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Abstract—It is well known that transfer polynomials play an II. MODEL AND BACKGROUND

important role in the network code design problem. In this In this section we describe the network model, and briefly
paper we provide a graph theoretical description of the terns of '

such polynomials. We consider acyclic networks with arbitary ~F€VIEW known .re.sults from (2], [4] from a line graph perspec-
number of receivers and min-cuth between each source-receiver tive; we use similar notation to [4].

pair. We show that the associated polynomial can be describe a) Setup: We consider a directed acyclic gragh =
in terms of certain subgraphs of the network. (V, E), where a sourcé& would like to multicast information
to N receiversRy, ..., Ry. We use the terms “graph” and
I. INTRODUCTION “network” interchangeably. We are interested in scalagdin
coding over a finite fieldr,, i.e., the source has symbols

It is well known in the network coding literature that the u1,. .., ux} that she would like to send to all receivers, and

a specific network, can be reduced to the problem of assigni.‘:ﬁ
values to variables so that a multivariate polynomial bmequal toh, i.e., there existh edge-disjoint paths from the
nonzero [2], [4]. Thus, inherently, each linear network iogd source to ,ea.cr.l’ receiver

instance over a network is mapped to a polynomial, which we b) Line Graph: Unless otherwise specified, in this paper

will caI.I network polynomial we will work with the line graph of the original network. Gine
In this paper we try to understand how the structure of thegegrath — (V, E), the associated line graph is defined as the
polynomials relates to the underlying network graph. We/\shograth — (Vi, E1) whose vertex set7, is the same as the
th.at every monomial of the networl_< polynomial is asgociateéjdge set of the grapfi, i.e.,V;, = E. Two verticese, ¢’ € V;,
with & subgraph of the network with certain properties. Fofie connected by an arc if and only if the starting point(head
networks with one receiver we show that there is, in fact, & ./ is the same as the ending point(tail)oi the graphG.
bijection between the monomials of the network polynomial \without loss of generality, we can assume ttfathas h
and subgraphs of the network that are minimal with respef%desy known asource nodef4], each of which has a symbol
to the min-cut property. _ _ u; from a finite fieldF, to send to each receiver. Each receiver
For the networks with two receivers, we classify the sulas alsa, associatedeceiver nodesthrough which it receives
graphs which correspond to the monomials of the netwofkformation from the network. In the original gragh the h
polynomial. source nodes iff can be thought of a& auxiliary edges,
Network polynomials play a significant role in networkentering the source node and each bringing one of the symbols
code design. In the seminal paper [2] it was shown that: the  receivers nodes il correspond inG to i incoming
the existence of a network code over a graph relates dgges each receiver has.
roots of such polynomials. The size of the network coding Note that in the grapti, for each receiver, there exit
alphabet used also depends on algebraic properties of syghex disjoint paths, where each path starts from one sourc
polynomials [5], [6]. These polynomials arise not only ihode and ends at one of the receiver nodes; these correspond
graphs, but also in deterministic networks [1], [3], [5];tis  to theh edge-disjoint paths from the source to the receiver that
paper as well, we provide a new method that relates alphabgist in G. We will come back to these paths in Section IV.
size and code construction for special classes of netwolkgo note that ifG is directed and acyclic, so & [4].
to polynomial structure and properties. Thus, we beliea th Definition 2.1 @-minimal subgraph):A subgraph L is
studying properties of such polynomials is interestind,andy  calledh-minimal with respect to the sourceand the receivers
from a theoretical point of view, but also because of possibl,, R, if the min-cut fromS to each ofR;, R, is at leasth

e min-cut from the source to each receiver is greater or

applications. and no proper subgraph @f has this property.
The rest of this paper is organized as follows. Section Il ré&or further notation and terminolofy about graphs, see [7].
views the algebraic framework, using a line-graph perspect ¢) Transfer and Network Polynomialn linear network

Section Il looks at transfer polynomials of a single reegjv coding overlF,, intermediate nodes in the netwotklinearly
Section IV looks at multiple receivers; Section V presents@mbine their received information using coding coeffitien
specific application and Section VI concludes the paper. {z;} from the fieldF,. These coefficients are the unknown



variables in the algebraic formulation of the network code
design problem. In the line graph notation, we have one
variable x; associated with each edge of the grafih thus

we haver = |E;| such variables.

Let X € IFZ be a vector that collects the source symbols
{ui,...,up}, andY € IFZ a vector that collects the symbols
receiver; observes, thelr = A(R)X whereA(R) is thehxh
transfer matrix from the source to the receivei2], [4]. The Fig. 1. An example of a network with = 2. A DPQM is depicted with
transfer matrix can be efficiently calculated, and capttines in the figure using bold edges and dashed edges. The termsponeing to
linear transformation that the network operations impose §!s PPQM in the transfer polynomial is1 213215216 25710-
the send source symbols.

Definition 2.2: Thetransfer polynomialf; for a receiverR;
is defined as B. PQMs and DPQMs

z,) 2 det(A(R;)) We now define some new notation that will be useful
in stating our results. Consider a permutationof the set
Definition 2.3: The network polynomialssociated with a {1,2,... A} and denoter(i) theith element in the particular
multicast network coding instance is the product of thesfan permutation (recall there are possible permutations).
polynomials of all receivers, i.e., Definition 3.1 (PQM):A Perfect Quasi-MatchingPQM) is
a set ofh paths in which each path starts from a different node
s; and ends at a different nodg;), for some permutatiom,
d) Network Code Designtn the framework we discuss, S0 that no two paths have the same starting or ending node.
the network code design problem asks to find an assignmdiie (sgn) of a PQM is defined as the sign of
of values to the unknown variablds;;} so that the network  Definition 3.2 (DPQM):A PQM is called Disjoint PQM
polynomial evaluates to a nonzero value. Indeed, in thig,caéDPQM), if the i paths are vertex-disjoint.
the transfer polynomial to each receiver evaluates to agronzA DPQM corresponds to a set of edge-disjoint paths in the
value; the transfer matrix to each receiver is full rank; angriginal graph.
thus, each receiver can invert the transfer matrix and decod .
the source symbols. It is well known (see for example [2fy- Main Result
that such an assignment is always possible provided that theur first result says that, each monomial that will appear in
field size is larger than the number of receivers. the transfer polynomial corresponds to a DPQM. In particula
each monomial in the transfer polynomial is of the form
f(Py)...f(P,) wherePy, ..., P, are paths corresponding to
We now focus on a single receivét;. For simplicity, we a DPQM (i.e., edge-disjoint paths in the original graph).rlo
will use A andp (instead ofA(R;) and p;) for the transfer formally:
matrix and the transfer polynomial, respectively. Theorem 3.1:
We will work with the line graph of the original network; h
thus, as mentioned in Section Il, we assume that we have _ _1\sgn(m) :
setS = {s1,s9,...,5,} of h source nodes with in-degree P, o) ;PEP Z (=1) }:[lf(Pl)
and a setR = {ry,rs,...,r,} of h receiver nodes. We also P's form & DPQM
assume that there ahevertex disjoint paths from the element
of S to the elements oR.

pi(xla" )

p(xl,:vg,...7xl,)épl(xl,...,xu)-...-pN(xl,...,x,,) (1)

IIl. TRANSFERPOLYNOMIAL

S1'hus, one alternative way of finding the transfer polynomial
would be to find all DPQMs in the network, and sum the
A. Monomials and Paths corresponding terms. Reversely, if we were given the teansf
polynomial, simply by counting the monomials it has, we
can learn how many DPQM'’s the network has towards this
receiver; and we can identify for example intersection of
DPQM's by identifying their common variables. Next we
f(P) 4 Te, Tep o Te,, - give an example, and in the rest of this section we prove
) Theorem 3.1.
Let P(; ;) denote the set of alls;, ;) paths, i.e., all paths  Eyample 3.1:The network depicted in Figure 1 is the line
that connect source nodgto receiver node;. We then define graph of a networkG' with one source and one receiver and
Fon 2 Z £(P) min-cut equal to 2. The nodes, v, correspond to the receiver
(#.9) ' node of the graph and the nodeg,vi; are associated with
the receiver node of the grapH. Let z; ; be the variable
It is well known (and straightforward) that the entfy j) associated with the edggwv;. Using the previous theorem,
of the transfer matrixA is nothing but the polynomiaf(; ;). each monomial of the transfer polynomial of the receiver

As we discussed earlier, with every edge F of the line
graph we have an associated variablethus with every path
P =e;,e€;,,...,e;, We can associate the monomial

PePg, 5



corresponds to a disjoint PQM between v, and vig,v11.  in a pair use the same set of edges but have opposite sgn’s. As

Thus, the transfer polynomial is equal to: a result, their corresponding terms in the expansio® )
will cancel each other.
f = 23292167510 + U39 T 16748712 We define the dual of a crossing PQMP =
+ T2X11T1528,10L4T8L12 + T2L10L6L9L16 {P1, P,...,P,} as follows. LetC = {vy,v9,...,05} CV
+ ToT10T4TIT13T15%16 + ToT10T4TTT14 be the set of all the vertices of the network that belong to

more than one of the pathB;,: = 1,...,h. Let v; be the

+ T128T13T15T16T5L10 + T1T7L14T5L10 . .
minimum of the elements of’ with respect to the ordexy .

+ T1T8L12L6L9L16 + T1T8L1205L11 015816 Let Py, Ps,....P,1 > 2 be all the elements o which
D. Steps in proving Theorem 3.1 pass troughv;. Also, assume thaif;, P, are the smallest
elements of Py, P, ..., P, with respect to the ordexp.

We start from the following lemma, which states that th : .
only terms that can possibly appear as monomials in tlg:éearly (1, {P1, 2}) is a crossing pattern. Let, {Q1, 4>}

transfer polynomial are of the fornf(Py)... f(Pr) where b: ,:EZ %TI?)IW?; th||DsQ;|)\;|':1.ttern. Now, we define the dualFoto
Py, ..., P, are paths corresponding to a PQM. g |
Lemma 3.1: P ={Q1,Q2,P3,Py,..., Py}

- 1 sgr(x) h p In the figure 2, LetP, = wvivav10 and Py = vyv4v9v8v11.
(a1, 20) = Z Z (=1) Hf( i) Then (vy, {P1,p2}) is a crossing pattern.
T Pi€P(i x(i))s for all % =1 NOtICG that
Proof: The proof is straightforward and follows from 1- P’ is also a crossing PQM.
expanding the determinant of the transfer matki¥G). MW  2- P’ uses the same edges asff
Next, we need to prove that in fact only the terms corre3- P’/ #£ P,
sponding to disjoint paths (that form a DPQM) will appear in4- sgn(P’) = — sgnP’).
the transfer polynomial; all other terms will cancel outrFo 5- The dual ofP’ is P.
this proof, we need to introduce first some notation. The only nontrivial parts of the above is the last two parts.
Partial Order To_see the _Ia_st part, notice thatuf is th_e smgllest crossing
) i point of P, it is also the smallest crossing point Bf. Also,
Let <y be a partial order on the set of verticesfsuch since P,, P, are the two smallest elements Bfand Q1, Q-
;. . . .
thatv <y o if and only if there exists a directed path fromyaye the same set of the starting pointsef P, by definition
v to v'. This partial order can be extended to a total order Q4 <p, O1,Q- are the two smallest elements Bf. Finally
the setV. For simplicity, we use the same notatien, for - gince the dual of the dual of a crossing pattern is the origina
the total order. Similarly, we can define the total ordes for pattern, the dual of’ is P.
the set of edges af. _ For the part[5], notice that the end points of the paths of
We can also define a partial order» on the set of source- p/ are matched the same way as the endpoints of the paths
receiver paths defined as follows; <p P if s1 <v s2in i P with one exception for the endpoints of the paths P

which s; is the starting point of the patR; for i = 1, 2. andQ1, Q» which are matched differently.
Let P;, P, be two source-receiver paths with different end ’

points. We say thaf’;, P, are crossing paths if they share IV. NETWORK POLYNOMIAL
a common vertex. IfP;, P, are crossing path and is a In the case of a single receiver the terms in the transfer
common vertex ofP, P, we say(v, {P1, P»}) is a crossing polynomial corresponded tb disjoint paths, i.e., a subgraph
pattern. Suppose thav, { P, P»}) is a crossing pattern andof the network with some special properties. Similarly, hie t
assume that?, = Q;Q; for i = 1,2 in which P, is an case of N receivers, each term of the network polynomial
(si,ri) path,Q; is an (s;,v) path and@’ is an (v,r;) path. now also corresponds to a subgraph, that satisfies somebkpeci
By the dual of (v, {P1, P»}) pattern we refer to the crossingproperties.
pattern(v, {Q1Q%, Q=2Q} }). It is easy to observe thad; Q) . .
and Q2@ are 520urce-1receiver paths that intersect eangd A. Terms in the network polynomial
also it can be easily checked that the dual of the patternFor simplicity we describe for the case of two receivers,
(v, {Q1Q%, Q2Q}}) is (v, { P, P»}). Furthermore, it is easy I21 and R,. Consider an acyclic line network with one source
to see that the dual of each pattern can not be identical as 8¢S = {s1,s2,...,s,} C V and two receiver set®; =
pattern. {ri,ro,...,rp} and Ry = {r{,r5, ..., 7, }. As discussed in
Section Il, the network polynomial can be calculated as

From Lemma 3.1, it suffices to show that the term@(@1s -+ @) = det(A(R1) A(Rz)) = pi(@1, .- )p2(z1, - )-
(—1)s9rm) H?:l f(P;) cancel each other when the patRs As we already showed, each monomialaf (and p2) cor-
are not pairwise vertex disjoint. We will show that we camesponds to a DPQM with respect to the getand the set
pair up all the crossing PQM’s into pairs so that both PQMR; (R:). Therefore, each monomial gf corresponds to a

Conclusion of the Proof



subgraph which is a union of two DPQM’s, one with respect  Proof: The proof of this theorem is an immediate conse-
to the setsS, R and the other one with respect to the Sek’. quence of Theorem 3.1 [ ]
Notice that the converse of this statement is not necegsaril In order to prove the next theorem, we will need to define a
true. This is due to the fact that one subgraph of the netwarlass of the directed graphs which we call them “2-altenati
can be decomposed as the union of two DPQM'’s in twmolorable graphs”.

different ways and therefore, in the network polynomial som Definition 4.1 (2-alternating colorable graphspn

terms might appear several time and they can possibly canaeyclic directed graphik is called 2-alternating colorable if
each other. Thus, it is important to classify those subggapive can color its edges with two colors blue and red so that
of the network that correspond to a monomial in the netwotke following properties are satisfied.

polynomial. i) Each vertex ofK has in-degree 0,1 or 2. The vertices
We next attempt to extract properties that these subgraphs \yith in-degree 0 are called “head”.

have; the following lemma summarizes some such easy progy Each vertex of X' has out-degree 0,1 or 2. The vertices

erties. _ . with out-degree O are called “tail”. A vertex that is not
Lemma 4.1 ( Properties)Consider a subgraph that cor- head or tail is called an intermediate node.
responds to a term appearing in the network polynomial. iy Each vertex of K has in-degree 1 if and only if it has
1) The edges of. can be decomposed into two DPQM’s; out-degree 1.
one for each receiver. iv) Each intermediate vertex has the same number of incom-
2) Each vertex ofL has in-degree 0,1 or 2. If it has in- ing and outgoing edges of each color.

degree O, then it is a source node. If it has in-degree ¥) Each head node has one outgoing edges from each color.
and the its out-degree is 2, then its incoming edge must Each tail node has one incoming edge from each color.

appear in both DPQM's. _ In the next theorem of this section, we will prove that
3) Each vertex ofL has out-degree 0,1 or 2. If it has outy, onomial of the network polynomial corresponds to a
degree 0, then it is a receiver node. If it has out-degreygraph of the network which satisfies the properties in
1 and the its in-degree is 2, then its outgoing edge Myskyma 4.1 and it does not contain a 2-alternating colorable
appear in both DPQM's. subgraph.
4) The mincut of each receiver dhis at leasth. Theorem 4.2:Suppose thatf is an acyclic line-network
5) The power of each variable in a monomial indicategiy, 1he source ses and the receiver se®;, R» each of
yvhether thg corresponding edge (in the original grap{phich of min-cuth. Also, assume that the edges Hf can
is appears in one of the DPQM's or both. ) be decomposed into two DPQM's, one for each receiver. The
Proof: Before we prove these properties, notice that eaghijowing statements are equivalent:
term of the network polynomial is product of two terms of
transfer polynomials of the receivers.

1) This property is a direct implication of the previous

i) There exist at least two different ways for decomposing
the edges off into two DPQM’s.
i) H contains an induced 2-alternating colorable subgraph

sentence. ) , , K such that no intermediate node &f has a neighbor
2) Each DPQM is a subgraph of the graph for which the in- in H other than its neighbors if.

degree and out-degree of each vertex is 0 or one. For t'ﬂﬁ There are even number of ways that can be decom-
union of two DPQM'’s, the in-degree and out-degree of posed into two DPQM'’s.

each vertex is 0,1 or 2. The second part of this propertyy There is no term in the network polynomial correspond-
is also clear. ing to the edges off.

3) Similar to the previous property. . . .

. ! . . ~ Proof: First of all notice that if the edges off can be
4) ;T;/S property is a direct consequence of the first proBecomposed into two DPQM'’s then we exactly know which
5) Trivial edges will appear in both of DPQM’s.

=i
Notice that these properties can be naturally extended fo

. X rSuppose that the edges Bf can be decomposed into two
arbitrary number of receivers.

DPQM’s in at least two different ways. So, let us assume that

B. The case of two receivers in one way,P; is a DPQM toR; andP; is a DPQM toRs.
For the case of two receivers, we have a more conciS&PPose thatin the other decompositionbfP; is a DPQM
characterization of these subgraphs. to R, andP; is a DPQM toR,. As we said before, the set

Theorem 4.1 (Main theorem)n the expansion of the prod- Of edges that participate in botR; and P, is the same set
uct of the transfer polynomials of the two receivers, ead@s those edges that are#{ andP;. The other edges off
monomial appears either only once or even number of timé¢long to exactly one of, or P, and also exactly one of
In particular, if the fieldF, has characteristic 2, then thePi OF P5. Thus, we can partition the edges &f into the
subgraphs corresponding the monomials of the network pof@llowing five groups.
nomial can be uniquely decomposable into two DPQM’s. 1) Edges that are in all the DPQMB,,P2,P; andPs.



2) Edges that are only i, andPy. first step, we illustrate how we can use a decompositioH of

3) Edges that are only i?2 and Pj,. into two DPQM'’s to find a set oRh paths from the source

4) Edges that are only i, andP)}. We call these edges, nodes to the receiver nodes. In the second step, we show that
blue edges. the constructed paths form another decompositioii/ointo

5) Edges that are only i®, andP;. We call these edges, DPQM’s.

red edges. Step 1: Notice thatP;, P, define a natural 2-alternating
The edges of the first three groups are called neutral edg&ﬁoring of K as follows. We color every edges df that
Now we show that the red and the blue edges form a ga|ongs top; with blue and those edges which belongRg
alternating colorable subgraphti of 4. According to the def- \yith red. We show that no edge &f can be appeared in both
inition, we must verify 4 conditions. The first two condit®n Py, P». In contrary, suppose that some edgefdbelongs to
are trivial, based on the fact thaf is a subgraph off and poth of DPQM's. Lete be such an edge which is minimal
H is the union of two DPQM's and therefore each vertex Gfjith respect to the ordex . Let us assume that the head of
H has in(out)-degree 0,1 or 2. To verify the third propertyhe edger is the vertexv. Sincee is used in both DPQM's,
suppose that if a vertex of K has an incoming edge. , can not have another outgoing edge. By the definition of 2-
Without loss of generality we may assume that this edge dernating colorable graphs,should also have precisely one
red. This means that belongs toP, and Pi. P is @ set incoming edge in the graphi. That means that is not a head
of h disjoint paths fromS to R,. One of these paths usesyf i Thereforep as a vertex off can not have any neighbor
the edger. Lets assume that the next edge of this path'is qytside k. Thereforew as a vertex offf has precisely one
Clearly, ¢’ appears irP,. So,¢’ € E(H). First assume that jncoming edge. Moreover this edge belongdiand also this
¢’ is not a neutral edge. Thus; must appear iP; or in  eqge must belong to both DPQM's, because of the definition
P;. If ¢’ belongs toPy, then by definitione’ is also a red of ppQM’s. But this is a contradiction by the minimality of
edge and the third property of 2-alternating colorable Bsap. Therefore, the 2-coloring of the edgesisfis well-defined.

is also satisfied. Otherwise’, appears irP;. That means that t js straightforward to check that this coloring satisfiéisttze
¢’ belongs to one of the sourde; paths. Thus, there existsprgperties of a 2-alternating coloring.

another edge which appears7 and enters to the vertex
This edge is different frona sincee only appears irP, and
Pi. Let us call this edge”. So,e” € E(H) and therefore
e’ appears inP; or P,. As we know thate appears inPs
and P, is a DPQM,e” can not appear ifP2, too. Therefore

Now, we are ready to introduce the dual decomposition of
P1, P2. We start fromPy, Ps, then we 2-alternating color the
edges ofK, as explained before. Each of the DPQNPs, P
consists ofh vertex disjoint paths from the source to each
receiver. We alter these paths as follows. We take one dfithe

e’ should appear irP;. Thereforee” is a blue edge. We can L
continue the argument and we similarly deduce thahust paths, for example a paify from P,, and we start traversing it
until we reach a node dk for the first time. At this point, we

have another outgoing blue edge. This shows that eithers o |
one incoming and one outgoing edges of the same color oIt ata head of K. By definition,v has two outgoing edges.
has one incoming and one outgoing edges from each of t € eclige be(;onfgs tkﬁﬁ anhd thg othd?rr belorllgs to a paﬂf{
two colors. Another possibility is that is a neutral edge. In Oh Pg.hnsteg Of tan;Dn/g t g € gek 1, We keep tralvers/mg
this casee’ appears ifP;. So, there exists an edgeentering the other edge from?; an W? eep traversing apr@.

to v and belong taP;. Obviously, f can not be an edge from F/lnally we arrive lto a tail node’ of K. Again, by definition
P, sincee enters the same nodeand belongs to the DPQM v’ has two incoming edges. One from the p&hand another

P». So, f belongs tagP; and thereforef is a blue edge. Other e:jge ferF)m ‘:,_cl)me path r:Wl’ say pathlz-. Tge][\ we contlnl:_e
possibilities can be similarly analyzed. It only remainstow along I; untit we reach a source node. before we continue

that no intermediate node &f has a neighbor outsid&. This :Eg 5;??;)’( V,"?ﬂ?‘;?ﬂ?fgg%”rg’:’;;isgrmr:(s)azh; fllgsgczilgé |§nthat
's also easy to see because ifs an intermediate node dt receiver nZde Eas one incoming edges whil2e taiIsKoﬁavey
and it has 4 neighbors iff, it can not have more neighbors in g edg

H since its total degree can not exceed 4: Has total degree two incoming edges. So, every path from the source to the a

2 in K then as we showed, both incoming and outgoing edgreescelver will be t_ransformed t_o another path from the source
o .10 the same receiver but possibly another node of that receiv
of v are of the same color and it is easy to see that in ﬂ‘\ItS.

case,v can not have neutral edges connected to it. Is also possible tha_t we never touch the SUbngpHn th_|s
case the patt® remains unchanged. The second point is that

il = iii if we reach the subgrapR and we exit from it, we will never
Suppose thak is a 2-alternating colorable subgraph &t meetK again. This i; due _to the fact that the only edges that
so that no intermediate node &f has a neighbor irff other CONNECtK to H are incoming edges to the heads /5fand
than its neighbors ink. The main idea is to show that foroutgoing edges from the tails @f.
every way of decomposing the edgesidfinto two DPQM's, Once we make the first source-receiver path, we start from
we can define a dual decomposition and therefore we alwagsother source-receiver path of the initial decompositiod
have even number of ways of decomposing the edgeH of we obtain the second source-destination path. We conthisie t
into two DPQM’s. We will do this job in two steps. In theprocedure until we finh new source-receiver paths.



step 2: To complete the proof, we must check the followingesulting polynomial is non-zero. Thus, there exists astlea

properties. one monomial whose terms correspond to some edgés. of
1) Each of the2h receiver nodes receives one path from &n the other hand, sinck is minimal, there is no monomial
source node. of the resulting polynomial whose variables correspond to a
2) No two paths to one receiver will cross. proper subset of the edges &f. Therefore, there exists a
3) The dual of the dual of a decomposition is the origindinique monomial corresponding to the edgediof
decomposition. u
4) No decomposition is its own dual. Corollary 4.1: An h-minimal subgrapt of G is uniquely

The first property is easy to verify. In fact, we initially rav decomposable into DPQM's.
2h paths. They transform to anothgh paths and since the Proof: The statement of the corollary is a direct conse-

in-degree of each receiver node is 1, no two new paths enféence of 4.2 and 4.3. u
to the same receiver node. So, they must enter to albthe As a direct application of 4.3, we get an alternative proof
paths. for the following known result.

For the second property’ suppose that two paﬂi‘lsp/ C0r0||ary 4.2: The multicast network COding problem with
which enter to two nodes of a receiver intersect at somexert@ receivers can be solved over the binary field.
Notice that the crossing point of these paths can not bednsid Proof: We take a minimal sub-network of the main
K because those vertices #{, P} that belong toX belong network that has the same min-cut to each receiver as the
to two paths of the DPQMP, and those paths never crossoriginal network. We set the variables corresponding theesd
S|m||ar|y’ PI’PQ can not cross outsid® because outsid&’, of this subnetwork to value 1 and any other variable to the
P/, P} are parts of paths of the DPQW, and the paths of a value 0. u
DPQM never cross. Example 4.1:Let G be the network in Figure 1. For every
The third property is clear when we use the same subnggceiver, there are exactly two different set of disjointNPQ
work K when want to find the dual of the dual decomposition.he transfer polynomial of the first receiver is equal to
Since H might contain several 2-alternating colorable subneti¥sa1a3p1q1 — T3y1a1a3p1q1 = a1a3p1q1(T1ys — T3Y1).
work for which intermediate nodes df have no neighbors
outside K, we should specify which subgraph we take. Once
we fix K, according to the described way of making the In this section we give an example of why studying the
dual of a decomposition, it is clear that the dual of a duatructure the transfer and network polynomials can be lisefu
decomposition is the original decomposition. We look at a special case of network polynomials, that come
Regarding the last property, notice thiatis a non-empty from combination networks, and using a simple combinatoria
subgraph off. So, at least one of th#h paths of theP;, P, argument, we provide an alternative code construction as
should pass througk'. Obviously this path will be changedwell as an associated lower bound on the alphabet $hie
to another path. So, the dual of a decomposition has at leashstruction uses, that matches the best known such bound.
one path that is not in the original decomposition. Combination NetworkA combination network with min-
Thus, if H can be decomposed into two DPQM's in at leasiut / is a layered network with 4 layers of nodes. The
two different ways, then we can pair up the decompositiofiisst layer consists of a single souree The second layer

V. A CODE-DESIGNAPPLICATION

of H into DPQM’s. hasm > h nodes. We label them as,,vs,...,v,. The
: sources is connected to alb;’s. The third layer hasn nodes
i = iv
w1, we, ..., Ww,. Eachv; is connected tav;. The last layer
Since we are working in a characteristic 2 field, the sumonsists ofV receivers each of which hasin- -neighbors from
mation of even number of identical terms vanishes. the nodes of the third layer. Without loss of generality we ca

assume that no two receivers have exactly the same set of
Si h . | q . f the ed ir(z);{;eighbors. This is due to the fact that if some receivers
Ince there is at least one decomposition of the edges| ol e the same set of in- -neighbors, we can keep one of them

H into DPQM’Sd but in rt]he (rj\etwork rp])olynohmw}:j 'l;here |shn and drop the rest. Any network code solution for the resgltin
term corresponding to the edges/f there should be anot € hetwork can be naturally extended to a solution for the pabi
decomposition off into DPQM'’s to cancel the other one. network

Network polynomial of combination networlhe line
ph of a combination network with = 2 is a 4-layered
ﬁeetwork. The first layer has two source nodgss,. The
second Iayer consists oh nodeswq,vs,...,v,. FOr each
=1,2,5=1,2,...,n, s; is connected tw,. Let z,;(y;) be
the varlable associated with the edgewv;(sz2,v;). The third

iv =i

Theorem 4.3:If H is anh-minimal subgraph oz then the
network polynomial has a unique monomial corresponding t
edges ofH.

Proof: In the network polynomial we set all the varlables
corresponding to the edges @fthat are not inH, zero. The
resulting polynomial is the network polynomial of the netwo
H. Since we assume tha is h-minimal, there network 1This translates to a sufficient condition on the field size dich the
coding problem for the networlll can be solved. So, the network coding problem can always be solved.



layer has alsm nodesw;, ws, .. .,w,,. Eachv; is connected
to w;. Leta; be the variable associated with that edge. The last
layer contains\ pairs of receiver nodes. Thethe pair ha
nodesr;, t;. Each pair has two in-neighbors from,’s where
one is connected te@; and one is connected th. Suppose
thatr; is connected tav;; andt; is connected tav,; in
which f, g are two functions from the séiV] to the set[m],
in which [j] = {1,2,...,4}. In Figure 2 and Example 4.1, we
usedp; andg; instead ofw; ;) andw,; for simplicity.
Suppose that the variable associated to the egdgey ;) is
pi; and the one associated to the edgev,; is g;- As we
saw in Example 4.1, the transfer polynomial of each receiver
can be computed. Therefore, the network polynomialzof
equal to:

N

p = [T ermaampiai(@r s T2g6) — 2,50 7190)) ()
=1

Figure 2 shows the line graph of a combination network W'tgiﬁerent from the value of every other variable that appear

h=2,m=4,N =5 . . with z; in some parenthesis. Clearly, if the field size is larger
AIphabetS|zeWe use the results of the previous Secuorﬁﬁan l;, we have enough element in the field to select an

to 'IF')rzce)\(l)?etrrr:eSfil'llg;vrlneglv;r;eoggrrgbination network Withv re appropriate value fog;. Sincely, is the largest;, we can find
T y an appropriate value for all the variables. Thus, it is eltoug

ceivers and min-cut 2 to every receiver, there exists a rnktwq o : :
. : ! 0 show thatl, < +/2N. We prove this inequality using two
code over any field of size larger thaf2N. inequalities k= P quality g

Proof: Let G be a combination network. The network
polynomial ofG is expressed in 2. We must find an assignment__' lk=m—k
of the values to the variables so thaevaluates to a non-zero Ik <2N/(m —Fk)
value. Seta; = p; = q1 = &1 4;) = 21,55 = 1,2 = o, for The first inequality holds because when we selectithlb

Fig. 2. An example of the line graph of a combination network.

ali=1,2,...,m. variable, there arev—k other variables left. Even i, appears
The network polynomial then becomes: with all the left variables, it will be appeared — k times. The
N second inequality holds because in th¢h step, each of the
= H (250) — Za(i)) m — k4 1 variables appear at leaigttimes in the parenthesis.

There are at mosfV parenthesis and each parenthesis has
exactly two elements. Thereforg,(m — k + 1) < 2N and

hThl\J/siVe only neeoll to show that if Ithe ﬁel,d sizehis rllarg%erefrom, we deduce the desired inequality. If we multiply
than v2N, we can always assign values t's such that i, giges of the two inequalities, we can deduce that

Zf(i) 7 Zq(i), for i € [m]. Let F be a finite field of size 5% -
larger tham/2N. Each variablez; appears in certain number

of parenthesis. Without loss of generality suppose thas a VI. CONCLUSIONS

variable that appears in the minimum number of parenthesis
Let's assume that; appears in; parenthesis.

i=1

In this paper, we etsablished relationships between the
. - monomials that appear in the transfer and network poly-

We remove aII_ the_ parenthesis containing from the nomials to graph theoretical properties of the underlying
product_ and again without loss .Of generality, we assumework configuration. Several questions remain open, with
that 2, is the least appeared variable among the remaini st prominent a more exact characterization of the terms of

terms. Let.s assume thah, appears inl, Of. the remaining the network polynomial for an arbitrary number of receivers
parenthesis. We exclude all the terms with 2z, from the

product and we repeat the procedure. What we end up is REFERENCES
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