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ABSTRACT

Chip designers place on-chip sensors to measure local tempera-
tures, thus preventing thermal runaway situations in multicore pro-
cessing architectures. However, thermal characterization is directly
dependent on the number of placed sensors, which should be mini-
mized, while guaranteeing full detection of all hot-spots and worst
case temperature gradient. In this paper, we present EigenMaps: a
new set of algorithms to recover precisely the overall thermal map
from a minimal number of sensors and a near-optimal sensor allo-
cation algorithm. The proposed methods are stable with respect to
possible temperature sensor calibration inaccuracies, and achieve
significant improvements compared to the state-of-the-art. In par-
ticular, we estimate an entire thermal map for an industrial 8-core
industrial design within 1°C' of accuracy with just four sensors.
Moreover, when the measurements are corrupted by noise (SNR of
15 dB), we can achieve the same precision only with 16 sensors.

ACM Categories & Subject Descriptors

B.7.1 [Integrated Circuits]: Types and Design Styles.

General Terms:Design, Performance, Algorithms
Keywords:Thermal characterization, principal component analy-
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1. INTRODUCTION

The continuous evolution of process technology enables the in-
clusion of multiple cores, memories and complex interconnection
fabrics on a single die [7]. Although many—core architectures po-
tentially provide increased performance, they also suffer from in-
creased IC power densities and thermal issues are a serious concern
in latest designs with deep submicron process technologies [5, 8].
In particular, it is key to design many—core designs that prevent
hot spots and large on-chip temperature gradients, as both condi-
tions severely affect system’s characteristics. In fact, thermal stress
increases the overall failure rate of the system [13], reduces per-
formance due to an increasing operating temperature [1], signifi-
cantly increases leakage power consumption (due to its exponential
dependence on temperature) and cooling costs [13, 3]. Designers
organize the floorplan to limit these thermal phenomena, for exam-
ple, by placing the highest power density components closer to the
heat sink [5]. However, the workload execution patterns are fun-
damental to determine the transient on-chip temperature distribu-
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Figure 1: Left: a simplified floorplan of the Ultrasparc T1, the
considered 8-core processorn. Right: an example of thermal
map [3].

tion in multicore designs and, unfortunately, these patterns are not
fully known at design time. Furthermore, these issues are ampli-
fied in many—core designs, where thermal hot-spots are generated
without a clear spatio-temporal pattern due to the dynamic task set
execution nature, based on external service requests, as well as the
dynamic assignment to cores by the many—core OS [3, 4].

Therefore, latest many—core designs include dynamic thermal
management approaches that incorporate thermal information into
the workload allocation strategy to obtain the best performance
while avoiding peaks or large gradients of temperature. Nowadays,
a few sensors are already deployed on the chip to obtain this ther-
mal information. However, their number is limited by area/power
constraints and their optimal placement to detect all the worst case
temperature scenarios is a very complex problem that has received
significant attention in the last years [2, 10, 12, 14, 15].

Unfortunately, the reconstruction of the entire thermal map from
a limited number of thermal sensors poses many — and still un-
resolved — questions. In particular, for a specific many—core ar-
chitecture, the two fundamental questions are the possible trade-
offs regarding the number of sensors to place and the reachable de-
gree of temporal and spatial thermal precision, as well as the sensor
placement to maximize the reconstruction performance.

In this paper, we propose to recover the entire thermal map using
a new method, which we call EigenMaps. Our method estimates
an entire temperature map using a limited set of measurements col-
lected by sensors, as inspired by [12]. First, we reduce the complex-
ity of the thermal map by considering an optimal low—dimension
approximation. Then, we use the sensors measurements to estimate
the parameters of the approximated thermal map. Specifically, our
contributions are:

e A reliable low—dimensional approximation of thermal maps
based on a thermal analysis done at design time.

e A reconstruction algorithm that recovers the thermal map ap-
proximation from the sensors measurements. The quality of
reconstruction can be adjusted according to the number of
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sensors and the quality of the measurements by adapting the
precision of the aforementioned approximation.

e A theoretical derivation of a sensor allocation method mini-
mizing the reconstruction error.

e An algorithm that finds a near-optimal allocation in polyno-
mial time.

Our methods are stable in the presence of noise: the error corrupt-
ing the measurements is not amplified by the reconstruction algo-
rithm. Moreover, the allocation algorithm can easily integrate sen-
sor location constraints, such as the unfeasibility of placing a sen-
sor into the cache [11]. The reconstruction algorithm achieves the
highest precision when compared to the available literature. The
price of this precision is the necessity of storing a matrix in the
memory/cache. The size of this matrix, and therefore the necessary
space in memory, grows linearly with the desired precision.

We substantiate our theoretical findings with extensive numeri-
cal evidence, based on thermal simulation of an eight—core Niagara
T1 Ultrasparc processor, shown in Fig. 1. These experiments show
that EigenMaps achieve a significant improvement when compared
to the state-of-the-art. In particular, we can estimate an entire ther-
mal map with high precision (<1°) with only four sensors. More-
over, we can achieve the same precision with measurements that
have a SNR of 15 dB using only 16 sensors.

2. BACKGROUND AND RELATED WORK

The thermal map of a processor can be estimated using two dual
strategies:

e Solution of the direct problem, given the heat sources and
the physical model of the temperature diffusion (e.g. a non-
linear diffusion equation),

e Solution of the inverse problem, given the value of the tem-
perature in some locations and some a-priori information about
the thermal map.

The first approach is limited by its requirements: the knowledge of
the heat sources can be ascribed to the knowledge of the detailed
power consumption of the different components. This information
cannot be known exactly at run time and moreover the computation
of a solution would require an excessive computational power.

On the other hand, it is impossible to solve the inverse prob-
lem from few, spatially localized, imprecise measurements without
some a-priori constraints on the thermal map, such as limited band-
width [2]. The performance is significantly impacted by the small
number of available sensors and the structure we consider for the
thermal map, i.e. the a-priori information. Nowroz et al. [12]
proposed a low-pass approximation strategy to reduce the num-
ber of sensors that are placed using an energy-oriented algorithm.
This sensor allocation algorithm has been improved by Reda et al.
[14] using a heuristic iterative approach to approximate an NP-hard
problem. The authors in [9] proposed a grid-based uniform sensor
placement followed by interpolation to approximate the tempera-
ture. These works estimated entire thermal maps, but the precision
of the estimates is limited by the sub-optimality of the proposed
a-priori information.

Other works have notable performance but are not focused on the
estimation of the entire thermal map. Namely, the approach in [19]
employs the correlation in power distribution to estimate the ex-
pected value of temperature at different locations of the chip using
a dynamically tuned Kalman filter. The problem of noisy measure-
ments has also been already considered. In particular, the correla-
tion between the different sensor measurements has been exploited
to denoise the measurements [18].

The remainder of the paper is organized as follows. In Section
3, we describe our three main findings: the optimal approximation,
the reconstruction algorithm and the sensor allocation algorithm.

637

Then, the experimental setup is described in Section 4, followed by
the experimental results in Section 5.

3. RECOVERY OF THERMAL MAPS

In this work, we use the two dual estimation strategies to op-
timize the reconstruction. First, we use the direct problem to de-
fine an optimal low—dimensional approximation. Then, we use this
approximation to recover thermal maps solving a simpler inverse
problem. The inverse problem is simplified because the approxi-
mation reduces the number of parameters that must be estimated
by the reconstruction algorithm.

The performance of the reconstruction algorithm depends on the
approximation quality and the conditioning of the inverse problem—
a complicated function of the sensor locations. Therefore, we con-
clude with a sensor allocation algorithm that minimizes the condi-
tioning of the inverse problem.

We consider a processor with an N—dimensional discrete tem-
perature map t. The temperature at coordinates ¢; and %2 is defined
astfi1, 2], for0 <4y < H—1land0 < o < W —1, where W and
H are the width and the height of the discretized thermal map, re-
spectively. We vectorize the thermal map as z[i], for0 < i < N—1
and N = W H, that is

x[i] =t [z mod H, {WH .
In other words, we stack the columns of the discrete thermal map to
transform the matrix into a vector. For the remainder of the paper,

a bold symbol, @, indicates vectors or matrices while the normal
symbols, x are reserved for scalars or elements of vectors.

3.1 Approximation of thermal maps

In this section, we derive the approximation method as a pro-
jection onto the low—dimensional linear subspace that minimizes
the mean squared error (MSE). It allows us to describe the N—
dimensional thermal map with only K coefficients, where K <
N.

We define the subspace at design time, exploiting the set of T’
thermal maps generated by a numerical solution of the direct prob-
lem. These are considered as realizations of the N—dimensional
random vector . We assume that the elements of {x; }sz_Ol have

zero mean to keep a simple notation'. Any vector & can be repre-
sented using a basis & as,

x[i] = i D[i, n]aln],

where «[n] are the coefficients of the expansion over the basis ®.
Note that once we define a basis for the data, knowing the coef-
ficients o is equivalent to knowing the thermal map . We can
describe the approximated thermal maps with a linear combination
of K columns of ® with K elements of o out of N as coefficient.
More precisely, the approximated thermal map & is given by the
following overdetermined system of equations

®[0, 0] ®[0, K — 1] al0]
B <I>[N;1,0] <I>[N71:,K71} a[K:f 1]
=Prark, (D

where the subscript K indicates the selection of the first K columns
for a matrix or the first K elements for a vector. This approxima-
tion is equivalent to a projection onto the K —dimensional subspace

9'Note that we can always subtract the mean to get zero-mean
vectors.
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Figure 2: Left: a selection of the first 32 EigenMaps for the Niagara T1 Ultrasparc. Note that the informative content decays rapidly
to just noise (the last two EigenMaps). This analysis is confirmed by the decay of the eigenvalues given in the right plot.

spanned by the columns of ® x. We suggest that the optimal sub-
space is the K—dimensional one introducing the smallest error in
the MSE sense. We define the following optimization problem to
find this basis and the relative optimal subspace we are looking for.

PROBLEM 1. Find the set of basis vectors in ® such that the
approximation T with the first K < N components, T = ® g,
minimizes the following error

N-1 2

Z D[i, n]aln]

n=K

¢=E[lz-z|°] =E

This dimensionality reduction technique is well known in other
fields under different names, such as Principal Component Analysis
(PCA) and Karhunen-Loeve Transform. It has an analytic solution
and it requires the covariance matrix Cp, that is defined for real
zero-mean random variables as

Celi, j] = E [[i]z[f]] .

We estimate this matrix using the set of 7" thermal maps simulated
at design time. The quality of the available dataset impacts the
quality of the estimate C,. This estimation is a well studied topic
[6] and will not be discussed here.

We give the solution to Problem 1 in the following proposition.
The proof is a well-known result.

PROPOSITION 1. Optimal Approximation Let us consider a set
of T thermal maps {x; }?:_01 with zero mean and covariance matrix
Cx. The orthonormal basis ® i that defines the approximation T
with the minimum error &, is formed by the K eigenvectors of C»
with the largest eigenvalues {/\n}fgol. Moreover, the approxima-
tion error is decreasing when K grows as

N-1

€= An

n=K

(@)

The connection between C,, and the optimal basis has an intu-
itive explanation. In fact, if the temperatures at different spatial
points are statistically correlated, then C, has nonzero elements
outside its diagonal. These elements can be used to infer the tem-
perature at points without sensors. Moreover, if the correlation is
strong, then the eigenvalues A, of C decay fast and we can pre-
cisely approximate the temperature & with a smaller K, see (2).
Recall that K is the number of parameters we need to estimate
from the sensor measurements; having the optimal approximation
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with the minimum K is fundamental to have a truthful reconstruc-
tion with just few sensors. Note that this optimal approximation
pays the increased precision with more space occupied in memory;
namely, we need to store the matrix ® i in the memory, with an oc-
cupation that is proportional to the desired resolution. Other meth-
ods, such as the one proposed in [12], use standard basis, avoiding
the occupation of memory but obtaining a lower precision.

Inspired by a classical work in computer vision [17], we call
EigenMaps the eigenvectors of C. An example for EigenMaps of
the Ultrasparc T1 multicore architecture is given in Fig. 2. Note
that each EigenMap represents a particular structure of the proces-
sor, such as cores, FPU and cache.

3.2 Reconstruction of thermal maps

Thermal maps are now defined only by their K coefficients acx
in the basis ® . Here, we explain how to estimate them from the
Sensors measurements.

In principle, we can find the coefficients by inverting the overde-
termined linear system of equations given in (1). However, this
would require the knowledge of the temperature z[i] at every spa-
tial location ¢. Let us assume that we can place only M sensors at
locations S = {4; }£,. Considering (1), it is equivalent to

®[j1,0] 1, K —1] a[0]
Ts = : : :
®[jar, 0] Pljae, K = 1] [a[K — 1]
= ®rak, 3)

where @ k is a matrix formed by the rows of ® x corresponding to
the sensor locations S, xs is a vector containing our sensor mea-
surements and o is the unknown vector.

Before we characterize the solution of (3), we need to introduce
the concept of noise into the model. More precisely, we have two
different noise sources affecting our measurements. First, we have
the approximation error ¢ = & — @ that is systematic and is due
to the approximation on the K—dimensional subspace. Second, the
measurements are corrupted by a significant amount of noise due
to many factors, such as thermal noise, quantization and calibration
inaccuracies [15]. Therefore, we consider the following modifica-
tion of (3),

zs +w = Prarx,

“

where w is the noise term. There is no exact solution to (4). How-
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ever, we can find the coefficients ax such that the error w.r.t. the
measured temperature is minimized. Namely, we solve the follow-
ing least square problem,

min [[@s — ®xdulf3.
ag

We reconstruct thermal maps using the K —dimensional approxima-
tion given in (1). This leads to the theorem for the reconstruction
of a thermal map from noisy measurements.

THEOREM 1. Noisy Reconstruction Consider an N—dimensional
thermal map x, with zero mean and covariance matrix Cy. Choose
a basis ®, such as the one in Proposition 1. Define a new matrix
® i according to (3) to represent the approximation on the K-
dimensional subspace and the sensing with M noisy sensors lo-
cated at S asin (4). If M > K and rank(®r) = K, then the
reconstruction T of the thermal map x is unique and equal to

—1 ~u

izq)[( (&’;‘EK) @Kws.

Moreover, the reconstruction MSE is bounded by the condition num-

ber k of ® k and the noise energy ||w||2 as
Ie =zl _ (7(@5)) ol 5)
[[]l2

This theorem highlights a focal point of our work: given M
sensors and an optimal K—dimensional subspace ®, the opti-
mal sensor location is the one that minimizes the condition number
of ® . If this condition number is minimal, the reconstruction er-
ror €, = & — xs is minimal for the given amount of noise w. In
other words, the condition number is an excellent metric to evalu-
ate different sensing patterns and find the optimal one. Note that,
once we have fixed M, increasing K will in general increase the
reconstruction error ¢, (worse conditioning) and decrease the ap-
proximation error € (better approximation). Therefore, we should

pick an optimal K such that the sum of € and ¢, is minimal.

3.3 A greedy algorithm for sensor allocation

In what follows, we present a greedy polynomial algorithm to
find the solution to the sensor allocation problem, i.e. choosing

M rows from ® i such that the resulting ®  is full rank and has
minimal condition number.

Intuitively, we are looking for M rows that form the best or-
thonormal basis for the M —dimensional subspace. The optimal so-
lution can be obtained by computing the condition number of all
possible sets of M rows out of the N original rows. This is equiv-
alent to computing (1]\\;) singular value decompositions, which is
computationally impossible, as this number is proportional to N!.

We propose a sensor allocation algorithm that has polynomial
complexity and achieves the best performance when compared to
the state-of-the-art. First, we compute the correlation between all

rows of ® g, then we remove one by one the rows that show the
highest correlation with the other ones. Intuitively, we do not con-
sider the sensor locations that would add the least informative con-
tent. Eventually, the remaining M rows indicate where we should
place the sensors. The structure of the algorithm is given in Algo-
rithm 1 and an example of the sensor allocation algorithm output is
given in Fig. 6 (a).

4. EXPERIMENTAL SETUP

We tested the proposed methods on an Ultrasparc T1 and we
simulate its thermal behavior using 3D-ICE [16]. This simula-
tor is based on a compact transient thermal model; it can be used
for thermal simulations of 2D or 3D chips cooled with conven-
tional or liquid cooling. The simulator has been validated against
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Algorithm 1 Sensor allocation
Require: Subspace ® i, number of sensors M
Ensure: Sensing matrix ® g, sensor locations S

1. Normalize the rows of ® x such that they are unit-norm. Call
U the normalized matrix.

2. Compute G = UU™ — I, where [ is the identity.

3. Repeat until M rows are left:

(a) Find the maximum element, i.e. G[i,j] = max G.

(b) Remove the i-th row and column from G.

(c) Build S from the remaining rows, build the sensing ma-
trix ) Ko _

(d) Ifrank(®x) < K, then

i. Restore ®x from the previous iteration.
ii. Break.

computational fluid dynamics simulations, it is easily configurable
and publicly available. The input of the simulation are the power
traces given in [7]. These traces describe the power consumed
by the elements of the processor while running different scenar-
ios/workload. The output is a set of thermal snapshots at each
time interval: namely, we have T' = 2652 thermal maps with
N = 3360, since the thermal maps are discretized with W = 60
and H = 56. Note that our thermal maps are rather coarse—grained
since we consider large blocks having the same average power con-
sumption, but we expect to obtain similar performance on more
detailed thermal maps.

As a reference, we choose in the literature the reconstruction al-
gorithm that shows the best performance for the entire thermal re-
construction. Specifically, we consider the k-LSE algorithm for re-
construction and the energy-center technique for sensor allocation,
both from [12]. k-LSE is also one of the first algorithms estimating
the entire thermal map from few measurements. Moreover, our re-
construction methods are conceptually close to their approach, the
main difference being the choice of the approximation subspace.

We consider two main figures of merit when comparing the re-
construction techniques. The MSE of the reconstruction, defined
as the average error over all thermal maps, that is

| NoiTl
—_— a2 —_ >y [ 2
MSE = 1 S 3 [yl - &0
=0 j7=0
where the index j points to all 7' thermal maps available in the

dataset. We also consider the maximum error among the maps, that
is defined as

MAX = max «; [i] — Z;i]|%,
2,

because localized peaks of error can lead to thermal runaway.

5. RESULTS

In what follows, we present and discuss the results of the numer-
ical experiments. All the experiments have been run on all the 2652
thermal maps generated during the simulation phase.

5.1 Reconstruction Performance

First, we show the impact of the choice of the subspace. We
compute the difference between a thermal map « and its approxi-
mation Z as a function of K for the two different methods, k-LSE
and EigenMaps. The results are given in Fig. 3 (a). The theoretical
optimality of the EigenMaps basis is confirmed by this experiment,
where we note how the error is exponentially lower than for the
DCT basis used in k-LSE. Note that this error has a strong impact
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Figure 3: Comparison between EigenMaps (dotted) and k-LSE (continuous). In all the plots, the MSE (dark green) is on the right
and the MAX (orange) is on the left. Note the difference of scale between the two y-axes. (a) The approximation error as a function
of the number of EigenMaps K. (b) The reconstruction error as a function of the number of sensors used. (c¢) The reconstruction
error in presence of measurement noise as a function of the SNR using 16 sensors.
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Figure 4: Visual comparison between EigenMaps and k-LSE
two different thermal maps (top and bottom row) using 16 sen-
sors. (a) The original thermal maps. (b) Reconstruction using
EigenMaps. (c) Reconstruction using the k-LSE method.

in the reconstruction phase. In fact, this error is noise for the re-

construction algorithm and is amplified by the conditioning of ®
according to (5).

Therefore, we expect to have the same exponential decay for the
reconstruction error. To numerically confirm this expectation, we
present our first core result: a direct comparison of the reconstruc-
tion performance in terms of MSE and MAX between EigenMaps
and k-LSE. The results are given in Fig. 3 (b). We observe that
the reconstruction error is approximately decaying as fast as the
approximation error. Here is our intuitive explanation: we can esti-
mate the parameters of more EigenMaps by increasing the number
of sensors M, while keeping a low conditioning. Therefore, the
total error follows closely the approximation error.

As further proof of the quality of our reconstruction, in Fig. 4 we
give a visual comparison between the original thermal map and the
reconstruction with the two methods using 16 sensors for each.

Lastly, we consider the realistic scenario of presence of noise
and/or measurements errors. We compare the reconstruction per-
formance using 16 sensors with EigenMaps and with k-LSE as a
function of the SNR of the measurements, defined as

]2
)
[[wl]2

SNR =

where w is the noise vector. The results are depicted in Fig. 3 (c)
and we note that EigenMaps performs better than k-LSE even when
there is noise introduced by sensor calibration inaccuracies. We
believe that the performance of k-LSE is negatively impacted by
two main factors: we consider a very small number of sensors and
the processor taken in consideration here (Ultrasparc T1 instead of
Athlon dual—core) generates more high frequency content, which
is not well-approximated by their choice of basis.

Among all the proposed results, we would like to underline the
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Figure 5: Comparison of the two sensor allocation techniques
with both reconstruction algorithms. For both reconstruction
algorithms, the greedy approach obtains better reconstruction
performance in terms of MSE.

most important ones: we can recover with few sensors (4-5) entire
thermal maps while keeping the MSE and the MAX below 1°C,
see Fig 3 (b). Moreover, if we consider a very noisy environment,
15dB of SNR, we can keep the same excellent reconstruction per-
formance with just 16 sensors, see Fig. 3 (c).

5.2 Sensor allocation performance

To underline the effectiveness of the sensor allocation algorithm,
we propose the following experiment. We compute the MSE for
four different combinations of reconstruction algorithms and sensor
allocation algorithms. In particular, we consider EigenMaps, k-
LSE, our greedy algorithm for sensor allocation and the energy-
center algorithm [12] (referred as “energy” in the figures). The
results are depicted in Fig. 5. Note that whichever reconstruction
method is chosen, the greedy algorithm improves the performance
w.r.t. to the energy-center algorithm. Hence, the greedy algorithm
leads to a better condition number of the inverse problem.

Finally, we look at the stability of our sensor allocation algorithm
when we have design constraints. This experiment is motivated by
the fact that we cannot place sensors in a very regular and/or critical
structure, such as a cache [11]. To analyze this scenario we com-
pare the reconstruction performance between the unconstrained and
the constrained cases. The constraints are defined using a mask of
allowed zones (black) that is given in Fig. 6 (b). The reconstruction
error is given in Fig. 6 (d), while examples of sensor allocations are
given in Fig. 6 (a) and (c).

6. CONCLUSION
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Figure 6: Comparison of the reconstruction error of the pro-
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sensors without constraint. (b) Mask of the contraint: sensors
can not be placed on the striped red zone. (c) Location of 32
sensors with constraint. (d) MSE (dark green) and MAX (or-

ange) as a function of the number of sensors.

5 10

In this work, we proposed a framework to optimally reconstruct
thermal maps of multicore processors using a small number of sen-
sors. We defined an optimal approximation of thermal maps to
reduce the number of parameters to estimate, without loosing pre-
cision. We reconstructed the thermal maps using a least square
approach and we exposed the critical role of the sensor location for
the conditioning of the inverse problem. We concluded proposing a
sensor allocation algorithm that minimizes the reconstruction error
by minimizing the conditioning of the inverse problem.

We compared EigenMaps with k-LSE [12] using extensive nu-
merical experiments. We demonstrated the higher fidelity of our
reconstruction using a smaller number of sensors. We showed how
the reconstruction performance is stable w.r.t. the noise introduced
by the electronics or by sensor calibration inaccuracies. Moreover,
even if we constrain the locations of the sensors, the reconstruc-
tion degrades only slightly. To the best of our knowledge, this is
one of the first works that recovers the entire thermal map while
considering noise measurements and constrained allocation.

To summarize, our work improves significantly the precision and
the stability achievable for the thermal monitoring of a multicore
processor. The price for the increased precision is the memory
needed to store the matrix ® g, that is the main limitation of the
proposed method. We also introduce the concept of minimizing
the condition number of the inverse problem for the sensor alloca-
tion problem, that is the critical figure of merit of the estimation
problem.
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