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Abstract—It is well known that transfer polynomials play an
important role in the network code design problem. In this
paper we provide a graph theoretical description of the terms of
such polynomials. We consider acyclic networks with arbitrary
number of receivers and min-cuth between each source-receiver
pair. We show that the associated polynomial can be described
in terms of certain subgraphs of the network.

I. I NTRODUCTION

It is well known in the network coding literature that the
problem of designing a linear network code that allows to
multicast information from a source to a set of receivers over
a specific network, can be reduced to the problem of assigning
values to variables so that a multivariate polynomial becomes
nonzero [2], [4]. Thus, inherently, each linear network coding
instance over a network is mapped to a polynomial, which we
will call network polynomial.

In this paper we try to understand how the structure of these
polynomials relates to the underlying network graph. We show
that every monomial of the network polynomial is associated
with a subgraph of the network with certain properties. For
networks with one receiver we show that there is, in fact, a
bijection between the monomials of the network polynomial
and subgraphs of the network that are minimal with respect
to the min-cut property.

For the networks with two receivers, we classify the sub-
graphs which correspond to the monomials of the network
polynomial.

Network polynomials play a significant role in network
code design. In the seminal paper [2] it was shown that
the existence of a network code over a graph relates to
roots of such polynomials. The size of the network coding
alphabet used also depends on algebraic properties of such
polynomials [5], [6]. These polynomials arise not only in
graphs, but also in deterministic networks [1], [3], [5]; Inthis
paper as well, we provide a new method that relates alphabet
size and code construction for special classes of networks
to polynomial structure and properties. Thus, we believe that
studying properties of such polynomials is interesting, not only
from a theoretical point of view, but also because of possible
applications.

The rest of this paper is organized as follows. Section II re-
views the algebraic framework, using a line-graph perspective;
Section III looks at transfer polynomials of a single receiver;
Section IV looks at multiple receivers; Section V presents a
specific application and Section VI concludes the paper.

II. M ODEL AND BACKGROUND

In this section we describe the network model, and briefly
review known results from [2], [4] from a line graph perspec-
tive; we use similar notation to [4].

a) Setup: We consider a directed acyclic graphG =
(V,E), where a sourceS would like to multicast information
to N receiversR1, . . ., RN . We use the terms “graph” and
“network” interchangeably. We are interested in scalar linear
coding over a finite fieldFq, i.e., the source hash symbols
{u1, . . . , uh} that she would like to send to all receivers, and
intermediate network nodes are allowed to linearly combine
their incoming symbols using coefficients from the fieldFq.
The min-cut from the source to each receiver is greater or
equal toh, i.e., there existh edge-disjoint paths from the
source to each receiver.

b) Line Graph: Unless otherwise specified, in this paper
we will work with the line graph of the original network. Given
a graphG = (V,E), the associated line graph is defined as the
graphH = (VL, EL) whose vertex setVL is the same as the
edge set of the graphG, i.e.,VL = E. Two verticese, e′ ∈ VL

are connected by an arc if and only if the starting point(head)
of e′ is the same as the ending point(tail) ofe in the graphG.

Without loss of generality, we can assume thatH has h
nodes, known assource nodes[4], each of which has a symbol
ui from a finite fieldFq to send to each receiver. Each receiver
has alsoh associatedreceiver nodes, through which it receives
information from the network. In the original graphG, theh
source nodes inH can be thought of ash auxiliary edges,
entering the source node and each bringing one of the symbols
ui; theh receivers nodes inH correspond inG to h incoming
edges each receiver has.

Note that in the graphH , for each receiver, there existh
vertex disjoint paths, where each path starts from one source
node and ends at one of the receiver nodes; these correspond
to theh edge-disjoint paths from the source to the receiver that
exist in G. We will come back to these paths in Section IV.
Also note that ifG is directed and acyclic, so isH [4].

Definition 2.1 (h-minimal subgraph):A subgraph L is
calledh-minimal with respect to the sourceS and the receivers
R1, R2 if the min-cut fromS to each ofR1, R2 is at leasth
and no proper subgraph ofL has this property.
For further notation and terminolofy about graphs, see [7].

c) Transfer and Network Polynomial:In linear network
coding overFq, intermediate nodes in the networkG linearly
combine their received information using coding coefficient
{xk} from the fieldFq. These coefficients are the unknown



variables in the algebraic formulation of the network code
design problem. In the line graph notation, we have one
variablexi associated with each edge of the graphH ; thus
we haveν , |EL| such variables.

Let X ∈ F
h
q be a vector that collects the source symbols

{u1, . . . , uh}, andY ∈ F
h
q a vector that collects the symbols

receiveri observes, thenY = A(R)X whereA(R) is theh×h
transfer matrix from the source to the receiverR [2], [4]. The
transfer matrix can be efficiently calculated, and capturesthe
linear transformation that the network operations impose on
the send source symbols.

Definition 2.2: The transfer polynomialfi for a receiverRi

is defined as

pi(x1, . . . , xν) , det(A(Ri))

Definition 2.3: The network polynomialassociated with a
multicast network coding instance is the product of the transfer
polynomials of all receivers, i.e.,

p(x1, x2, . . . , xν) , p1(x1, . . . , xν) · . . . ·pN(x1, . . . , xν) (1)

d) Network Code Design:In the framework we discuss,
the network code design problem asks to find an assignment
of values to the unknown variables{xi} so that the network
polynomial evaluates to a nonzero value. Indeed, in this case,
the transfer polynomial to each receiver evaluates to a nonzero
value; the transfer matrix to each receiver is full rank; and
thus, each receiver can invert the transfer matrix and decode
the source symbols. It is well known (see for example [2])
that such an assignment is always possible provided that the
field size is larger than the number of receivers.

III. T RANSFERPOLYNOMIAL

We now focus on a single receiverRi. For simplicity, we
will use A and p (instead ofA(Ri) and pi) for the transfer
matrix and the transfer polynomial, respectively.

We will work with the line graph of the original network;
thus, as mentioned in Section II, we assume that we have a
setS = {s1, s2, . . . , sh} of h source nodes with in-degree0
and a setR = {r1, r2, . . . , rh} of h receiver nodes. We also
assume that there areh vertex disjoint paths from the elements
of S to the elements ofR.

A. Monomials and Paths

As we discussed earlier, with every edgee ∈ E of the line
graph we have an associated variablexe; thus with every path
P = ei1 , ei2 , . . . , eik we can associate the monomial

f(P ) , xei1
.xei2

. . . . .xeik
.

Let P(i,j) denote the set of all(si, rj) paths, i.e., all paths
that connect source nodesi to receiver noderj . We then define

f(i,j) ,
∑

P∈P(i,j)

f(P ).

It is well known (and straightforward) that the entry(i, j)
of the transfer matrixA is nothing but the polynomialf(i,j).
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Fig. 1. An example of a network withh = 2. A DPQM is depicted with
in the figure using bold edges and dashed edges. The term corresponding to
this DPQM in the transfer polynomial isx1x8x13x15x16x5x10.

B. PQMs and DPQMs

We now define some new notation that will be useful
in stating our results. Consider a permutationπ of the set
{1, 2, . . . , h} and denoteπ(i) the ith element in the particular
permutation (recall there areh! possible permutations).

Definition 3.1 (PQM):A Perfect Quasi-Matching(PQM) is
a set ofh paths in which each path starts from a different node
si and ends at a different noderπ(i), for some permutationπ,
so that no two paths have the same starting or ending node.
The (sgn) of a PQM is defined as the sign ofπ.

Definition 3.2 (DPQM):A PQM is called Disjoint PQM
(DPQM), if theh paths are vertex-disjoint.
A DPQM corresponds to a set of edge-disjoint paths in the
original graph.

C. Main Result

Our first result says that, each monomial that will appear in
the transfer polynomial corresponds to a DPQM. In particular,
each monomial in the transfer polynomial is of the form
f(P1) . . . f(Ph) whereP1, . . . , Ph are paths corresponding to
a DPQM (i.e., edge-disjoint paths in the original graph). More
formally:

Theorem 3.1:

p(x1, . . . , xν) =
∑

π

∑

Pi∈P(i,π(i))

Pi ’s form a DPQM

(−1)sgn(π)
h∏

i=1

f(Pi)

Thus, one alternative way of finding the transfer polynomial,
would be to find all DPQMs in the network, and sum the
corresponding terms. Reversely, if we were given the transfer
polynomial, simply by counting the monomials it has, we
can learn how many DPQM’s the network has towards this
receiver; and we can identify for example intersection of
DPQM’s by identifying their common variables. Next we
give an example, and in the rest of this section we prove
Theorem 3.1.

Example 3.1:The network depicted in Figure 1 is the line
graph of a networkG with one source and one receiver and
min-cut equal to 2. The nodesv1, v2 correspond to the receiver
node of the graph and the nodesv10, v11 are associated with
the receiver node of the graphG. Let xi,j be the variable
associated with the edgevivj . Using the previous theorem,
each monomial of the transfer polynomial of the receiver
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corresponds to a disjoint PQM betweenv1, v2 and v10, v11.
Thus, the transfer polynomial is equal to:

f = x3x9x16x5x10 + x3x9x16x4x8x12

+ x2x11x15x8,10x4x8x12 + x2x10x6x9x16

+ x2x10x4x8x13x15x16 + x2x10x4x7x14

+ x1x8x13x15x16x5x10 + x1x7x14x5x10

+ x1x8x12x6x9x16 + x1x8x12x5x11x15x16

D. Steps in proving Theorem 3.1

We start from the following lemma, which states that the
only terms that can possibly appear as monomials in the
transfer polynomial are of the formf(P1) . . . f(Ph) where
P1, . . . , Ph are paths corresponding to a PQM.

Lemma 3.1:

p(x1, . . . , xν) =
∑

π

∑

Pi∈P(i,π(i)), for all i

(−1)sgn(π)
h∏

i=1

f(Pi)

Proof: The proof is straightforward and follows from
expanding the determinant of the transfer matrixA(G).

Next, we need to prove that in fact only the terms corre-
sponding to disjoint paths (that form a DPQM) will appear in
the transfer polynomial; all other terms will cancel out. For
this proof, we need to introduce first some notation.

Partial Order

Let ≺V be a partial order on the set of vertices ofH such
that v ≺V v′ if and only if there exists a directed path from
v to v′. This partial order can be extended to a total order on
the setV . For simplicity, we use the same notation≺V for
the total order. Similarly, we can define the total order≺E for
the set of edges ofG.

We can also define a partial order≺P on the set of source-
receiver paths defined as follows.P1 ≺P P2 if s1 ≺V s2 in
which si is the starting point of the pathPi for i = 1, 2.

Let P1, P2 be two source-receiver paths with different end
points. We say thatP1, P2 are crossing paths if they share
a common vertex. IfP1, P2 are crossing path andv is a
common vertex ofP1, P2, we say(v, {P1, P2}) is a crossing
pattern. Suppose that(v, {P1, P2}) is a crossing pattern and
assume thatPi = QiQ

′
i for i = 1, 2 in which Pi is an

(si, ri) path,Qi is an (si, v) path andQ′
i is an (v, ri) path.

By the dual of(v, {P1, P2}) pattern we refer to the crossing
pattern(v, {Q1Q

′
2, Q2Q

′
1}). It is easy to observe thatQ1Q

′
2

and Q2Q
′
1 are source-receiver paths that intersect atv and

also it can be easily checked that the dual of the pattern
(v, {Q1Q

′
2, Q2Q

′
1}) is (v, {P1, P2}). Furthermore, it is easy

to see that the dual of each pattern can not be identical as the
pattern.

Conclusion of the Proof

From Lemma 3.1, it suffices to show that the terms
(−1)sgn(π) ∏h

i=1 f(Pi) cancel each other when the pathsPi

are not pairwise vertex disjoint. We will show that we can
pair up all the crossing PQM’s into pairs so that both PQM’s

in a pair use the same set of edges but have opposite sgn’s. As
a result, their corresponding terms in the expansion ofP (G)
will cancel each other.

We define the dual of a crossing PQMP =
{P1, P2, . . . , Ph} as follows. LetC = {v1, v2, . . . , vk} ⊂ V
be the set of all the vertices of the network that belong to
more than one of the pathsPi, i = 1, . . . , h. Let v1 be the
minimum of the elements ofC with respect to the order≺V .
Let P1, P2, . . . , Pl, l ≥ 2 be all the elements ofP which
pass troughv1. Also, assume thatP1, P2 are the smallest
elements ofP1, P2, . . . , Pl with respect to the order≺P .
Clearly (v1, {P1, P2}) is a crossing pattern. Letv1, {Q1, A2}
be the dual of this pattern. Now, we define the dual ofP to
be the following PQM:

P ′ = {Q1, Q2, P3, P4, . . . , Ph}.
In the figure 2, LetP1 = v1v4v10 and P2 = v2v4v9v8v11.
Then(v4, {P1, p2}) is a crossing pattern.

Notice that:
1- P ′ is also a crossing PQM.
2- P ′ uses the same edges as ofP .
3- P ′ 6= P .
4- sgn(P ′) = − sgn(P ′).
5- The dual ofP ′ is P .
The only nontrivial parts of the above is the last two parts.

To see the last part, notice that ifv1 is the smallest crossing
point of P , it is also the smallest crossing point ofP ′. Also,
sinceP1, P2 are the two smallest elements ofP andQ1, Q2

have the same set of the starting points ofP1, P2, by definition
of ≺P , Q1, Q2 are the two smallest elements ofP ′. Finally,
since the dual of the dual of a crossing pattern is the original
pattern, the dual ofP ′ is P .

For the part[5], notice that the end points of the paths of
P ′ are matched the same way as the endpoints of the paths
in P with one exception for the endpoints of the pathsP1, P2

andQ1, Q2 which are matched differently.

IV. N ETWORK POLYNOMIAL

In the case of a single receiver the terms in the transfer
polynomial corresponded toh disjoint paths, i.e., a subgraph
of the network with some special properties. Similarly, in the
case ofN receivers, each term of the network polynomial
now also corresponds to a subgraph, that satisfies some special
properties.

A. Terms in the network polynomial

For simplicity we describe for the case of two receivers,
R1 andR2. Consider an acyclic line network with one source
set S = {s1, s2, . . . , sh} ⊂ V and two receiver setsR1 =
{r1, r2, . . . , rh} andR2 = {r′1, r′2, . . . , r′h}. As discussed in
Section II, the network polynomial can be calculated as

p(x1, . . . , xν) = det(A(R1)A(R2)) = p1(x1, . . .)p2(x1, . . .).

As we already showed, each monomial ofp1 (and p2) cor-
responds to a DPQM with respect to the setS and the set
R1 (R2). Therefore, each monomial ofp corresponds to a
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subgraph which is a union of two DPQM’s, one with respect
to the setsS,R and the other one with respect to the setS,R′.
Notice that the converse of this statement is not necessarily
true. This is due to the fact that one subgraph of the network
can be decomposed as the union of two DPQM’s in two
different ways and therefore, in the network polynomial some
terms might appear several time and they can possibly cancel
each other. Thus, it is important to classify those subgraphs
of the network that correspond to a monomial in the network
polynomial.

We next attempt to extract properties that these subgraphs
have; the following lemma summarizes some such easy prop-
erties.

Lemma 4.1 ( Properties):Consider a subgraphL that cor-
responds to a term appearing in the network polynomial.

1) The edges ofL can be decomposed into two DPQM’s;
one for each receiver.

2) Each vertex ofL has in-degree 0,1 or 2. If it has in-
degree 0, then it is a source node. If it has in-degree 1
and the its out-degree is 2, then its incoming edge must
appear in both DPQM’s.

3) Each vertex ofL has out-degree 0,1 or 2. If it has out-
degree 0, then it is a receiver node. If it has out-degree
1 and the its in-degree is 2, then its outgoing edge must
appear in both DPQM’s.

4) The mincut of each receiver onL is at leasth.
5) The power of each variable in a monomial indicates

whether the corresponding edge (in the original graph)
is appears in one of the DPQM’s or both.

Proof: Before we prove these properties, notice that each
term of the network polynomial is product of two terms of
transfer polynomials of the receivers.

1) This property is a direct implication of the previous
sentence.

2) Each DPQM is a subgraph of the graph for which the in-
degree and out-degree of each vertex is 0 or one. For the
union of two DPQM’s, the in-degree and out-degree of
each vertex is 0,1 or 2. The second part of this property
is also clear.

3) Similar to the previous property.
4) This property is a direct consequence of the first prop-

erty.
5) Trivial.

Notice that these properties can be naturally extended for
arbitrary number of receivers.

B. The case of two receivers

For the case of two receivers, we have a more concise
characterization of these subgraphs.

Theorem 4.1 (Main theorem):In the expansion of the prod-
uct of the transfer polynomials of the two receivers, each
monomial appears either only once or even number of times.
In particular, if the fieldFq has characteristic 2, then the
subgraphs corresponding the monomials of the network poly-
nomial can be uniquely decomposable into two DPQM’s.

Proof: The proof of this theorem is an immediate conse-
quence of Theorem 3.1

In order to prove the next theorem, we will need to define a
class of the directed graphs which we call them “2-alternating
colorable graphs”.

Definition 4.1 (2-alternating colorable graphs):An
acyclic directed graphK is called 2-alternating colorable if
we can color its edges with two colors blue and red so that
the following properties are satisfied.

i) Each vertex ofK has in-degree 0,1 or 2. The vertices
with in-degree 0 are called “head”.

ii) Each vertex ofK has out-degree 0,1 or 2. The vertices
with out-degree 0 are called “tail”. A vertex that is not
head or tail is called an intermediate node.

iii) Each vertex ofK has in-degree 1 if and only if it has
out-degree 1.

iv) Each intermediate vertex has the same number of incom-
ing and outgoing edges of each color.

v) Each head node has one outgoing edges from each color.
Each tail node has one incoming edge from each color.

In the next theorem of this section, we will prove that
a monomial of the network polynomial corresponds to a
subgraph of the network which satisfies the properties in
Lemma 4.1 and it does not contain a 2-alternating colorable
subgraph.

Theorem 4.2:Suppose thatH is an acyclic line-network
with the source setS and the receiver setsR1, R2 each of
which of min-cuth. Also, assume that the edges ofH can
be decomposed into two DPQM’s, one for each receiver. The
following statements are equivalent:

i) There exist at least two different ways for decomposing
the edges ofH into two DPQM’s.

ii) H contains an induced 2-alternating colorable subgraph
K such that no intermediate node ofK has a neighbor
in H other than its neighbors inK.

iii) There are even number of ways thatH can be decom-
posed into two DPQM’s.

iv) There is no term in the network polynomial correspond-
ing to the edges ofH .

Proof: First of all notice that if the edges ofH can be
decomposed into two DPQM’s then we exactly know which
edges will appear in both of DPQM’s.

i ⇒ ii

Suppose that the edges ofH can be decomposed into two
DPQM’s in at least two different ways. So, let us assume that
in one way,P1 is a DPQM toR1 andP2 is a DPQM toR2.
Suppose that in the other decomposition ofH , P ′

1 is a DPQM
to R1 andP ′

2 is a DPQM toR2. As we said before, the set
of edges that participate in bothP1 andP2 is the same set
as those edges that are inP ′

1 andP ′
2. The other edges ofH

belong to exactly one ofP1 or P2 and also exactly one of
P ′
1 or P ′

2. Thus, we can partition the edges ofH into the
following five groups.

1) Edges that are in all the DPQM’sP1,P2,P ′
1 andP ′

2.
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2) Edges that are only inP1 andP ′
1.

3) Edges that are only inP2 andP ′
2.

4) Edges that are only inP1 andP ′
2. We call these edges,

blue edges.
5) Edges that are only inP2 andP ′

1. We call these edges,
red edges.

The edges of the first three groups are called neutral edges.
Now we show that the red and the blue edges form a 2-
alternating colorable subgraphK of H . According to the def-
inition, we must verify 4 conditions. The first two conditions
are trivial, based on the fact thatK is a subgraph ofH and
H is the union of two DPQM’s and therefore each vertex of
H has in(out)-degree 0,1 or 2. To verify the third property,
suppose that if a vertexv of K has an incoming edgee.
Without loss of generality we may assume that this edge is
red. This means thate belongs toP2 and P ′

1. P2 is a set
of h disjoint paths fromS to R2. One of these paths uses
the edgee. Lets assume that the next edge of this path ise′.
Clearly, e′ appears inP2. So, e′ ∈ E(H). First assume that
e′ is not a neutral edge. Thus,e′ must appear inP ′

1 or in
P ′
2. If e′ belongs toP1, then by definition,e′ is also a red

edge and the third property of 2-alternating colorable graphs
is also satisfied. Otherwise,e′ appears inP ′

2. That means that
e′ belongs to one of the source-R2 paths. Thus, there exists
another edge which appears inP ′

2 and enters to the vertexv.
This edge is different frome sincee only appears inP2 and
P ′
1. Let us call this edgee′′. So, e′′ ∈ E(H) and therefore

e′′ appears inP1 or P2. As we know thate appears inP2

andP2 is a DPQM,e′′ can not appear inP2, too. Therefore
e′′ should appear inP1. Thereforee′′ is a blue edge. We can
continue the argument and we similarly deduce thatv must
have another outgoing blue edge. This shows that eitherv has
one incoming and one outgoing edges of the same color or it
has one incoming and one outgoing edges from each of the
two colors. Another possibility is thate′ is a neutral edge. In
this case,e′ appears inP ′

2. So, there exists an edgef entering
to v and belong toP ′

2. Obviously,f can not be an edge from
P2 sincee enters the same nodev and belongs to the DPQM
P2. So,f belongs toP1 and thereforef is a blue edge. Other
possibilities can be similarly analyzed. It only remains toshow
that no intermediate node ofK has a neighbor outsideK. This
is also easy to see because ifv is an intermediate node ofK
and it has 4 neighbors inK, it can not have more neighbors in
H since its total degree can not exceed 4. Ifv has total degree
2 in K then as we showed, both incoming and outgoing edges
of v are of the same color and it is easy to see that in this
case,v can not have neutral edges connected to it.

ii ⇒ iii

Suppose thatK is a 2-alternating colorable subgraph ofH
so that no intermediate node ofK has a neighbor inH other
than its neighbors inK. The main idea is to show that for
every way of decomposing the edges ofH into two DPQM’s,
we can define a dual decomposition and therefore we always
have even number of ways of decomposing the edges ofH
into two DPQM’s. We will do this job in two steps. In the

first step, we illustrate how we can use a decomposition ofH
into two DPQM’s to find a set of2h paths from the source
nodes to the receiver nodes. In the second step, we show that
the constructed paths form another decomposition ofH into
DPQM’s.

Step 1: Notice thatP1,P2 define a natural 2-alternating
coloring of K as follows. We color every edges ofK that
belongs toP1 with blue and those edges which belong toP2

with red. We show that no edge ofK can be appeared in both
P1,P2. In contrary, suppose that some edge ofK belongs to
both of DPQM’s. Lete be such an edge which is minimal
with respect to the order≺E . Let us assume that the head of
the edgee is the vertexv. Sincee is used in both DPQM’s,
v can not have another outgoing edge. By the definition of 2-
alternating colorable graphs,v should also have precisely one
incoming edge in the graphK. That means thatv is not a head
of K. Therefore,v as a vertex ofH can not have any neighbor
outsideK. Therefore,v as a vertex ofH has precisely one
incoming edge. Moreover this edge belongs toK and also this
edge must belong to both DPQM’s, because of the definition
of DPQM’s. But this is a contradiction by the minimality of
e. Therefore, the 2-coloring of the edges ofK is well-defined.
It is straightforward to check that this coloring satisfies all the
properties of a 2-alternating coloring.

Now, we are ready to introduce the dual decomposition of
P1,P2. We start fromP1,P2, then we 2-alternating color the
edges ofK, as explained before. Each of the DPQM’sP1,P2

consists ofh vertex disjoint paths from the source to each
receiver. We alter these paths as follows. We take one of the2h
paths, for example a pathP1 fromP1, and we start traversing it
until we reach a node ofK for the first time. At this point, we
are at a headv of K. By definition,v has two outgoing edges.
One edge belongs toP1 and the other belongs to a pathP ′

1

of P2. Instead of taking the edge ofP1, we keep traversing
the other edge fromP ′

1 and we keep traversing alongP ′
1.

Finally we arrive to a tail nodev′ of K. Again, by definition
v′ has two incoming edges. One from the pathP ′

1 and another
edge from some path inP1, say pathPi. Then we continue
alongPi until we reach a source node. Before we continue
the proof, we must mention two points. The first point is that
the vertexv′ might not be a receiver node ofR2 because any
receiver node has one incoming edges while tails ofK have
two incoming edges. So, every path from the source to the a
receiver will be transformed to another path from the source
to the same receiver but possibly another node of that receiver.
It is also possible that we never touch the subgraphK. In this
case the pathP1 remains unchanged. The second point is that
if we reach the subgraphK and we exit from it, we will never
meetK again. This is due to the fact that the only edges that
connectK to H are incoming edges to the heads ofK and
outgoing edges from the tails ofH .

Once we make the first source-receiver path, we start from
another source-receiver path of the initial decompositionand
we obtain the second source-destination path. We continue this
procedure until we find2h new source-receiver paths.
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step 2: To complete the proof, we must check the following
properties.

1) Each of the2h receiver nodes receives one path from a
source node.

2) No two paths to one receiver will cross.
3) The dual of the dual of a decomposition is the original

decomposition.
4) No decomposition is its own dual.

The first property is easy to verify. In fact, we initially have
2h paths. They transform to another2h paths and since the
in-degree of each receiver node is 1, no two new paths enter
to the same receiver node. So, they must enter to all the2h
paths.

For the second property, suppose that two pathsP ′
1, P

′
2

which enter to two nodes of a receiver intersect at some vertex.
Notice that the crossing point of these paths can not be inside
K because those vertices ofP ′

1, P
′
2 that belong toK belong

to two paths of the DPQMP2 and those paths never cross.
Similarly, P ′

1, P
′
2 can not cross outsideK because outsideK,

P ′
1, P

′
2 are parts of paths of the DPQMP1 and the paths of a

DPQM never cross.
The third property is clear when we use the same subnet-

work K when want to find the dual of the dual decomposition.
SinceH might contain several 2-alternating colorable subnet-
work for which intermediate nodes ofK have no neighbors
outsideK, we should specify which subgraph we take. Once
we fix K, according to the described way of making the
dual of a decomposition, it is clear that the dual of a dual
decomposition is the original decomposition.

Regarding the last property, notice thatK is a non-empty
subgraph ofH . So, at least one of the2h paths of theP1,P2

should pass throughK. Obviously this path will be changed
to another path. So, the dual of a decomposition has at least
one path that is not in the original decomposition.

Thus, ifH can be decomposed into two DPQM’s in at least
two different ways, then we can pair up the decompositions
of H into DPQM’s.

iii ⇒ iv

Since we are working in a characteristic 2 field, the sum-
mation of even number of identical terms vanishes.

iv ⇒ i

Since there is at least one decomposition of the edges of
H into DPQM’s but in the network polynomial, there is no
term corresponding to the edges ofH , there should be another
decomposition ofH into DPQM’s to cancel the other one.

Theorem 4.3:If H is anh-minimal subgraph ofG then the
network polynomial has a unique monomial corresponding the
edges ofH .

Proof: In the network polynomial we set all the variables
corresponding to the edges ofG that are not inH , zero. The
resulting polynomial is the network polynomial of the network
H . Since we assume thatH is h-minimal, there network
coding problem for the networkH can be solved. So, the

resulting polynomial is non-zero. Thus, there exists at least
one monomial whose terms correspond to some edges ofH .
On the other hand, sinceH is minimal, there is no monomial
of the resulting polynomial whose variables correspond to a
proper subset of the edges ofH . Therefore, there exists a
unique monomial corresponding to the edges ofH .

Corollary 4.1: An h-minimal subgraphH of G is uniquely
decomposable into DPQM’s.

Proof: The statement of the corollary is a direct conse-
quence of 4.2 and 4.3.

As a direct application of 4.3, we get an alternative proof
for the following known result.

Corollary 4.2: The multicast network coding problem with
2 receivers can be solved over the binary field.

Proof: We take a minimal sub-network of the main
network that has the same min-cut to each receiver as the
original network. We set the variables corresponding the edges
of this subnetwork to value 1 and any other variable to the
value 0.

Example 4.1:Let G be the network in Figure 1. For every
receiver, there are exactly two different set of disjoint PQM’s.
The transfer polynomial of the first receiver is equal to
x1y3a1a3p1q1 − x3y1a1a3p1q1 = a1a3p1q1(x1y3 − x3y1).

V. A CODE-DESIGN APPLICATION

In this section we give an example of why studying the
structure the transfer and network polynomials can be useful.
We look at a special case of network polynomials, that come
from combination networks, and using a simple combinatorial
argument, we provide an alternative code construction as
well as an associated lower bound on the alphabet size1 this
construction uses, that matches the best known such bound.

Combination Network:A combination network with min-
cut h is a layered network with 4 layers of nodes. The
first layer consists of a single sources. The second layer
has m ≥ h nodes. We label them asv1, v2, . . . , vm. The
sources is connected to allvi’s. The third layer hasm nodes
w1, w2, . . . , wm. Eachvi is connected towi. The last layer
consists ofN receivers each of which hash in-neighbors from
the nodes of the third layer. Without loss of generality we can
assume that no two receivers have exactly the same set of
in-neighbors. This is due to the fact that if some receivers
have the same set of in-neighbors, we can keep one of them
and drop the rest. Any network code solution for the resulting
network can be naturally extended to a solution for the original
network.

Network polynomial of combination network:The line
graph of a combination network withh = 2 is a 4-layered
network. The first layer has two source nodess1, s2. The
second layer consists ofm nodesv1, v2, . . . , vn. For each
i = 1, 2, j = 1, 2, . . . , n, si is connected tovj . Let xi(yi) be
the variable associated with the edges1, vi(s2, vi). The third

1This translates to a sufficient condition on the field size forwhich the
network coding problem can always be solved.
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layer has alson nodesw1, w2, . . . , wm. Eachvi is connected
to wi. Let ai be the variable associated with that edge. The last
layer containsN pairs of receiver nodes. Thei-the pair has2
nodesri, ti. Each pair has two in-neighbors fromwj ’s where
one is connected tori and one is connected toti. Suppose
that ri is connected towf(i) and ti is connected towg(i) in
which f, g are two functions from the set[N ] to the set[m],
in which [j] = {1, 2, . . . , j}. In Figure 2 and Example 4.1, we
usedpi andqi instead ofwf(i) andwg(i) for simplicity.

Suppose that the variable associated to the edgeri, wf(i) is
pi and the one associated to the edgeti, wg(i) is qi. As we
saw in Example 4.1, the transfer polynomial of each receiver
can be computed. Therefore, the network polynomial ofG is
equal to:

p =

N∏

i=1

af(i)ag(i)piqi(x1,f(i)x2,g(i) − x2,f(i)x1,g(i)) (2)

Figure 2 shows the line graph of a combination network with
h = 2,m = 4, N = 5.

Alphabet Size:We use the results of the previous sections
to prove the following theorem.

Theorem 5.1:For every combination network withN re-
ceivers and min-cut 2 to every receiver, there exists a network
code over any field of size larger than

√
2N .

Proof: Let G be a combination network. The network
polynomial ofG is expressed in 2. We must find an assignment
of the values to the variables so thatI evaluates to a non-zero
value. Setai = pi = q1 = x1,g(i) = x1,f(i) = 1, zi = x2,i for
all i = 1, 2, . . . ,m.

The network polynomial then becomes:

I =

N∏

i=1

(zf(i) − zg(i))

Thus, we only need to show that if the field size is larger
than

√
2N , we can always assign values tozi’s such that

zf(i) 6= zg(i), for i ∈ [m]. Let F be a finite field of size
larger than

√
2N . Each variablezi appears in certain number

of parenthesis. Without loss of generality suppose thatz1 is a
variable that appears in the minimum number of parenthesis.
Let’s assume thatz1 appears inl1 parenthesis.

We remove all the parenthesis containingz1 from the
product and again without loss of generality, we assume
that z2 is the least appeared variable among the remaining
terms. Let’s assume thatz2 appears inl2 of the remaining
parenthesis. We exclude all the terms withz1, z2 from the
product and we repeat the procedure. What we end up is
an ordering of the variables andN numbersl1, . . . , lN . Let
lk = max {l1, . . . , lN}. We show that we can always find an
assignment to the variableszi from any field of size larger
than lk such thatI is not zero. We assign values in to the
variables based on the ordering we defined above, in the
opposite direction. Namely, we first assign arbitrary valueto
zN , then we chose an appropriate value forzN−1 and at the
end we find a right value forz1. At each stepi we must make
sure that we select a value for the variablei such that it is

s1

s2

x1

x2

x3

x4

y1

y2

y3

y4

a1

a2

a3

a4

p1

q1

p2

q2

p3

q3

p4

q4

p5

q5

Fig. 2. An example of the line graph of a combination network.

different from the value of every other variable that appears
with zi in some parenthesis. Clearly, if the field size is larger
than li, we have enough element in the field to select an
appropriate value forzi. Sincelk is the largestli, we can find
an appropriate value for all the variables. Thus, it is enough
to show thatlk ≤

√
2N . We prove this inequality using two

inequalities.

i lk ≤ m− k
ii lk ≤ 2N/(m− k)

The first inequality holds because when we select thek-th
variable, there arem−k other variables left. Even ifzk appears
with all the left variables, it will be appearedm−k times. The
second inequality holds because in thek-th step, each of the
m−k+1 variables appear at leastlk times in the parenthesis.
There are at mostN parenthesis and each parenthesis has
exactly two elements. Therefore,lk(m − k + 1) ≤ 2N and
therefrom, we deduce the desired inequality. If we multiply
both sides of the two inequalities, we can deduce thatlk ≤√
2N .

VI. CONCLUSIONS

In this paper, we etsablished relationships between the
monomials that appear in the transfer and network poly-
nomials to graph theoretical properties of the underlying
network configuration. Several questions remain open, with
most prominent a more exact characterization of the terms of
the network polynomial for an arbitrary number of receivers.
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