our project is stand-alone and
Java oriented. Moreover, the use of the primitives described
in Section 2 provide to the students high level abstractions
that simplify the writing of the (mini-)kernel, allowing a
higher level view on thread implementation. Thread imple-
mentation is also reported in [3], but the project does not
include preemptive scheduling and implementation of syn-
chronization primitives. Other projects, in the context of an
Operating Systems course, cover components beyond thread
library, e.g., the Embedded XINU project [4], with the im-
plementation of a tiny file system. Such projects are beyond

the scope of a stand-alone Concurrent Programming course.

Paper structure: The paper is structured as follows. Sec-
tions 2 and 3 provide the conceptual background that helps
the students before starting the kernel project. Section 4
describes the kernel project. A discussion section concludes
the paper. All material provided to the students is available
online, see [2].

2. AVAILABLE PRIMITIVES

We provide the students with three primitives for writing a
kernel. These primitives are almost identical to the primi-
tives provided by the Modula-2 language [8].2 We describe
first the primitive for process creation and the primitive to
allocate the CPU to a process. The primitive related to
interrupt handling is described later.

2.1 Creating and executing a process
A process is created using the newProcess function:

Process newProcess(void (*f), void *stack, int
stackSize)

The first parameter is a function that defines the code of the
created process. The second parameter gives the address of
the memory space that has been allocated for the process
stack. The last parameter specifies the stack size.®> The
function returns a result of type Process, which is a process
reference.

If we ignore interrupts (discussed later) processes are actu-
ally coroutines. If process p is running, it keeps the CPU un-
til it allocates the CPU to another process, using the trans-

fer function:
void transfer(Process p)

When process pl executes transfer(p2), then pl releases
the CPU and p2 gets the CPU. When later some process exe-
cutes transfer(pl), then pl resumes execution at the state-
ment that immediately follows transfer(p2). The mecha-
nism can be illustrated on the following example:

void code_p1() {
while (true) {
S1;
transfer(p2) ;
}
}

void code_p2() {
while (true) {
S2;
transfer(pl);
}

void main() {
const int size_stackl
const int size_stack2 =...;
void *stackl, *stack2;
Process pl, p2;

stackl = malloc(size_stackl);
stack2 = malloc(size_stack2);

2Two out of our three primitives have one parameter less
than the corresponding Modula-2 primitives.

3The stack grows towards small addresses, which explains
the need for the stack size.

pl = newProcess(code_pl, stackl, size_stackl);
p2 = newProcess(code_p2, stack2, size_stack2);
transfer(pl);

}

In this example, main creates two processes pl and p2, and
then allocates the CPU to p1. Process p1 executes statement
S1, and then allocates the CPU to p2. Process p2 executes
statement S2, and then allocates the CPU to p1. Process p1
executes statements S1, and then allocates again the CPU
to p2, etc. In other words each process, one after the other,
executes one iteration of its while loop. Note that main
never gets the CPU back.

2.2 Interrupt handling

The transfer primitive provides a purely coroutine like ex-
ecution schema unable to handle interrupts. A third primi-
tive, called ioTransfer, is needed:

void ioTransfer(Process p, int interrupt)

The semantics of ioTransfer has two distinct parts: (a)
upon execution of ioTransfer, and (b) when the interrupt
specified by the second parameter occurs.” Consider Fig-
ure 2, and ioTransfer(p2,i) executed by process p1. With
respect to (a), ioTransfer(p2,i) 1is equivalent to
transfer(p2). To explain (b), consider that at time t in-
terrupt i occurs, while some process p3 is running (possibly
p3=p2). Assume that p3 is interrupted between statements
S1 and S2. Then the interrupt is equivalent to transfer (p1)
executed between S1 and S2. The use of ioTransfer is il-
lustrated in Section 3.2.

p‘1 pl2 p3

| I

| I

|

|

|

|

|

(a) |

ioT 2.0
ioTransfer(p2, i) ®) 3‘1
transfer(p1) < interrupti

|
}
I |
translfer(...) }
|
I |
I |
I
I
i s2
I
I
I
I
I

Figure 2: Illustration of ioTransfer

Note that interrupts need to be disabled within a kernel.
For this, we provide the two functions maskInterrupts()
and allowInterrupts().

3. ILLUSTRATION: KERNEL PROVIDING
SEMAPHORES

The primitives newProcess, transfer and ioTransfer are
low level primitives, that are not supposed to be used by
an application. Their use should be limited to the kernel.
This is now illustrated in the context of a kernel providing
semaphores (see also [7] for an example in Modula-2, namely
the implementation of a mailbox).

“We simply refer to different interrupt sources by integers.
In the infrastructure provided to students, two interrupts
are available: 0 (clock interrupt) and 1 (button interrupt).

3.1 Kernel without interrupts

We start with a simplified kernel that does not provide in-
terrupt handling (interrupt handling will be added later).
We first define the kernel interface, and then discuss its im-
plementation.

3.1.1 Kernel interface
Our kernel provides the following interface:

void createProcess(void (*f), int stackSize) : This
function is very similar to newProcess, with small dif-
ferences. The two parameters of createProcess match
the first and the third parameter of newProcess; the
second parameter of newProcess, namely the stack ad-
dress, has disappeared. Indeed, it is the role of the
kernel to allocate space for the stack. The second dif-
ference is that createProcess does not return any re-
sult: the process reference, returned by newProcess, is
kept inside the kernel.

void start() : This function starts the execution of the

processes that have been created. The kernel will de-

cide which is the first process to run. Note that at

least one process must have been created before call-

ing start ().

int createSemaphore(int n) : Allocates and initializes the
data structure for a semaphore. The semaphore counter
is initialized to n. Semaphores are referenced by inte-
gers. The function returns the identity of the newly
created semaphore.

void P(int s) : Operation P (decrement) on semaphore s.
void V(int s) : Operation V (increment) on semaphore s.

void yield() : Since the kernel does not implement time-
slicing, this function allows a process to release the
CPU (and assign it to another process).

3.1.2 Kernel implementation

The main data structure of the kernel is a list of processes
ready to be executed. Consider the following functions avail-
able for handling a list: addLast(List 1, Process p)
(which adds process p to the tail of 1), addFirst(List 1,
Process p) (which adds process p to the head of 1),
removeHead (List 1) (which returns the process at the head
of 1 and removes it from the list), and head(List 1) (which
returns the process at the head of 1, or nil if the list is
empty). Moreover, let readyList represent the list of ready
processes. Then createProcess() simply becomes:

void createProcess(void (*f), int stackSize) {
Process p; void *stack;

stack = malloc(stackSize);
p = newProcess(f, stack, stackSize);
addLast (readyList, p);

}

If the kernel policy consists of allocating the CPU to the
process at the head of the ready list, then start () becomes:
void start() {

Process p;

p = head(readyList);

56

if (p nil) {

error message; //ready list empty

else {
transfer(p) ;

}

For semaphores, the simplest solution is to use a vector
sem, with one entry sem[s] for each semaphore s. More-
over, let sem[s] .n represent the counter of the semaphore,
and sem[s].wq the waiting queue of the semaphore. The
function createSemaphore () is almost trivial and not shown
here. The functions P() and V() are implemented as follows:

void P(int s) {
Process p;

sem[s].n = sem[s].n - 1;

if (sem[s].n < 0) {
p = removeHead(readyList);
addLast(sem[s].wq, p);
p = head(readyList);
transfer(p);

¥

}

void V(int s) {
Process p;

sem[s].n = sem[s].n + 1;
if (sem[s].n <= 0) {
p = removeHead(sem[s].wq);
addLast (readyList, p);
}
}

Note that with this implementation, a process executing
V(s) keeps the CPU. This is perfectly ok since all processes
have the same priority. Finally, here is the implementation
of yield(:

void yield() {
Process p;

p = removeHead(readyList);
addLast (readyList, p);

p = head(readyList);
transfer(p);

}

3.2 Handling interrupts
We extend now the kernel to include interrupt handling. We
first show the extended kernel interface, and then show how
to implement the new functions.

3.2.1 Extended interface

We add one single function to the kernel interface:

void waitInterrupt(int interrupt) : This function
blocks the calling process until the specified interrupt
occurs.

Note that the function looks like ioTransfer (Sect. 2.2),
however with one less parameter. The missing parame-
ter is the process to which to allocate the CPU. Indeed,
selecting this process is not the job of the process calling
waitInterrupt. With waitInterrupt interrupt handling is
straightforward.

3.2.2 Implementation of the extended interface
Using ioTransfer and the readyList (Sect. 3.1.2), the im-
plementation of waitInterrupt is almost straightforward:

void waitInterrupt(int interrupt) {
Process waiting, p;

maskInterrupts();

waiting = removeHead(readyList);
p = head(readyList);
ioTransfer(p, interrupt);
addFirst(readylList, waiting);
allowInterrupts();

Note that all other kernel functions should similarly start
with maskInterrupts() and end with allowInterrupts().

3.2.3 Idle process

With interrupts, an empty readyList is not necessarily an
error (if at least one process waits for an interrupt). The sim-
plest way to handle this case is to introduce a process called
idle in the kernel: the process simply executes an empty
while loop. Therefore, whenever the readyList is empty,
the kernel executes the idle process. This requires mod-
ifying the functions P() and waitInterrupt(). The idle
process can be created within the function start ().

3.2.4 Time slicing

We now show how to use ioTransfer inside the kernel to im-
plement time slicing. For time slicing, we introduce a “clock”
process inside of the kernel. Basically, the clock process, on
each clock interrupt, moves the process at the head of the
ready list to the rear, and allocates the CPU to the new pro-
cess at the head of the ready list. If the ready list is empty,
the CPU is allocated to the idle process. With idleProcess
to refer to the idle process, the code of the clock process is
as follows (executed with interrupts masked):

void clockCode() {
Process p;

initClock();

// initializes the device to generate interrupts
while (true) {

p = head(readyList);

if (p != nil) {

ioTransfer(p, 0);
// execute p (0 refers to clock interrupt)
}

else {
ioTransfer(idleProcess, 0);
}
p = removeHead(readyList);
// p is the process interrupted by the clock
addLast (readyList, p);
// p is moved to the rear of the ready list

The clock process can be created in the start function
(Sect. 3.1.1). The start function also allocates the CPU
to the clock process, which in turn allocates the CPU to the
process at the head of the readyList (see clockCode):

57

// clockProcess, idleProcess: global variables

void start() {
void *ClockStack, *idleStack;

clockStack = malloc(clockStackSize);

clockProcess =
newProcess(clockCode, clockStack,
clockStackSize);
idleStack = malloc(idleStackSize);
idleProcess =

newProcess(idleCode, idleStack, idleStackSize);

transfer(clockProcess);

4. DESCRIPTION OF THE STUDENT
PROJECT

Once the students are familiar with the material of Sec-
tions 2 and 3, we ask them to implement a kernel different
from the one above. The goal is to implement Java moni-
tors [5]. The project is decomposed into two parts, the first
not involving interrupts, the second including interrupt han-
dling. We provide to the students the functions newProcess,
transfer and ioTransfer introduced in Section 2. Some ad-
ditional functions are provided, e.g., to initialize the clock,
to allow interrupts, to mask interrupts.

4.1 Part 1: Java monitors without interrupt
handling

The first version of the kernel has to provide the following
interface (parameters to be defined by the students):

createProcess() : same as in Section 3.1.1.

start() : same as in Section 3.1.1.

createMonitor() : Allocates and initializes the data struc-
ture for a monitor. Returns the identity of the newly
created monitor.

enterMonitor() : Called at the beginning of a synchronized
method.

wait (), notify(), notifyAll() : Called to execute the cor-
responding Java methods.

exitMonitor () : Called at the end of a synchronized method.

yield() : same as in Section 3.1.1.

Using this first version of the kernel, we asked the student to
develop the following small producer/consumer application
involving three processes (two producers prod1, prod2, one
consumer cons) and a buffer object with (synchronized)
methods put(int i) and get(). Process prodl, in an in-
finite loop, waits until button 1 is pressed (busy waiting)
and then calls put (+1). Process prod2, in an infinite loop,
waits until button 2 is pressed (busy waiting) and then calls
put (-1). Process cons maintains a counter initialized to 0.
In an infinite loop, cons calls get (), updates the counter
(+1 or -1) depending on the value returned by get (), and
displays the new value of the counter using the LEDs.

4.2 Part 2: Adding interrupt handling

The second version of the kernel includes interrupt handling.
We ask the students first to add time slicing as described
in Section 3.2.4. Second, we ask them to implement the
function waitInterrupt described in Section 3.2.1. Third,
we ask the students to add the following function to the
kernel:

waitDelay (int delay) : same as wait with an additional
delay. The process calling this function is unblocked
either by the execution of notify, notifyAll, or by
expiration of the delay specified.

Finally, we ask the students to write a second small appli-
cation to test the extended kernel. The application includes
two processes, one switching on/off the LEDs of line 1, the
other switching on/off the LEDs of line 2. The on/off switch-
ing occurs when the corresponding button is pressed (button
1 for line 1, button 2 for line 2), but at least every two sec-
onds. The design of the application is left to the students.

Here is one possible such design, with one producer process
prod, two consumers processes consl, cons2 (the two pro-
cesses mentioned above), and two buffers of “tokens”: bufl
and buf2. The get method of both buffers, if the buffer is
empty, calls waitDelay with a delay of 2 seconds. Process
prod, in an infinite loop, waits until a button is pressed using
waitInterrupt (there is one single interrupt for all 4 but-
tons). Then, if button 1 is pressed, cons puts a token into
bufl; if button 2 is pressed, cons puts a token into buf2.
Process cons1, in an infinite loop, calls buf1.get and then
switches on/off the LEDs of line 1 (if the LEDs are off, they
are switched on; if the LEDs are on, they are switched off).
Process cons2 does the same with the LEDs of line 2.

5. PROJECT FEED-BACK

Overall the project reached its goal: A large majority of
students found the project interesting, and helpful to better
understand Java monitors. Moreover, a large majority of the
kernels were implemented in a proper way by the students,
and contained minimal mistakes. There were also a small
number of projects with serious mistakes. We comment now
on these main mistakes. We start with mistakes related to
the implementation of the kernel. Later we comment on
mistakes related to the application code.

Kernel mistakes. Some students did not implement the
right data structures for monitors, namely two process lists,
one when entering the monitor was not possible, the other
related to wait. Some students introduced only one of these
two lists. Some other students had no list at all, using a
boolean to know whether the monitor was free. In the latter
case, waiting to enter the monitor was done by busy waiting.
These errors were surprising, considering that a lecture slide
explicitly mentioned these two lists. Some students that cor-
rectly introduced these two lists nevertheless showed some
basic misunderstandings: processes could be simultaneously
in more than one list (including the readyList). Other
mistakes were related to the implementation of wait and
notifyAll: wait did not release the monitor, and notifyAll
was implemented by multiple calls to notify (correct, but
inefficient). Some students also implemented unnecessary

58

process switch upon monitor exit: the process exiting the
monitor released the CPU. Some implementations did not
allow for nested monitor calls (monitor call from within a
monitor). Finally, surprisingly, two students tried to imple-
ment the monitor kernel on top of the semaphore kernel, i.e.,
using the operations P and V.

Application mistakes. Because the application was writ-
ten in C and not in Java, some students provided poorly
structured code. Typically, in Java the buffer would be an
object with synchronized methods put and get, the first
method called by a producer, the second by a consumer.
In C, this translates into two functions get and put, each
starting with a call to enterMonitor and ending with a call
to exitMonitor. Some students did not introduce these
two functions: the get code, including enterMonitor and
exitMonitor, was directly inserted in the producer code; the
put code, including enterMonitor and exitMonitor, was in-
serted in of the producer code. Some other students did not
call enterMonitor and exitMonitor at the right place, i.e.,
at the beginning and at the end of synchronized methods.
Sometimes notify or notifyAll was not used correctly. Fi-
nally, while busy waiting was mandatory in part 1 of the
project (no interrupt handling) some students still used busy
waiting in part 2 to read the buttons.

To summarize, some of these mistakes, both at the kernel
level and at the application level, show some fundamental
misunderstandings. However, we believe that those students
did not invest enough time to try understanding concurrency
issues.

6. ACKNOWLEDGMENTS

We would like to thank Paolo Ienne and Xavier Jimenez for
their help in using the FPGA board, and Nicolas Schiper for
his useful comments on a previous version of the paper.

7. REFERENCES

[1] FPGA4U Main Page, EPFL.
http://fpgadu.epfl.ch/wiki/Main_Page.

[2] Mini Kernel Project, EPFL.
http://1lsrwww.epfl.ch/page-59529-en.html.

[3] T. Bennet. A Tread Implementation Project

Supporting an Operating Systems Course. J. of

Computing Sciences in Colleges, 22(5):111-118, 2007.

D. Brylow. An Experimental Laboratory Environment

for Teaching Embedded Operating Systems. In

SIGCSE, pages 192-196, 2008.

T. W. Christopher and G. K. Thirubathukal.

High-Performance JAVA Platform Computing,

chapter 4, pages 89-122. The Sun Microsystems Press,

2001. http://java.sun.com/developer/Books/

performance2/chap4.pdf.

J. L. Donaldson. Implementation of threads as an

operating systems project. In SIGCSE, pages 187191,

2008.

J. Hoppe. A Simple Nucleus Written in Modula-2: A

Case Study. Softw., Pract. Ezper., 10(9):697-706, 1980.

N. Wirth. MODULA-2. Technical Report 36, ETHZ,

March 1980. http://users.ugent.be/ fschoonj/

modula2/wirth-modula2/Wirth_Modula2.pdf.

4]

5]

[8

