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ABSTRACT
Predicting the scalability of parallel applications is becoming cru-
cial now that the number of cores in modern CPUs doubles roughly
every two years. Traditional ways to get some understanding of the
scalability of a parallel application rely on extensive experiments
or detailed application models. Both are very time consuming and
often hard to use.

This paper presents PreSca, a pragmatic system for predict-
ing the scalability of parallel applications. PreSca uses function
approximation techniques to model scalability with an analytical
performance function extracted from a set of measurements. By
considering the application as a black-box without requiring any
knowledge about its internals, PreSca can be applied with little ef-
fort to any parallel application. We show how PreSca can be used
statically to predict the scalability of a given application and decide
which synchronization primitive scales best for it as well as how
it can be used on-line to dynamically assist scheduling decisions
and adjust core assignment. In some sense, PreSca shows, for the
first time, how function approximation can be used to predict the
scalability of parallel applications in a completely general way.

We extensively evaluated PreSca using a large number of par-
allel benchmarks, including some that use locks and some that
use transactional memory. We also consider two different multi-
core systems. Our evaluation shows that PreSca produces accurate
results. More specifically: (1) PreSca’s interpolations based on
only 8 measurements have 90th percentile of error lower than 15%,
(2) PreSca’s extrapolations using measurements with up to m cores
predict the performance for n ≤ 2m cores with errors lower than
20% in most cases, and (3) PreSca’s on-line scheduler determines
the optimal thread count using fewer than 7 measurements with er-
rors lower than 3% on average.

1. INTRODUCTION
Parallel programming is notoriously challenging because of the

need to handle concurrent threads accessing shared data objects.
The difficulty is aggravated by the very fact that the number of
CPU cores used during the execution of an application is usually
much higher than the number used during its development and test-
ing. Typically, applications developed today can be tested on CPUs
with 8 cores, but in just 2 or 3 years the same applications are likely
to be run on CPUs with 16 or even more cores. This state of affairs
clearly calls for tools that predict the scalability of parallel applica-
tions.

In many cases, the performance of parallel applications stops im-
proving, or even starts degrading, at some point as the number of
cores it uses increases. Figure 1 depicts the performance of two
benchmarks on a 48-core system. It shows that the performance
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Figure 1: Performance of different parallel applications

of kmeans low peaks around 20 threads and that using more
threads impacts the performance adversely.1 On the other hand, the
performance of vacation high keeps improving as additional
threads are assigned to it until 48 threads. One could wonder, for in-
stance, whether it is worth increasing the number of cores assigned
to vacation high from 24 to 48 to reduce the execution time
by 35%, or whether it is more beneficial to assign them to some
other application.

The “optimal” number of cores usually depends on many factors,
including the used synchronization technique, the characteristics of
the application and the computer system. For example, a developer
can be tempted by software transactional memory (STM) [27] to
synchronize concurrent threads accessing shared data structures.
STM requires no hardware support and little effort from the pro-
grammers. Unfortunately, STM does not consistently deliver good
performance [6, 7], as illustrated in Figure 2. The figure depicts
the speedup of parallel code that uses SwissTM [8], one of the
fastest state-of-the-art STMs, over sequential, non-instrumented
code, for two different benchmarks from the STAMP benchmark
suite [20]. Basically, STM delivers good performance only in cer-
tain cases—with 64 threads STM outperforms sequential code by
almost 30x on the vacation low benchmark, but only by 2x on
the intruder benchmark. Clearly, if the programmers could pre-
dict the performance of STM-based application prototypes quickly
and accurately, they could decide early in the development process

1Each thread is executing on a dedicated core.
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Figure 2: Inconsistency of STM performance
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Figure 3: “Eyeballing” approach to predicting scalability

whether to use STM or other, more involved, synchronization tech-
niques, such as fine-grained locking or lock-free programming.
Contribution. Traditional approaches to gain insight into the scal-
ability of parallel applications rely on extensive experiments or
detailed, and often application-specific, models [3, 5, 14, 18, 19,
22, 31]. These approaches are time-consuming and require signif-
icant effort which makes them difficult to use. This paper presents
PreSca, a pragmatic system for predicting the scalability of parallel
applications. By considering the application as a black-box without
requiring any knowledge about its internals, PreSca can be applied
with little effort to any parallel application. As we will show in the
paper, PreSca can be used statically to predict the scalability of an
application and decide which synchronization primitive to use as
well as dynamically to adjust core assignment on the fly.

In a nutshell, PreSca takes as input a set of measurements on a
number of cores and predicts the performance on a different num-
ber of cores. It can be viewed as an automatization of a simple,
manual “eyeballing” approach for predicting scalability (Figure 3).
The “eyeballing” approach consists of observing the measured per-
formance with naked eye and guessing the performance at thread
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Figure 4: Choosing the best prediction with “eyeballing”

counts for which the measurements are not available. In Figure 3,
the performance at 8 threads is predicted based on the measure-
ments with 1–6 threads. To do so, a line that closely follows the
measurements is drawn and is extended beyond 6 threads in such
a way that it follows the general trend observed in measurements
with 1–6 threads, up to 8 threads. In our experience, the manual
“eyeballing” approach can be surprisingly accurate if performed
by someone experienced.

Similarly to the “eyeballing” approach, PreSca takes several per-
formance measurements with various thread counts and constructs
an analytical performance function. The performance function is
then used to predict the scalability of the application with thread
counts not used for the measurements. The performance func-
tion models the whole application and the system it executes on
as a black-box and depends on the whole computing environment:
application’s inputs, synchronization technique, operating system,
hardware etc. If any of these changes, PreSca needs to construct
a new performance function, based on a new set of measurements.
Because PreSca uses only the performance measurements to con-
struct the prediction function, it does not require any knowledge of
application’s or system’s internals: no modifications to the source
code of the application nor to the system components are required.

PreSca constructs the prediction function using well-known ap-
proximation techniques [1, 21]. The function approximation takes
as input the available data points (e.g. measurements from Fig-
ure 3) and the target function type (e.g. polynomial f(x) =
ax2+bx+c) and it outputs a specific function that best fits the avail-
able data points (i.e. it calculates coefficients a, b and c). PreSca
uses different function types in cases (1) when the measurements
cover the whole range of thread counts (interpolation) and (2) when
these cover only a part of the range (extrapolation). In the former
case, it uses the polynomial functions. In the latter case, it does
not use a predetermined function type. Instead, it chooses the best
function type for the application at hand using the available mea-
surements, as illustrated in Figure 4.

In a continued analogy with the manual “eyeballing” approach,
we could imagine different people drawing the lines used for pre-
dictions, as in Figure 4. Each of the three persons is accurate for
some applications, but no one produces the best prediction for all of



them. To choose the best prediction, each of the persons draws the
lines based only on measurements for 1–4 threads. The remaining
measurements are used as checkpoints to choose the prediction that
has the lowest error at the checkpoints. In the same vein, PreSca
designates the last c out of m available measurements as the check-
points and constructs a number of performance functions using dif-
ferent function types and the first m − c measurements. PreSca
then selects the performance function that has the lowest error at
the checkpoints and uses it to predict the scalability. In some sense,
PreSca shows, for the first time, how function approximation can
be used to predict the scalability of parallel applications in a com-
pletely general way.

It is important to notice here that we do not claim PreSca to be a
silver bullet for predicting the performance of parallel applications
in all contexts. In particular, it cannot predict the performance of
an application for some parallel system based on the measurements
from a different system if the characteristics of the two systems dif-
fer significantly. However, we can use PreSca to understand how
much the application would benefit from additional cores available
on the same system, or a similar, larger system. PreSca can also be
used to compare the scalability of different versions of an applica-
tion implemented using different synchronization techniques (e.g.
locks and transactional memory).

Furthermore, and as we will show in the paper, we can also ap-
ply our approach to help assign the optimal number of threads to the
executing application. We illustrate this by presenting OPreSca: a
system that can be viewed as on-line execution of PreSca to mon-
itor the performance of the application and dynamically adjust the
number of cores accordingly. This we believe is particularly impor-
tant for applications for which performance varies depending on the
workload and for which static predictions alone are insufficient.
Evaluations. We extensively evaluated the accuracy of PreSca us-
ing a number of benchmarks and benchmark suites: STAMP [20],
PARSEC [4], STMBench7 [9] and the STM micro-benchmarks [7].
We also used two different systems based on the UltraSPARC T2
CPU (with 64 hardware threads) and AMD Opteron 12 core CPUs
(48 hardware threads). Our evaluation showed that PreSca’s pre-
dictions are reasonably accurate and it confirmed that they are in-
deed useful. In particular, our evaluations showed that:

• The 90th percentile of error of interpolations based on 8 mea-
surements is less than 15% in 62 out of 64 predictions.

• Using measurements with up to m threads, PreSca predicts
the scalability for n ≤ 2m threads with errors lower than
20% in 184 out of 224 predictions performed. Furthermore,
in less than 20 cases, the errors are higher than 35%.

• Even slightly inaccurate predictions can be used to gain in-
sight into the scalability of the applications, confirming the
usefulness of PreSca in various scenarios.

• On average, OPreSca uses fewer than 7 measurements and
selects the thread count with less than 3% lower performance
than the measured highest performance in all 64 cases.

In the rest of the paper, we describe PreSca in Section 2 and
OPreSca in Section 3. We evaluate them in Section 4. We present
related work in Section 5. We conclude by discussing the advan-
tages and limitations of our work in Section 6.

2. PRESCA
In this section we describe the notion of performance functions

and how they can be used to model the scalability of parallel appli-
cations. We also describe how PreSca constructs the performance
functions.
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Figure 5: The performance function abstracts all the details of
a workload and execution environment

2.1 Performance functions
PreSca captures the scalability of the whole system with a single

analytical performance function. The performance function takes
the number of concurrent threads n as input and outputs the ex-
pected performance of the modeled system in the execution with n
threads. The performance of the system can be measured in vari-
ous ways. In this paper we assume that it is either measured as the
throughput (i.e. the number of operations executed per second) or
as the time required to complete a certain task (e.g. sequencing of
a genome or routing a printed circuit).

The performance function abstracts all components of the appli-
cation and the system it executes on (operating system, synchro-
nization technique, hardware, etc.) and models them as a complete
black box. Figure 5 contrasts the detailed view of the application
and the system with typical components (Figure 5(a)) and our sim-
ple black-box model (Figure 5(b)). Because the performance func-
tion only takes the number of threads as the parameter, it is specific
to the particular application and system and if any of the underlying
components changes, PreSca needs to construct a different perfor-
mance function. This means that PreSca actually does not model
the scalability of the application, but, instead, the scalability of an
application with a particular set of inputs, executing on a particular
system. For this reason, in the remainder of the paper we some-
times refer to PreSca as a system for modeling the scalability of
workloads.

2.2 Constructing the performance function
PreSca takes a set of performance measurements, each with a

different thread count, and uses function approximation [1] to con-
struct the performance function. More precisely, function approxi-
mation takes a set of measurements, a function type (e.g. a polyno-
mial function of degree d) and constructs the function that closely
fits the available measurements (e.g. calculates the coefficients of
the polynomial). PreSca constructs the performance function dif-
ferently when it is used to predict the performance at thread counts
that fall inside (interpolation) and outside (extrapolation) the range
of the thread counts for which the measurements are available.

PreSca interpolates performance using polynomials, which are
known to be able to approximate any continuous function on a
closed interval to any degree of accuracy [15]. With m available
measurements, PreSca uses polynomials of degree 6 or m − 2 if
m ≤ 7. It does not use polynomials of higher degrees to avoid
model overfitting.

PreSca extrapolates performance using functions from the kernel
depicted in Table 1. In a nutshell, PreSca (1) designates a subset



Name Function

Rat12
a0 + a1n

1 + b1n + b2n2

Rat22
a0 + a1n + a2n2

1 + b1n + b2n2

Rat23
a0 + a1n + a2n2

1 + b1n + b2n2 + b3n3

Rat33
a0 + a1n + a2n2 + a3n3

1 + b1n + b2n2 + b3n3

CubicLn a + b ln(n) + c ln(n)2 + d ln(n)3

ExpRat e
a+bn
c+dn

Table 1: Kernel of performance function types used for extrap-
olations
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Figure 6: Steps performed by PreSca to construct the perfor-
mance function for extrapolations

of available measurements as checkpoints, (2) constructs several
candidate performance functions using the kernel function types
and the remaining measurements, and (3) selects the most accurate
function from the set of candidates using the checkpoints. Figure 6
depicts PreSca steps.2 In the figure, the boxes represent data trans-
formations and the arrows between the boxes represent the data.
Each of the arrows is numbered for easier reference and is also an-
notated with the name of the data set and its size (in brackets).

The input in Figure 6 is a set of m measurements (point 1) and
the output is a single performance function (point 8). The input
measurements are first split into a set of m − c measurements to
2The accompanying technical report [2] contains its pseudo-code.

1 SUBSET_COUNTS = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
22, 24, 26, 28, 30, 32]

2 MAX_THREADS = 64
3 CHECKPOINTS = 4
4 // Function type kernel
5 FTYPE_KERNEL = [RAT12, RAT22, RAT23, RAT33, CUBIC_LN,

EXP_RAT]
6

7 fun PrescaExtrapolate(measurements)
8 // Designate checkpoints
9 checkpoints = GetLast(measurements, CHECKPOINTS)

10 all_func = {}
11

12 // Choose subsets
13 max_count = size(measurements) - CHECKPOINTS
14 for count in SUBSET_COUNTS
15 if count > max_count
16 break
17 // Function type kernel
18 for ftype in FTYPE_KERNEL
19 // Function approximation
20 func = Approximate(measurements, ftype,

count)
21 if func != NULL
22 all_func.Add(func)
23

24 // Function filtering (heuristics)
25 filtered_func = {}
26 for func in all_func
27 if ShouldUseFunc(func)
28 filtered_func.Add(func)
29

30 // Select function
31 SortFuncByErrorAsc(filtered_func, checkpoints)
32 return filtered_func[0]
33

34 fun ShouldUseFunc(func):
35 // filter negative
36 for i = 1 to MAX_THREADS
37 if func(i) < 0
38 return false
39

40 // filter abrupt changes
41 X_POW_POS = 8
42 X_LIN_NEG = 2./3
43

44 for i = 1 to MAX_THREADS:
45 y_max = func(i-1) * pow(i / (i-1), X_POW_POS)
46 y_min = X_LIN_NEG * (i-1) / i * func(i-1)
47 if func(i) < y_min or func(i) > y_max:
48 return false
49

50 return true

Algorithm 1: PreSca extrapolations pseudo-code for range of
1–64 threads

be used for approximations (point 2) and a set of c checkpoints that
are used to select the best function from a set of candidate functions
(point 3). Then, the m − c measurements are split into subsets of
different sizes, which produces sm measurement subsets (point 4).
The function approximation step takes all sm measurement sub-
sets and all sf function types from the function type kernel and
produces one performance function candidate for each pair of mea-
surement subsets and function types. This produces a set of candi-
date performance functions with sm×sf elements (point 6). Next,
PreSca eliminates unrealistic functions (e.g. functions with nega-
tive values) from the candidate set using several heuristics (point 7).
Finally, PreSca calculates the overall error for each of the remain-
ing candidate functions at the checkpoints and selects the function
with the lowest error (point 8).

Pseudo-code for PreSca extrapolations for the range of 1–64
threads is given in Algorithm 1. The comments in the algo-
rithm denote the boxes in Figure 6 for easier reference. Function
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PrescaExtrapolate (line 7) performs the extrapolations. It
first designates the highest thread counts as the checkpoints (line 9)
and then uses different subsets of the measurements (lines 13–
16) and function types from the kernel (line 18) to perform the
approximations and construct candidate function set (line 20).
Each approximation either produces a function or a NULL value
(line 21). NULL value is produced in cases in which there are not
enough measurements to perform the approximation with the se-
lected function type. Next, the set of candidates is filtered using
the heuristics (lines 25–28). The filtering is performed by func-
tion ShouldUseFunc (lines 34–50). The function eliminates all
functions with negative values (lines 36–38) and all functions that
change too abruptly (lines 41–48) in the target thread count inter-
val. After the filtering, PrescaExtrapolate sorts the remain-
ing functions in the order of increasing error at the checkpoints
(line 31) and chooses the function with the lowest error overall
(line 32) as the performance function.

We discuss some of our design choices and provide the rationale
behind them. We motivate the design choices using the predictions
from Figure 7. The predictions in the figure do not use PreSca.
Instead they are obtained by simply performing function approxi-
mation with the specified function type and all available measure-
ments. The figure shows the most accurate extrapolations for the
intruder benchmark using functions from the kernel and mea-
surements for 1–8 and 1–12 threads. The figure depicts the ap-
proximation errors for each of the predictions (left y-axis) and the
measured performance (right y-axis).

Function type kernel. Figure 7 clearly shows that, even for
the same workload, the best function type depends on the set of
measurements considered. In the figure, Rat23 is the most accurate
with 8 measurements, whereas CubicLn is the most accurate with
12 measurements. For this reason, PreSca does not rely on a single
function type. Instead it uses the function types from the kernel
(Table 1) and chooses the best one for the workload at hand using
the checkpoints. We created the kernel empirically, by including
in it the function types that accurately extrapolate performance of
the workloads we used. Interestingly, polynomials are not in the
kernel, as they do not provide accurate performance extrapolations.

Measurements. Figure 7 also illustrates that, surprisingly, it is
sometimes better to use only a subset of available measurements in-
stead of using all of them. In the figure, the approximations based
on just 8 measurements are better than the approximations based

on 12 measurements. Intuitively, small deviations in the measure-
ments with higher thread counts sometimes steer the performance
function in the wrong direction, thus producing less accurate pre-
dictions despite using more measurements. To avoid possibly neg-
ative impact of measurements with higher thread counts PreSca
splits the measurements into several subsets (between points 2
and 4 in Figure 6). It then chooses the best subset for the work-
load at hand using the checkpoints.

Candidate function filtering. PreSca uses heuristics to detect
and discard candidate performance functions that do not provide
realistic predictions, such as negative functions (between points 6
and 7 in Figure 6). More precisely, PreSca discards all candidate
performance functions that (1) are negative for some thread counts
of interest or (2) change (increase or decrease) too abruptly. PreSca
considers that a function changes too abruptly if, for some thread
count n, increasing the thread count to n + 1 results in: (1) a per-
formance improvement of more than 3

2
n+1

n
or (2) a performance

degradation of more than ( n
n+1

)8. The first heuristics follows from
the observation that increasing the number of threads by 1 typically
improves the performance by a factor of 1

n
or less. The constant 3

2
serves as a safety margin. The second heuristics follows from the
observation that increasing the number of threads can have only a
limited negative impact on the performance. We empirically chose
a conservative function to detect the negative performance impact
that is too high.

3. OPRESCA
For some workloads, using too many threads increases the con-

tention so much that it negatively impacts workload’s performance.
For example, kmeans low performs best on x86 with 20 threads
(Figure 1) and the performance degrades if more threads are used.
Executing kmeans low with 48 threads (which is the number of
CPU cores in the system) results in a slowdown of more than 4x.

If the characteristics of the workload do not change during the
application’s execution, PreSca can be used to statically predict the
best thread count based on several measurements. However, for
the applications where the workload dynamically changes, such as
a server with a varying rate of incoming client requests, it can be
difficult, or even impossible, to statically predict the performance
for all possible workloads. In this case, it is useful to dynamically
determine the best thread count for the current workload.

In this section we describe OPreSca, which uses the performance
functions on-line to determine the optimal thread count for a work-
load (the optimal thread count is the one for which the workload has
the highest performance). In a nutshell, OPreSca can be viewed as
an on-line execution of several instances of PreSca: it (1) mea-
sures the performance of the workload with different thread counts
during short intervals, (2) constructs the performance functions at
the end of each interval using all past measurements, and (3) uses
the performance functions to estimate the optimal thread count and
assigns it to the application for the next interval. OPreSca con-
verges when the estimated optimal thread count has already been
used in one of the previous intervals. When this occurs, the set of
the measurements used to construct the function remains the same,
and, hence, the constructed function and the estimate of the optimal
thread count also remain the same.

We assume that the workload does not change too frequently and
that there are enough intervals between the workload changes for
OPreSca to converge. The intervals have to be long enough to ob-
tain meaningful performance measurements. Also, we assume that
the number of executing threads in the application can be adjusted
quickly after OPreSca’s decision (i.e. threads can be suspended
and resumed quickly).



1 fun SchedulingIntervalExpired()
2 thread_count = GetThreadCount()
3 measured[thread_count] = GetPerformance()
4

5 if size(measured) >= 3
6 predicted = Approximate(measured)
7 thread_count = MaxPerfThreadCount(predicted)
8 else
9 thread_count = ChooseInitThreadCount(measured)

10 SetThreadCount(thread_count)
11

12 fun Approximate(measured)
13 max_prf_thread_count = MaxPerfThreadCount(measured)
14 max_thread_count = MaxThreadCount(measured)
15 min_thread_count = MinThreadCount(measured)
16

17 if max_perf_thread_count < max_thread_count and
max_perf_thread_count > min_thread_count

18 // interpolate
19 poly_deg = min(size(measured) - 1, 6)
20 return ApproxPoly(measured, poly_deg)
21 else
22 // extrapolate
23 if size(measured) >= 7
24 return ApproxRat(measured, 3, 3)
25 else if size(measured) >= 6
26 return ApproxRat(measured, 2, 3)
27 else if size(measured) >= 5
28 return ApproxRat(measured, 2, 2)
29 else if size(measured) >= 4
30 return ApproxRat(measured, 1, 2)
31 else if size(measured) >= 3
32 return ApproxRat(measured, 1, 1)
33

34 fun ChooseInitThreadCount(measured)
35 thread_count = Random() % MAX_THREAD_COUNT
36 while thread_count in measured
37 thread_count = Random() % MAX_THREAD_COUNT
38 return thread_count
39

40 fun WorkloadChange(measured)
41 EmptySet(measured)

Algorithm 2: OPreSca pseudo-code

OPreSca pseudo-code is given in Algorithm 2. As discussed,
OPreSca is activated periodically on interval expiry (line 1). First,
OPreSca reads the number of used threads and the performance
measurement for the previous interval and stores them into the set
of available measurements (lines 2 and 3). If there are more than
3 measurements (line 5), it approximates the performance of the
workload (line 6) and selects the thread count with the predicted
best performance (line 7). If there are fewer than 3 measurements,
OPreSca cannot perform the approximation and instead it selects
an arbitrary number of threads (line 9). The selected number of
threads is assigned to the application for the next interval (line 10).

OPreSca uses different function types for extrapolations and in-
terpolations. If the best thread count is inside the range of the
thread counts used so far (line 13), OPreSca interpolates perfor-
mance using polynomials of degree 6 or less, similarly to PreSca
(lines 19 and 20). Otherwise, OPreSca extrapolates performance
using various rational functions (lines 23—32). OPreSca does not
use PreSca’s extrapolation algorithm because it typically operates
on fewer measurements than PreSca. OPreSca’s simpler approach
works well because it is used only to determine the optimal thread
count for the workload instead of predicting its scalability accu-
rately.

During the initial 3 intervals OPreSca assigns the thread counts
arbitrarily (line 34). In the pseudo-code, OPreSca assigns the
thread counts randomly (line 35), only ensuring that the assigned
thread count has not been used in the previous intervals (line 36).

We experimented with several different initial thread assignments,
as discussed in Section 4.

Upon workload change, OPreSca clears the current set of mea-
surements and starts over (line 40). In this paper we do not fo-
cus on the workload change detection. Instead, we assume that
the workload change is detected and signaled to OPreSca by an-
other component in the system. For instance, the workload change
could be determined simply by detecting that the performance of
the workload at the stable state (after OPreSca converges) has sig-
nificantly changed. Alternative, more robust approaches for detect-
ing the workload change also exist and could be deployed [30].

4. EVALUATION
We present an extensive evaluation of PreSca’s and illustrate its

usefulness on several examples. We also present simulation-based
evaluation of OPreSca.

4.1 Experimental setup
The evaluation uses performance measurements from a number

of parallel benchmarks executed on two computer systems. We first
collected the performance measurements, averaged the results over
10 runs and then performed the predictions and scheduler simula-
tions offline.

Computer systems. We used two computer systems. The first
has UltraSparc T2 CPU with 8 cores clocked at 1.2GHz, supporting
64 hardware threads with hardware multithreading. The second has
4 AMD Opteron 6172 CPUs with 12 cores each clocked at 2.1GHz,
for a total of 48 hardware threads. The two systems have different
characteristics: the first has a single CPU which heavily uses hard-
ware multithreading and has low single-thread performance, while
the other has 4 CPUs, does not use hardware multithreading and
has a much better single-thread performance. In the remainder of
the text, we refer to the two systems as Sparc and x86 respectively.

Benchmarks. We used several benchmark suites: STAMP [20],
Parsec [4], STMBench7 [9] as well as standard STM micro-
benchmarks (used in e.g. [6]). These benchmarks span a wide range
of workload characteristics, with different lengths of critical sec-
tions, levels of contention and synchronization techniques. In total,
we used 32 different workloads; 20 STM-based and 12 lock-based.

STAMP [20] is a widely-used benchmark suite for STMs. It con-
sists of 8 benchmarks. The benchmarks are real-world applications
from various computation domains. Each of the benchmarks can
be configured in a number of ways to obtain workloads with dif-
ferent characteristics. In our experiments we used all benchmarks
except bayes which exhibits non-deterministic behavior. We con-
figured the benchmarks using the default parameters from STAMP
0.9.10 distribution, which gave us 9 different workloads. We mod-
ified STAMP benchmarks to support execution with thread counts
that are not a power of two.

Parsec [4] is a benchmark suite composed of several concurrent
applications and kernels. Each of the benchmarks is implemented
using several different concurrency control techniques (including
locking, STM and message passing). We used 6 lock-based Parsec
applications that support execution with thread counts that are not
a power of two and that exhibit stable performance.

STMBench7 [9] is an STM benchmark that models complex,
large-scale object-oriented workloads. We used the 3 default work-
loads of STMBench7 with long traversals turned off.

The STM micro-benchmarks are based on different implementa-
tions of an integer set. In the experiments, all of the threads access
the same integer set and perform a random mix of lookup, insert
and remove operations. The level of contention can be changed by
varying the element range and operation ratios. We used hashtable,
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Figure 8: Interpolations for Sparc measurements

skiplist, red-black tree and linked list sets and a low and high con-
tention workloads (90% lookups and 65536 elements and 10%
lookups and 1024 elements respectively).

All STM-based workloads use SwissTM [7, 8], a state-of-the art
STM that performs well under a variety of workloads.

Implementation. We implemented PreSca in Python. We used
Python’s libraries for scientific computing [26] and the framework
from [24] to perform the function approximations. The approxima-
tions use the downhill simplex algorithm [21] that minimizes the
relative error between the function values and the measured data.

4.2 Interpolations
We present our interpolations of performance measurements in

Figures 8 and 9. The interpolations are based on measurements
with 6 and 8 thread counts which are evenly spread across the range
of available thread counts. For each of the workloads, we present
the first, second and third quartiles of absolute errors (in the rect-
angle) and 90th percentile and maximum errors (above the rectan-

gle). For instance, for genome on Sparc with 6 measurements the
errors for three quarters of thread counts are less than 2%, for 90%
of thread counts are less than 3% and the maximum error is around
9%.

Sparc. Figure 8 shows that PreSca produces accurate predic-
tions for Sparc measurements. With 6 measurements (Figure 8(a))
the 90th percentile of error is lower than 15% for 30 out of 32
workloads we used. Furthermore, third quartile of error is less than
10% for 30 workloads and is less than 20% for all of them. Using
more measurements further improves the predictions. With only 2
more measurements (Figure 8(b)), PreSca predicts the performance
with maximum error of less than 20% for all thread counts in 28
workloads, and the 90th percentile of error less than 15% in 31
workloads.

The reason for the error outliers in the predictions are either high
variations in the measurements (e.g. in the kmeans workloads)
or significant changes in the measured performance at some thread
counts (e.g. in the ssca2 and raytrace workloads). Despite



 0

 10

 20

 30

 40

 50

Genom
e

Intruder

Km
eans High

Km
eans Low

Labyrinth

SSCA2

Vacation High

Vacation Low

Yada
Blackscholes

x264
Bodytrack

Ferret

Raytrace

Vips
SB7 Coarse R

SB7 Coarse RW

SB7 Coarse W

SB7 M
edium

 R

SB7 M
edium

 RW

SB7 M
edium

 W

SB7 STM
 R

SB7 STM
 RW

SB7 STM
 W

Hashtable High

Hashtable Low

Linked list High

Linked list Low

RB tree High

RB tree Low

Skiplist High

Skiplist Low

E
rr

or
 [%

]

(a) 6 measurements

 0

 5

 10

 15

 20

 25

 30

 35

 40

Genom
e

Intruder

Km
eans High

Km
eans Low

Labyrinth

SSCA2

Vacation High

Vacation Low

Yada
Blackscholes

x264
Bodytrack

Ferret

Raytrace

Vips
SB7 Coarse R

SB7 Coarse RW

SB7 Coarse W

SB7 M
edium

 R

SB7 M
edium

 RW

SB7 M
edium

 W

SB7 STM
 R

SB7 STM
 RW

SB7 STM
 W

Hashtable High

Hashtable Low

Linked list High

Linked list Low

RB tree High

RB tree Low

Skiplist High

Skiplist Low

E
rr

or
 [%

]

(b) 8 measurements

Figure 9: Interpolations for x86 measurements
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Figure 10: Predictions for STAMP on Sparc using 4 checkpoints
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Figure 11: Predictions for Parsec on Sparc using 4 checkpoints

the outliers, the predictions for the majority of thread counts are
accurate.

x86. PreSca provides equally accurate predictions for x86 mea-
surements. Figure 9 depicts the interpolation errors for x86 mea-
surements. The figure shows that PreSca achieves the same ac-
curacy for x86 and Sparc measurements, but that there are more
outliers due to higher variance in measurements on x86 in general.
With 6 measurements (Figure 9(a)), the 90th percentile of error is
less than 15% for 31 out of 32 workloads we used and it is less
than 15% for 29 of them. The third quartile of error is less than
10% for 29 workloads and less than 20% for all workloads. With 8
measurements (Figure 9(b)), the accuracy of the predictions further
improves. The maximum error is less than 20% for 24 workloads
and the 90th percentile of error is less than 10% for 29 workloads.

Similarly to predictions for Sparc measurements, the main rea-
son for the error outliers are high variations in measurements (e.g.
kmeans workloads) and significant changes in the measured per-
formance (e.g. raytrace and the microbenchmark workloads).

4.3 Extrapolations
We present our performance measurements extrapolations in

Figures 10—17. The figures depict the prediction errors for ex-
trapolations based on measurements with 1 to m threads, where
m = 12, 16, 24, 32 for Sparc and m = 12, 16, 24 for x86. The
measurements with the highest 4 thread counts were the check-
points. Each of the graphs conveys errors for the predictions (left
y-axis) and the measured performance (right y-axis) to put the pre-
dictions in perspective.

4.3.1 Sparc
STAMP. Figure 10 depicts the prediction errors for STAMP

workloads on Sparc. In general, PreSca’s performance predic-
tions are good, as PreSca accurately predicts the performance of
all workloads except ssca2.

With m = 12 and m = 16 measurements, the prediction er-

rors are less than 20% up to 2m threads for all workloads except
kmeans low, where the errors are slightly higher due to high
variance in the measured performance. With m = 24, the pre-
diction errors are less than 20% up to 48 threads for all work-
loads except ssca2. The performance of ssca2 changes sig-
nificantly around 32 threads which results in lower accuracy of
PreSca’s predictions based on fewer than 32 measurements. With
m = 32, the prediction errors are less than 20% up to 50 threads
for all workloads except ssca2. With more than 50 threads, the
errors are slightly higher for the kmeans high, kmeans low,
vacation high and vacation low workloads. Overall, the
predictions based on m measurements have errors of less than 20%
up to 2m threads in 28 out of 36 cases. Furthermore, errors are
higher than 35% only for 2 ssca2 predictions.

The predictions for the ssca2 workload reveal the biggest lim-
itation of PreSca’s black-box approach. The execution times of
ssca2 suddenly increase at around 32 threads. The reason for
this is the architecture of UltraSparc T2 CPU. The CPU uses hard-
ware multithreading to support 64 hardware threads on top of 8
cores. This means that the characteristics of the CPU effectively
change at multiples of 8 threads. To accurately predict the impact
of the CPU’s architecture on the performance of a particular work-
load one has to reason about the internal details of the CPU and
the workload—depending on the workload the impact varies from
negligible to significant. When using measurements with up to 32
threads, PreSca cannot anticipate the sudden drop in performance
for ssca2 with more than 32 threads. This is why the predic-
tion errors for ssca2 become much higher (60-75%) with more
than 32 threads. The reason for lower accuracy of the predictions
of the vacation workloads’ performance is similar. With both
vacation workloads, the execution times decrease slower with
more than 32 threads than with fewer than 32 threads. As PreSca
bases the predictions on the measurements with up to 32 threads, it
cannot accurately predict this change which results in higher errors
with more threads.
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Figure 12: Predictions for STMBench7 on Sparc using 4 checkpoints
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Figure 13: Predictions for STM micro-benchmarks on Sparc using 4 checkpoints
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Figure 14: Predictions for STAMP on x86 using 4 checkpoints

In general, PreSca cannot be used to predict the changes for
which there is no indication in the available measurements. Also,
basing the predictions on the measurements with high variance can
result in inaccurate predictions, although, as the kmeans high
and the kmeans low predictions in Figure 10 illustrate, the im-
pact is not necessarily high.

Figure 10 also shows that in some cases PreSca’s approach
for selecting the best performance function from a set of candi-
dates is not ideal. For example, the predictions for intruder
based on 12 measurements are more accurate than the predictions
based on more than 12 measurements. This happens because the
performance function that most closely fits the measurements at
the checkpoints is not the most accurate at higher thread counts.
Despite this, PreSca’s function selection method makes the right
choice in most cases.

Parsec. Figure 11 depicts PreSca’s prediction errors for Parsec
lock-based workloads. The predictions are roughly as accurate as
the STAMP predictions.

PreSca predicts the performance of blackscholes very ac-
curately, with errors of less than 3.5% for all thread counts and any
number of measurements used for the predictions. PreSca is very
accurate for raytrace as well, with errors of less than 10% for all
thread counts, except around 32 threads where the execution times

suddenly increase. With m = 12 measurements, the errors are
less than 20% with up to 21 threads for all workloads and are only
marginally higher at higher thread counts for ferret and x264.
Similarly, with m = 16 and m = 24 measurements, the errors are
less than 20% up to 2m threads for all workloads except x264.
With m = 32, the predictions are less than 20% off with up to 48
threads for all workloads. At higher thread counts, the prediction
errors are higher for ferret and x264. Better predictions for
ferret than the one chosen exist (e.g. predictions for m = 16),
but PreSca fails to select them.

Overall, based on m measurements PreSca predicts the perfor-
mance of the Parsec workloads with up to 2m threads with errors
of less than 20% in 20 out of 24 cases. Furthermore, only in 2
workloads the errors are higher than 35%.

STMBench7. Figure 12 depicts the prediction errors for STM-
Bench7 locking and STM workloads. The variance in the collected
data for STMBench7 is the highest of all the used workloads, but,
despite the high variance, PreSca is very accurate. The errors for
the predictions based on measurements for m threads are lower
than 20% up to 2m threads for all workloads and all values of m we
used except for the STM-based read-write workload and m = 16.
In this case the error is slightly higher than 20% with more than 30
threads. In other words, the predictions based on m measurements



-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0  5  10  15  20  25  30  35  40  45  50
 0

 50

 100

 150

 200

 250

 300

 350
E

rr
or

 [%
]

D
ur

at
io

n[
s]

Threads

12 points
16 points
24 points

Measured

(a) Blackscholes

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0  5  10  15  20  25  30  35  40  45  50
 0

 50

 100

 150

 200

 250

 300

 350

 400

E
rr

or
 [%

]

D
ur

at
io

n[
s]

Threads

(b) Bodytrack

-60

-50

-40

-30

-20

-10

 0

 10

 20

 0  5  10  15  20  25  30  35  40  45  50
 0

 100

 200

 300

 400

 500

 600

E
rr

or
 [%

]

D
ur

at
io

n[
s]

Threads

(c) Ferret

-50

-40

-30

-20

-10

 0

 10

 20

 0  5  10  15  20  25  30  35  40  45  50
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

E
rr

or
 [%

]

D
ur

at
io

n[
s]

Threads

(d) Raytrace

-80

-60

-40

-20

 0

 20

 40

 60

 0  5  10  15  20  25  30  35  40  45  50
 0

 50

 100

 150

 200

 250

E
rr

or
 [%

]

D
ur

at
io

n[
s]

Threads

(e) Vips

-50

-40

-30

-20

-10

 0

 10

 20

 30

 0  5  10  15  20  25  30  35  40  45  50
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

E
rr

or
 [%

]

D
ur

at
io

n[
s]

Threads

(f) x264

Figure 15: Prediction for Parsec on x86 using 4 checkpoints

have errors lower than 20% with up to 2m threads in 35 out of 36
cases and they are always lower than 30%.

STM micro-benchmarks. Figure 13 depicts the prediction er-
rors for STM micro-benchmarks. The micro-benchmarks turn out
to be the hardest target for PreSca, mostly because their perfor-
mance suddenly and significantly changes in several cases. De-
spite this, PreSca quite accurately predicts the performance of STM
micro-benchmarks. With m = 12 measurements, the prediction
errors are lower than 20% with up to 24 threads for all workloads.
With m = 16 and m = 24 measurements, the prediction errors
are lower than 20% with up to 2m threads for all workloads ex-
cept linked list low, where the performance trends change
around 24 threads. This makes it difficult for PreSca to accurately
predict the performance using only measurements with fewer than
24 threads. With m = 32 measurements PreSca predicts the per-
formance of the linked list low workload accurately. Also,
with m = 32 measurements, the errors are lower than 20% with up
to 60 threads for all workloads except skiplist low. The er-
rors are only slightly higher with more than 60 threads for linked
list high and red-black tree low. As the performance
trends of the skiplist low workload change significantly at
around 32 threads, the prediction errors with more than 48 threads
become higher than 20%. In this workload, PreSca would re-
quire more measurements in order to produce more accurate pre-
dictions. Overall, the predictions based on m measurements have
errors lower than 20% up to 2m threads in 29 out of 32 cases.

4.3.2 x86
STAMP. Figure 14 depicts the prediction errors for STAMP

workloads on x86 system. The figure shows that the predictions
are roughly as accurate as the predictions for STAMP on Sparc.
With m = 12, PreSca’s prediction errors are lower than 20% with
up to 24 threads for all workloads except for intruder, kmeans
high and ssca2. The reason for the higher errors in these cases
is the significant change in the performance trends with more than

12 threads. With m = 16, the predictions for the ssca2 and
intruder workloads are more accurate and the errors are lower
than 20% with up to 32 threads because the change in the perfor-
mance trends is captured with the available measurements. The
predictions for all other workloads except the two kmeans work-
loads are also less than 20% off. PreSca is less accurate for the
two kmeans workloads because their performance significantly
degrades with more than 24 threads. To accurately predict the per-
formance of these two workloads, PreSca would require more than
24 measurements. With m = 24 measurements, the prediction er-
rors are lower than 20% with up to 40 threads for all workloads
except for the two kmeans workloads and ssca2. More accu-
rate performance function exists for ssca2 (e.g. the one used for
performance predictions with 16 measurements), but PreSca fails
to select it because it is not the most accurate at the checkpoints.
With higher thread counts, the prediction errors for genome and
yada become slightly higher than 20%, but they still remain be-
low 30%. Overall, the predictions based on m measurements have
errors lower than 20% up to 2m threads in 18 out of 27 cases. The
errors lower than 30% in 22 cases.

Parsec. Figure 15 shows that PreSca produces accurate pre-
dictions for Parsec lock-based workloads on x86 system. With
m = 12 measurements, the prediction errors are lower than 20
with up to 24 threads for all workloads except vips, where they
are only slightly higher with 23 and 24 threads. The reason for
PreSca’s lower accuracy with vips is high variance in the mea-
sured data. With m = 16 and m = 24, the prediction errors for
all workloads except ferret and vips are lower than 20% with
up to 2m threads. Similarly to the experiments on Sparc, the exe-
cution times for raytrace suddenly increase around 32 threads,
which causes higher prediction errors around 32 threads. For other
thread counts, the prediction errors are below 10%. The reason for
lower accuracy with vips is again high variance in the measured
data. Overall, the predictions based on m measurements have er-
rors lower than 20% up to 2m threads in 13 out of 18 cases. The
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Figure 16: Predictions for STMBench7 on x86 using 4 checkpoints
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Figure 17: Predictions for STM micro-benchmarks on x86 using 4 checkpoints



errors are higher than 30% only in 2 cases.
STMBench7. Figure 16 depicts the prediction errors for the

STM and locking STMBench7 workloads on x86. Despite the high
variance in the measurements PreSca produces accurate predic-
tions. With m = 12 measurements, the errors are lower than 20%
with up to 24 threads for all workloads except the coarse-grained
locking write-dominated workload and the STM read-write work-
load. In these cases the errors are slightly higher due to high vari-
ations in the measured performance. Similarly, with m = 16 and
m = 24 measurements, the errors are lower than 20% with up to 48
threads for all workloads except the STM read-dominated workload
where the errors are slightly higher at higher thread counts. Over-
all, the predictions based on m measurements have errors lower
than 20% up to 2m threads in 23 out of 27 cases. The errors are
higher than 35% only in 1 case.

STM micro-benchmarks. Figure 17 depicts the predictions for
the STM micro-benchmarks on x86. Predicting the performance
of the micro-benchmarks is very challenging, as in many cases the
performance trends change suddenly without any indication of the
change at the lower thread counts. Furthermore, the performance
often exhibits high variation and is thus be difficult to predict. De-
spite this, PreSca is still reasonable accurate. With m = 12 mea-
surements, the errors are lower than 20% with up to 24 threads for
all workloads except hashtable low and red-black tree
high, where the errors are only slightly higher. In these cases,
the prediction errors are higher than 20% because the throughput
suddenly changes around 12 threads, which PreSca’s cannot ac-
curately predict based on the measurements with only up to 12
threads. With m = 16 measurements, PreSca predicts the perfor-
mance of hashtable lowmore accurately as the measurements
include the change in the performance trends. The errors are below
20% with up to 32 threads for all workloads except red-black
tree high and skiplist low. In these cases the measure-
ments do not capture the changes in the performance trends around
12 and 24 threads respectively. Using m = 24 measurements helps
with the predictions for both of these workloads and PreSca pro-
duces the predictions with errors lower than 20% when using 24
measurments. With m = 24, the errors are lower than 20% for all
workloads except the linked list low. PreSca requires more
measurements to correctly predict the performance of linked
list low due to the sudden drop in throughput at around 24
threads. Overall, the predictions based on m measurements have
errors lower than 20% up to 2m threads in 19 out of 24 cases.

4.3.3 Summary
Our evaluation demonstrates that PreSca produces accurate ex-

trapolations in most cases, regardless of the system architecture,
workload and synchronization technique used. Overall, we used
PreSca to perform 224 extrapolations and in 185 (or 82.5%) cases
the errors were less than 20% with up to 2m threads. In most other
cases, the errors were only slightly higher—in less than 10% the
errors are higher than 35%. Inaccurate predictions are mostly the
result of changes in trends in the workload’s performance that are
not captured in the measurements used for making the predictions
and high variance in the measurements.

4.4 Using the extrapolations
We illustrate how the extrapolations presented in the previous

section can be used to gain useful insight into the behavior of par-
allel workloads.

Predicting scalability. Maybe surprisingly, we can sometimes
gain useful information about workload’s scalability even with only
a handful of measurements and with relatively high predictions er-

rors. Figure 18 depicts predicted (solid line) and measured (circles)
performance for several STAMP workloads based on the measure-
ments with up to m = 12 threads, using the measurements for the
highest 4 thread counts as the checkpoints. The plots in the figure
are zoomed in where necessary to improve readability for higher
thread counts.

For intruder on Sparc (Figure 18(a)) and labyrinth on
x86 (Figure 18(f)) the predicted performance follows the measured
performance closely, with errors of less than 15% for all thread
counts. Highly accurate predictions, such as these, provide great
insight into the scalability of the workload. They can be used to
accurately answer questions about the performance with a partic-
ular number of threads, performance improvement when using n
instead of m threads or the number of threads for which the work-
load performs the best.

The prediction errors are higher for the other workloads in Fig-
ure 18. The predictions still follow the general shape of the mea-
sured performance providing valuable insight into trends with dif-
ferent number of threads, even if they cannot be used to accurately
predict the execution times. For instance, the prediction error for
vacation high on x86 (Figure 18(c)) is up to 25%, but the
predictions still allow us to make reasonably accurate estimates of
the performance improvement when using 24 or 48 threads instead
of 12. PreSca predicts that the execution time with 24 threads is
50% of the execution time with 12 threads, while the measurements
show that it is actually 53%. Similarly, PreSca predicts that the ex-
ecution time with 48 threads is 25% of the execution time with 12
threads, while it is actually 33%. In other words, PreSca predicts
the decrease in execution time with errors of 6% and 13% respec-
tively. Similarly, the performance function accurately predicts the
good scalability of vacation high on Sparc (Figure 18(d)), but
overestimates it for more than 48 threads, predicting the reduction
in execution time when using 64 threads instead of 12 with 24%
error.

The prediction error for kmeans high on Sparc (Figure 18(e))
varies a lot, reaching 30% at some points. Figure 18 reveals that
the performance function in this case is actually quite useful, as
most of the variance in the error is the result of the variance in
the measurements, not in the predictions. The predictions with up
to 48 threads are surprisingly accurate. PreSca predicts that the
execution time with 32 threads is 87% of the execution time with
12 threads, while it is actually 78%. Similarly, the execution time
with 48 threads is predicted to be 95% of the execution time with
12 threads, while it is really 80%.

Interestingly, even extrapolations with higher errors can pro-
vide very important insights. For example, the predictions for
intruder on x86 (Figure 18(f)) are off by up to 60% with higher
thread counts, but PreSca correctly predicts that the maximum per-
formance is achieved with around 12 threads and that using more
threads negatively impacts the performance.

STM vs locking. It is sometimes interesting to speculate about
the scalability of existing locking implementation and compare it
to an STM alternative. We illustrate how PreSca can be used for
this purpose by comparing STM and medium-grained locking im-
plementations of STMBench7 on Sparc. The measured speedups
and prediction errors are depicted in Figure 19. We calculate the
speedup as throughputSTM

throughput lock
. The figure for instance shows that for

the read-dominated workload, STM has lower performance than
locking with a few threads, but is almost 3x faster at higher thread
counts. In this case it is indeed beneficial to replace the locking
with STM if additional CPU cores are available. However, the
benefits of using STM instead of locking might not be completely
clear when simply observing the throughput measurements with a
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Figure 18: Measured and predicted performance (using 12 measurements with 4 checkpoints)
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Figure 19: Predicting speedup of STM over medium-grained locking for STMBench7 on Sparc

few threads. We use PreSca to predict the performance of both
locking and STM based versions of STMBench7. We compare the
predicted performance to gain insight into how the two compare
with higher thread counts. Figure 19 shows that we can accurately
predict the speedups of STM over locking by composing two per-
formance predictions.

4.5 OPreSca
We simulated OPreSca using the measurements for all work-

loads on both Sparc and x86. In the simulations, we assume that
the workload does not change before OPreSca converges. We mea-
sure the accuracy of OPreSca (how close to the best performance
OPreSca converges) and its convergence speed (how many inter-
vals it takes OPreSca to converge).

Tables 2 and 3 contain the summary of our evaluation for both
Sparc and x86 measurements. We used two sets of initial thread
count assignments for OPreSca: one random (denoted with Rnd-
Rnd-Rnd in the tables) and one where we used 16, 32 and 48 thread
counts (denoted with 16-32-48 in the table) for Sparc, and 12, 24
and 36 thread counts (denoted with 12-24-36 in the table) for x86.

The latter two are the best initial thread assignments for Sparc and
x86 of the ones we tested. For the random assignments, the table
contains the averages of 10 different runs. We compare OPreSca
to a variant of the Binsearch load-picking algorithm from [28] (de-
noted with Binsearch in the table).

Binsearch algorithm operates in two phases. In the first phase, it
increases the number of threads until it finds the point at which the
performance starts to degrade. Our version of Binsearch starts from
a single thread and uses an initial increment of 4. It doubles the
increment at each step (i.e. it uses thread counts 1, 5, 13,...). In the
second phase, Binsearch performs a binary search of the interval at
which the optimal thread counts lies, until it converges to it.

In the tables we present the difference between the performance
with the optimal and the chosen thread count (column E) and the
number of steps before the algorithm converges (column S). We
also give the average difference between the performance at each
step and the best performance (column ES) and the number of steps
for which the difference in the performance is higher than 10%
(column SE>10%) to illustrate the overall cost of the algorithm.

The results show that OPreSca converges very closely to the op-



Rnd-Rnd-Rnd 16-32-48 Binsearch
E S ES SE>10% E S ES SE>10% E S ES SE>10%

Genome 0.01 5.4 0.23 2.3 0 9 0.15 2 0 12 0.18 4
Intruder 0 6.7 0.08 1.4 0 4 0.03 0 0 12 0.13 3
Kmeans High 0.03 8.8 0.24 5.4 0.04 6 0.24 4 0.12 10 0.29 10
Kmeans Low 0.01 7.9 0.3 4.7 0.01 7 0.14 3 0 8 0.32 4
Labyrinth 0.01 8.4 0.16 2 0.01 4 0.07 1 0 13 0.17 3
SSCA2 0.12 7.5 0.39 5.5 0 8 0.27 4 0 12 0.35 8
Vacation High 0.02 8.4 0.25 4.1 0 6 0.13 3 0 13 0.24 6
Vacation Low 0.03 8.1 0.26 3.8 0 9 0.19 4 0 13 0.25 6
Yada 0.01 7.9 0.19 3.6 0.01 5 0.13 2 0.01 12 0.21 7
Blackscholes 0.01 4.4 0.12 1.3 0 6 0.25 3 0 7 0.22 3
x264 0 5.5 0.18 1.9 0 4 0.07 1 0 8 0.25 3
Bodytrack 0 6.8 0.14 2 0 4 0.07 1 0 13 0.15 3
Ferret 0.01 8 0.13 1.3 0 11 0.1 1 0 14 0.14 3
Raytrace 0.04 6.7 0.11 2.6 0 10 0.17 4 0 7 0.15 3
Vips 0.01 5.1 0.27 2.7 0.01 4 0.22 2 0 12 0.25 5
SB7 Coarse R 0.07 7.6 0.29 2.8 0.06 4 0.12 1 0.03 12 0.27 6
SB7 Coarse RW 0.03 8.5 0.14 5 0.03 7 0.12 5 0.02 11 0.12 8
SB7 Coarse W 0.06 7.6 0.13 3 0.03 9 0.11 4 0.21 2 0.22 0
SB7 Medium R 0.02 6.4 0.3 3.1 0.06 11 0.38 3 0 12 0.35 8
SB7 Medium RW 0.04 5.6 0.18 1.7 0.03 10 0.11 5 0.02 7 0.27 3
SB7 Medium W 0.03 9.4 0.13 4.8 0.03 8 0.17 2 0.19 8 0.26 0
SB7 STM R 0 5.7 1.04 2.4 0 4 0.16 2 0 12 1.83 8
SB7 STM RW 0.04 6.9 0.44 3.8 0.05 8 1.33 5 0.02 7 1.57 3
SB7 STM W 0.02 8.3 0.53 5.5 0.02 10 0.73 6 0.02 14 0.6 10
Hashtable High 0.01 4 2.32 1.4 0.01 7 0.63 1 0 7 5.96 3
Hashtable Low 0.01 4 1.76 1.4 0.01 5 1.49 1 0 7 6.62 3
Linked list High 0.05 7.9 0.37 2.6 0.04 11 0.29 4 0 8 0.13 6
Linked list Low 0 6.8 1.85 3.3 0 5 0.13 3 0 13 1.31 7
RB tree High 0 5.1 1.41 3.1 0 4 0.28 2 0.01 11 2.21 7
RB tree Low 0 4 1.95 2.1 0 4 0.39 2 0 7 5.71 3
Skiplist High 0 6.5 1.12 4.4 0 7 2.05 5 0 13 1.33 9
Skiplist Low 0.01 6.8 2.09 4.3 0 9 3.11 6 0 13 2.56 9
Average 0.02 6.77 0.6 1.39 0.01 6.87 0.43 2.87 0.02 10.31 1.08 5.125

Table 2: Convergence speed and error of OPreSca and Binsearchfor Sparc workloads. Column E represents the final error compared
to the optimal thread count. S represents the total number of steps before the algorithm converges. ES represents the average step
error. SE>10% represents the number of steps with errors of more than 10%.

timal thread count with the average error of less than 2.5%. It does
so in less than 7 steps on average for both initial thread count as-
signments. On average OPreSca impacts the performance by more
than 10% in fewer than 3 intervals on Sparc and fewer than 4 inter-
vals on x86. Using the carefully chosen initial thread count assign-
ment instead of a random one slightly improves OPreSca’s perfor-
mance. Most notably, the total cost of using OPreSca is about 30%
lower.

OPreSca is roughly as accurate as Binsearch, but it is about 35%
faster. Also, the average per-step performance impact is smaller,
which means that the total cost of using OPreSca is smaller than
the cost of Binsearch. Overall, OPreSca with random initial thread
counts incurs 2.5x smaller cost than Binsearch on Sparc and 1.4x
on x86. Similarly, using OPreSca with the best fixed initial thread
counts is more than 3.5x less expensive than using Binsearch on
Sparc and about 2x on x86.

5. RELATED WORK
Scientific applications models. Several papers propose perfor-

mance models for highly scalable scientific applications on large-
scale machines, which typically address the question of how the
performance changes depending on the applications’ inputs. The
models treat the number and the configuration of CPUs as one of
the inputs. In contrast, PreSca considers a much wider range of
workloads, typically with lower scalability. The application’s in-
puts are considered a part of the workload and are not modeled
explicitly.

The idea of predicting the scalability of the scientific applications
using function approximation with linear logarithmic functions was
explored in [3]. The use of linear logarithmic functions gave good
results because the used workloads exhibit very good scalability,
unlike some of the workloads PreSca targets. In contrast, PreSca is
more general and therefore it uses a variety of function types, and
selects the best function type based on the workload.

In [18], the authors use statistical techniques to build piecewise
polynomial and neural network models of scientific programs. Un-
like PreSca, the models do not address the question of application’s
scalability when increasing the number of CPUs beyond what is
used during the measurements.

To predict the performance of the scientific applications, several
papers combine the predictions of sequential performance of the
tasks that nodes perform and the model of communication between
the nodes. Phantom [31] uses a deterministic replay of single-
node tasks and trace-driven network simulation. In [5] a convolu-
tion model is used to map the application signature to the machine
characteristics in order to predict the performance of the individual
tasks. The toolkit described in [19] semi-automatically models ap-
plication characteristics in architecture-neutral way to predict the
performance and low-level CPU events (such as cache and TLB
misses) of the sequential task’s executions. The toolkit uses a com-
bination of static and dynamic analysis of program binaries to pro-
duce much more detailed models than PreSca, which it uses to pre-
dict the performance of the applications on different machines from
the ones used during the dynamic analysis.



Rnd-Rnd-Rnd 12-24-36 Binsearch
E S ES SE>10% E S ES SE>10% E S ES SE>10%

Genome 0.01 6.8 0.19 3.2 0 5 0.13 2 0 12 0.21 5
Intruder 0 8.1 0.29 5.1 0.01 6 0.29 3 0 10 0.19 5
Kmeans High 0.03 7.5 0.28 5.1 0.03 10 0.23 5 0.03 10 0.23 6
Kmeans Low 0.09 7.6 0.41 6.4 0.07 9 0.39 8 0 11 0.25 7
Labyrinth 0.04 7.1 0.3 3.7 0.08 6 0.28 3 0 9 0.27 4
SSCA2 0 7.7 0.13 2.2 0 8 0.12 1 0 11 0.11 2
Vacation High 0 5 0.28 2.8 0 8 0.33 5 0 10 0.28 4
Vacation Low 0.01 6.2 0.33 3.2 0.01 5 0.23 2 0 12 0.25 6
Yada 0.01 7.3 0.23 3.5 0 9 0.2 4 0 12 0.21 5
Blackscholes 0 4.6 0.22 2.4 0 4 0.12 2 0 10 0.19 3
x264 0.01 8.7 0.15 2.6 0.02 4 0.09 1 0.01 11 0.19 3
Bodytrack 0 4.9 0.15 2.1 0 4 0.15 2 0 10 0.21 3
Ferret 0.03 9 0.21 3.8 0.03 5 0.13 2 0.05 11 0.24 5
Raytrace 0.11 7.1 0.26 7 0.11 8 0.25 8 0.11 9 0.25 9
Vips 0.09 7.5 0.35 6.9 0.15 6 0.4 6 0.11 10 0.39 10
SB7 Coarse R 0 4.6 0.1 2.8 0 7 0.1 5 0 11 0.16 8
SB7 Coarse RW 0.01 8.4 0.05 7.5 0 9 0.04 8 0.1 2 0.1 0
SB7 Coarse W 0.02 6.7 0.08 5.1 0 7 0.08 5 0 2 0.04 2
SB7 Medium R 0.03 4.2 0.3 1.9 0 7 0.44 4 0.01 11 0.35 7
SB7 Medium RW 0.02 8 0.15 5.2 0.03 4 0.08 3 0 9 0.14 6
SB7 Medium W 0.03 7.1 0.09 5 0.03 9 0.08 7 0 12 0.06 9
SB7 STM R 0.02 6.2 2.42 2.8 0.01 8 2.03 5 0.01 11 1.75 7
SB7 STM RW 0.02 8.5 1.09 5.7 0 7 1.78 4 0.02 12 1.05 9
SB7 STM W 0.13 7.2 0.86 4.1 0.01 6 0.36 4 0 13 0.75 8
Hashtable High 0.01 5.3 2.04 1.7 0 4 0.57 1 0 10 2.69 6
Hashtable Low 0.01 4.4 1.63 2.1 0.01 4 0.53 1 0 9 2.86 5
Linked list High 0 7.5 0.23 3.7 0 9 0.16 5 0 8 0.1 7
Linked list Low 0.07 6.7 1.5 3 0.01 4 0.16 2 0 12 1.32 7
RB tree High 0 7.3 0.23 4.9 0 6 0.34 4 0 10 0.28 7
RB tree Low 0 7.1 0.77 4.9 0 8 1.06 5 0 10 0.84 7
Skiplist High 0 4.2 0.83 1 0 4 0.9 1 0 2 0.31 1
Skiplist Low 0.01 6.7 1.24 2.7 0 8 1.16 4 0 11 0.83 7
Average 0.03 6.73 0.54 3.88 0.02 6.5 0.41 3.81 0.01 9.78 0.53 5.63

Table 3: Convergence speed and error of OPreSca and Binsearchfor x86 workloads. Column E represents the final error compared
to the optimal thread count. S represents the total number of steps before the algorithm converges. ES represents the average step
error. SE>10% represents the number of steps with errors of more than 10%.

PACE [22] proposes an object-oriented language for describing
performance characteristics of various system’s components. A
performance analysis and prediction framework that aims at pre-
dicting the performance of message-passing high performance ap-
plications is built around the language.

Detailed application models. Various formal modeling tech-
niques for distributed and concurrent systems have been pro-
posed [14], including Petri nets [23] and Queueing theory [17].
These techniques can be used to predict the performance and the
scalability of parallel workloads, they are well-known and widely
applicable. However, they require the users to create detailed mod-
els of the system, which is not always feasible or practical. They
were used to develop detailed analytical models for several appli-
cations [13, 16]. These models are very accurate, but they require
in-depth understanding of the applications and the system. In con-
trast, PreSca models the performance of the application without
using any information about its internals.

STM models. Models based on discrete-time Markov chains
were developed for several STM algorithmic design choices [10–
12]. The models were used to compare choices using the aggre-
gate transactional characteristics. This approach uses a much more
complex model and more information about the executions than
PreSca. The performance model from [25] focuses on modeling
transactional conflict behavior. Unlike PreSca, it requires heavy
instrumentation of the applications in order to collect the statistics
about the memory accesses and conflict patterns. The focus of the
model is on the conflict behavior and it mostly overlooks the other

effects that also affect the performance (e.g. increased rate of cache
misses). In contrast, our model describes all of the system’s com-
ponents using a simple function. A simple cost-benefit analysis that
is used to choose locking or transactions is described in [29]. This
analysis addresses a more limited question than PreSca.

6. CONCLUDING REMARKS
We presented PreSca, a pragmatic system for predicting the scal-

ability of parallel applications. Despite its simplicity, PreSca pro-
vides accurate predictions, as conveyed by our extensive evalua-
tion. We demonstrated how PreSca can be used to gain insight into
the performance of parallel workloads, including the comparison
of STM and locking versions of the same application, as well as
how it could be deployed on-line to dynamically assign the optimal
number of threads to a running application.

As we pointed out earlier in the paper, PreSca is by no means
argued to be a silver bullet in determining the scalability of parallel
applications in all contexts. We discuss in the following some of its
advantages and limitations.

Indeed, PreSca can be applied to any parallel application, regard-
less of the synchronization technique it uses. Furthermore, PreSca
does not use any knowledge of the workload or the computer sys-
tem, which makes it very general and easy to use. In particular,
PreSca does not require any instrumentation, which eliminates any
side-effect commonly associated with profiling. It only uses some
measure of performance, which needs to be provided by the appli-
cation in any case, if we want to reason about its performance. The



performance of the system can be measured in different ways. For
example, it could be expressed as the time the application needs
to execute some task, the number of committed transactions per
second or the speedup over the sequential, single-threaded code.
PreSca can be applied to any of these, because function approxi-
mation can be applied to any analytical function.

PreSca can help developers choose the synchronization tech-
nique for the application at the start of the application development.
Naturally, the inclination to use STM can be very high, as using
STM is simple. However, STM’s performance can be disappoint-
ing which can lead the developers to choose other, more involved,
techniques, such as locking or lock-free techniques. PreSca enables
the developers to gain insight into the STM-based prototypes of the
application. The prototype is relatively simple to produce—it re-
quires defining atomic sections in the sequential code, which is nec-
essary regardless of the synchronization technique used, so it does
not pose additional burden to the developers. Then, if PreSca’s pre-
dictions of the performance are not satisfactory, the application can
be improved by either using finer-grained transactions, or a com-
pletely different synchronization control technique. If the predic-
tions are satisfactory, the developers can use STM to develop the
application with some confidence that it will perform well. Such
trial-and-error approach is not very well suited for the other con-
currency control techniques because they require much more time
and effort to produce the prototype.

Because PreSca models the whole workload as a black-box, the
predictions are closely tied to the workload. Changing any under-
lying component (e.g. the number or the configuration of CPUs, or
the synchronization technique) can significantly reduce the applica-
bility, or even render useless, the performance function constructed
for the old system. Despite the high sensitivity to the changes of
the system, our experiments show that the performance function
remains reasonably accurate in some very important cases. In par-
ticular, the performance function constructed using threads running
on only a subset of CPUs in a machine, can accurately predict the
performance when threads running on other CPUs in the same ma-
chine are used.

Also, the ability of PreSca to predict the performance for work-
loads with inherently highly varying performance is limited. In
some cases, the performance varies so significantly between ex-
ecutions with the same number of threads that it truly cannot be
predicted with any approach. Even when variations are less sig-
nificant, like in kmeans low and kmeans high from STAMP
(Figures 10 and 14), they can mislead the prediction and steer it in
a wrong direction. This reduces the applicability of PreSca in cases
when measurements are noisy, but it does not make it useless.

PreSca does not provide any insight about why the system per-
forms the way it does even when the predictions are accurate. This
impacts the usability of PreSca as a performance debugging tool.
PreSca can still be used during performance debugging, but only to
predict the impact of already implemented modifications and not to
guide future optimizations.

References
[1] N. I. Akhiezer. Theory of Approximation. Dover Publications,

June 1992.
[2] Anonymous. A pragmatic approach for predicting scalability

of parallel applications, 2011. Technical report.
[3] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves,

B. de Supinski, and M. Schulz. A regression-based approach
to scalability prediction. In Proceedings of the 22nd annual
international conference on Supercomputing, ICS ’08, pages

368–377, New York, NY, USA, 2008. ACM.
[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC

benchmark suite: characterization and architectural implica-
tions. In Proceedings of the 17th international conference on
Parallel architectures and compilation techniques, PACT ’08,
pages 72–81, New York, NY, USA, 2008. ACM.

[5] L. Carrington, A. Snavely, and N. Wolter. A performance
prediction framework for scientific applications. Future Gen-
eration Computer Systems, 22:336–346, February 2006.

[6] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu,
S. Chiras, and S. Chatterjee. Software transactional memory:
Why is it only a research toy? ACM Queue, 6:46–58, Septem-
ber 2008.
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