
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Neural Networks 25 (2012) 146–160

Contents lists available at SciVerse ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

A programmable triangular neighborhood function for a Kohonen self-organizing
map implemented on chip
Marta Kolasa a, Rafał Długosz a,b,c,∗, Witold Pedrycz d,e, Michał Szulc f

a University of Technology and Life Sciences, The Faculty of Telecommunications and Electrical Engineering, Kaliskiego 7, 85-796, Bydgoszcz, Poland
b Swiss Federal Institute of Technology (EPFL), Institute of Microtechnology, Electronics and Signal Processing Laboratory (ESPLAB), A.L.Breguet 2, CH-2000, Neuchatel, Switzerland
c Mars Society Polska, Space Research Center of the Polish Academy of Sciences, Bartycka 18A, 00-716 Warsaw, Poland
d University of Alberta, Department of Electrical and Computer Engineering, ECERF Building, Edmonton, AB T6G 2V4, Canada
e Systems Research Institute, Polish Academy of Sciences, Warsaw, Newlska 6, Poland
f Poznan University of Technology, Chair of Computer Engineering, ul. Piotrowo 3A, 60-965, Poznan, Poland

a r t i c l e i n f o

Article history:
Received 29 January 2011
Received in revised form 16 July 2011
Accepted 1 September 2011

Keywords:
Neighborhood mechanism
SOM
Parallel data processing
CMOS realization
Low energy consumption
Asynchronous circuits

a b s t r a c t

An efficient transistor level implementation of a flexible, programmable Triangular Function (TF) that
can be used as a Triangular Neighborhood Function (TNF) in ultra-low power, self-organizing maps
(SOMs) realized as Application-Specific Integrated Circuit (ASIC) is presented. The proposed TNF block
is a component of a larger neighborhood mechanism, whose role is to determine the distance between
the winning neuron and all neighboring neurons. Detailed simulations carried out for the software model
of such network show that the TNF forms a good approximation of the Gaussian Neighborhood Function
(GNF), while being implemented in a much easier way in hardware. The overall mechanism is very fast.
In the CMOS 0.18 µm technology, distances to all neighboring neurons are determined in parallel, within
the time not exceeding 11 ns, for an example neighborhood range, R, of 15. The TNF blocks in particular
neurons require another 6 ns to calculate the output values directly used in the adaptation process. This
is also performed in parallel in all neurons. As a result, after determining the winning neuron, the entire
map is ready for the adaptation after the time not exceeding 17 ns, even for large numbers of neurons. This
feature allows for the realization of ultra low power SOMs, which are hundred times faster than similar
SOMs realized on PC. The signal resolution at the output of the TNF block has a dominant impact on the
overall energy consumption aswell as the silicon area. Detailed system level simulations of the SOM show
that even for low resolutions of 3 to 6 bits, the learning abilities of the SOM are not affected. The circuit
performance has been verified by means of transistor level Hspice simulations carried out for different
transistor models and different values of supply voltage and the environment temperature — a typical
procedure completed in case of commercial chips that makes the obtained results reliable.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Self-organizing Kohonen neural networks (KNNs) belong to the
category of networks trained in an unsupervised mode (Boniecki,
2005; Kohonen, 2001; Masmoudi, Dieng, & Masmoudi, 2002).
Networks of this type are aimed at the discovery of dependences
in highly dimensional spaces. Given this feature, they are often
referred to as self-organizing maps (SOMs). Such networks can
be realized in various ways. Predominantly, we encounter their

∗ Corresponding author at: University of Technology and Life Sciences, The
Faculty of Telecommunications and Electrical Engineering, Kaliskiego 7, 85-796,
Bydgoszcz, Poland. Tel.: +48 668160217.

E-mail addresses: markol@utp.edu.pl (M. Kolasa), rafal.dlugosz@gmail.com
(R. Długosz), pedrycz@ece.ualberta.ca (W. Pedrycz), szulc.michal@gmail.com
(M. Szulc).

software implementations. Another attractive alternative, whose
usage is still quite limited, deals with a hardware realization
implemented, for example, in the form of Very Large Scale of
Integration (VLSI) Application Specific Integrated Circuits (ASIC).
This second approach requires solving specific problems of
electronic nature, and as such it becomes much more challenging.
On the other hand, transistor level implemented SOMs offering
a fully parallel operation of all neurons, are much faster than
their software counterparts, additionally consuming significantly
less power (Abuelma‘ati & Shwehneh, 2006; Długosz, Kolasa, &
Pedrycz, 2010; Długosz, Talaśka, Pedrycz, & Wojtyna, 2010; Li,
Chang, & Siek, 2009; Masmoudi et al., 2002). The low power
dissipation results from the possibility to optimize the structure
of the SOM directly for a given task that enables a significant
reduction of the number of transistors on the chip.

0893-6080/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2011.09.002

Author's personal copy

M. Kolasa et al. / Neural Networks 25 (2012) 146–160 147

Although parallel data processing is also possible in Field
Programmable Gate Arrays (FPGAs) and recently in Graphics
Processing Units (GPUs) however it happens at the expense of very
high power dissipation. Ultra low power dissipation as well as low
chip area available in case of the ASIC implementation open new
possibilities of applications of suchnetworks e.g., in a variety of low
power portable devices. A very promising is the ability to use such
SOMs in Wireless Sensor Networks (WSNs) or Wireless Body Area
Networks (WBANs) in medical diagnostics. In a typical WSN, a set
of small, ultra low power sensors collect various data, transmitting
them to a base station for further analysis. In case of the WBAN,
the sensors located on the human body collect biomedical data.
In systems of this type, most of the collected data are typically
transmitted to a base station, which creates the problem of large
energy consumption, as the radio-frequency (RF) communication
modules of the sensors consume even 95% of total energy. This
reduces the battery life span (Akyildiz, Su, Sankarasubramaniam, &
Cayirci, 2002; Bereketli & Akan, 2009). One of theways tominimize
this problem relies on the optimization of the RF block of particular
sensors (Bereketli & Akan, 2009) or the architecture of the WSN
(Dubois et al., 2009). Another possibility, which is the objective of
the presented work, is to reduce significantly the amount of data
being sent to the base station. In this case, some data processing
tasks have to be located directly at the sensor level. This concept
requires the development of energy efficient and low chip area
signal processing blocks (Corbishley & Rodriguez-Villegas, 2007).
The proposed low power SOM fits this concept, offering even four
orders of magnitude better data rate to energy consumption ratio
than a SOM implemented on a typical PC.

We have been working on hardware realized self-organizing
NNs for many years, developing a fully analog Winner Takes All
(WTA) network, as discussed in Długosz, Talaśka et al. (2010).
The recent work in this field (Długosz & Kolasa, 2008; Kolasa
& Długosz, 2008) concerns a development of a new flexible
and programmable neighborhood mechanism to be used in the
analog WTA network described in Długosz, Talaśka et al. (2010),
thus significantly increasing its functionality, or in fully digital
Kohonen SOM. The proposed mechanism is very fast. It comes as
an asynchronous solution that features a very simple structure,
as the controlling clock circuitry is not required. The realization
of such mechanism requires solving two problems that must be
clearly distinguished. The type of the neighborhood function (NF)
and its hardware implementation is one of them, important aspect
is how to determine quickly in parallel distances between the
winning neuron and all its neighbors. In case of the hardware
realization both these aspects require two different circuits. In the
literature, one can find many solutions for the NF block, mostly
analog, but there is a clear lack of efficient solutions of distance
determination blocks (DD). The only programmable circuit of this
type has been proposed by Peiris (1994). This analog circuit offers
a very simple structure with only several transistors per neuron,
but it suffers from several disadvantages. The most important
of them are: a relatively high power dissipation, low data rate,
sensitivity of the parameters to the environment temperature and
a mismatch effect present between particular transistors. Some
other circuits of this type have been proposed (Li et al., 2009;
Macq, Verleysen, Jespers, & Legat, 1993) but they are suitable for
small neighborhood range of only one. The shortage of efficient DD
circuits was the motivation behind developing our own solution
of such circuit. This fully programmable asynchronous digital
circuit, in which the neighborhood range is controlled in a wide
range, has been described in details in Długosz and Kolasa (2008)
and Kolasa and Długosz (2008). In this paper, we focus on the
hardware implementation and the optimization of the NF block
itself. Nevertheless, as the new NF block is the component of the
overall neighborhood mechanism, the key aspects of this concept
are briefly presented in next section.

In the KohonenWinner TakesMost (WTM) SOM, the adaptation
process of theweights (connections) of the neurons is expressed as
follows:

Wj(l + 1) = Wj(l) + η(k)G(R, d(i, j))[X(l) − Wj(l)] (1)

where η(k) is the learning rate present in the kth training epoch,
Wj are the weight vectors of the corresponding particular neurons
in the map, while X is an input training pattern present in an lth
cycle. These neurons that belong to thewinner’s neighborhood, are
trained at different intensities that depend on the neighborhood
function G(), which depends on the distance d(i, j), between the
winning ith neuron and the other jth neurons in the map. In the
classical approach, a simple Rectangular Neighborhood Function
(RNF) is used (Boniecki, 2005; Kohonen, 2001):

G(R, d(i, j)) =


1 if d(i, j) ≤ R
0 if d(i, j) > R (2)

where d(i, j) is a distance between the winning, ith, neuron and
some other, jth, neuron in the map that belongs to the winner’s
neighborhood, while R is the range of the neighborhood that
is decreased after each epoch. At the beginning of the learning
process R equals an Rmax value that in this paper is one of the
parameters that is optimized. The commonly encountered opinion
is that much better learning results can be achieved if the Gaussian
Neighborhood Function (GNF) is used instead of the rectangular
one (Mokriš & Forgáč, 2004). Let us recall that the Gaussian
function is defined as follows:

G(R, d(i, j)) = exp


−
d2(i, j)
2R2


. (3)

Different hardware realizations of the Gaussian function have
been proposed (Abuelma‘ati & Shwehneh, 2006; Li et al., 2009;
Masmoudi et al., 2002). The existing implementations usually
involve analog circuits. On the other hand, since our proposed
neighborhood mechanism is to be used in either the analog or the
digital SOM therefore the objective was to develop an efficient
digital NF circuit. The Gaussian function, due to its complexity,
resulting from squaring, division and the exponential operations,
is difficult to be realized given low chip area and low power
hardware. This was one of the motivations to verify whether
the Triangular Neighborhood Function (TNF) can be used as a
substitute for GNF. This function is defined as:

G(R, d(i, j)) =


−a(η0) ·


R − d(i, j)


+ c if d(i, j) ≤ R

0 if d(i, j) > R
(4)

where a() is the assumed steepness of this function, η0 is the
winning neuron’s learning rate, while c is the bias value. All these
parameters decrease toward zero after each training epoch.

Considering digital hardware realization of the NF some
other solutions have been proposed, used mostly in the Field
Programmable Gate Arrays (FPGA). The solution described in Pena,
Vanegas, and Valencia (2006) relies on shifting the bits at each
following ring of neighbors to the right. As a result, the value of
the term η · G() at a given ring is half the value of this term at the
preceding ring:

G(R, d(i, j)) =


0.5d(i,j) if d(i, j) ≤ R
0 if d(i, j) > R. (5)

This concept is very attractive from the hardware implementa-
tion point of view, as it does not involve multipliers and dividers
and thus is very fast. On the other hand, it significantly reduces the
number of values that the NF can take. We have verified this con-
cept by means of the software model of the SOM written in C++,
and the results were not satisfactory, especially for large maps. It

Author's personal copy

148 M. Kolasa et al. / Neural Networks 25 (2012) 146–160

was not possible to train properly the SOMwithmore than 20×20
neurons. For this reason we do not consider this solution in the re-
mainder of the paper.

A detailed comparative study for the RNF, GNF and TNFhas been
presented in Section 3. The simulation results obtained through
running the software model of the SOM show that the TNF is a
very good approximation of the GNF, while it comes with much
less complexity, as only a single multiplication is required in
this case. This is discussed in Section 4. Looking only from the
software implementation point of view, this conclusion is of minor
importance, but in ultra low power devices this is one of the key
aspects. Since the majority of existing implementations of the
SOMs are software-based, therefore, to best of our knowledge, such
comparative investigations have not been carried out so far.

The TF block proposed in this paper is a universal circuit useful
in various applications. It offers the steepness of the function that
varies in a wide range. The circuit is composed of an asynchronous
multiplier and a shifter used to divide the product by selected
numbers (powers of 2). In the comparison with a case in which
a reciprocal multiplier would be used the number of transistors is
reduced approximately by half. If the TF block is used in the SOM
(a particular case), the value of the NF is always less than 1, which
enables a further optimization. In this case the shifter could be
omitted.

One of the important aspects in the design process of the
proposed TNF was the minimization of the number of transistors.
To achieve this, an additional study has been completed, in which
the influence of the signal resolution at the output of the NF block
on the learning quality of the SOM has been investigated. The
results are presented in Section 4.1. Such investigations are of
relevance, as the number of transistors in the NF block i.e. the
overall chip area and the energy consumption linearly depend on
the signal resolution.

2. Parallel and asynchronous neighborhood mechanism—an
overview

The topic of the study is the transistor level implementation
of the TF block. For a better illustration, we briefly present some
important aspects of the overall neighborhood mechanism. A
placement of neurons in the proposed implementation of the
Kohonen SOM is schematically shown in Fig. 1(a), with an internal
structure of a single neuron presented in Fig. 1(b). Such an
arrangement of neurons in the map allows for a very efficient
routing between them. Fig. 1(b) presents only these components
that are specific for the neighborhood mechanism i.e. the ‘enable’
signal propagation circuit (EN_PROP) and the radius propagation
signal (R_PROP). In this approach, each neuron is connected with
only the closest p neighbors, where the value of p depends on
the type of the network topology. The proposed mechanism can
work with the hexagonal topology (Hex) or rectangular topologies
with either 4 or 8 neighbors (Rect4/Rect8), as shown in Fig. 2.
The connection between any pair of neighboring neurons requires
2(q + 1) signal lines, where q is the number of bits in the signal
representing themaximum value of neighborhood range Rmax sent
in both directions. A single line is required to transfer the enable
(EN) signal. The structure of the EN_PROP circuit for an example
Rect8 case, as well as the R_PROP block are shown in Fig. 3.
The same R_PROP circuit is used in all cases. On the other hand,
the EN_PROP circuit for other map topologies differs only in the
number of directions. To make the proposed SOM more flexible
we have proposed a programmable EN_PROP circuit that enables
an easy transition between all the three topologies on a single chip
(Długosz & Kolasa, 2008).

The proposed mechanism works as follows: A winning neuron,
i.e., the neuron whose ‘WSC’ identification signal becomes 1 (WSC

a

b

Fig. 1. Diagram of the proposed solution: (a) a placement of neurons in the map,
(b) the structure of a single neuron for p neighboring neurons.

signal comes from a Winner Selecting Circuit), is responding by
sending a 1-bit EN signal in all directions using the EN_PROP
circuit. Particular ENout_i signals of this neuron become the ENin
signals in its closest neighbors. The ‘WSC’ signal is a privileged
signal that activates all ENout_i signals. On the other hand, particular
ENin_i signals activate only selected ENout_i signals at the opposite
side of the EN_PROP block. As a result, the neighboring neurons
always receive the ENin signals from only one direction that
prevents collisions. Note that the diagonal ENin signals activate
three ENout signals, while the horizontal and the vertical ENin
signals activate only one ENout signal. Such distinction is necessary,
as the number of neurons in each following ring increases, for
example by eight for the Rect8 topology. The propagation of the
EN signal resembles a wave that spreads asynchronously in all
directions concentrically from the winner. The only delay in this
process results from a delay caused by a few logic gates located at
particular rings.

The EN_PROP block itself does not contain any mechanism that
could terminate the propagation of the EN signal at a desired radius
R. This problem has been solved by use of the R_PROP circuit, as
shown in Fig. 3(b). The R_PROP block uses an additional signal r ,
where r = rPROG−d(i, j), decreasing its value by 1 at each following
ring of neighbors. The propagation of the EN signal terminates at
this ring of neurons for which the signal r becomes 0 (STOP=0).
Note that the winning neuron receives an rPROG signal that equals
the value of the radius R in a given epoch throughout the switch
operated by the WSC signal, as shown schematically in Fig. 1(b).
The propagation of the r signal is also very fast, as the process

Author's personal copy

M. Kolasa et al. / Neural Networks 25 (2012) 146–160 149

a

b

c

Fig. 2. SOM arranged as: (a) the hexagonal grid (Hex), (b, c) the rectangular grid
with 8 and 4 neighbors (Rect8 and Rect4).

is performed asynchronously. Determining the distances for all
neighbors placed at the distance of maximum 15 requires only
11 ns, when implemented in CMOS 0.18 µm technology, and is
performed fully in parallel.

The mechanism described above that itself enables the SOM
to operate with the RNF, has been extended by a new block. This
new circuit operating on the basis of the r signals at particular
rings determines the values of the TNF for particular neighboring
neurons. Each neuron contains its own NF block and, therefore, all
calculations are performed in parallel as well.

3. A comparative study of the quality of the learning process for
different neighborhood functions

In this section, a comparative study is presented illustrating
how the quality of the learning process depends on the type of the
NF and other network parameters. To make the presented results
representative the simulations have been performed for different
map sizes in the range of 4 × 4 (16 neurons) up to 64 × 64 (4096
neurons). The simulations have been performed for nine general
cases i.e. for the three map topologies shown in Fig. 2 vs. the NFs
described by (2)–(4). Additionally, we compare the results for two
distance measures, namely the Euclidean and theManhattan ones.

The effectiveness of the learning process of the SOM is evaluated
on the basis of five criteria described in Lee and Verleysen (2002).
In particular, the vector quantization and the topographic errors

a

b

Fig. 3. The EN_PROP block for the Rect8 topology and the R_PROP circuit (the same
block is used for all topologies).

are taken into account. The quantization error, which is commonly
used to evaluate the learning process of the SOMs is defined as:

Qerr =
1
m

m−
j=1

 n−
l=1

(xj,l − wi,l)2. (6)

In this formula, m denotes a total number of the input patterns
X present in the input data set. The quantization error is the error
that the NN produces during approximation of the input vector by
means of the weight vectors of the winning neurons. This criterion
quantifies how the map fits the input data (Uriarte & Martin,
2005). The major disadvantage of this criterion is dependence of
the returned values on the number of neurons. For larger maps
the value of Qerr decreases, as the distances between neurons
decrease (Beaton, Valova, & MacLean, 2010). A second measure
used to assess the quantization quality is a percentage of dead
neurons (PDN), which tells us about the ratio of inactive (dead)
neurons versus all neurons. Let us recall that dead neurons are
those neurons that never won the competition and as such have
not become representatives of any input data. These errors are
detrimental to the assessment of the topological order of the map.

The quality of the topographic mapping is assessed using three
measures (Lee & Verleysen, 2002). The first one is the Topographic
Error ET1, defined as follows:

ET1 = 1 −
1
m

m−
h=1

λ(Xh). (7)

This is one of the errors proposed by Kohonen (Kohonen, 2001;
Uriarte & Martin, 2005). The value of λ(Xh) is equal to 1 when for a
given pattern X two neurons whose weight vectors resemble this
pattern to the highest extent are also direct neighbors in the map,

Author's personal copy

150 M. Kolasa et al. / Neural Networks 25 (2012) 146–160

(a) The map with 8 × 8 neurons and 2-D data regularly distributed. (b) The map with 8 × 8 neurons and 3-D data randomly distributed.

(c) The map with 16 × 16 neurons and 2-D data regularly distributed. (d) The map with 16 × 16 neurons and 3-D data randomly distributed.

(e) The map with 32 × 32 neurons and 2-D data regularly distributed. (f) The map with 32 × 32 neurons and 3-D data randomly distributed.

Fig. 4. The quantization error as a function of Rmax for particular neighborhood functions, for the Rect4 topology. ‘E’ means the Euclidean distance, while ‘M ’ the Manhattan
one.

otherwise λ(Xh) = 0. The lower is the value of ET1, the better the
SOM preserves the topology (Beaton et al., 2010; Uriarte & Martin,
2005). In an ideal case, the optimal value of ET1 equals 0.

The remaining two measures of the quality of the topographic
mapping do not require the knowledge of the input data. In the
second criterion, in the first step, we calculate the Euclidean
distances between the weights of an ρth neuron and the weights
of all other neurons. In the second step, we check if all p direct
neighbors of neuron ρ are also the nearest ones to this neuron in
the sense of the Euclidean distance measured in the future space.
To express this requirement in a formalmanner, let us assume that
neuron ρ has p = |N(ρ)| direct neighbors, where p depends on
the map topology. Let us also assume that function g(ρ) returns
the value that equals the number of the direct neighbors that are
also the closest to neuron ρ in the feature space. As a result, the ET2
criterion for P neurons can be defined as follows:

ET2 =
1
P

P−
ρ=1

g(ρ)

|N(ρ)|
. (8)

The optimal value of ET2 equals 1. Considering the third
criterion, we build around each neuron ρ a neighborhood in the
feature space (Euclidean neighborhood) defined as a sphere with
the radius:

R(ρ) = max
s∈N(ρ)

‖Wρ − Ws‖ (9)

where Wρ are the weights of a given neurons ρ, while WS are
the weights of its particular direct neighbors. Then we count the
neurons, which are not the closest neighbors of the neuron ρ, but
are located inside R(ρ). The ET3 criterion, with the optimal value
equal to 0, is defined as follows:

ET3 =
1
P

P−
ρ=1

|

s|s ≠ ρ, s ∉ N(ρ), ‖Wρ − Ws‖ < R(ρ)


|. (10)

The verification of the SOM has been carried out by running six
different learning sets. Five of them were composed of 2-element
training patterns (2D), while the 6th one was composed of 3-
element patterns (3D). The usage of the 2D sets enables a better
illustration of the results (Lee&Verleysen, 2002; Su, Chang, &Chou,
2002; Uriarte & Martin, 2005). Two of the five data sets, as well
as the 3D set were divided into B classes (data centers) arranged
regularly or randomly in the input data space, where B is the
number of neurons in the map. Of particular meaning is the 2D set
with the regular arrangement of data centers. Only in this case the
learning results can be assessed properly and directly compared
for different map parameters (Uriarte & Martin, 2005). In this case
the map can achieve the best fit to the input data. To enable a
direct comparison of the learning results for differentmap sizes the
input data space is fitted to the number of neurons. For example,
for the map with 8 × 8 neurons data are in the range of 0–0.8, for
16 × 16 neurons are in the range of 0–1.6, and so on. As a result,
the optimal value of the quantization error (Qerr) equals 16.18e−3

Author's personal copy

M. Kolasa et al. / Neural Networks 25 (2012) 146–160 151

(a) The map with 8 × 8 neurons and 2-D data regularly distributed. (b) The map with 8 × 8 neurons and 3-D data randomly distributed.

(c) The map with 16 × 16 neurons and 2-D data regularly
distributed.

(d) The map with 16 × 16 neurons and 3-D data randomly
distributed.

(e) The map with 32 × 32 neurons and 2-D data regularly
distributed.

(f) The map with 32 × 32 neurons and 3-D data randomly
distributed.

Fig. 5. The quantization error as a function of Rmax for particular neighborhood functions, for the Rect8 topology. ‘E’ means the Euclidean distance, while ‘M ’ the Manhattan
one.

independently on the map sizes, while the optimal values of the
PDN/ET1/ET2/ET3 parameters are 0/0/1/0. The optimal nonzero
value of Qerr results from arrangement of data across particular
data centers.

The remaining three data sets were composed of 2000 learning
patterns, randomly distributed over the selected regions, as shown
in Fig. 8. In these cases input data are in the constant range,
independently from the size of themap. As a result, for largermaps
the Qerr achieves smaller values, as becomes visible in Figs. 4–6(b),
(d), (f).

The representative results, for 2D and 3D data placed regularly
and randomly in the input data space, are shown in Figs. 4–6 and
in Table 1, respectively. These results are presented as a function
of the initial value of the neighborhood range, Rmax, i.e. the value
of this range at the beginning of the learning process. The common
opinion is that Rmax should be large enough to cover at least half
of the map at the beginning of the learning process. To verify
this statement a series of the simulations have been performed
for different values of Rmax. On the basis of the results shown in
Figs. 4–6 and Table 1 a conclusion can be drawn that the optimal
values of Rmax are relatively small independently on the map sizes.
The values of Rmax in-between 2 and 7 mean that in particular in
large maps the neighborhood range covers only 10%–20% of the
map. This conclusion is important as in the hardware realization
the value of this parameter exhibits a strong influence on the
complexity of the circuit structure. Small values of Rmax minimize
the number of connecting lines betweenparticular pairs of neurons
(see Figs. 1(a) and 3(b)) as well as the number of transistors

used in the R_PROP block. Smaller values of Rmax mean also a
shorter propagation time between the winning neuron and the
most distant neighboring neurons and thus higher data rate.

Figs. 4–6 compare the results for the Manhattan as well as
the Euclidean distance measures. The results are comparable,
which is an important conclusion, as the Manhattan measure does
not require the rooting and the squaring operations, and thus
it features a simpler hardware structure and much lower power
dissipation.

The presented results show that both the TNF and the GNF offer
a similar learning quality. This conclusion is very important, as
the usage of the TNF significantly simplifies the overall structure
of the SOM. Comparing the TNF and the GNF with the RNF one
can observe that for small maps up to 8 × 8 neurons all these
functions and the map topologies offer a similar learning quality.
The situation becomes different in case of large maps. The best
results have been achieved for the TNF and the Rect8 topology.
Nevertheless, the RNF in many cases offers the optimal results as
well, which is important, as in this case the overall mechanism
consumes only 20% of energy consumed in case when the TNF is
being used. On the other hand, the energy consumed by the TNF is
only 10% of energy consumed by the GNF.

To make the comparison of particular NFs more transparent we
performed a test illustrated in Fig. 7. The histograms illustrate the
number of cases, for which the map became properly organized
(Qerr = 16.18e−3) for particular NFs and the topologies, as a func-
tion of the map sizes. The largest map for which the optimal val-
ues of the five criteria described above have been achievedwas the

Author's personal copy

152 M. Kolasa et al. / Neural Networks 25 (2012) 146–160

(a) The map with 8 × 8 neurons and 2-D data regularly distributed. (b) The map with 8 × 8 neurons and 3-D data randomly distributed.

(c) The map with 16 × 16 neurons and 2-D data regularly
distributed.

(d) The map with 16 × 16 neurons and 3-D data randomly
distributed.

(e) The map with 32 × 32 neurons and 2-D data regularly
distributed.

(f) The map with 32 × 32 neurons and 3-D data randomly
distributed.

Fig. 6. The quantization error as a function of Rmax for particular neighborhood functions, for the Hex topology. ‘E’ means the Euclidean distance, while ‘M ’ the Manhattan
one.

a b

c

Fig. 7. The number of cases for which the map becomes properly organized, for different map sizes for the following cases: (a) Rect4, (b) Rect8 and (c) Hex topology.

map with 39 × 39 (1521) neurons working with the TNF and the
Rect8 topology. Further investigations will be carried out to im-
prove these results. For the Hex topology the results are the worst.

The main reasons of this are twofold. On the one hand, the regular
input data sets used in these tests favor both the Rect topologies.
On the other hand, the rectangular shape of the map causes the

Author's personal copy

M. Kolasa et al. / Neural Networks 25 (2012) 146–160 153

a b

c d

e f

g h

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1
0.8
0.6
0.4
0.2

0
-0.2
-0.4
-0.6
-0.8

-1

1
0.8
0.6
0.4
0.2

0
-0.2
-0.4
-0.6
-0.8

-1

-0.5 0 0.5 1 -1-1 -0.5 0 0.5 1

4

3.5

3

2.5

2

1.5

1

0.5

0

4

3.5

3

2.5

2

1.5

1

0.5

0
-1 -0.5 0 0.5 1 1.5 2 2.5 3 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Fig. 8. The quality (Qerr/PDN/ET1/ET2/ET3) in the learning process reported
for the following cases: (a) RNF/REG/Rmax = 1 (16.18e−3/0/0/1/0), (b) RNF/
REG/Rmax = 7 (25.1e−3/1.56/0/0.947/0.48), (c) TNF/REG/Rmax = 3 (17.29e−
3/0.391/0/0.989/0.285), (d) RNF/REG/Rmax = 13 (24.0e−3/2.73/0.066/0.807/
5.55), (e) TNF/RAND/Rmax = 3 (35.46e−3/0/0.004/0.883/2.42), (f) GNF/RAND/

Rmax = 1 (36.06e−3/1.17/0.015/0.852/4.06), (g) TNF/RAND/Rmax = 1
(53.48e−3/0.781/0.065/0.752/17.27), (h) TNF/RAND/Rmax = 3 (52.78e−3/
1.71/0.049/0.744/6.36).

Hex grid to be irregular, as only part of the hexagon is represented
by the square structure of the designed circuit. We observed quite
large influence of this effect on the learning quality.

Fig. 8 shows the input data and the final placement of neurons
in the input data space for the selected cases coming from

Fig. 10. The shape of the triangular function for selected values of the C,D, E and
R parameters. The diagrams illustrate the flexibility of the proposed solution.

Figs. 4–6. The comparison of the results reveals that even small
differences in the values of particular criteria (6)–(10) impact the
learning quality.

4. The proposed transistor level implementation of the trian-
gular function block

In this section, the hardware implementation of the TF is
presented. This block is being used as the TNF block in the proposed
SOM. The distances from thewinning neuron to particular neurons
are determined by r signals at particular rings of neighbors. The
winning neuron receives the rPROG signal that determines the
neighborhood range R at a given epoch. At each consecutive ring of
the neighbors, this signal is decreased by 1, as described above. In
case of using the RNF the EN = 1 signal (for any nonzero value of r)
determines if a given neuron is in the confines of the neighborhood
i.e. is allowed for the adaptation, while the value of the r signal
is not important. A different situation is in case of using the TNF,
in which the r signals at particular rings of neighbors are used as
input signals to the TNF blocks of particular neurons. The TNF block
returns the signal that is the η · G() term standing in (1). In the
next step this signal is being multiplied by the [X(l) −Wj(l)] term,
followed by the normalization.

Three parameters are used in this new block. Let us denote
them as C,D and E. The proposed TF block realizes the following

Fig. 9. The proposed circuit and the structure of the bits-shift block, which shifts the bits to the right, thus dividing the signal by D that is always a power of 2.

Author's personal copy

154 M. Kolasa et al. / Neural Networks 25 (2012) 146–160

Table 1
The quality of the learning process treated as a function of the initial neighborhood range Rmax , for the RNF, GNF and TNF (selected results).

Rmax Qerr PDM ET1 ET2 ET3
RNF GNF TNF RNF GNF TNF RNF GNF TNF RNF GNF TNF RNF GNF TNF

Map sizes: 8 × 8

REG 2D 0 35.9 35.9 35.9 26.6 26.6 26.6 0.844 0.844 0.844 0.076 0.076 0.076 45.6 45.6 45.6
Rect4 1 16.2 16.2 16.2 0 0 0 0 0 0 1 1 1 0 0 0

3 16.2 16.2 24.9 0 0 0 0 0 0.003 1 1 0.978 0 0 0.156
Rect8 1 16.2 16.2 16.2 0 0 0 0 0 0 1 1 1 0 0 0

2 16.2 16.2 16.2 0 0 0 0 0 0 1 1 1 0 0 0
Hex 1 25.2 16.2 16.2 7.81 0 0 0.02 0 0 0.975 1 1 0.766 0 0

2 19.6 16.2 16.2 1.56 0 0 0.05 0 0 0.966 1 1 1.22 0 0
RAND 3D 0 212 212 212 59.4 59.4 59.4 0.891 0.891 0.891 0.134 0.134 0.134 48.4 48.4 48.4

Rect4 1 67.0 51.3 64.9 20.3 17.2 20.3 0.338 0.302 0.308 0.598 0.563 0.607 6.42 7.72 6.28
2 58.4 82.9 70.1 17.2 23.4 20.3 0.259 0.358 0.297 0.670 0.598 0.607 3.64 6.53 5.36

Rect8 1 83.2 105 85.6 25 29.7 25 0.053 0.073 0.047 0.724 0.767 0.731 7.64 6.94 8.45
2 88.8 102 109 28.1 31.2 31.2 0.081 0.086 0.091 0.757 0.781 0.731 8.56 6.42 9.42

Hex 1 87.2 79.4 66.9 28.1 25 21.9 0.173 0.062 0.108 0.792 0.866 0.897 7.30 5.81 3.95
3 70.6 93.8 65.1 20.3 28.1 20.3 0.156 0.097 0.072 0.811 0.873 0.882 5.62 4.81 3.89

Map sizes: 16 × 16

REG 2D 0 37.0 37.0 37.0 28.5 28.5 28.5 0.955 0.955 0.955 0.016 0.016 0.016 196 196 196
Rect4 1 16.2 16.2 16.2 0 0 0 0 0 0 1 1 1 0 0 0

2 22.2 22 20.5 0.391 0 0 0.026 0.043 0.038 0.942 0.947 0.966 0.473 0.41 0.352
Rect8 1 16.2 27.5 16.2 0 5.08 0 0 0.052 0 1 0.81 1 0 6.11 0

3 26.9 16.2 17.3 5.08 0 0.39 0.055 0 0 0.814 1 0.99 5.43 0 0.23
Hex 3 21.5 16.2 16.2 1.17 0 0 0.012 0 0 0.974 1 1 0.797 0 0

7 21.8 20.7 16.2 1.17 0.78 0 0.014 0.017 0 0.976 0.98 1 0.977 0.891 0
RAND 3D 0 118 118 118 58.6 58.6 58.6 0.966 0.966 0.966 0.031 0.031 0.031 210 210 210

Rect4 1 45.3 44.3 44.4 25.8 25.8 24.6 0.265 0.263 0.273 0.559 0.543 0.511 9.20 9.38 12.8
2 45.0 41.0 47.0 24.6 23.0 26.2 0.225 0.258 0.244 0.580 0.565 0.591 6.49 7.32 7.57

Rect8 1 49.3 50.1 50.6 27.3 28.5 28.5 0.105 0.115 0.112 0.731 0.716 0.683 9.34 9.04 12.6
5 67.7 50.9 49.5 35.2 28.9 26.2 0.061 0.071 0.095 0.727 0.722 0.728 9.77 11.2 10.1

Hex 1 51.8 55.1 50.8 29.7 29.7 26.2 0.111 0.161 0.154 0.793 0.809 0.785 7.04 6.92 7.15
5 45 47.4 53.7 26.2 25 28.5 0.164 0.133 0.143 0.79 0.807 0.806 7.98 7.19 7.38

Map sizes: 32 × 32

REG 2D 0 40.0 40.0 40.0 32.3 32.3 32.3 0.990 0.990 0.990 0.010 0.010 0.010 866 866 866
Rect4 1 34.7 33.3 16.2 8.40 6.64 0.00 0.208 0.258 0 0.701 0.630 1 3.83 6.52 0

8 32.7 36.7 35.5 3.52 7.81 6.84 0.141 0.125 0.154 0.775 0.771 0.753 2.63 2.37 2.37
Rect8 1 28.1 16.2 16.2 4.79 0 0 0.009 0 0 0.878 1 1 2.71 0 0

2 27.2 29.7 16.2 2.44 5.86 0 0.005 0.157 0 0.902 0.634 1 1.53 20.1 0
Hex 1 30.5 34.0 16.2 4.10 9.57 0 0.064 0.123 0 0.928 0.780 1 2.37 12.9 0

2 31.0 30.8 16.2 6.93 5.96 0 0.068 0.069 0 0.909 0.900 1 2.79 3.21 0
RAND 3D 0 70.9 70.9 70.9 58.0 58.0 58.0 0.988 0.988 0.988 0.010 0.010 0.010 863 863 863

Rect4 1 28.4 30.7 29.1 24.8 26.8 25.0 0.306 0.317 0.284 0.501 0.500 0.528 13.27 13.8 10.8
2 30.8 29.8 29.2 26.6 25.2 25.2 0.279 0.273 0.255 0.548 0.560 0.547 8.40 7.71 9.33

Rect8 1 35.9 33.5 33.7 31.1 29.4 28.8 0.091 0.101 0.104 0.667 0.693 0.684 14.5 11.5 13.2
2 35.8 33.5 34.6 31.2 28.8 28.5 0.109 0.102 0.102 0.688 0.700 0.678 11.3 11.5 13.7

Hex 1 32.2 31.7 32.4 28.7 26.9 27.8 0.168 0.158 0.133 0.755 0.764 0.779 9.30 9.59 8.69
2 32.4 31.9 32.2 27.9 27.6 27.7 0.133 0.134 0.143 0.787 0.779 0.762 7.79 8.34 10.0

operation:
η(k) · G(R, d) = r · E/D + C . (11)

For a given epoch, the values of the C,D, E parameters are equal
for all neurons in the map and are reprogrammed only after each
epoch. The most complex component is a digital multiplier that is
realized as an asynchronous binary tree (BT), utilizing the shift-
and-add concept. In the BT concept, at the first layer of the tree
the terms corresponding to the bits: 0 and 1, 2 and 3, 4 and 5 and
so on, are added in parallel. Then in the next layer the results of
the pair 0–1 are added to 2–3, 4–5 to 6–7 and so on. The number
of the adders at each following layer is always reduced by half in
comparisonwith the previous layer. In the binary tree approach for
a resolution of κ bits a delay, which is introduced by themultiplier,
equals Tadd · log2 κ , where Tadd is a delay of a single multi-bit adder.
To illustrate how does this circuit operate let us consider a simple
example in which a binary number 1101 is multiplied by 10011
i.e. we need two layers only. At the first layer we perform two
summing operations say, 1 · 100110 + 1 · 10011 = 111001 and
0 · 100110+ 1 · 10011 = 010011. At the second layer we shift the
first result by two bits to the left and perform the summation with
the second result as follows: 11100100 + 0010011 = 11110111.

Division by D can be performed in various ways. One of the
possibilities is the multiplication by the reciprocal for the D
variable. In this case the number of bits, nb, at the output of the
TF block equals q + 2 · κ , where q is the width of the r variable,
while κ is the width of the E and the D variables. The steepness
of the TF varies in the wide range 2κ

− 1, 1/2κ , which makes the
TF block a universal circuit suitable for various applications. One
of the multiplier’s inputs can have in this case the width equal
to κ bits. For the second input we have to reserve 2 · κ bits if
decimal is at a fixed position and simultaneously the full flexibility
is expected. In this case extra zeros have to be added before and
after the second variable, resulting in some hardware redundancy
in particularmulti-bits adders used in BT. To illustrate the problem
let us consider an example case of E/D = 0.11100011. In this
case we multiply the r variable by 00000000.11100011 (8 extra
zeros before). If E/D = 111.00011 the r variable is multiplied
by 00000111.00011000 (5 extra zeros before and 3 after). In this
case the output signal width equals 24 while the total number of
transistors equals about 4000.

The simulations carried out by means of the software model
of the SOM show that the learning process is not affected if the

Author's personal copy

M. Kolasa et al. / Neural Networks 25 (2012) 146–160 155

(a) The map with 10 × 10 neurons and 2-D data regularly distributed. (b) The map with 10 × 10 neurons and 3-D data randomly distributed.

(c) The map with 16 × 16 neurons and 2-D data regularly distributed. (d) The map with 16 × 16 neurons and 3-D data randomly distributed.

(e) The map with 32 × 32 neurons and 2-D data regularly distributed. (f) The map with 32 × 32 neurons and 3-D data randomly distributed.

Fig. 11. Quantization error after completing the learning process for different resolutions of the η() · G() signal, for the Rect4 topology.

values of the D variable are limited to powers of 2 (i.e. 1, 2, 4, 8,
. . .). For this reason we propose another solution in which we use
the multiplier κ by q bits (ca. 2000 transistors for q = κ = 8 bits)
and an additional divider, shown in Fig. 9. In this case, the division
is realized by shifting the bits to the right. The bits-shift operation
is performed by the use of a set of switches directly controlled by
particular bits of the D variable: d0, d1, d2, . . . , dc . Only one bit in
this variable is allowed to be equal 1, thus the division is based on
the following scheme:

d0 = 1 shifts the bits by 0 bits → division by 1
d1 = 1 shifts the bits by 1 bits → division by 2
d2 = 1 shifts the bits by 2 bits → division by 4
· · ·

dc = 1 shifts the bits by c bits → division by 2c .

In this approach for an example case of E/D = 0.11100011 we
multiply the r variable by 11100011 obtaining a 16-bits number
and then we shift all the bits by 8 positions to the right. For E/D =

111.00011we alsomultiply the r variable by 11100011 shifting the
output bits by 5 positions. The divider in this case contains ca. 270
transistors (16 bits at the output of themultiplier). In this approach

we save half of the chip area but the E and D variables have to be
provided separately. On the other hand as in the SOM the E and D
variables are reprogrammed seldom (after particular epochs) the
problem is rather insignificant.

An additional circuit has to be used in the bits-shift block.
Shifting the bits to the right by c positions makes the terminals
that correspond to the c most significant bits floating and
have to be connected to the ground to avoid the ambiguity at
these terminals. This is realized by additional switches (one per
each terminal) that are controlled by the signals dependent on
particular bits of D. Instead of the switches, realized here as
transmission gates (NMOS and PMOS transistors connected in
parallel), a series of the AND gates could be used as well, but at the
expense of slightly larger number of transistors and larger power
dissipation.

Finally, the C parameter is added to the r ·E/D term. By a proper
selection of the C,D and the E parameters the TNF with any initial
value aswell as any slope can be realized. To illustrate the principle
described above, several triangular functions are shown in Fig. 10
for selected values of these parameters.

The value of the E parameter usually does not exceed 15 or 31
that is sufficient in case of the maps of 16×16 to 32×32 neurons.

Author's personal copy

156 M. Kolasa et al. / Neural Networks 25 (2012) 146–160

(a) The map with 10 × 10 neurons and 2-D data regularly distributed. (b) The map with 10 × 10 neurons and 3-D data randomly distributed.

(c) The map with 16 × 16 neurons and 2-D data regularly distributed. (d) The map with 16 × 16 neurons and 3-D data randomly distributed.

(e) The map with 32 × 32 neurons and 2-D data regularly distributed. (f) The map with 32 × 32 neurons and 3-D data randomly distributed.

Fig. 12. Quantization error after completing the learning process for different resolutions of the η() · G() signal, for the Rect8 topology.

In this case, either 4 or 5 additions are performed in each of the
TNF blocks. In SOMs themaximumvalue of theD parameter should
be at least equal to E, since the initial value of the η(k) · G(R, d)
term theoretically is never greater than 1. As a result, all bits in the
r · E product are shifted the most by 5 positions. It must be noted
that the number ‘1’ in this case refers to the maximum value that
is returned by the function described by (11) and equals 2nb

− 1,
where nb is the number of bits at the output of the TNF.

4.1. An influence of the resolution of the TNF output signal on the
quality of the learning process

In SOMs realized as digital circuits, the signal resolution at
the output of the NF has to be minimized in order to reduce the
circuit complexity, as well as the energy consumption. On the
other hand, the system level performance of the network cannot
be significantly disrupted in this way. In this section, we present
selected simulation results of the software model of the SOM for
different signal resolutions. The network was trained with data
either regularly or randomly distributed in the input data space, as
described above. The number of the training patternswasmatched

for particular map sizes. For example, the map with 16 × 16
neurons was trained with either 1280 or 2560 training patterns
which were either regularly or randomly distributed in the input
data space, while the map with 10 × 10 neurons was trained with
either 500 or 1000 patterns.

The results in Figs. 11–13 again are shown versus the Rmax, for
10×10, 16×16 and 32×32 neurons in themap, for three network
topologies, respectively.

On the basis of the presented results some conclusions can
be drawn. In case of regular data it is possible to point out such
values of Rmax, for which the map becomes properly organized
for all topologies even for 3 bits of resolution, as shown in
Figs. 11–13(a), (c), (e) (exception 11(e)). The Rect8 topology is
more robust, as this situation happens for more cases of Rmax. For
smaller maps, e.g., with 10 × 10 neurons, a low resolution does
not disrupt the learning process, while for larger maps this effect
is visible, as shown in Figs. 11–13(c), (e). Nevertheless, even in
this case a proper ordering is achievable for selected values of
Rmax.

A different situation can be observed in the case shown
in Figs. 11–13(b), (d), (f). The quantization error varies only
moderately. For example, in case shown in Fig. 11(b) the best

Author's personal copy

M. Kolasa et al. / Neural Networks 25 (2012) 146–160 157

(a) The map with 10 × 10 neurons and 2-D data regularly distributed. (b) The map with 10 × 10 neurons and 3-D data randomly distributed.

(c) The map with 16 × 16 neurons and 2-D data regularly distributed. (d) The map with 16 × 16 neurons and 3-D data randomly distributed.

(e) The map with 32 × 32 neurons and 2-D data regularly distributed. (f) The map with 32 × 32 neurons and 3-D data randomly distributed.

Fig. 13. Quantization error after completing the learning process for different resolutions of the η() · G() signal, for the Hex topology.

solution has been achieved for the resolution of 6 bits for the
Rect4 topology, although for 3 bits a comparable Qerr is achievable
for selected values of Rmax. In case shown in Fig. 12(d) for Rect8
topology the best results has been achieved for the resolution of
10 bits, while for 3 bits Qerr is 13% larger. Nevertheless, the optimal
number of bits in most cases is relatively low, in comparison with
typical software realizations.

These conclusions are very important in hardware implemen-
tation. Since all neurons in the map are composed of equal blocks,
therefore any reduction of the complexity of any block in one neu-
ron has an effect on the complexity of the entire map. The num-
ber of transistors in case of the resolution of 3-bits and Rmax = 7
(i.e. also 3 bits) equals c. 550 per a single neuron, while for 6 bits
equals c. 1200. In case of an example map with 16 × 16 neu-
rons the number of transistors is reduced by about 170,000. In
case of a realization in the CMOS 0.18 µm technology the chip
area is smaller by 2 mm2, while the power dissipation is reduced
by 30%.

Transistor level simulations of the proposed TNF block show
that, since between the input and the output of this block the
number of gates is no greater than 20 (mostly in the multiplier),
the propagation time is no greater than 6 ns. As a result, a delay of

the overall neighborhood mechanism is comparable for both the
RNF and the TNF cases. The problem with using the TNF block is
larger number of transistors in this case. In case of the RNF, the
number of transistors in the overall neighborhood mechanism per
a single neuron equals about 700 for a 5-bits r signal. The new TNF
block requires additionally 550–1200 transistors per neuron. This
shows that the rectangular NF is much more chip area efficient
than the triangular one. On the other hand, it is worth mentioning
that since this circuit is digital, the transistor sizes can be the
smallest possible for a given technology. As a result, for 5 bits of
the resolution the area of a single block equals only c. 7000 µm2.

The proposed neighborhood mechanism with the proposed
TNF is to be used as a component in the analog neural network
previously designed by the authors (Długosz, Talaśka et al., 2010).
A single neuron in this network with 3 inputs occupied the area
of 17, 500 µm2. For 12 inputs a single neuron would occupy
the area of 70, 000 µm2. This means that the new neighborhood
mechanism with the TNF block will increase the chip area of the
network by c. 10%–40% (depending on the number of the inputs),
which is acceptable in case of the considered maps with 8 × 8 to
40 × 40 neurons.

Author's personal copy

158 M. Kolasa et al. / Neural Networks 25 (2012) 146–160

Fig. 14. Transistor level simulations of the TNF block itself. The top plot illustrates different values of the r and the E parameters applied to the inputs. The next two plots
illustrate particular stages of the TNF block. The bottom plot illustrates the supply current. The results are presented for the supply voltage VDD = 1.8 V.

4.2. Performance analysis of the proposed circuit

In the proposed approach all neurons in the SOM operate
in parallel. Transistor level simulations in the CMOS 0.18 µm
technology show that independently on the number of neurons
the input data rate can be as high as 5–10 MHz, depending on
the number of the network inputs and the type of the topology.
Each neuron for a single learning pattern X performs about 40
arithmetic operations (for n = 3). As a result, the map with
64 neurons performs 25e9 operations/s, at the power dissipation
of 20–40 mW. Larger map with 2500 neurons will achieve even
1e12 operations/s. One operation in this case means an addition,
multiplication, searching for the winning neuron, etc. For the
comparison, in the PC these operations require several clock
cycles.

The performance of the TNF block is presented in Fig. 14. In
this test, a series of multiplications and divisions is performed for
r decreasing from 15 to 0 and E decreasing from 31 to 0 i.e. for 512
combinations. r · E products are then divided by 32 (shifting by 5
bits). Sampling period equals in this case 20ns but the circuitworks
properly also for 6 ns. Fig. 14 shows also the supply current, which
is proportional to the power dissipation. The height of the current
spikes varies in-between 1 and 25 mA, while the width of these
spikes is less than 1 ns. As a result, average energy consumption
does not exceed a few pJ per a single operation.

It isworth noticing that the shifter consumes a negligible power
in the comparison with the preceding multiplier, as the switches
in particular branches are reprogrammed very seldom, while the
values at the multiplier inputs vary in each learning cycle.

Fig. 15 illustrates the results of the overall neighborhood
mechanism for 8 × 8 neurons operating in the Rect4 mode.
This mode allows for reaching the highest distances, as only the
horizontal and the vertical directions are allowed. Looking from
the data rate point of view this is the worst case. The top diagram

illustrates the enable signals, EN, in the first column of the map.
These signals trigger the adaptation process in particular neurons.
Once the EN signal arrives at the bottom row of the map, the
propagation starts in this row, as shown in the second plot. A
delay between the EN signal at the first (1, 1) and the last (8, 8)
neurons in the chain is only 11 ns. Since a delay of a single TNF
block equals 6 ns, the entire map is ready for the adaptation after
17 ns. For the Rect8 and the Hex cases, the delay is even shorter
as the diagonal directions are also allowed in these cases. The
remaining operations performed by the SOM, such as calculation
of the distances between a given pattern X and the weight vectors
W of particular neurons (the Manhattan measure), detection of
the winning neuron (the WSC operation) and the adaptation take
another 50–80 ns, depending on the number of the network
inputs.

Taking these numbers into account, it can be said that a single
neuron in the proposed SOM is able to achieve 40–80MCUPS (mega
connection updates per second). This parameter enables a direct
comparison with alternative implementations on FPGA devices.
For example, in the FPGA implementation of the SOM described in
Hikawa (2005) the network reaches 4.89MCUPS (4.89e6). Another
SOM described in Pena et al. (2006) reaches 28.38 MCUPS. For the
comparison, in our proposed transistor level realization the overall
SOM with 64 neurons reaches even 2500 MCUPS.

The 3rd and the 4th diagram of Fig. 15 show the supply
current, which is proportional to the power dissipation, for the
RNF and the TNF respectively. In case of the TNF an average
current is approximately 5 times larger. This shows that the RNF
function should be used if it enables reaching the optimal learning
quality.

An interesting aspect, that is of practical meaning, is the
presence of trade-offs between the neighborhood range, the power
dissipation, the quantization error, themap sizes, data rate, etc. The
value of Rmax has a dominant impact on the power dissipation, data

Author's personal copy

M. Kolasa et al. / Neural Networks 25 (2012) 146–160 159

Fig. 15. Transistor level simulations of the overall neighborhood mechanism for 8 × 8 neurons in the map. The results are shown for the Rect4 mode. The 1st and the 2nd
plot illustrate the enable, EN, signals at particular stages of the neighborhood. The 3rd and the 4th plot illustrate the supply current for the RNF and TNF cases, respectively.

rate and the chip area. For larger values of Rmax larger numbers
of neurons are being activated and the R_PROG block becomes
more complex. Larger Rmax also means a longer propagation time
of the EN and the r signals between the winning neuron and the
most distant neighboring neurons, resulting in reduced data rate.
Fortunately, as has been demonstrated, in themajority of cases the
optimal value of Rmax is no greater than 7 (3 bits). For this reason,
this value can be assumed to be a constant value independent of
the map sizes. In this case all neurons have equal structures that
simplifies the overall design process of the SOM. The value of Qerr
has no influence on the power dissipation, as the last parameter
depends linearly on the map sizes and data rate only. On the other
hand, the Qerr does depend on the learning set as well as, to some
extent, on the resolution of the signal at the output of the TNF
block.

5. Conclusions

A new, flexible, fast and ultra-low power Triangular Neighbor-
hood Function (TNF) block for hardware realized Kohonen SOMs
has been developed. The SOM is to be used as a component of ul-
tra low power miniaturized intelligent sensors used in Wireless
Sensor Networks in medical applications. In such applications the
power dissipation and low chip area are of particular importance.
For this reason a series of simulations by means of the software
model of the SOM and on the transistor level have been performed
in order to optimize the structure of the circuit.

One of the main conclusions is that the TNF can be used instead
of the Gaussian one. The learning results are comparable in both
cases, while the TNF offers much simpler circuit structure. The
simulation results show that in case of both theManhattan and the
Euclidean distance measures the learning quality is comparable,
while the Manhattan approach significantly reduces the circuit
complexity and the power dissipation.

The other important conclusion is that even low signal
resolutions at the output of the TNF block allow for a proper

performance of the SOM, while it allows for a further reduction
of both the circuit complexity and the power dissipation. In the
proposed SOM all neurons operate in parallel. As a result, large
neural networks can achieve the computational complexity as high
as 1e12 operations/s in the CMOS 0.18 µm technology. In newer
technologies (below 90 nm) these numbers will by significantly
increased, which will make the proposed solution even more
competitive in the comparison with both the PC and the FPGA
implementation.

References

Abuelma‘ati, M. T., & Shwehneh, A. (2006). A reconfigurable Gaussian/triangular
basis function computation circuit. In IEEE international conference on computer
systems and applications (pp. 232–239).

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor
networks: a survey. Computer Networks, 38, 393–422.

Beaton, D., Valova, I., & MacLean, D. (2010). CQoCO: a measure for comparative
quality of coverage and organization for self-organizingmaps.Neurocomputing ,
73, 2147–2159.

Bereketli, A., & Akan, O. B. (2009). Communication coverage in wireless passive
sensor networks. IEEE Communications Letters, 13, 133–135.

Boniecki, P. (2005). The Kohonen neural network in classification problems solving
in agricultural engineering. Journal of Research and Applications in Agricultural
Engineering , 50(1), 37–40.

Corbishley, P., & Rodriguez-Villegas, E. (2007). A nanopower bandpass filter
for detection of an acoustic signal in a wearable breathing detector. IEEE
Transactions on Biomedical Circuits and Systems, 1, 163–171.

Długosz, R., & Kolasa,M. (2008). CMOS, programmable, asynchronous neighborhood
mechanism for wtm Kohonen neural network. In Proc. international conference
mixed design of integrated circuits and systems. MIXDES’08. Poland (pp. 197–201).

Długosz, R., Kolasa, M., & Pedrycz, W. (2010). Programmable triangular neighbor-
hood functions of Kohonen self-organizing maps realized in CMOS technology.
In Proc. European symposium on artificial neural networks. ESANN’10. Belgium (pp.
529–534).

Długosz, R., Talaśka, T., Pedrycz,W., &Wojtyna, R. (2010). Realization of a conscience
mechanism in CMOS implementation of winner takes all neural networks. IEEE
Transactions on Neural Networks, 21(6), 961–971.

Dubois, P., Botteron, C., Mitev, V., Menon, C., Farine, P. A., Dainesi, P., et al. (2009).
Ad hoc wireless sensor networks for exploration of solar-system bodies. Acta
Astronautica, 64, 626–643.

Author's personal copy

160 M. Kolasa et al. / Neural Networks 25 (2012) 146–160

Hikawa, H. (2005). Fpga implementation of self organizing map with digital phase
locked loops. Neural Networks, 18, 514–522.

Kohonen, T. (2001). Self-organizing maps (3rd ed.) Berlin: Springer.
Kolasa, M., & Długosz, R. (2008). Parallel asynchronous neighborhood mechanism

for WTM Kohonen network implemented in cmos technology. In Proc.
European symposium on artificial neural networks. ESANN’08. Bruges, Belgium
(pp. 331–336).

Lee, J. A., & Verleysen,M. (2002). Self-organizingmapswith recursive neighborhood
adaptation. Neural Networks, 15, 993–1003.

Li, F., Chang, C. H., & Siek, L. (2009). A compact current mode neuron circuit with
Gaussian taper learning capability. In IEEE international symposium on circuits
and systems (pp. 2129–2132).

Macq, D., Verleysen, M., Jespers, P., & Legat, J. D. (1993). Analog implementation of
a Kohonen map with on-chip learning. IEEE Transactions on Neural Networks, 4,
456–461.

Masmoudi, D. S., Dieng, A. T., & Masmoudi, M. (2002). A subtreshold mode
programmable implementation of the Gaussian function for RBF neural

networks applications. In Proc. IEEE international symposium on intelligent
control (pp. 454–459).

Mokriš, I., & Forgáč, R. (2004). Decreasing the feature space dimension by Kohonen
self-organizing maps. In Proc. 2nd Slovakian–Hungarian joint symposium on
applied machine intelligence. Herĺany, Slovakia.

Peiris, V. (1994). Mixed analog-digital VLSI implementation of a Kohonen neural
network. Ph.D. thesis. Rozprawa doktorska. Ecole Polytechnique Fédérale de
Lausanne. EPFL.

Pena, J., Vanegas, M., & Valencia, A. (2006). Digital hardware architectures of
Kohonen’s self organizing featuremaps with exponential neighboring function.
In Proc. of IEEE international conference on reconfigurable computing and FPGA’s
(pp. 1–8).

Su, M.-C., Chang, H.-T., & Chou, C.-H. (2002). A novel measure for quantifying the
topology preservation of self-organizing featuremaps.Neural Processing Letters,
15, 137–145.

Uriarte, E., & Martin, F. (2005). Topology preservation in SOM. International Journal
of Applied Mathematics and Computer Science, 1, 19–22.

