
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. E. Telatar, président du jury
Prof. A. Lenstra, directeur de thèse

Prof. W. Meier, rapporteur
Dr M. Stam, rapporteur

Prof. S. Vaudenay, rapporteur

Design and Analysis of Multi-Block-Length Hash Functions

THÈSE NO 5333 (2012)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 29 juin 2012

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE CRYPTOLOGIE ALGORITHMIQUE

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2012

PAR

Onur Özen

To my beloved grandmother

SATÍYE ÖZEN

Acknowledgements
First and foremost I would like to express my deep and sincere gratitude to my advisor Arjen K.

Lenstra for giving me an invaluable opportunity to pursue a Ph.D. at LACAL. It has always been an

honor for me to be a part of his group ; I also would like to thank him for his limitless moral support

and close friendship that led to unforgettable moments during my Ph.D work at EPFL. Finally, and

more importantly, I am thankful to him for giving me vision to understand life better and of course

for sharing with me his collection of classical music masterpieces everyday.

Special thanks go to Martijn Stam who basically served as my mentor during the last four years ;

without his amazing ideas and intelligence it would have been impossible for me to tackle the

problems I faced with. He is my co-author for all the scientific work presented in this thesis : I am

particularly thankful to him for his patience and joyful friendship ; and for trying his best to keep our

social lives more enjoyable.

I give many thanks to Dimitar Jetchev who, after joining LACAL, spent most of his time with me to

help solve the problems I had been working on. His friendship and support always gave me more

confidence and enabled me to relax. I am also grateful to Tom Shrimpton for proposing the project I

was involved in and for serving as the principal investigator for quite some time.

I would like to thank Joppe Bos with whom I shared an office and very enjoyable moments. In

addition to our close friendship, we wrote two articles together that, although not included in this

thesis, were published in two good international conferences. I also would like to thank Shahram

Khazaei, my dear friend and ex-office mate, who helped me a lot to get used to Switzerland and EPFL.

It was a great pleasure to have spent valuable moments with previous and current LACAL folks :

Patrick Amon, Maxime Augier, Alina Dudeanu, Nicolas Gama, Marcelo E. Kaihara, Alexandre Karlov,

Thorsten Kleinjung, Andrea Miele, Seyyd H. Mir Jalili, Dag Arne Osvik and Juraj Šarinay. I am very

thankful to Monique Amhof who runs all the important practical administrative duties in our labora-

tory and, of course, to Holly B. Cogliati for her invaluable support on writing this dissertation.

Thanks to the very smart people I worked with, we produced several papers that were published in

different international conferences ; for certain reasons, however, these papers are not included in

this thesis. Nevertheless, I would like to express my gratitude to my co-authors who collaborated with

me on these projects : Jean-Philippe Aumasson, Çağdaş Çalık, Jean-Pierre Hubaux, Çelebi Kocair,

Willi Meier, Raphael C.-W. Phan, Cihangir Tezcan and Kerem Varıcı.

Many thanks to my ex-flatmate Roland Mages and all of my friends at EPFL, in particular to the

Turkish community who always supported me in my very stressful moments. I am also thankful to

the financial support from the Swiss National Science Foundation, 200021-122162.

Last but not least, I would like to express my heart-felt thanks to my wife, Nihal, for sharing this

journey with me and supporting me with her limitless love. I am thankful to my parents for giving me

vision, support and confidence and to every single member of my family for believing in me during

this period.

v

Abstract
Cryptographic hash functions are used in many cryptographic applications, and the design of prov-

ably secure hash functions (relative to various security notions) is an active area of research. Most

of the currently existing hash functions use the Merkle–Damgård paradigm, where by appropriate

iteration the hash function inherits its collision and preimage resistance from the underlying com-

pression function. Compression functions can either be constructed from scratch or be built using

well-known cryptographic primitives such as a blockcipher. One classic type of primitive-based com-

pression functions is single-block-length : It contains designs that have an output size matching the

output length n of the underlying primitive. The single-block-length setting is well-understood. Yet

even for the optimally secure constructions, the (time) complexity of collision- and preimage-finding

attacks is at most 2n/2, respectively 2n ; when n = 128 (e.g., Advanced Encryption Standard) the result-

ing bounds have been deemed unacceptable for current practice. As a remedy, multi-block-length

primitive-based compression functions, which output more than n bits, have been proposed. This

output expansion is typically achieved by calling the primitive multiple times and then combining

the resulting primitive outputs in some clever way. In this thesis, we study the collision and preimage

resistance of certain types of multi-call multi-block-length primitive-based compression (and the

corresponding Merkle–Damgård iterated hash) functions : Our contribution is three-fold.

First, we provide a novel framework for blockcipher-based compression functions that compress

3n bits to 2n bits and that use two calls to a 2n-bit key blockcipher with block-length n. We restrict

ourselves to two parallel calls and analyze the sufficient conditions to obtain close-to-optimal

collision resistance, either in the compression function or in the Merkle–Damgård iteration.

Second, we present a new compression function h : {0,1}3n → {0,1}2n ; it uses two parallel calls to an

ideal primitive (public random function) from 2n to n bits. This is similar to MDC-2 or the recently

proposed MJH by Lee and Stam (CT-RSA’11). However, unlike these constructions, already in the

compression function we achieve that an adversary limited (asymptotically in n) to O (22n(1−δ)/3)

queries (for any δ> 0) has a disappearing advantage to find collisions. This is the first construction

of this type offering collision resistance beyond 2n/2 queries.

Our final contribution is the (re)analysis of the preimage and collision resistance of the Knudsen–

Preneel compression functions in the setting of public random functions. Knudsen–Preneel com-

pression functions utilize an [r,k,d] linear error-correcting code over F2e (for e > 1) to build a

compression function from underlying blockciphers operating in the Davies–Meyer mode. Knudsen

and Preneel show, in the complexity-theoretic setting, that finding collisions takes time at least

2(d−1)n/2. Preimage resistance, however, is conjectured to be the square of the collision resistance.

Our results show that both the collision resistance proof and the preimage resistance conjecture

of Knudsen and Preneel are incorrect : With the exception of two of the proposed parameters, the

Knudsen–Preneel compression functions do not achieve the security level they were designed for.

Keywords : Hash function, compression function, blockcipher, security proof, cryptanalysis.

vii

Résumé
Les fonctions de hachage cryptographiques sont utilisées dans de nombreuses applications cryp-

tographiques, et la conception de fonctions de hachage dont la sécurité est prouvable (relativement

à diverses notions de sécurité) est un domaine actif de la recherche. La plupart des fonctions de

hachage existantes utilisent le paradigme de Merkle–Damgård, où la fonction de hachage hérite, par

une itération appropriée, des propriétés de résistance à la collision et à la préimage d’une fonction

de compression sous-jacente. Ces fonctions de compression sont soit construites entièrement pour

l’occasion, soit dérivées d’une autre primitive cryptographique bien maîtrisée, comme un chiffre-

ment par blocs. Un type classique de fonctions de compression basées sur une telle primitive est une

fonction dont la taille de sortie correspond à la taille de sortie de la primitive. La sécurité de ce type de

fonctions est bien comprise ; pourtant, même dans le cas d’une construction à la sécurité optimale,

la complexité en temps des attaques de collision et de préimage sont, au plus, respectivement de 2n/2

et de 2n . Lorsque n vaut 128 (ce qui est le cas pour AES, l’Advanced Encryption Standard) les bornes

correspondantes ont été jugées inacceptables pour un usage pratique actuel. Pour y remédier, des

fonctions de compression basées sur une primitive, mais dont la taille de sortie est un multiple de la

taille de sortie de la primitive, ont été proposées. L’expansion de la sortie est typiquement obtenue en

appelant la primitive plusieurs fois, et en combinant de manière intelligente les sorties respectives.

Dans cette thèse, nous étudions la résistance à la collision et à la préimage de certains types de

fonctions de compression faisant plusieurs appels à la primitive sous-jacente et dont la taille de sortie

est un multiple de la taille de sortie de la primitive. Nous étudions aussi les fonctions de hachage

obtenues lorsque la fonction de compression est utilisée dans le paradigme de Merkle–Damgård.

Notre contribution est triple.

Premièrement, nous fournissons un nouveau cadre pour des fonctions de compression basées

sur un chiffrement par blocs, qui compressent 3n bits vers 2n bits en utilisant deux appels à un

chiffrement par blocs ayant une longueur de clef de 2n bits et une longueur de bloc de n bits. Nous

nous restreignons à deux appels parallèles, et analysons les conditions suffisantes pour obtenir une

résistance à la collision proche de l’optimum, soit directement dans la fonction de compression, soit

lorsque la fonction est utilisée dans le procédé de Merkle–Damgård.

Deuxièmement, nous présentons une nouvelle fonction de compression h : {0,1}3n → {0,1}2n , util-

isant deux appels parallèles à une primitive idéale (une fonction aléatoire publique) de 2n vers

n bits. Cette construction est similaire à MDC-2 ou à la récente proposition MJH de Lee et Stam

(CT-RSA’11). Cependant, contrairement à ces constructions, nous obtenons qu’un adversaire limité

à O (22n(1−δ)/3) requêtes (asymptotiquement en n, pour tout δ > 0) a un avantage négligeable de

trouver des collisions (pour la fonction de compression). La construction que nous proposons est la

première de ce type offrant une résistance à la collision au delà de 2n/2 requêtes.

Notre contribution finale est la (ré)analyse de la résistance à la préimage et à la collision des fonctions

de compression de Knudsen-Preneel dans le contexte de fonctions aléatoires publiques. Les fonctions

ix

Acknowledgements

de compression de Knudsen-Preneel utilisent un code correcteur d’erreurs linéaire de paramètres

[r,k,d] sur F2e (pour e > 1) pour construire une fonction de compression sur un chiffrement par

blocs sous-jacent fonctionnant suivant le mode de Davies–Meyer. Knudsen et Preneel montrent,

dans un contexte de complexité théorique, que trouver des collisions demande un temps d’au moins

2(d−1)n/2. La résistance à la préimage, cependant, est simplement conjecturée être le carré de la

résistance à la collision. Nos résultats montrent que la preuve de résistance à la collision, tout comme

la conjecture de résistance à la préimage, de Knudsen et Preneel, sont incorrectes : Á la possible

exception de deux ensembles de paramètres sur tous ceux proposés, les fonctions de compression

de Knudsen-Preneel n’atteignent pas le niveau de sécurité pour lequel elles ont été conçues.

Mots-clés : Fonctions de hachage, Fonctions de compression, chiffrement par blocs, preuve de la

sécurité, cryptanalyse.

x

Contents
Acknowledgements v

Abstract (English/Français) vii

List of figures xiii

List of tables xvii

1 Introduction 1

1.1 Cryptology . 1

1.1.1 A Brief Historical Tour . 1

1.1.2 Modern Cryptology . 3

1.1.3 Cryptography Today . 7

1.2 The Role of Cryptographic Hash Functions . 8

1.2.1 Applications . 8

1.2.2 A Quick Glance at Cryptographic Hash Function Research 10

1.3 About This Dissertation . 11

1.3.1 Publications . 12

1.3.2 Organization . 13

2 Cryptographic Hash Functions 15

2.1 Preliminaries . 15

2.1.1 Basic Notions . 15

2.1.2 Security Notions . 17

2.1.3 Generic Cryptanalytic Methods . 20

2.2 Iterated Hash Functions . 21

2.2.1 Merkle–Damgård Domain Extension . 22

2.2.2 Generic Cryptanalytic Methods Against Strengthened Merkle–Damgård 25

2.2.3 Other Iterated Domain Extenders . 26

2.3 Compression Functions Based on Blockciphers . 26

2.3.1 The Model . 27

2.3.2 Generalization to Other Primitives and Stam’s Conjecture 30

2.3.3 Single-Call Compression Functions . 31

2.3.4 Double-Block-Length Compression Functions 34

2.3.5 Extensions: Knudsen–Preneel Compression Functions 37

2.4 Contributions . 38

xi

Contents

3 Setting the Stage 41

3.1 Some Mathematical Basics . 41

3.2 Multi-Call Multi-Block-Length Compression Functions 43

3.3 On the Probabilistic Analysis of Adaptive Adversaries . 45

3.3.1 Preliminaries . 47

3.3.2 Known Techniques . 51

3.3.3 Considering More General Games . 55

4 Another Look at Double-Block-Length Hash Functions 61

4.1 Compression Functions with Distinct and Independent Blockciphers 62

4.2 Using a Single Blockcipher: Implicit Domain Separation 66

4.3 Towards Close-to-Optimal Collision Resistance in the Iteration 71

4.4 Implications for Linear Schemes . 77

4.4.1 Secure Compression Functions with Distinct and Independent Blockciphers . 77

4.4.2 Using a Single Blockcipher . 80

4.4.3 Collision Resistant Constructions in the Iteration 81

5 A Compression Function Exploiting Discrete Geometry 83

5.1 Our Construction and the Security Claims . 85

5.1.1 The Design . 85

5.1.2 Challenges to Overcome . 87

5.1.3 Design Rationale for Pre and Postprocessing Functions 92

5.1.4 Security Claims . 95

5.2 Proof of Collision Resistance (Theorem 5.1.6) . 99

5.2.1 Overall Strategy . 99

5.2.2 Building Tools for the Proof: Partitions, Bunches and Some Auxiliary Events . . 104

5.2.3 Bounding Collisions: Focusing on Pr[E1] and Pr[E3] 108

5.2.4 Bounding Overall Collinearity: Bounding Pr[E2] 110

5.2.5 Finishing the Proof . 113

5.3 Proof of Everywhere Preimage Resistance (Theorem 5.1.8) 113

5.4 Blockcipher-Based Instantiation . 116

5.4.1 Straightforward Adaptation . 116

5.4.2 “DM”plified Version . 117

5.5 Practical Considerations and Comparison . 117

6 On the Security of Knudsen–Preneel Compression Functions 121

6.1 The Knudsen–Preneel Hash Functions . 124

6.2 Yield-based Information-Theoretic Attacks . 128

6.3 Revisiting the Preimage Resistance . 130

6.3.1 Practical Preimage Attack Against KP1([5,3,3]4) in O (25n/3) Time 130

6.3.2 Generic Attack Against MDS Schemes . 132

6.3.3 Generic Attack Against Non-MDS Schemes . 136

6.3.4 Proof of Theorems 6.3.5 and 6.3.7 . 140

6.3.5 A Space-Efficient Preimage Attack . 141

6.3.6 Information-Theoretic Security Proof . 146

6.4 Another Look at Collision Resistance . 149

xii

Contents

6.4.1 Decoding the Knudsen–Preneel Preprocessing 149

6.4.2 Watanabe’s Collision-Finding Attack Revisited . 152

6.4.3 A Parametrized Collision-Finding Attack . 156

6.4.4 Practical Collision Attack Against KP1([5,3,3]4) in O (23n/4) Time 159

6.4.5 Generic Collision Attack Against MDS Constructions 161

6.4.6 Extending the Collision Attack Against Non-MDS Constructions 164

6.4.7 Proof of Theorems 6.4.17 and 6.4.19 . 166

7 Conclusions 169

Bibliography 183

Appendices 184

A The Birthday Paradox 185

B Compression Functions Based on Fixed-key Blockciphers 187

B.1 Single-Call Single-Block-Length Compression Functions 187

B.2 Multi-Call Compression Functions . 188

B.3 Extensions . 189

C Our Results on Extended KP-Parameters 191

Curriculum Vitae 193

xiii

List of Figures
2.1 Implication and separation (see Definitions 2.1.4 and 2.1.5) results among seven no-

tions introduced by Rogaway and Shrimpton. Solid arrows show conventional implica-

tions, whereas dashed arrows represent provisional implications (see Definition 2.1.4);

the strength of the implication is dependent on the size of the domain and range

(see [171] for the details). No arrows represent separation. We note that each security

notion implies itself (trivially) although it is not shown in the figure explicitly. 19

2.2 The iterative hash function is illustrated with the compression function hK (i.e., h with

K
$←K) for M = {0,1}m ,V = {0,1}s and Z = {0,1}n (see Definition 2.2.1). 22

2.3 PGV compression functions hE (V , M) with almost optimal collision and (everywhere)

preimage resistance. The box illustrates the blockcipher and all the wires carry n bits.

The key of the blockcipher is fed into the dark side of the box, whereas the plaintext

comes as an input to the other edge shown with an incoming arc. The state value

V enters from the left and the message block M is fed from the top (see the PGV

compression function 1 for the example of the illustration). The output exits from

the right. Matyas–Meyer–Oseas, Miyaguchi–Preneel and Davies–Meyer compression

functions are shown in 1, 2 and 5, respectively. 31

2.4 Eight PGV compression functions that turn out to be almost optimally collision resistant

when used via MD. Notation as in Figure 2.3 and c̄ is an arbitrary constant in {0,1}n .

Rabin’s scheme (with c̄ = 0) is shown in 13. 32

2.5 Single-call blockcipher-based compression functions (see Definition 2.3.6). 33

2.6 Double-call blockcipher-based compression functions (see Definition 2.3.8). 35

3.1 General form of a tn-to-sn–bit single-layer PuRF-based compression function with

feedforward based on r calls to underlying PuRFs with cn-bit inputs and n-bit outputs. 43

3.2 An illustration of the bit-strings used in the proof of Theorem 3.2.3 is provided for a

single PuRF input X = (x1, . . . , xe) ∈ {0,1}cn . The input block X is divided into e = bc

chunks each consisting of n′ bits, in particular xi ∈ (0n′−nq × {0,1}nq). The shaded

rectangles illustrate the (presumably) non-zero part of each chunk, whereas the rest

shows the zero-bit blocks. 45

3.3 Standard adaptive (ExpE-ad(A)) and non-adaptive (ExpE-na(A)) security games for

(monotone) condition E. Here, Qi denotes the list of queries and corresponding

answers up to (and including) the i ’th step. 46

3.4 The experiments analyzed in Propositions 3.3.7 and 3.3.10 illustrated (on the left and

right, respectively). 55

xv

List of Figures

4.1 Double-call DBL blockcipher-based compression functions (see Definition 2.3.8 with

parameters κ= s = 2n and m = n) considered in Chapter 4. In Section 4.2, only a single

blockcipher is used, so E 1 = E 2. In Section 4.3, we consider compression functions

without feedforward (i.e., V and M are not fed into Cpost). 62

4.2 The conjugate pairs (V , M)-(V ′, M ′) and (K , X)-(K ′, X ′) for IDS DBL Type-I compression

functions illustrated for p =Cpre
2 (C−pre

1 (·)); hence p(K , X) = (K ′, X ′). 67

4.3 Collision resistance bounds illustrated for n = 128. The horizontal axis is log2(q) and

vertical axis is AdvcollH (q). The black, solid curve is the birthday bound; the dotted curve

is the bound obtained from Theorem 4.3.3 (with an optimization for κ). Red and blue

curves are the bounds from Theorem 4.2.2 and 4.1.2, respectively; note that we use

Theorem 2.3.4 to derive the corresponding bounds for the hash function. 76

4.4 The Abreast-DM compression function illustrated where ◦ denotes the bitwise com-

plementation. Abreast-DM-t makes use of two distinct and independently sampled

blockciphers and omits bitwise complementation. 79

4.5 The Hirose’s DBL compression function illustrated where c̄ ∈ {0,1}n \ {0}n 80

5.1 Collision resistance bound (as a function of log2(q)) illustrated for n = 128. The vertical

axis is Advcollh (q) and the horizontal axis is log2(q). The dotted curve (shown in black)

is the best known bound so far for the double-call DBL primitive-based compression

functions in question; the solid curve (in blue) is the bound obtained from Theo-

rem 4.3.3 (with an optimization over the constant values as detailed in Section 5.1.4 on

page 97). 85

5.2 Our compression function h f 1, f 2
: {0,1}3n → {0,1}2n illustrated. The input W to h f 1, f 2

is

represented as an element ofF3
2n , i.e., W = (a,b,c) ∈F3

2n for a,b,c ∈F2n . The matrix A

used in the postprocessing function Cpost is specified in Section 5.1 (Construction 5.1.1)

along with the conditions on its entries in Table 5.1 on page 102. In the figure, ⊗ and ⊕
denote multiplication and addition inF2n , respectively. 87

5.3 A tree representation of the hierarchical relations of the statements used in the proof of

Theorem 5.1.6. Probabilities do not correpond to a node in the tree; they are added for

illustrative purposes to show the correspondence with the related statements. Solid

lines show that the proof of the statement that appears in the parent node makes use

of the statement shown in the child node. Dashed lines show that the child node is

implied by the parent node. 101

6.1 Our preimage attack on hn = KP1([5,3,3]4) illustrated. The (unlabeled) inputs to

f 1, . . . , f 5 correspond to (x1
1 , x2

1), . . . , (x1
5 , x2

5). Here, F denotes the FINALIZATION phase. 131

6.2 Our space-efficient preimage attack on hn = KP1([5,3,3]22) illustrated. The attack

works for l = 22n/3. 143

6.3 Auxiliary maps used in Section 6.4.1. The rightmost diagram illustrates the isomor-

phism
⊕n′

j=1 U j → {0,1}er n′
for U j =Fr

2e . 149

6.4 Our collision attack on hn =KP1([5,3,3]4) illustrated. The (unlabeled) inputs to f 1, . . . , f 5

correspond to (x1
1 , x2

1), . . . , (x1
5 , x2

5). Here, F denotes the final filtering. 161

B.1 General form of single-call permutation-based compression functions. The case m =
s = n corresponds to the constructions studied by Black, Cochran and Shrimpton. . . 188

xvi

List of Figures

B.2 The Rogaway–Steinberger compression function is illustrated. Here ¿ 1 and ¿ 2

denote polynomial multiplication with x and x2, respectively. 189

B.3 The Shrimpton–Stam compression function is illustrated. 189

xvii

List of Tables
2.1 A summary of the preservation results of some iterated hash functions. The symbol

“X" shows that the preservation holds, whereas “×" means that it is not preserved. We

also show by “×" if the corresponding definition is not applicable, e.g., the construction

does not accept keys. The symbol “?" demonstrates that no result is known. 27

5.1 A summary of the properties of the entries of A (see Construction 5.1.1) used in the

proof of Theorem 5.1.6. (N) denotes that the condition is necessary, whereas (S) denotes

it is sufficient. 102

5.2 The performance comparison of certain DBL compression function designs that com-

press 128-bit message blocks and output 256-bit digest. The primitive employed and

the achieved speed (in cycles per byte) using the AES instructions are shown in the

second and third column, respectively. 120

6.1 Knudsen–Preneel constructions (cf. [93, Table V and VIII]) based on a 2n-to-n and

3n-to-n bit primitive (PuRF), their (incorrect) collision resistance claim, (incorrect)

preimage resistance conjecture and our findings, are summarized. Non-MDS (forF22)

and Watanabe-resistant parameters (forF23) are given in italics. The symbol × shows

that our techniques are not applicable to the corresponding codes. Our attacks serve

as an upper bound on the level of collision and preimage resistance. 122

6.2 The codes (overF2e for e ∈ {2,3,4}) and the leading compression functions suggested

by Knudsen–Preneel. Here, the generator matrix G is of the form G = [Ik |P] and the

table contains P T . The Magma command BKLC(GF (2e),r,k) gives the resulting code

[r,k,d]2e where d is the best known value for the given parameters (matching with the

codes given by KP). 126

6.3 An overview of the list cardinalities and computational complexity of preimage attacks

on the Knudsen–Preneel compression functions based on MDS codes. 135

6.4 An overview of the list cardinalities and computational complexity of preimage attacks

on the Knudsen–Preneel compression functions based on non-MDS codes. 137

6.5 Space-efficient results on Knudsen–Preneel Compression Functions based on [r,k,d]2e

codes. Non-MDS parameters in italic. 146

6.6 An overview of the list cardinalities and computational complexity of collision attacks

on the Knudsen–Preneel compression functions based on on MDS codes. 164

6.7 An overview of the list cardinalities and computational complexity of collision attacks

on the Knudsen–Preneel compression functions based on non-MDS codes. 166

C.1 Our results on 5n-to-n bit primitive (PuRF or blockcipher) Knudsen–Preneel Compres-

sion Functions. 191

xix

1 Introduction

The title of this thesis contains the term ‘hash function’ 1. It is regarded as one of the key components

of modern cryptology; many also refer to it as ‘the salt and pepper’ of cryptology used today. In this

chapter, by casting a light on how cryptology itself developed as a science which has its roots from an

‘ancient art’, we will learn how cryptographic hashing became so vital, hence why a thesis should

be written on it. Beginning with the very early methods and the basic notions, we present (very

informally) the major developments of cryptology and describe how cryptographic hash functions

have taken an important role in this field. The readers familiar with these basics might well skip this

chapter and start reading the thesis from Chapter 2 onwards.

1.1 Cryptology

1.1.1 A Brief Historical Tour

Finding (efficient) ways of sending messages where only the intended recipients (and the sender

itself) are able to read the original message is dealt with by one of the two major branches of

cryptology, called cryptography. Cryptography has been known and used for a long time, initially

used mainly for military purposes to prevent the enemies 2 from reading secret information. The

tool—developed by the methods of cryptography—allowing such a property is called a cipher, a term

that formerly meant ‘zero’ in the Latin world and that has its roots in Arabic.

One of the oldest ciphers known today is due to the Romans, in particular to Julius Caesar (Caesar

cipher) who encrypted messages (plaintext) to communicate with his generals: Each letter in the

message to be encrypted is replaced by a letter three positions down the alphabet. For instance,

‘a’ would be replaced by ‘d’, ‘b’ would become ‘e’, etc. In order to decrypt the encrypted message

(ciphertext), it is sufficient to know the above secret knowledge, or the so-called secret-key, which in

this case is this simple substitution over the alphabet.

According to historical notes, there existed no known method at that time for obtaining the original

message without knowing the secret-key, until the discovery of frequency analysis in the Arab world

1. By hash functions we mean cryptographic hash functions; throughout, these two terms will be used interchangeably
to refer to the same concept.

2. The word enemy stems from the military-based applications; in the cryptographic literature, the term used to refer
to an opponent is adversary or eavesdropper.

1

Chapter 1. Introduction

(ninth century [85]). Frequency analysis is a method allowing an opponent to decrypt ciphertexts

and obtain the secret-key without initially knowing it. This effort is generally referred to as breaking

or attacking the cipher; yet today it has a broader meaning. The branch of cryptology dealing with

developing methods for ‘assessing the security’ of the cryptographic primitives is called cryptanalysis,

which, along with cryptography, constitutes the science of cryptology.

After the fall of the Caesar cipher, triggered by the advances in cryptanalysis, more advanced methods

were employed, such as the Vigenère cipher [85] or le chiffre indéchiffrable. Here the shared secret

knowledge is gathered through the Vigenère square, also known as the tabula recta, that can be used

for both encrypting the plaintexts (encryption) and decrypting the ciphertexts (decryption). The

Vigenère cipher was successfully cryptanalyzed after a few centuries and various other schemes were

proposed by cryptographers.

In the course of time, cryptography and cryptanalysis turned out to be two fields not only affecting

each other significantly but also having direct consequences in the real world. For instance, as

exploited during the Second World War by the Allies, obtaining the Enigma machine and its successful

cryptanalysis allowed them to decrypt the confidential and sensitive information of the German

military. Consequently, the Allied forces gained a significant strategic advantage, which undoubtedly

changed the course of the war. Indeed, as emphasized by Winston Churchill to Britain’s King George

VI: "It was thanks to Ultra 3 that we won the war" [48].

The use of the secret component of Enigma is no different than that of the Caesar or Vigenère

cipher, except for its (much more) complicated structure. That is, the secret knowledge now is the

device itself, along with the initial states that are set among the intended recipients before the

communication starts. Note that in all these three examples, the security of the cryptographic system

relies on the very same secret knowledge shared among the intended users, whereas an adversary

is assumed not to have access to it. This type of cryptographic system, still very widely accepted,

belongs to the field called symmetric-key cryptography, symmetric in the sense that the (secretly)

communicating parties do have the same key. This had been the only way of secret communication

until very recently; the role of cryptology in modern world has been boosted by the invention of

public-key cryptography [54].

However, even well before (in the late 19th century) public-key cryptography was discovered, there

was a remarkable effort to reformulate the term ‘security’ in symmetric-key cryptography by using

axiomatic terms and looking at the problem from a modern point of view. This term, also known as

Kerckhoffs’ Principle [85], is one of the striking ideas from earlier years of cryptology shedding some

light on the evolution of this field. Generally and informally speaking, Kerckhoffs’ Principle states

that a cryptographic system should be secure even if everything, except for the secret-key, about the

encryption and decryption process is publicly known. This concept has been widely accepted by

cryptographers, compared to what is known as security through obscurity.

Still for most cryptographers, modern cryptology was born by the pioneering work [182] of Shan-

non, who introduced the mathematical structure of secrecy systems using his then-new theory of

communications and information [181]. The major conclusion of Shannon is that, given unlimited

computing power, the amount of information that can be sent with perfect secrecy is at most the

information available in the secret-key. Hence, a malicious adversary with unlimited computational

3. Ultra is the codename for the information gained from the cryptanalysis of Enigma.

2

1.1. Cryptology

power can (in theory) obtain part of the secret message if more information is transmitted. Obviously,

Shannon’s information-theoretic cryptography does not reflect very well the cryptography used in

practice, as adversaries in real life are computationally bounded (which allows for more messages

to be sent). Still, it provides a good measure as a first step towards understanding the structural

properties of a cryptosystem. Even more importantly, Shannon’s work serves as one of the first

scientific references to modern cryptology.

For more on the history and evolution of cryptology, we refer to two well-known and remarkable

books: The Codebreakers by Kahn [85] and, more recent, The Code Book by Singh [188].

1.1.2 Modern Cryptology

Until the 1960s, cryptology had been used only by the military and secret services in order to keep

confidential information secret. Beginning in the 1970s, due to the fast development of computers

and communication in general, the need for cryptology became evident for the private sector as

well. This need, along with the involvement of the research community, transformed its role from an

ancient art to a branch of science.

Cryptology as a science, developed in two major directions: the traditional symmetric-key model

and, relatively new, public-key (or the asymmetric-key) setting. The former is just the modern view

of the good old symmetric-key cryptology also used by Caesar, which nowadays contains much more

intelligent and involved techniques. Whereas public-key cryptology is based on principles that are

entirely different from those underlying the symmetric-key model. Today, both techniques are at the

core of modern cryptology.

Advances in Symmetric-Key Cryptology

One of the important developments in cryptology is that the US standards body, then named

NBS (National Bureau of Standards), deemed necessary a symmetric-key encryption standard—

the US FIPS (Federal Information Processing Standard)—for encrypting unclassified yet sensitive

information. To this end, in 1973, they made a call for proposals for a cipher that would meet their

requirements. Interestingly, after the initial investigation, none of the proposed designs were found

acceptable based on their criteria. Then, in 1974, they made a second call that turned out to be

more fruitful: A submission from IBM (developed by Feistel in the early 1970s), which was heavily

influenced by an earlier cipher called Lucifer [60], was found suitable. The standard was filed in 1976

and the cipher was called DES (Data Encryption Standard) [138]. The IBM effort led by Feistel and

the deployment of DES accelerated the role of cryptography in the civilian world, in particular in the

research arena. Indeed, the community then had an explicitly defined cipher to work on, which had

never been the case before.

DES is currently referred to as a blockcipher 4; it informally means (see Section 2.3 for a more formal

treatment) that the plaintexts are partitioned into blocks of strings of fixed-length and each block is

encrypted using a secret-key where each key specifies a fixed permutation (over the domain of input

blocks). A single execution of DES encrypts a 64-bit plaintext using a 56-bit key. In order to encrypt

4. Blockciphers are not the only symmetric-key cryptographic systems; streamciphers can also be given in this category.
We do not consider the latter in this thesis. One can refer to [2] for the developments in the field of streamciphers.

3

Chapter 1. Introduction

arbitrary-length plaintexts, it is necessary to use a mode of operation (along with a proper padding

scheme and multiple DES executions) where we refer to one of the classic books on cryptology

(e.g., [122]) for available blockcipher modes of operation.

Parallel to these advances in cryptography, cryptanalysts made significant efforts after the design

of DES to analyze its security. Differential cryptanalysis by Biham and Shamir [22, 23] and Matsui’s

linear cryptanalysis [114, 115] can be given as the two most powerful techniques in this direction.

These two major tools are still at the heart of more involved cryptanalysis techniques that are known

today and are used against the symmetric-key cryptographic primitives. Nevertheless, DES and its

triple-key variant TDEA [134] had been used extensively until the late 1990s (TDEA is still being

used) as the developed cryptanalytic techniques were mostly theoretical, i.e., they did not cause “a

practical threat” against DES at the time due to their computational requirements.

A more practical threat against DES came with the developments in technology and the use of

the Internet for cryptanalytic purposes. Specifically, towards the end of the 1990s, using reason-

able financial resources and time, DES was shown to be susceptible to exhaustive key search [1],

which is the most basic and straightforward method to obtain the secret-key; it simply functions

by trying every possible key until the correct one is found. The attack was described as follows [1]:

“Tens of thousands of computers, all across the U.S. and Canada, linked together via the Internet

in an unprecedented cooperative supercomputing effort to decrypt a message encoded with the

government-endorsed Data Encryption Standard (DES)”. The effort turned out to be productive and

successfully terminated in four months showing that the short key-length of DES is not suitable

anymore for sensitive applications.

Triggered by these advances in cryptanalysis, as an alternative to DES, cryptographers proposed

many blockciphers in the 1990s. One of the common characteristics of these designs is that they were

proposed to address yet another issue, namely the efficiency of DES: At the time DES was designed,

the major applications were mainly supported by special purpose hardware and consequently

DES was primarily targeted taking into account the efficiency in hardware. Although later shown

to be sufficiently fast in software [148] on many platforms, DES was not very flexible for many

modern architectures. These two problems, i.e., short key-length and the efficiency issues, led to

the call for the second symmetric-key cryptographic standard by the US NIST (National Institute

of Standards and Technology). In early 1997, NIST made its announcement for AES (Advanced

Encryption Standard) to select “an unclassified, publicly disclosed encryption algorithm capable of

protecting sensitive government information well into the next century” [137].

There were several differences between the DES and AES selection processes; the most evident of

which is that this time NIST made a call for blockcipher submissions supporting 128-bit plaintext

blocks, as well as three key-length flavors: 128-, 192- and 256-bit. Moreover, the calls seemed to

be made public without exclusive involvement from non-civilian organizations. As a result, fifteen

submissions were received from all over the world—in 1999 five of them were announced as finalists—

and the blockcipher Rijndael [51] was selected as AES in 2001 [139].

Rijndael was designed by two Belgian cryptographers, Daemen and Rijmen, and it was clearly

the most software-efficient (and reasonably fast and compact in hardware) candidate among the

five finalists, considering many platforms. Even regarding security, the arguments provided by the

designers (and the extensive efforts during the selection process) were also found convincing at

4

1.1. Cryptology

the time. But, the real story is a bit different, at least from a security point of view, which has been

well-known by most of the people working in this area: Cryptanalytic methods never get worse, on

the contrary, they improve quite rapidly. Therefore, although convincing at the time, everyone was

aware of the unavoidable fact: AES may not be able to provide resistance against ‘unknown’ and yet

to be improved cryptanalytic methods.

Unsurprisingly, in the following years, the community did not forget this fact. AES was first shown to

be susceptible to so-called side-channel attacks [16, 199], which benefit from the information leaked

by the physical implementation of a cryptographic algorithm. Fortunately, the methods [16, 199]

themselves suggest countermeasures to prevent such weaknesses. Yet, it was the first indication that

the current standard might have some security flaws. The second indication came recently with

the result of Biryukov and Khovratovich [24]: a cryptanalysis of AES variants of 192- and 256-bit

secret-keys using a sophisticated method derived from differential cryptanalysis. Their result is (as

of today) far from being practical 5 due to the high complexity of their technique; as a result, AES is

still considered to be reasonably secure, at least for practitioners. Yet these advances show a clear

indication that AES has structural weaknesses as well.

After experiencing these two standardization processes and the subsequent cryptanalytic develop-

ments, it is questionable that AES is the blockcipher the century has been waiting for. Hence, a new

call for proposals from NIST for the next generation blockcipher is to be expected, not very soon

perhaps but at least in a couple of decades.

A New Era: The Rise of the Public-key Cryptology

Although symmetric-key cryptography provides, to some extent, a solution to ensuring secrecy, it has

a clear disadvantage that has been known for quite some time: the key distribution. Indeed, in order

to establish a secure communication via symmetric-key cryptography, we need to ensure, that the

intended recipients do have the required shared secret knowledge, well before the communication

starts. Now, imagine that there exist thousands or millions of users trying to communicate with each

other using symmetric-key cryptography. If everyone uses the very same key, then it is easy to keep

track of the secret-keys. Yet, once the shared key is revealed, then the whole system gets broken. If, on

the contrary, there exist several keys among the users, then it becomes a very difficult and non-trivial

task to manage and distribute the keys. Hence, it would be desirable to distribute the keys or at least

agree on them in a more efficient manner.

Public-key cryptography addresses these issues and provides remediations using unconventional yet

practical approaches. The method was first described in the seminal work of Diffie and Hellman [54]

who suggested the famous Diffie–Hellman key exchange inspired by Merkle’s work on public-key

distribution [124]. Diffie and Hellman’s ingenious idea is that each user has a different (and indepen-

dently generated) pair of private- and public-keys where the private-key is kept secret by each user,

whereas the (somehow related) public-key is known by everybody (which ideally cannot be used to

derive the private-key). The sender simply uses the public-key of the recipient to encrypt a message

5. We note that the aforementioned analysis done by Biryukov and Khovratovich [24] works under the related-key
model; a model where there exist multiple keys and the attacker is assumed to have some extra knowledge about the keys.
This model, for many of the researchers, is considered to be unpractical. Nevertheless, it is still possible to attack AES
using single keys (again with unpractical computational requirements), see the recent result of Bogdanov et al. [31] on all
versions of AES.

5

Chapter 1. Introduction

and (only) the intended recipient can read the message by using its private-key. Clearly, the users do

not have to share any secret information. To start the communication, we only need to search for the

public-key of the corresponding recipient (assuming that the public-key belongs to the intended

user).

The key ingredient of the Diffie–Hellman key exchange is the so-called one-way function; these are

functions that are easy to compute (at least in practice) for any given input but hard to invert given

the image of a random input. For public-key encryption, however, we would need a trapdoor one-way

function, a function still hard to invert, except for those with additional information. The concept of

trapdoor one-way functions was introduced by Diffie and Hellman [54] in their famous work; yet

they were not able to illustrate an example of it nor a public-key encryption scheme. In 1978, Rivest,

Shamir and Adleman [167] published the first public-key cryptosystem known as RSA. Their major

contribution is the explicit example of a trapdoor one-way function that relies on the intractability

of computing roots modulo a composite number constructed as the product of two large prime

numbers. In this case, the factorization of the modulus allows for easy extraction of the roots and

thus provides the trapdoor. The security of the RSA cryptosystem system is based on the ‘presumed’

difficulty of factoring large integers.

One of the nicest applications of public-key cryptography is a new application called digital signa-

tures, a concept providing authentication like traditional handwritten signatures; the major difference

being that ideally constructed digital signatures are even more difficult to forge than the handwritten

type. Digital signatures were introduced by Diffie and Hellman by noting that only the private-key

owner can invert the trapdoor one-way function, and therefore, prove that the message indeed

originates from him. As in the case of public-key encryption, finding a concrete digital signature

scheme was an open problem until the invention of RSA.

Following the first encryption and digital signature scheme RSA, there have been many public-

key cryptosystems proposed starting from the late 1970s, and the difficulty of developing such

techniques was realized soon after. Specifically, proving that a one-way function is efficient to

compute is easy; yet showing that it is hard to invert is, in general, difficult. That is why most of the

public-key cryptosystems known even today are based on the difficulty assumptions of well-known

mathematical problems, e.g., integer factorization. If a cryptanalytic breakthrough is achieved that

can affect the underlying hardness assumption, then the system would be considered broken, or we

would need to modify the scheme to increase the security limit. Unfortunately, this, in general, results

in a much less efficient construction. Indeed, the revolutionary advances in the integer factorization

methods [109] led RSA to increase the key-length for practical applications, which resulted in a less

efficient scheme operating on thousands of bits instead of a few hundred.

In order to remedy this issue, alternative techniques have been proposed; the most promising of

which is based on elliptic curves, known also as elliptic curve cryptography (ECC) [98, 126]. This

novel technique relies on a different hardness assumption: the so-called discrete-logarithm problem

in cyclic subgroups of elliptic curves. The main advantage of ECC over RSA is that much smaller

keys are required for the same level of security. As a result, we can significantly decrease the storage

requirements (e.g., the public- and private-key pair) by using an ECC-based cryptosystem and enjoy

more practical implementations. From security point of view, however, not much progress has been

achieved, unlike integer factorization (except for the parallelized version [147] of Pollard’s work [158]).

6

1.1. Cryptology

Although reasonably efficient, all of the public-key cryptosystems known to date are slower than the

conventional symmetric-key primitives, e.g., AES. Therefore, in practice, to encrypt large amounts

of data symmetric-key ciphers are often preferred over public-key algorithms. Yet, key agreement

and authentication are still handled via public-key methods. For this reason, like in symmetric-

key cryptography, NIST conducts standardization efforts for public-key cryptosystems as well. For

instance, in 1994, the first US FIPS was filed for a digital signature standard —called DSA (see the

latest version in [142])—which is a variant of ElGamal Signature Scheme [59]. Today, DSA supports

an elliptic curve extension for DSA named ECDSA [142].

Finally it is worth noting that one of the most beautiful results of public-key cryptography is that it

opens up many possibilities and new ideas for cryptology. Given its flexibility and power, it seems

that public-key cryptology will remain at the core of cryptologic research, as well as real-life security

applications, for quite some time.

1.1.3 Cryptography Today

The fundamental goal of cryptography that we understand today is to address (at least) the following

four notions [122] in a theoretically sound and practically efficient way:

1. Confidentiality: It provides solutions for the protection and the secrecy of the data by allowing

access only to authorized recipients.

2. Authenticity: This notion is a service related to identification, which allows us to identify

entities trying to communicate with each other.

3. Data integrity: It deals with the detection of the manipulated data done by unauthorized

parties.

4. Non-repudiation: It is a service for the confirmation and denial of the previous actions done by

the entities.

All these notions appear quite often in daily life where cryptography is present, without even being

noticed. For instance, banking applications via ATM machines or those using the Internet for e-

banking services have become very common. Our identity cards, passports, mobile and smart

phones, they all serve as cryptographic modules in order to facilitate our basic needs in a secure way.

In the near future, many countries will start moving towards e-voting and almost all bureaucratic

applications will be handled via e-government tools.

The research community today is trying to find effective cryptographic solutions for almost all of

these applications, each requiring different constraints to be satisfied. The main goal here is to

achieve a satisfactory trade-off between security and efficiency for cryptosystems that are used in

many different platforms, ranging from tiny smart cards to high-end workstations. The high-level

contribution of this thesis should be seen in this direction as well: In addition to achieving several

provable arguments from a security point of view, we consider relevant, practical constructions

that might well be deployed in real-life applications (see Section 2.4 for a more detailed, technical

description of the contribution of this work).

7

Chapter 1. Introduction

1.2 The Role of Cryptographic Hash Functions

This subsection provides an informal introduction to cryptographic hash functions—a concept

initially introduced by Diffie and Hellman [54] so as to make digital signatures more efficient—and

illustrates their roles in today’s cryptography in an intuitive way. Moreover, we will look at the most

famous constructions to date and briefly recapitulate the basic advances in this field. A more detailed

discussion is in Chapter 2.

To be able to discuss cryptographic hash functions, it is worth introducing the term ‘algorithm’.

Probably the best way is to consult Knuth [95] for the definition. An algorithm can be seen as a

process, a method or a recipe with a finite set of rules containing a sequence of operations in order

to solve a well-defined problem. Yet, an algorithm should also satisfy several other properties. Firstly,

it should have some inputs and outputs where the outputs should be determined (given inputs) after

a finite number of steps (finiteness). Moreover, it should be definite and effective in the sense that in

each step it should be perfectly clear what step to perform and how.

A hash function can be defined as a deterministic and efficient algorithm mapping an input of

arbitrary length into an output of fixed length (input length being generally much bigger than

the output length). The output can be called the hash value, fingerprint or simply the digest of

the corresponding message. Not all hash functions are cryptographic; indeed, cryptographic hash

functions are expected to satisfy certain ‘cryptographic’ properties that vary depending on the

application. In the very informal sense, these properties are (second) preimage resistance and

collision resistance. The former is a notion related to the one-wayness; for cryptographic hash

functions it should be hard to find an input for any given specific output (without knowing any

corresponding inputs). Whereas collision resistance requires the difficulty of finding two distinct

messages with the same digest. A more formal treatment for these security notions is carried out in

Section 2.1.2.

1.2.1 Applications

Historically, in their first applications (as a one-way function), hash functions were used for masking

or compressing passwords [143]; because we would not want to take the risk of exposing all passwords

(or even a single password) kept in a file, once the file itself is revealed. Instead, we would hash the

passwords and keep the results; hence whenever a user wants to be authenticated, only the hashed

passwords are compared. Obviously, constructing a password from the corresponding hash value

should be infeasible, which is guaranteed by the preimage resistance. Password hashing is still an

important application of cryptographic hash functions.

Nevertheless, the best-known application of cryptographic hash functions is in the context of digital

signatures. In a very general sense, digital signatures contain a message along with its signature,

where the signature proves that the message was indeed signed by the authorized user. The main

idea here for using a cryptographic hash function is to reduce the arbitrary length of the message

to be signed to a certain amount so that the digest corresponds to a well-structured bit-string, say

a group element. Now instead, the message digest is signed and attached to the original message,

which can then be verified by checking the signature, as well as the hash value corresponding to the

message. Note that here we assume that the description of the cryptographic hash function is public,

8

1.2. The Role of Cryptographic Hash Functions

which is a valid assumption. From a security point of view, however, the least requirement for the

hash function to be collision resistant; otherwise it would be easy to generate two distinct messages

with the same signature by simply finding collisions for the hash function.

Another important feature of cryptographic hashing in the signature schemes is that it is often used

to hide the ‘algebraic’ structure inherited in the digital signature algorithm. For instance, the product

of two signed messages is equal to the signature of the product of the respective messages in the

RSA signatures when hashing is omitted: Such an unfortunate property can be used to create a valid

signature for any given message without even knowing the secret-key of any authorized user. The

use of a ‘good’ hash function, however, is expected to provide extra scrambling, and thus prevents

such a weakness from being exploited.

So, what is the key property? Many existing security proofs (e.g., [13, 63, 156]) use the so-called

random oracle model; a model (formalized by Bellare and Rogaway [13]) that turns out to be very

useful to argue about security yet, at the same time, impossible to realize in real life. A random

oracle is a (random) function (typically from the set of arbitrary-length strings to the set of fixed-

length strings) that is accessible to all parties and that responds (from the output space) uniformly

and independently from all other outputs to every fresh query. Moreover, it consistently gives the

same answer to a previously asked query. In practice, cryptographic hash functions are used to

model random oracles 6. Hence, a good cryptographic hash function is expected, in the ideal case, to

‘behave’ like a random oracle.

Digital signatures provide a satisfactory solution to the problem of authenticity and non-repudiation

(when used with a time-stamp) and cryptographic hashing stays at the core of any currently used and

standardized digital signature scheme. In the same direction, one of the most important and widely

accepted applications of hashing is the message authentication code (often MAC) that is also used to

authenticate a message; yet this time in a symmetric-key manner (i.e., using only a secret-key). The

currently deployed NIST standard HMAC [140] is constructed using a cryptographic hash function.

Finally, cryptographic hashing is also used to provide data integrity, yet another notion that cryptog-

raphy is trying to address nowadays. Indeed, hash functions are quite useful in determining whether

any alteration has been made to a message. For example, two parties trying to exchange a file can

ensure that the file has not been tampered with by simply checking the hash of the corresponding

file (this also holds for checking the integrity of a software package).

These applications show that cryptographic hashing is crucial for a wide spectrum of cryptographic

applications ranging from symmetric-key to public-key cryptography. Obviously, we do not cover

here all the applications of cryptographic hash functions nor the future possibilities. A good reference

for this direction is [122], which contains a wide variety of practical and theoretical directions in this

field.

6. In [42] (see also [117]), it is shown that there exist encryption and signature schemes that are provable secure in the
random oracle model yet they turn out to be insecure when instantiated by any concrete cryptographic hash function.
Similar “uninstantiability" results are presented in [11, 43, 144]. Although the encryption and signature schemes presented
in [42] are “unnatural" and a similar statement does not hold for the well-known schemes that appear in the literature,
we should note that the security proved in the random oracle model does not necessarily imply security in practical
applications.

9

Chapter 1. Introduction

1.2.2 A Quick Glance at Cryptographic Hash Function Research

To the best of our knowledge, the first concrete hash function construction was given by Rabin who

used DES [162]: an iterated blockcipher-based construction inspiring several other similar hash

functions in the early 1980s (see [122, 159, 177]). These constructions can be regarded as generic

blockcipher-based designs; generic in the sense that any blockcipher can be used to instantiate them.

The schemes considered in this thesis can also be regarded as designs in this direction. Specifically,

they are based on some primitives e.g., blockciphers (for a more detailed discussion on primitive-

based constructions, we refer to Chapter 2). All of the hash functions known today are designed as

such because of their efficiency and provable properties.

Towards the end of the 1980s, Rabin’s iterative method was improved independently by Merkle [125]

and Damgård [52], who both show that hash functions can enjoy formal security proofs and profit

from compact implementations. The main (high-level) ingredient of the Merkle–Damgård mode

of operation is the use of a small fixed-input-length compression function (inspired by Rabin) that

is used to compress (iteratively) independent blocks of messages at a time. Merkle and Damgård

provide as a bonus “a proof” showing that the hash function created via their method turns out to be

at least as collision resistant as the compression function (see Chapter 2). This result is useful not

only for theoretical reasons but also from the point of practitioners, as it allows them to reduce the

task of obtaining a good hash function to designing a good (i.e., efficient and secure) compression

function.

Almost all the designs known today follow the Merkle–Damgård paradigm and the research focus is

mainly on the design and analysis of compression functions. In this same line, one of the first concrete

constructions is considered to be the MD-family (MD stands for “message digest”), designed by

Rivest, which influenced many other follow-up designs. The earliest publicly available MD-members

date back to MD2 [165] (1988) and MD4 [86] (1990) followed by the most famous (and strengthened)

successor 7: MD5 [166] (1991). The striking feature of the MD-family of hash functions is that they are

all known to be extremely fast on modern computers (in particular on 32-bit platforms), mainly due

to their highly efficient compression functions; they outperform DES (MD5 is around ten times faster

than DES [18, 148]). Impressed by this fact, and to increase the short digest size of MD5 (128-bit),

NIST issued two standards—SHA-0 [135] and SHA-1 [136]—in the early 1990s by modifying MD5 a

bit in order to meet the requirements of a secure and an efficient 160-bit hash function.

Unfortunately, for SHA members, the story was not that different from the advances in symmetric-

key cryptology: Beginning in the 1990s, MD-members, as well as SHA-0 were shown to have weak

components [30, 46, 55]. Yet, the proposed attacks could be used to break only the underlying com-

pression functions (note that the attack on compression functions are not guaranteed to carry over

to the hash function); extending the attack to the full blown hash function was not straightforward.

In 2004, Wang et al. [202,203] presented the first (non-trivial) collision-finding methods for both MD5

and SHA-1 (see also [44,84,84,113,194,195,204]): Their attacks—mainly exploiting the weaknesses of

the compression functions of MD5 and SHA-1—are based on clever use of the previously mentioned

differential cryptanalysis. Interestingly, beginning in 2004, the generic Merkle–Damgård construction

was shown to have some unknown and trivial security flaws as well (see Section 2.2.2).

7. The latest member of the MD-family is MD6 [169], submitted to the SHA-3 competition.

10

1.3. About This Dissertation

As a result, NIST decided to launch a new competition, called “the SHA-3 competition [145]”, in order

to meet the requirements of a modern hash function. Although NIST had already started moving

from SHA-1 to SHA-2 [141], the internal features of SHA-2 are not very different from its predecessor;

hence similar weaknesses are expected to be inherited by SHA-2. Besides, SHA-2 does not support

the expected flexibility and compactness in terms of efficiency on multiple platforms. So, it is a

widely held opinion that SHA-3 is indeed necessary (in spite of no known security weaknesses of

SHA-2).

SHA-3 selection is still in progress; the new hash function standard will be decided in 2012 among

the five finalists (Blake [10], Grøstl [67], Keccak [19], JH [206] and Skein [62]) that were declared in

late 2010. The research community will therefore be busy in the following years analyzing SHA-3

candidates and understanding their primitives better. Due to these developments, cryptographic

hashing has become a more active area of research; in particular, new practical hash function designs

with sound security claims are now the basis of this renewed interest. The results presented in this

thesis can also be seen as developments in this direction.

1.3 About This Dissertation

The problems we discuss in this thesis are also based on the latest advances in cryptographic hash

function research. More concretely, we try to find effective solutions to a question that has been

known for quite some time and which we further describe here (see Chapter 2 for an extensive

background). Assume we are given one or more ‘secure’ 8 blockciphers (or simply a function): How

can we construct a secure compression or hash function out of it? The basis for such a question is

simple: Blockciphers have been ‘the primitives’ since the early years of modern cryptology and they

have been used in many applications. Therefore, it would be convenient to make use of them to

create a hash function as well, because one blockcipher would be sufficient to obtain an encryption

scheme and a hash function simultaneously. Moreover, it would be nice to transfer the trust in the

blockcipher, as well as its performance, to the hash function built out of it.

The wisdom of blockcipher-based hashing is still valid today. Indeed, the current cryptographic hash

function standard SHA-2 and some of the SHA-3 candidates are, or can be regarded as, blockcipher-

based designs. This is mainly because of the (positive) theoretical results on blockcipher-based

hashing achieved in the last two decades (see Chapter 2 for the related background) although the

major underlying assumption above is still far from being realistic (i.e., how can you make sure

a blockcipher is ‘secure’?). Nevertheless, such an approach can still be used to develop a good

indication about the structural properties of a hash function and to provide a first step towards

arguing for its security, and of course its performance.

To this end, we study the collision and preimage resistance of certain practical, relevant hash function

constructions (created via the Merkle–Damgård iteration) with compression functions that make

multiple calls (multi-call) to a well-known cryptographic primitive (in particular a blockcipher) and

produce digests of length more than (multi-block-length) the output of the underlying primitive 9

(e.g., the block-size). Our contribution, from a very high-level, can be divided into two categories:

8. See the discussion in Section 2.3.1 for the precise assumptions on the underlying blockciphers used in this thesis.
9. We are not the first to work on these type of problems; there has been an extensive effort since the late 1980s. See

Chapter 2 for related background.

11

Chapter 1. Introduction

(i) the design of new hash functions that are supported by provable properties; and (ii) the security

assessment and more conceptual understanding of already existing constructions. We give a more

detailed, technical description of our contribution in Section 2.4, after we have developed necessary

background on cryptographic hashing.

1.3.1 Publications

During my doctoral studies at EPFL, I have been involved in different research projects that, thanks

to the very talented and smart people I worked with, resulted in several publications in international

cryptology conferences. For several reasons, however, not all of my publications are included in this

thesis; nevertheless, to show my gratitude to my co-authors, I listed them all here.

The following four papers are contained in the subsequent chapters of this thesis.

• [150] Onur Özen, Martijn Stam: Another Glance at Double-Length Hashing: In: Parker, M.G. (ed.)

Cryptography and Coding, 12th IMA International Conference, Cryptography and Coding 2009,

Cirencester, UK, December 15-17, 2009. Lecture Notes in Computer Science, vol. 5921, pp. 176-201.

Springer, Heidelberg (2009).

• [149] Onur Özen, Thomas Shrimpton, Martijn Stam: Attacking the Knudsen–Preneel Compression

Functions: In: Hong, S., Iwata, T. (eds.) Fast Software Encryption, 17th International Workshop,

FSE 2010, Seoul, Korea, February 7-10, 2010. Lecture Notes in Computer Science, vol. 6147, pp.

94-115. Springer, Heidelberg (2010).

• [151] Onur Özen, Martijn Stam: Collision Attacks against the Knudsen–Preneel Compression Func-

tions: In: Abe, M. (ed.) Advances in Cryptology, ASIACRYPT 2010, 16th International Conference

on the Theory and Application of Cryptology and Information Security, Singapore, December 5-9,

2010. Lecture Notes in Computer Science, vol. 6477, pp. 76-93. Springer, Heidelberg (2010).

• [81] Dimitar Jetchev, Onur Özen, Martijn Stam: Collisions are not Incidental: A Compression Func-

tion Exploiting Discrete Geometry: To appear in the Proceedings of the 9th Theory of Cryptography

Conference, TCC 2012.

The paper [149], written along with Martijn Stam and Thomas Shrimpton, was awarded “best paper”

by the program committee of FSE 2010 and invited as a submission to the Journal of Cryptology.

The following paper, written with Joppe W. Bos and Jean-Pierre Hubaux, was published as an outcome

of the course “Security and Cooperation in Wireless Sensor Networks” given by Prof. Hubaux at EPFL

in the fall of 2008.

• [34] Joppe W. Bos, Onur Özen, Jean-Pierre Hubaux: Analysis and Optimization of Cryptographically

Generated Addresses. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) Information

Security, 12th International Conference, ISC 2009, Pisa, Italy, September 7-9, 2009. Lecture Notes

in Computer Science, vol. 5735, pp. 17–32. Springer, Heidelberg (2009).

After I joined EPFL, I continued some of the work that I had started before my doctoral studies. As a

result, I was involved in certain cryptanalysis efforts (with various co-authors) that were published in

two conference proceedings:

• [152] Onur Özen, Kerem Varıcı, Cihangir Tezcan, Çelebi Kocair: Lightweight Block Ciphers Re-

visited: Cryptanalysis of Reduced Round PRESENT and HIGHT. In: Boyd, C., Nieto, J.M.G. (eds.)

Information Security and Privacy, 14th Australasian Conference, ACISP 2009, Brisbane, Australia,

July 1-3, 2009, Lecture Notes in Computer Science, vol. 5594, pp. 90-107. Springer, Heidelberg

(2009).

12

1.3. About This Dissertation

• [9] Jean-Philippe Aumasson, Çağdaş Çalık, Willi Meier, Onur Özen, Raphael C.-W. Phan, Kerem

Varıcı: Improved Cryptanalysis of Skein. In: Matsui, M. (ed.) Advances in Cryptology, ASIACRYPT

2009, 15th International Conference on the Theory and Application of Cryptology and Information

Security, Tokyo, Japan, December 6-10, 2009. Lecture Notes in Computer Science, vol. 5912, pp.

542-559. Springer, Heidelberg (2009).

Finally, to some extent related to the work presented here, I contributed to the following paper that

appeared in CHES 2011 where we investigate the performance of the well-known primitive-based

hash functions on a modern architecture supporting the AES instruction set.

• [35] Joppe W. Bos, Onur Özen, Martijn Stam: Efficient Hashing Using the AES Instruction Set. In:

Preneel,B., Takagi,T. (eds.) Cryptographic Hardware and Embedded Systems, CHES 2011, 13th

International Workshop, Nara, Japan, September 28-October 1, 2011. Lecture Notes in Computer

Science, vol. 6917, pp. 507-522. Springer, Heidelberg (2011).

1.3.2 Organization

The thesis is organized as follows. In Chapter 2, we review the cryptographic hash function literature

and introduce necessary formalizations by mainly focusing on the major interests of this work.

In Chapter 3, we address the tools required in the subsequent chapters. In Chapters 4, 5 and 6

we present the main contributions of this thesis. Specifically, Chapter 4 and 5 are based on and

extend the papers [150] and [81], respectively. In Chapter 6, we discuss the joint-version of the two

papers [149] and [151]. Finally, we conclude the thesis in Chapter 7. We provide auxiliary material in

the Appendices.

13

2 Cryptographic Hash Functions

In this chapter, we discuss the recent trends and developments in the research on cryptographic hash

functions, along with the detailed, technical contributions of this work. Contrary to the informal in-

troduction given in Chapter 1 where we mainly discussed their importance and current applications,

here we dive more into the technical details. We first formally define cryptographic hash functions

and related security properties. Then, we look at the existing constructions and their security levels.

Our major focus is on the primitive-based constructions obtained in an iterated fashion, where the

primitive itself is either a blockcipher or simply a function drawn uniformly at random from the set

of all blockciphers or functions (with specified domain and range, domain being larger than the

range), respectively. One of the other primitive-based compression functions, permutation-based

constructions, is briefly recapitulated in Appendix B.

The chapter is organized as follows: In Section 2.1 we start with the model we follow and the basics

of cryptographic hash functions. In Section 2.2 we introduce iterated hash functions, in particular

the celebrated Merkle–Damgård domain extension (and similar other domain extenders) along

with its security properties. In the following section (Section 2.3) we discuss blockcipher-based

hash functions, the major background for this work. We conclude the chapter with the detailed

contributions of this thesis (Section 2.4).

2.1 Preliminaries

2.1.1 Basic Notions

Informally (more formal treatment will follow shortly), a cryptographic hash function can be defined

as a function H : {0,1}∗ → {0,1}n , for some fixed integer n > 0, mapping strings of arbitrary length (for

the moment we assume a message space of {0,1}∗, the set of strings of arbitrary length) into fixed

length strings that satisfy several security properties. Traditionally, cryptographic hash functions are

expected to satisfy three security notions [122]:

1. Collision resistance: It is computationally infeasible to find two inputs x ′ 6= x (from the domain

of H) such that H(x) =H(x ′).

2. Preimage resistance: For any pre-specified (and valid) output y ∈ {0,1}n (i.e.,there exists at

least one x ∈ {0,1}∗ such that H(x) = y) for which a corresponding input is not known, it is

computationally infeasible to find an x in the domain of H such that H(x) = y .

15

Chapter 2. Cryptographic Hash Functions

3. Second-preimage resistance: For any specified input x ∈ {0,1}∗, it is computationally infeasible

to find yet another x ′ ∈ {0,1}∗ (i.e., with x ′ 6= x) that satisfies H(x) =H(x ′).

The ambiguity (as pointed out below) of the traditional formulation of a hash function and the

following notions of security were perceived soon after their appearance in the literature and mo-

tivated researchers to find a more rigorous and mathematically sound treatment (e.g., the work of

Rogaway and Shrimpton [171], as well as [7,164,175]). The main problem with the above definition is

that it does not allow for a rigorous formalization for collision resistance (similar problems exist for

(second)-preimage resistance as well). Rogaway [175] calls this foundations-of-hashing dilemma: By

the pigeonhole principle, collisions do exist for sure (as long as the message space is large enough)

and they are simply hard-coded in the function specification. The dilemma stems from the fact that

we, human beings, cannot write down the collision-finding algorithm very easily and might not know

any colliding pairs. Consequently, it is difficult to formally write down the security definitions. In

order to remedy this, we treat a hash function H as a family of functions, also known as keyed-hash

functions, where the term ‘key’ here is not used to refer to a secret component. In contrast, it is

made public, chosen from a finite set and used for randomization purposes to enable rigorous

mathematical treatment. The following definition makes the term more concrete.

Definition 2.1.1. A hash function (family) is a function H : K × {0,1}∗ → {0,1}n , for a positive inte-

ger n, where K is a finite non-empty set and each K ∈K defines a function HK (·) = H(K , ·); here

H can be thought of as a family of hash functions H = {HK | K ∈ K }, each key (or index) K ∈ K

specifying one. The number n is called the hash length or digest size of H.

As hash functions are used as input to other algorithms (e.g., digital signature algorithms) we can see

them as algorithms. Thus, after refining the above definition, we arrive at the following formalization

for a keyed-hashed function: A keyed-hash function consists of a pair of algorithms K and H where

K is a probabilistic algorithm taking no input and producing the key K (from a finite non-empty

set), whereas H is a deterministic (and efficient) algorithm that takes K and a string X ∈ {0,1}∗ as

input and produces a digest of some fixed length (say n). Here, we assume the existence of a message

space X where X ∈X ⊆ {0,1}∗; otherwise we simply assign HK (X) as undefined for any X ∉X . In

this work, we do not consider such X ∉X . In the following, whenever we write X ∈ {0,1}∗, we mean

the existence of a message space X where X ∈X ⊆ {0,1}∗.

In order to proceed with the reformulated security definitions, we recall the concept adversary. An

adversary is an algorithm that aims to break a well-defined security notion using some (bounded)

resources. In this section, we set as a convention that the only resource used by the adversary is

its runtime; for other hash function constructions, in particular the constructions based on some

primitives, we will change this restriction. We define (under some RAM model of computation) tH,X

to be the minimum, over all programs PH that compute H, of the length of PH plus the worst-case

running time of PH over all inputs (K , X) where K ∈K and X ∈X ; plus the the minimum, over all

programs PK that sample the key from K , of the time to compute the key plus the size of PK .

In general, the performance of an adversary A against breaking a security notion xxx is measured by

its advantage AdvxxxH (A) which is quantified by a probability (using a specific source of randomness).

Hence, it is a real number in [0,1]; if the probability is zero, then it means that A has done a bad job

and has no advantage at all in achieving xxx, whereas if it is one, A always succeeds. By AdvxxxH (t) we

denote the maximum advantage over all adversaries that try to break the property xxx by using at

most time t (for any bounded t).

16

2.1. Preliminaries

2.1.2 Security Notions

Throughout, when X is a set, by x
$←X we mean the uniform random selection of an element x

from X . We let y ←A (x) be the assignment of y as an output of a deterministic algorithm A taking

x as an input. Similarly, we denote by y
$←A (x) when A is probabilistic. These are the only notations

required for our formalizations. As security notions, we discuss only (second) preimage and collision

resistance; these are the main targets in this thesis 1.

Collision Resistance

The following definition provides the necessary formalization for collision resistance of a (keyed)

hash function.

Definition 2.1.2. Let A be a collision-finding adversary against H : K × {0,1}∗ → {0,1}n . We define

the collision-finding advantage of A as

AdvcollH (A) = Pr
[

K
$←K , (X , X ′) $←A (K) : X 6= X ′ ∧ HK (X) =HK (X ′)

]
.

We call AdvcollH (t) the maximum collision-finding advantage over all adversaries that use at most

time t . The hash function H is called (t ,ε) coll-secure if no adversary using at most time t has an

advantage more than ε.

Definition 2.1.2 makes sense only for the keyed-hash functions. However, the hash functions used in

practice, e.g., SHA-2 are key-less. So, how do we argue collision resistance for the key-less setting?

One way is to see the constant or the initialization vector (see [141] for the exact specification) used

in SHA-2 as the key. Yet, as pointed out by Rogaway [175], it was never indicated by NIST that they

were chosen to be so. Moreover, it is not clear whether they were picked randomly or not. In order to

solve this discrepancy and define collision resistance in the key-less setting, Rogaway formalized

his human ignorance model; for the details on the human ignorance model and the security for the

key-less setting in general, we refer to [4, 175]. In this work, we either use keyed-hash functions or

primitive-based constructions (Section 2.3) for which we provide corresponding definitions.

Preimage and Second-Preimage Resistance

Concerning (second) preimage resistance, the ambiguity of the informal definition still remains for

the unkeyed definition. For instance, it is not clear how the output point y ∈ {0,1}n to be inverted is

given; is it chosen uniformly at random or following another distribution? Similarly, how is the input

x ∈ {0,1}∗ given to the adversary in the case of second-preimage resistance? These questions, along

with the novel keyed-hash function definition, are the basis for several different preimage resistance

notions. Here, we formally define only the most relevant one for our purposes: epre (everywhere

preimage resistance). It states that, for whatever hash value is selected, it is computationally hard to

find a preimage for it.

1. In this work, we do not consider a more general security concept, indifferentiability [117], introduced by Maurer et al.
as an extension to the indistinguishability framework of Maurer [119]. We refer to [49] for the adaptation of indifferentiabil-
ity in the context of cryptographic hash functions, in particular iterative hash functions, where it was shown how to argue
that a hash function construction ‘behaves’ like a random oracle (an idealized object that is mimicked by a hash function).

17

Chapter 2. Cryptographic Hash Functions

Definition 2.1.3. Let H : K × {0,1}∗ → {0,1}n be a hash function and A be an everywhere preimage-

finding adversary against H. We define AdvepreH (A) to be the everywhere preimage-finding advantage

of A :

AdvepreH (A) = max
Y ∈{0,1}n

{
Pr

[
K

$←K , X ′ $←A (K) : HK (X ′) = Y
]}

.

We call AdvepreH (t) the maximum everywhere preimage-finding advantage over all adversaries that

use at most time t . The hash function H is called (t ,ε) epre-secure if no adversary using time at most t

has advantage more than ε.

Intuitively, the above definition states that any point in the range is hard to invert; in a way, epre

measures the hardness of inverting a fixed challenge by using a random key. In addition to everywhere

preimage resistance, Rogaway and Shrimpton [171] introduced two more notions related to preimage

resistance: pre (preimage resistance) and apre (always preimage resistance). In pre, the experiment

is carried out with a random key and random challenge, whereas for apre the key is fixed yet the

challenge is random:

Advpre[m]
H (A) = Pr

[
K

$←K , X
$← {0,1}m ,Y ←HK (X), X ′ $←A (K ,Y) : HK (X ′) = Y

]
,

Advapre[m]
H (A) = max

K∈K

{
Pr

[
X

$← {0,1}m ,Y ←HK (X), X ′ $←A (Y) : HK (X ′) = Y
]}

.

The always preimage resistance notion is particularly important for the practical hash functions

(e.g., SHA-2) as it captures that a hash function is preimage resistant regardless of the choice of the

key (i.e., it is preimage resistant for all members of the hash function family). In a way, apre can be

seen as the natural extension to Rogaway’s human-ignorance approach. Similar to the preimage

resistance, Rogaway and Shrimpton framework also define notions for second-preimage resistance:

sec (random key, random challenge), esec (random key, fixed challenge) and asec (fixed key, random

challenge) 2:

Advsec[m]
H (A) = Pr

[
K

$←K , X
$← {0,1}m , X ′ $←A (K , X) : X 6= X ′ ∧ HK (X) =HK (X ′)

]
,

Advesec[m]
H (A) = max

X∈{0,1}m

{
Pr

[
K

$←K , X ′ $←A (K) : X 6= X ′ ∧ HK (X) =HK (X ′)
]}

,

Advasec[m]
H (A) = max

K∈K

{
Pr

[
X

$← {0,1}m , X ′ $←A (X) : X 6= X ′ ∧ HK (X) =HK (X ′)
]}

.

We note that the notion esec is equivalent to the universal one-way hash functions of Naor and

Yung [133], as well as the target collision resistance of Bellare and Rogaway [15].

Implications and Separations

One of the important results of the Rogaway–Shrimpton framework is the study of implications

(and separations) between the newly introduced security notions. Informally, the security notion

xxx implies yyy means that if H is secure in the xxx sense then it is also secure in terms of yyy. The

separation, however, means that a security notion xxx can be achieved without being secure in

the yyy sense (see Definitions 2.1.4 and 2.1.5 for a more formal treatment). Following this model,

Rogaway and Shrimpton provide a picture (shown in Figure 2.1) illustrating all the implications and

2. Recently, Andreeva and Stam pointed out some extensions on the above mentioned preimage resistance notions, we
refer to [7] for more on these additional concepts.

18

2.1. Preliminaries

separations regarding seven security notions (i.e., coll,pre,epre,apre,sec,esec,asec). Extensions to

the implication and separation results of Rogaway and Shrimpton are proposed in [7, 164].

coll

asec esec

sec

apre epre

pre

Figure 2.1 – Implication and separation (see Definitions 2.1.4 and 2.1.5) results among seven notions
introduced by Rogaway and Shrimpton. Solid arrows show conventional implications, whereas
dashed arrows represent provisional implications (see Definition 2.1.4); the strength of the implica-
tion is dependent on the size of the domain and range (see [171] for the details). No arrows represent
separation. We note that each security notion implies itself (trivially) although it is not shown in the
figure explicitly.

Let us discuss more formally what we mean by an implication and separation. Fix K and n; moreover,

consider a message space of X (rather than {0,1}∗) where {0,1}m ⊆X for a fixed positive integer m.

Therefore, the family of hash functions in question is defined as H : K ×X → {0,1}n .

Definition 2.1.4 (Implications [171]). We say that xxx implies (conventionally) yyy if for any bounded t ,

there exists an absolute constant c such that

AdvyyyH (t) ≤ cAdvxxxH (t ′)

for all hash functions H : K ×X → {0,1}n , where t ′ = t + ctH,X . If

AdvyyyH (t) ≤ cAdvxxxH (t ′)+ε ,

for some ε> 0, we say that xxx implies (provisionally) yyy to ε.

In the provisional implications given by Rogaway and Shrimpton the value of ε is 2n−m (see above for

the definition of m and n). Thus, the implication result is tied to the amount of compressing. For

normal hash functions, m is chosen to be sufficiently large; hence ε is very close to zero.

Definition 2.1.5 (Separations [171]). We say that xxx is separated (conventionally) from yyy to ε if

for any H : K ×X → {0,1}n and (bounded) t , there exists an H′ : K ×X → {0,1}n and an absolute

constant c such that

AdvxxxH′ (t) ≤ cAdvxxxH (t ′)+ε
and yet AdvyyyH′ (t ′) = 1, where t ′ = t + ctH,X . If there exists an H : K ×X → {0,1}n such that

AdvxxxH (t) ≤ ε ,

for all t and yet AdvyyyH (t ′) ≤ 1, for t ′ = ctH,X , then xxx is separated (unconditionally) from yyy to ε.

In Figure 2.1, separation is indicated whenever one of the separations given above holds. We refer

to [7] for a more recent and generalized version of Figure 2.1.

19

Chapter 2. Cryptographic Hash Functions

2.1.3 Generic Cryptanalytic Methods

Based on the security notions given above, we now investigate the generic cryptanalytic methods

to obtain a (second) preimage and collision with a non-negligible probability 3. These methods are

generic in the sense that, regardless of the construction, they always work; it is impossible to prevent

them. Resistance against such methods is parametrized by the digest size n. To illustrate, for a hash

function, the generic (second) preimage-finding method is expected to require 2n hash function

evaluations. Collisions, however, can be found with high probability after an effort of 2n/2 (see below

for the corresponding (second) preimage- and collision-finding algorithms). Constructions shown

to be resistant up to the stated bounds are deemed optimal in terms of the corresponding security

notions.

Finding Collisions

The generic method to find collisions is the so-called birthday attack (based on the birthday paradox),

first pointed out by Yuval [208] in the context of hash functions. Under the assumption that all

the outputs are equally likely 4, the birthday paradox states (for a randomly chosen key) that the

expected number of required messages to find a collision is N =p
π/2 ·2n/2 (see Appendix A for the

justification). Hence, the (optimal) collision resistance is tied to the square root of the cardinality of

the range of the hash function.

The standard birthday attack (Algorithm 2.1.6) uses this simple idea: A collision-finding adversary A

picks N =p
π/2 ·2n/2 input points randomly (from a finite subset X of {0,1}∗), and applies HK to all

of them. If two distinct inputs create the same output, then the collision is found. By the birthday

paradox, we know that, with a high probability, a collision is hidden somewhere among the outputs;

we need to simply search for the collision. But, how? One method is to store the hash outputs in

a hash table; hence in constant time we can add new output points and check for collisions. The

computational complexity of this method (asymptotically in n) is O (2n/2) time and O (2n/2) memory.

It seems that the time-complexity of the above collision-finding method is somewhat optimal; yet the

memory requirements are too much; this can be reduced using Pollard’s rho method [157,158], which

benefits from Floyd’s algorithm [96] (see also [146]) for cycle-detection. Pollard’s rho method can be

parallelized, as shown in [147], which is one of the most practical techniques in today’s cryptanalytic

applications.

Algorithm 2.1.6 ((Standard) Birthday Attack).

Input: H : K ×X → {0,1}n and K
$←K (where |X | ≥p

π/2 ·2n/2).

Output: X , X ′ ∈X such that X 6= X ′ and HK (X) =HK (X ′).
For i= 1, . . . , N =p

π/2 ·2n/2 do

a. Pick Xi
$←X ; Calculate HK (Xi) = Yi ;

b. If ∃ j < i such that Yi = Y j but Xi 6= X j , then X ← Xi , X ′ ← X j . Return X and X ′.

Return fail.

3. We call a function ν :N→ [0,1] non-negligible if for any k > 0, it holds that ν(x) ≥ 1/nk for infinitely many x.
4. This assumption, in fact, is not true in full generality for hash functions: It actually assumes that the number of

preimages of each hash function output is the same. More specifically, it assumes that the hash function is regular.
Nevertheless, it is not an invalid argument as it turns out, for irregular hash functions, that the birthday attack succeeds
apparently even faster [14].

20

2.2. Iterated Hash Functions

Finding (Second) Preimages

An obvious method to look for (second) preimages is the following: Let A be an everywhere preimage-

finding adversary trying to invert a fixed challenge Y ∈ {0,1}n for a randomly chosen key K ∈K . The

adversary A simply picks randomly the inputs X from a finite subset X of {0,1}∗) and checks the

condition HK (X) = Y . As Y ∈ {0,1}n , a particular X ∈ X hashes to Y with a probability of 2−n . So,

after about 2n different trials (hash function evaluations), we expect to end up with a preimage. We

note that a similar method (with the same amount of resources) works for finding second preimages.

Algorithm 2.1.7 can be parallelized and it requires negligible memory.

Algorithm 2.1.7 (Generic (Second) Preimage Attack).

Input: H : K ×X → {0,1}n , K
$←K and the range point Y ∈ {0,1}n to be inverted (where

|X | ≥ 2n).

Output: X ∈X such that HK (X) = Y .
For i= 1, . . . ,2n do

a. Pick X
$←X and calculate HK (X);

b. If HK (X) = Y , return X .

Return fail.

2.2 Iterated Hash Functions

The way to construct a VIL (variable input length) hash function H that uses a smaller FIL (fixed input

length) primitive h, called compression function as an underlying component, is called a domain

extension or a mode of operation. All of the hash function designs known today use domain extenders;

in particular, the compression function is called in a cascaded manner. We call these constructions

iterated hash functions. Informally, iterative hash functions work as follows. First a (carefully) chosen

padding scheme pad is used to make the message length become a multiple of a positive integer,

say m. Then the message is divided into m-bit blocks. Later, starting from an initialization vector (IV),

we iteratively call the compression function h : K × {0,1}s × {0,1}m → {0,1}s (for positive integers m

and s) to compress a block of messages at a time by using the output of the previous compression

function evaluation as one of the inputs to the fresh call. Finally, an optional output transformation g

is used to reduce the final output size to the desired digest size (see Figure 2.2 for illustration).

Definition 2.2.1 provides a more formal treatment.

Definition 2.2.1. Let K be a finite, nonempty set and let Z = {0,1}n ,V = {0,1}s ,M = {0,1}m for

positive integers m,n and s. We call Hh,g : K ×V × {0,1}∗ →Z a (generalized) iterative hash function

with underlying compression function h : K ×V ×M → V and (any) function g : V →Z if the digest

Z ∈Z is computed, for an input X ∈ {0,1}∗, K ∈K , positive integer ` and initialization vector IV ∈ V ,

as follows

1. v0 ← IV, M← pad(X);

2. Divide M into ` blocks as M= (M1, . . . , M`), where Mi ∈M for i = 1, . . . ,`;

3. For i = 1, . . . ,` compute vi = h(K , vi−1, Mi);

4. Output Z = g(v`).

Here pad : {0,1}∗ →M+ is a fixed (injective) padding function.

21

Chapter 2. Cryptographic Hash Functions

M1 M2 M`

IV = v0 hK hK hK g Z = g (v`)
s

m m m

s s s n

Figure 2.2 – The iterative hash function is illustrated with the compression function hK (i.e., h with

K
$←K) for M = {0,1}m ,V = {0,1}s and Z = {0,1}n (see Definition 2.2.1).

The main reason for iterative hashing is intuitive: Smaller independent message blocks can be

compressed at each compression function evaluation without a need to store and process the entire

message. On the one hand, this allows for compact implementations due to smaller primitives; on the

other hand, the compression functions have to be processed iteratively and cannot be parallelized,

which is sometimes considered as a disadvantage.

One of the major goals of the research efforts on iterative hash functions is to relate the security of

the (iterative) hash function with that of the underlying compression function. To formally define

the security of a compression function, however, we need to extend our security definitions (coll and

epre) to the keyed-compression function setting. Definition 2.2.2 and 2.2.3 serve for this purpose.

Definition 2.2.2. Let A be a collision-finding adversary against the compression function h : K ×
V ×M → V . Then the collision-finding advantage of A is defined as

Advcollh (A) = Pr
[

K
$←K ,

(
(V , M), (V ′, M ′)

) $←A (K) : (V , M) 6= (V ′, M ′) ∧ h(K ,V , M) = h(K ,V ′, M ′)
]

.

We call Advcollh (t) the maximum collision-finding advantage over all adversaries that use at most

time t .

Definition 2.2.3. Let h : K × V ×M → V be a compression function and A be an everywhere

preimage-finding adversary against h. We define AdvepreH (A) to be the everywhere preimage-finding

advantage of A :

Advepreh (A) = max
Y ∈{0,1}n

{
Pr

[
K

$←K , (V ′, M ′) $←A (K) : h(K ,V ′, M ′) = Y
]}

.

We call Advepreh (t) the maximum everywhere preimage-finding advantage over all adversaries that

use at most time t .

Similarly, for both notions, we say that the compression function h is called (t ,ε) xxx-secure (for

xxx ∈ {coll,epre}) if no adversary using at most time t has advantage more than ε. Finally, we note

that the generic attacks presented in Section 2.1.3 work against the compression functions as well.

2.2.1 Merkle–Damgård Domain Extension

In [125] and [52], Merkle and Damgård introduce independently an iterated hash function construc-

tion (using g as the identity map) for which they show a revolutionary result: The hash function

inherits its collision resistance from the underlying compression function (see Theorem 2.2.5 for the

22

2.2. Iterated Hash Functions

precise statement). More specifically, once it is assumed that the compression function is optimally

collision resistant, then so is the corresponding iterative hash function (note that the reverse state-

ment is not guaranteed to carry over). This result is extremely important from the designers’ point of

view; indeed, they do not need to make the effort to design the full-blown hash function from scratch

and can simply focus on designing (secure) compression functions. Then the Merkle–Damgård

domain extension takes care of the rest.

The main difference between Merkle’s [125] and Damgård’s [52] construction is that they proposed

two different padding schemes, without affecting their major collision resistance preservation result.

For concreteness, let us recall both techniques.

1. Merkle’s Padding Rule [125]: In Merkle’s padding rule, the message space is restricted to

{0,1}2b−1, for some fixed positive integer b, rather than the set of arbitrary length messages. In

practice, b is chosen to be sufficiently large, e.g., b = 64 as in SHA-2, and restricting the message

space to {0,1}264−1 is not a real problem. Merkle’s idea is to append the binary encoding of the

message length to the last message block in order to let his proof work; his padding algorithm

works as follows. Let M = {0,1}m and lenb(X) represent the b-bit binary representation of |X |.
Then

padmerkle(X) = X || 10d || lenb(X) ,

where d is the least positive integer such that |X |+1+d + lenb(X) is a multiple of m.

2. Damgård’s Padding Rule [52]: Contrary to Merkle’s padding rule, Damgård’s padding scheme

can handle messages of arbitrary length; on the negative side, it requires more padded bits for

long messages, which may lead to less efficient constructions. Let M = {0,1}m and X || 0d =
X1 || . . . || X` for some positive integer `, where |X |+d is a multiple of m −1 (d being the least

positive integer that satisfies this property) and Xi ∈ {0,1}m−1 (for i ∈ {1, ...,`}). Then

paddamgård(X) = 0 || X1 || 1 || X2 || . . . || 1 || X` || lenm(d).

Due to efficiency reasons, in practice, most of the well-known cryptographic hash functions (e.g.,

SHA-2) use Merkle’s padding scheme; this version is often called Merkle–Damgård with length

strengthening or strengthened Merkle–Damgård [102] (sMD) as referred by Lai and Massey. The

padding rules of SHA-3 candidates are also similar to Merkle’s padding rule.

In [130], Nandi described the key property that a padding scheme needs to possess in order for an

iterated hash function to preserve collision resistance: suffix-freeness. A suffix-free padding scheme

ensures, for any binary string s, that s||pad(X) 6= pad(X ′) for all X 6= X ′. It is easy to check that both the

padding schemes of Merkle and Damgård are suffix-free, thus they do not violate Nandi’s requirement.

The following definition introduces the Merkle–Damgård iterative hash function construction MD

defined by any (injective) suffix-free padding; unless stated otherwise, we set MD as the mode of

operation used throughout the thesis.

Definition 2.2.4. MD is an iterative hash function Hh
MD

: K × V × {0,1}∗ → V with compression

function h : K ×V ×M → V , g the identity function and pad a specific (injective) suffix-free padding

(e.g., Merkle’s or Damgård’s padding rules).

The following result is the reformulation and generalization of the preservation result provided by

Merkle [125] and Damgård [52].

23

Chapter 2. Cryptographic Hash Functions

Theorem 2.2.5. Let Hh
MD

be the Merkle–Damgård (MD) iterated hash function defined by the com-

pression function h : K ×V ×M → V . Then

1. If h is (t ′,ε′) coll-secure, then Hh
MD

is (t ,ε) coll-secure for t = t ′−2(`−1)th,V ×M and ε= ε′ .

2. If h is (t ′,ε′) epre-secure, then Hh
MD

is (t ,ε) epre-secure for t = t ′−`th,V ×M and ε= ε′ ,

where ` is the maximum length of the messages, in blocks (say `= 264) and th,V ×M is defined as tH,X .

Proof. Let K
$←K be given and padsf be any (injective) suffix-free padding. Assume, without loss

of generality, that M = {0,1}m for a positive integer m. First, we prove the collision resistance

preservation claim; a simpler proof for (everywhere) preimage resistance preservation follows later.

The proof follows by constructing, given a collision-finding adversary AH for the iterated hash

function H, a collision-finding adversary Ah for the compression function with the same advantage.

Let Ah run AH and collect a colliding pair of messages (X , X ′); i.e., HK (X) =HK (X ′) and X 6= X ′. Let

padsf (X) =M= (M1, . . . , M`) and padsf (X ′) =M′ = (M ′
1, . . . , M ′

`′) .

Therefore, HK (X) = v` = v ′
`′ =HK (X′). Now assume, without loss of generality, that `≤ `′ and that

M′ =M′
L||M′

R for M′
L ∈

(
{0,1}m)`′−` and M′

R ∈ (
{0,1}m)` .

By suffix-freeness, we are ensured that M 6=M′
R. Indeed, otherwise we would obtain

M′ = padsf (X ′) =M′
L||M′

R = M′
L||padsf (X) =M′

L||M ,

which would violate suffix-freeness. Moreover, the collision for H results in

v` = h (K ,h(K , . . .h(K ,h(K , v0, M1), M2) . . . , M`−1), M`)

= h
(
K ,h(K , . . .h(K ,h(K , v ′

`′−`,M′
R,1),M′

R,2) . . . ,M′
R,`−1),M′

R,`

)
= v ′

`′ ,

where M′
R =

(
M′

R,1|| . . . ||M′
R,`

)
and M′

R,j ∈ {0,1}m for j = 1, . . . ,`. We claim that, given v` = v ′
`′ and

(v0, M1, . . . , M`) 6=
(
v ′
`′−`,M′

R,1, . . . ,M′
R,`

)
,

there must exist an i for 0 ≤ i ≤ `−1 such that

(vi , Mi+1) 6=
(
v ′
`′−`+i ,M′

R,i+1
)

but h (K , vi , Mi+1) = h
(
K , v ′

`′−`+i ,M′
R,i+1

)
,

which is nothing but the definition of a collision for the compression function. To prove our claim,

we simply assume the contrary: For all 1 ≤ i < `,

vi+1 = v ′
`′−`+i+1 ⇒ (vi , Mi+1) =

(
v ′
`′−`+i ,M′

R,i

)
.

Due to the definition of Hh
MD

, however, this assumption would imply

(v0, M1, . . . , M`) =
(
v ′
`′−`,M′

R,1, . . . ,M′
R,`

)
,

which is a contradiction. Hence, a collision for the compression function h is found and we obtain

24

2.2. Iterated Hash Functions

that Advcollh (Ah) =AdvcollH (AH). Moreover, Ah halts the collision in time at most t +2(`′−1)th,V ×M .

Now, given an everywhere preimage-finding adversary AH for the hash function H, consider the

following adversary Ah against the compression function. As in the collision resistance preservation

proof, Ah runs AH and obtains a preimage X for the target value Y ; i.e., HK (X) = Y . Using the same

notation as above we have HK (X) = Y = v` and, looking at the last compression function evaluation,

h(K , v`−1, M`) = v` for padsf (X) =M= (M1, . . . , M`). The adversary AH simply outputs (v`−1, M`) as

the preimage; note that its advantage is the same as Ah. In addition, the preimage is found in time

t +`th,V ×M : t for running Ah and the rest for calculating v`−1 (from IV), as well as the target.

We note that MD does not preserve the remaining five security notions (apre,pre,asec,esec,sec)

mentioned previously [5, 15]: The case for esec is shown in [5, 15], whereas the remaining cases are

shown in [5]. Finally we remark an alternative collision resistance result for an iterated hash function:

If we assume that the padding function is only injective and the underlying compression function

is both collision and everywhere preimage resistant, then the overall iterated hash function (again

using the identity function as the output transformation g) becomes collision resistant 5.

2.2.2 Generic Cryptanalytic Methods Against Strengthened Merkle–Damgård

In this section, we briefly recall the generic cryptanalytic methods presented in the last few years

against the strengthened Merkle–Damgård domain extension. The methods presented here are

generic in the sense that, regardless of the choice of the compression function, they can be applied

to any hash function constructed via sMD. It should be noted however that some of these meth-

ods are not directly related to the security notions discussed previously. Instead, they are used to

argue the security of sMD against other properties that a hash function is expected to satisfy, e.g.,

indifferentiability (from a random oracle).

One of the important results in this direction is due to Joux [82]: He presents the so-called multi-

collision attack to effectively find r distinct messages which hash to the very same value (r -collision).

For a random function, finding an r -collision requires to hash roughly 2(r−1)n/r messages for a digest

size of n-bits [82]. Joux shows, however, that for sMD finding an r -collision is almost as hard as

finding a 2-collision (up to a logarithmic factor), regardless of the value of r . This result was one of the

strongest indications that sMD is not very secure. Joux uses his technique to show that concatenating

the results of several hash functions (at least one of which is constructed via sMD) to get a higher

length hash function does not yield a secure construction, which had been an open problem then.

In [5], Andreeva et al. show that sMD does not preserve pre and sec, i.e., we do not necessarily obtain

a preimage and second-preimage resistant hash function even though the underlying compression

function is perfect in term of these notions. Yet, they do not manage to find an attack to illustrate

the concrete weakness. The first indication in this direction comes with the works of Dean [53] and

Kelsey and Schneier [88]. In [88], it is shown that finding a second-preimage for a long message

requires much less than 2n work (for an n-bit digest); it is the first concrete attack showing such a

strong result against sMD.

5. A proof for such a statement follows the same principle as in the proof of Theorem 2.2.5; given a collision-finding
adversary for the hash function, we construct the one for the underlying compression function. The only difference is that
we end up either with a collision for the compression function or a preimage for the initialization vector IV along the way.

25

Chapter 2. Cryptographic Hash Functions

Another work in this direction is the work of Kelsey and Kohno [87] who show yet a different weakness

of sMD. They call their method herding attack, utilized to violate the notion named chosen-target

forced-prefix (CTFP) preimage resistance. Informally, CTFP preimage resistance ensures the in-

feasibility of producing a message M that, when combined with the forced-prefix P , hashes to a

chosen-target Z (i.e., for any fixed key K , HK (P||M) = Z). Ideally, we would expect a good hash func-

tion to have CTFP resistance close to preimage resistance; yet for sMD it seems that CTFP preimage

resistance is somewhere in between (optimal) collision resistance and preimage resistance.

Finally, we note the so-called extension attacks against sMD, a method that affects MAC (message

authentication codes) applications of hash functions. A common way to construct a MAC by using a

cryptographic hash function is to hash K ′||X where K ′ is a secret-key (hence different from K used

in keyed-hash functions) and X is the message to be authenticated. It is almost immediate that

this construction is secure when the underlying hash function is modeled as a random oracle [49].

However, when sMD is used, we can extend the message X with any arbitrary message X ′ and obtain

the MAC of X ||X ′ without knowing the secret-key K ′ [49]. The extension attack is considered to be

the most important weakness of sMD. Indeed, NIST also explicitly demands (from the designers)

resistance against extension attacks from the very beginning of the SHA-3 competition. Several

techniques to thwart extension attacks are proposed in [49].

2.2.3 Other Iterated Domain Extenders

In order to thwart some of the above mentioned weaknesses, several alternative methods to sMD

are proposed in the literature. Here we list some of the iterated constructions, without giving the

details 6 (for the exact specifications and security preservations, we refer to corresponding references,

as well as [3, 5]): prefix-free Merkle–Damgård [49] (pfMD), enveloped Merkle–Damgård [12] (EMD),

Merkle–Damgård with permutation [77] (MDP), linear hash [15] (LH), linear XOR [15] (XLH), Shoup’s

hash [184] (SH), random oracle XOR [3] (ROX), the backwards chaining mode [6] (BCM), HAIFA [21],

Dither hash [168] (DH), Randomized hash [72] (RMX), Double-pipe hash [111] (LDP) and Zipper

hash [110] (ZH).

Table 2.1 (from [3]) contains a summary of preservation results (see e.g., [3, 12, 56, 108] for the

preservation results for other security notions). We note that the only domain extension algorithm

that preserves all the seven security notions given earlier is ROX [3]. The major difference of ROX

from the other schemes is that it requires certain calls to two random oracles (one for padding, one

for the iteration) during execution, which can be seen as a disadvantage for practical applications

although it provides strong security guarantees.

2.3 Compression Functions Based on Blockciphers

Ever since the initial design of cryptographic hash functions, one of the most popular and best-known

methods to create a hash function revolves around blockciphers. The idea of blockcipher-based

hashing dates back to Rabin [162] who suggested to hash a message using DES (inside a compression

function with a mode of operation similar to MD, without imposing suffix-free padding). Other

blockcipher-based designs soon followed, the best-known ones being Davies–Meyer [122], Matyas–

6. We note however that Definition 2.2.1 does not apply to all of the listed designs.

26

2.3. Compression Functions Based on Blockciphers

Scheme coll epre pre apre sec esec asec

BCM X × × × X × ×
DH X × × × × × ×

EMD X × × × × × ×
HAIFA X × × × × × ×
LDP X × × × × × ×
LH × X × × × × ×
MD X X × × × × ×

MDP X × × × × × ×
pfMD × × × × × × ×
RMX X × × × × × ×
ROX X X X X X X X
SH X X × × × X ×

XLH X X × × × X ×
ZH ? × × × × × ×

Table 2.1 – A summary of the preservation results of some iterated hash functions. The symbol “X"
shows that the preservation holds, whereas “×" means that it is not preserved. We also show by “×"
if the corresponding definition is not applicable, e.g., the construction does not accept keys. The
symbol “?" demonstrates that no result is known.

Meyer–Oseas [177] and Miyaguchi–Preneel [159].

The recipe for blockcipher-based hashing is simple and clear: First a compression function is created

using the blockcipher and subsequently a full-blown hash function is obtained using a domain

extender, e.g., sMD. The compression functions of the MD-family, SHA-family and even some of the

SHA-3 candidates can, either explicitly or implicitly, be regarded as blockcipher-based designs.

The incentive for blockcipher-based hashing is intuitive and a bit historical: Blockciphers have

been the primitives since the early years of modern cryptography and a blockcipher operating on

n-bit blocks and a κ-bit key can already be regarded as a compression function from n +κ→ n bits,

compressing κ bits at a time. Moreover, using a blockcipher to create a hash function is particularly

effective for resource constrained environments as we only need to implement one blockcipher to

obtain an encryption scheme and a hash function simultaneously.

In this section, following the recent advances in blockcipher-based hashing, we formally define the

blockcipher-based hash and compression functions and state related security properties. Moreover,

we briefly recapitulate the latest results in this field along with the remaining open problems. As

usual, we begin first with the definitions.

2.3.1 The Model

Let Block(κ,n) denote the set of all blockciphers having a κ-bit key and operating on n-bit blocks.

In other words, Block(κ,n) 7 is the set of all maps E : {0,1}κ× {0,1}n → {0,1}n , such that for any key

K ∈ {0,1}κ, EK (·) = E(K , ·) is a permutation on the set {0,1}n . For a blockcipher E , we denote its

7. For each κ-bit key, there exist 2n ! permutations as the block-length is n; in addition, as we can assign any permutation
to a given key, there are (2n !)2κ possible blockciphers.

27

Chapter 2. Cryptographic Hash Functions

inverse by D , so for all K ∈ {0,1}κ and X ∈ {0,1}n we have that DK (EK (X)) = X . When E
$←Block(κ,n)

is chosen uniformly at random, we call it an ideal cipher. By choosing a random element of Block(κ,n),

denoted E
$←Block(κ,n), we mean that for each K ∈ {0,1}κ we choose a permutation EK (·) over {0,1}n

uniformly at random.

We refer to a compression function hE (or more generally, hE 1,...,E r
when there are r independently

sampled blockciphers E 1, . . . ,E r $←Block(κ,n)) as blockcipher-based if one or multiple blockciphers

are utilized to instantiate it. More formally, a blockcipher-based compression function is a map

hE : Block(κ,n)×V ×M → V where access to an element E ∈ Block(κ,n) is black box. That is, hE must

be given by a program that, given M ∈M and V ∈ V , computes hE (V , M) using an E oracle. Similarly,

the iterated hash function HhE
, constructed via hE , is called blockcipher-based and can be defined in

a similar fashion. Note that here the random choice of the blockcipher takes the role of the key in

our standard keyed-hash function definition; thus we again concern ourselves with a family of hash

functions. Throughout the thesis, we often omit the superscript E if the context suffices to determine

that the compression and hash functions in question are blockcipher-based.

Security Notions

Similar to Section 2.1, we define an adversary as an algorithm; this time, however, adversaries have

oracle access to E and D (or more generally, to E 1, . . . ,E r ,D1, . . . ,Dr if there are r different blockci-

phers). In the following, we write oracles as superscripts. As security notions, we limit ourselves

again to (everywhere) preimage resistance and collision resistance. In the following, we concern

ourselves with information-theoretic adversaries only, meaning that the sole resource of interest for

the adversary is the number of queries made to their oracles. Without loss of generality, adversaries

are assumed not to repeat queries 8 nor to query an oracle outside of its specified domain. These

adversaries are considered computationally unbounded and this model has been called the Shannon

model or, as we prefer, the ideal cipher model.

The ideal cipher model has been used extensively in the literature [8, 26, 27, 76, 107, 191, 192] for

arguing security of blockcipher-based hash and compression functions. The reason for using such a

model is a natural one [28]: The common assumption for blockciphers, in the standard model, is

that they are pseudo-random permutations 9. However in some scenarios, this assumption is not

sufficient to get useful security results [187]. Therefore, an alternative method is required to model

blockciphers in order to achieve provability.

We remark that, as in the random oracle model, there is an “uninstantiability” result by Black [28]

who provides a blockcipher-based hash function that is secure in the ideal cipher model yet it turns

out to be insecure when instantiated with a real-world blockcipher. Here again the example given by

Black is quite unnatural; nevertheless, it proves that the security provided in the ideal cipher model

does not necessarily imply security in practical applications. As pointed out in [28], “no scheme has

thus far been proven secure in the random oracle (or ideal cipher model) and then broken once

instantiated, unless this was the goal from the start.”

8. By this we mean that an adversary never makes a query to the blockcipher E that results in a query-response triple
(K , X ,Y) (with EK (X) = Y) which already appears in the query list. For instance an adversary is not allowed to make a
decryption query (K , Y) if a corresponding encryption query (K , X), which satisfies EK (X) = Y , has already been made.

9. Informally, this assumption asserts that a blockcipher that operates on n-bit blocks (under a secret randomly-chosen
key) is computationally indistinguishable from a randomly-chosen n-bit permutation.

28

2.3. Compression Functions Based on Blockciphers

For (everywhere) preimage and collision resistance, adversarial success can be determined based on

the query history Q only, which we formalize using the yield set (Definition 2.3.1). We partition Q in

Q[1] . . .Q[r] depending on which of the r primitives was called and, although technically elements

of Q are triples (primitive, query, response), we assume that the context suffices to determine which

of the r primitives was used (occasionally, we abuse notation by writing X ∈Q).

Definition 2.3.1 (Adversarial yield). Let h : Block(κ,n)×V ×M → V be a blockcipher-based com-

pression function and let Q be a set of queries with answers to the underlying blockcipher (E and D),

then the yield set yieldseth(Q) is the set of all triples (V , M , Z) such that Z = hE (V , M) and all queries

to evaluate the compression function at (V , M) are in Q. We refer to the cardinality of yieldseth(Q) as

the yield and denote it by yieldh(Q). Additionally, we define

yieldh(q) = max
Q

{
yieldh(Q)

}
,

where |Q| ≤ q , q being the maximum number of queries made to E plus D . (Note that as Q incorpo-

rates the primitives’ answers, the maximum implicitly includes a maximization over the choice of the

underlying blockcipher.) We similarly define all of these notions (i.e., yieldsetH(Q) and yieldH(Q))

for the hash function H (and omit the superscript when it is clear from the context) and generalize

them for multiple blockcipher calls (for r calls we have |Q| ≤ r q).

Now, we move on to the formal definitions of the security notions we consider. In the following,

without loss of generality, all the definitions are given assuming that the underlying primitive is a

single blockcipher. Generalization to the multiple-call versions and other primitives is immediate.

Definition 2.3.2. Let h : Block(κ,n)×V ×M → V and Hh
MD

: Block(κ,n)×{0,1}∗ → V be a blockcipher-

based compression and hash function constructed viaMD, respectively. For a given Q and Z ∈ V ,

define

collh(Q) ≡∃Z ,(V ,M) 6=(V ′,M ′)(V , M , Z), (V ′, M ′, Z) ∈ yieldseth(Q) and

collH(Q) ≡∃Z ,M 6=M ′(M , Z), (M ′, Z) ∈ yieldsetH(Q) .

The collision-finding advantage of an adversary A is defined as

AdvcollX (A) = Pr
[

E
$←Block(κ,n),Q

$←A E ,D : collX(Q)
]

,

where X ∈ {h,H}. Similarly, define AdvcollX (q) = maxA

{
AdvcollX (A)

}
, where the maximum is taken over

all adversaries A making at most q queries in total (to E plus D).

Definition 2.3.3. Let h : Block(κ,n)×V ×M → V and Hh
MD

: Block(κ,n)×{0,1}∗ → V be a blockcipher-

based compression and hash function constructed viaMD, respectively. For a given Q and Z ∈ V ,

define

eprehZ (Q) ≡∃(V ′,M ′)(V
′, M ′, Z) ∈ yieldseth(Q) and epreHZ (Q) ≡∃M ′(M ′, Z) ∈ yieldsetH(Q) .

The everywhere preimage-finding advantage of an adversary A is defined as

AdvepreX (A) = max
Z∈V

{
Pr

[
E

$←Block(κ,n),Q
$←A E ,D : epreXZ (Q)

]}
,

where X ∈ {h,H}. Similarly, define AdvepreX (q) = maxA

{
AdvepreX (A)

}
, where the maximum is taken

over all adversaries A making at most q queries in total (to E plus D).

29

Chapter 2. Cryptographic Hash Functions

The following result, the proof of which can be given as in Theorem 2.2.5, is a reformulation of the

preservation result we have already discussed for MD.

Theorem 2.3.4. Let h : Block(κ,n)×V ×M → V and Hh
MD

: Block(κ,n)× {0,1}∗ → V be a blockcipher-

based compression and hash function constructed viaMD, respectively. Then

AdvcollH (q) ≤Advcollh (q) and AdvepreH (q) ≤Advepreh (q) .

As previously noted, we remark that under the assumption that the padding function is only injective,

the collision and everywhere resistance of the underlying compression function is sufficient to obtain

a collision resistant iterative hash function.

2.3.2 Generalization to Other Primitives and Stam’s Conjecture

We note that blockciphers are not the only primitives for constructing a hash function. Indeed, there

exist two more well-known primitives used in the literature for designing compression functions:

public 10 random functions (PuRFs) and random permutations. For positive integers c and n, let

Func(cn,n) 11 denote the set of all maps {0,1}cn → {0,1}n and let f
$←Func(cn,n) denote that f

is sampled uniformly from Func(cn,n). We call f a public random function (PuRF) and we refer

to a compression function making oracle calls to f as PuRF-based. Similarly, let Perm(n) denote

the set of all permutations of {0,1}n and let π
$←Perm(n) denote that π is sampled uniformly at

random from all elements in Perm(n). We call the compression function making oracle calls to

π permutation-based (as in the blockcipher-based case, an adversary has oracle access to both π

and π−1). Throughout the thesis, whenever we refer to a primitive-based compression function, we

mean that the primitive is either a blockcipher or a PuRF or a permutation. A generalization of the

security definitions (Definitions 2.3.1, 2.3.2 and 2.3.3) given previously to the arbitrary primitive-

based setting is immediate.

Now assume we are constructing a primitive-based compression function. It would be desirable to

know how many calls to the underlying primitives we need to make for which level of security, in

particular collision resistance, as it would give some sort of a confidence in the design. In Crypto’08,

Stam [190] studies this security/efficiency trade-off problem (see also the work of Rogaway and

Steinberger [173, 174]) by using the yield as a main tool and arrives at the following conjecture. This

conjecture is widely accepted and used to deduce certain possibility/impossibility results.

Conjecture 2.3.5 (Stam’s Conjecture). Let h : {0,1}m+s → {0,1}s be a primitive-based compression

function that compresses m bits at a time and makes r calls to the underlying primitives. Assume

that the primitives accept cn-bit inputs where c is an arbitrary positive real number (c ∈ {1,2,3} is of

particular practical interest); the output length is not important. Then collisions for h can be found

(with probability at least one half) with

q = d2(cr n−m)/(r+1)e+1

queries to each of the primitives.

10. Public in the sense that all parties including the adversary has access to these primitives.
11. We note that the output length does not necessarily need to divide the input length; because conventional crypto-

graphic primitives obey this rule, we consider this case in this thesis.

30

2.3. Compression Functions Based on Blockciphers

1 2 3 4

5 6 7 8

9 10 11 12

M

V

Figure 2.3 – PGV compression functions hE (V , M) with almost optimal collision and (everywhere)
preimage resistance. The box illustrates the blockcipher and all the wires carry n bits. The key of the
blockcipher is fed into the dark side of the box, whereas the plaintext comes as an input to the other
edge shown with an incoming arc. The state value V enters from the left and the message block M is
fed from the top (see the PGV compression function 1 for the example of the illustration). The output
exits from the right. Matyas–Meyer–Oseas, Miyaguchi–Preneel and Davies–Meyer compression
functions are shown in 1, 2 and 5, respectively.

Part of the proof of the conjecture (i.e., the case where (2m−n(r −1))/(r +1) ≥ log2(17)), up to a small

constant, is given in [193].

2.3.3 Single-Call Compression Functions

Of the many methods, the most common approach for creating a blockcipher-based compression

function is to use a single call to a blockcipher operating on n-bit blocks with κ-bit keys, which

results in a compression function from n +κ bits to n bits. The previously mentioned methods of

Rabin, Davies–Meyer, Matyas–Meyer–Oseas and Miyaguchi–Preneel can be given in this class. This

category is often referred to as rate-1 single-block-length. Here the rate is a measure of efficiency,

defined as the ratio of the number of message blocks being hashed over the number of blockcipher

calls (thus higher rates are more efficient). Single-block-length, however, indicates that the output

length of the compression function is the same as the block-length of the underlying blockcipher.

One of the first systematic analyses of single-call single-block-length compression functions was

done by Preneel, Govaerts and Vandewalle [160], henceforth “PGV”, who considered the compression

functions hE of the form, for E ∈ Block(n,n), hE (V , M) = EK (X)⊕ t , where K , X , t ∈ {c̄,V , M , M ⊕V }

for an arbitrary constant c̄ ∈ {0,1}n . Their analysis was attack oriented: They found efficient preimage-

and collision-finding algorithms for both the compression function and the hash function obtained

31

Chapter 2. Cryptographic Hash Functions

c̄ c̄

13 14 15 16

c̄ c̄

17 18 19 20

Figure 2.4 – Eight PGV compression functions that turn out to be almost optimally collision resistant
when used via MD. Notation as in Figure 2.3 and c̄ is an arbitrary constant in {0,1}n . Rabin’s scheme
(with c̄ = 0) is shown in 13.

via sMD. Consequently, 12 schemes (see Figure 2.3 for an illustration 12 of the 12 constructions) out

of possible 64 were deemed optimally collision and preimage resistant. Later, Black, Rogaway and

Shrimpton [26] (and afterwards Duo and Li [58] and Stam [191]) proved that it is indeed the case.

Furthermore, Black, Rogaway and Shrimpton were able to show that eight more constructions (see

Figure 2.4) turn out to be optimally collision resistant when iterated (with an injective padding),

even though collisions and preimages are trivial to find for their compression functions. Preimage

resistance of these eight schemes are suboptimal (see Theorem 2.3.7 for the concrete bounds).

Here, we follow a more generalized approach, suggested initially by Stam [191] (see also [27]) to

analyze the single-call blockcipher-based compression functions (also capturing the analysis done by

Black, Rogaway and Shrimpton). We first define the single-call compression functions (see Figure 2.5).

Definition 2.3.6. Let E ∈ Block(κ,n). We call a blockcipher-based compression function hE : {0,1}s ×
{0,1}m → {0,1}s single-call if, given input (V , M), the output is computed as follows:

1. Prepare key and plaintext: (K , X) ←Cpre(V , M);

2. Make the call: Y ← EK (X);

3. Output the digest: Z ←Cpost(V , M ,Y),

where we call Cpre : {0,1}s × {0,1}m → {0,1}κ× {0,1}n a preprocessing function, whereas Cpost : {0,1}s ×
{0,1}m × {0,1}n → {0,1}s is called a postprocessing function. In particular, if s = n, then we call hE

single-call single-block-length (SBL). If s = 2n, hE is called single-call double-block-length (DBL).

Note that PGV compression functions are a special case of single-call blockcipher-based compression

functions for s = κ = n. The following theorem (also capturing the result of Black, Rogaway and

Shrimpton on PGV schemes) is proved in [27, 191]. In Theorem 2.3.7, we also introduce the so-called

Type-I and Type-II single-call SBL compression functions [27, 191]. Each type is defined as a set

of conditions on the pre and postprocessing functions (and an additional function that is defined

via Cpre and Cpost). To illustrate, PGV compression functions shown in Figure 2.3 belong to Type-I,

12. The figure is inspired by the one given in [27].

32

2.3. Compression Functions Based on Blockciphers

M

V Cpre E Cpost Zs

m
m

sn

s

κ

n

Figure 2.5 – Single-call blockcipher-based compression functions (see Definition 2.3.6).

whereas those illustrated in Figure 2.4 are of Type-II. Theorem 2.3.7 states concrete upper bounds of

both types for collision and everywhere preimage advantages defined in Definitions 2.3.2 and 2.3.3,

respectively.

Theorem 2.3.7. Let hE be a single-call blockcipher-based compression function with n = s and κ= m.

Define Caux(K , X ,Y) = Cpost(C−pre(K , X),Y) to be an auxiliary postprocessing function. If (Type-I

single-call SBL compression functions, see Figure 2.3)

1. the preprocessing function Cpre is bijective,

2. for all V , M, the postprocessing function Cpost(V , M , ·) is bijective,

3. for all K ,Y , the auxiliary postprocessing function Caux(K , ·,Y) is bijective,

then

Advcollh (q) ≤ q(q +1)

2n and Advepreh (q) ≤ q

2n−1

for any q ≥ 1 . If, however, (Type-II single-call compression functions, see Figure 2.4) 1.,2. hold (but not

3.) together with

3’. C−pre(K , ·), restricted to V , is bijective for all K ,

then for any q > 1 ,

AdvcollH (q) ≤ q(q +1)

2n and AdvepreH (q) ≤ q(q +1)

2n .

Hence, Theorem 2.3.7 provides sufficient conditions for Cpre and Cpost to get (almost) optimal

collision resistance for the compression and (the iterated) hash function using a single-call single-

block-length blockcipher-based compression function. Moreover, for preimage resistance, optimality

can be achieved using Type-I single-call blockcipher-based compression functions.

Stam [191] (see also [27]) derives the same result as Black, Rogaway and Shrimpton for PGV com-

pression functions 13 using simple counting arguments along with Theorem 2.3.7; consequently, he

significantly simplifies the analysis done by Black, Rogaway and Shrimpton. Moreover, he provides

similar sufficient conditions for single-call blockcipher-based compression functions of the following

form:

1. Chopped compression functions: These single-call blockcipher-based compression functions

correspond to the case where s < n and m +κ= n + s.

2. Overloaded compression functions: These correspond to the case where s+m > n+κ; i.e., when

the preprocessing function Cpre is compressing.

13. To illustrate, consider the Davies–Meyer compression function depicted in Figure 2.3 with number 5. The preprocess-
ing function is defined by Cpre(V , M) = (M ,V) = (K , X), whereas the postprocessing is given by Cpost(V , M ,Y) = V ⊕Y .
We can also express Caux as Caux(K , X ,Y) = X ⊕Y . Note that the Davies–Meyer is a Type-I single-call SBL compression
function defined in Theorem 2.3.7 and the corresponding statements hold.

33

Chapter 2. Cryptographic Hash Functions

3. Supercharged compression functions: This class corresponds to the case where the postprocess-

ing function Cpost expands: s +m = n +κ and s ≥ n. One of the nicest outcomes of this class

is single-call double-block-length compression function constructions (see Section 2.3.4 for

more on this).

For the exact security bounds for these classes of compression functions we refer to [191].

2.3.4 Double-Block-Length Compression Functions

Single-block-length blockcipher-based compression functions, i.e., the constructions whose output

length matches with the block-length of the blockcipher, historically face one major problem: Existing

blockciphers seldom have sufficiently large block-lengths and in order to meet the basic security

requirements (e.g., that of NIST for SHA-3) we would need a blockcipher operating on more than 256

bits. This rules out most existing blockciphers, including AES which operates on 128 bits blocks only.

To counter this discrepancy in required security levels, so-called double-block-length (DBL) com-

pression functions (and corresponding hash functions) were introduced: These are compression

functions with 2n-bit output and are based on a blockcipher with only n-bit blocks. Thus, we can

hope to achieve, for instance, collision resistance up to roughly 2n blockcipher evaluations. DBL

compression functions can also be useful for wide-pipe iterative hash functions [111].

DBL hash functions come in various guises, depending on the number of blockcipher calls made per

compression function and the (bit)length of the key (to the blockcipher). The three most important

variants are (for a blockcipher that operates on n-bit blocks):

1. single-call to a 2n-bit key blockcipher;

2. double-call to a 2n-bit key blockcipher; and

3. double-call to an n-bit key blockcipher.

Stam’s supercharged compression functions take care of the first group above; yet for the remaining

cases we need to extend the framework suggested by Stam. Note however that here we consider the

constructions that make parallel calls to the underlying blockciphers; it is sufficient for our purposes

and actually more interesting from a practical point of view due to the potential increase in efficiency.

Definition 2.3.8. Let E 1,E 2 ∈ Block(κ,n). We call a blockcipher-based compression function (see

Figure 2.6) hE 1,E 2
: {0,1}s × {0,1}m → {0,1}s double-call if, given input (V , M), the output is computed

as follows:

1. Prepare key and plaintext: (k1, x1) ←Cpre
1 (M ,V), (k2, x2) ←Cpre

2 (M ,V);

2. Make the calls: y1 ← E 1
k1

(x1), y2 ← E 2
k2

(x2);

3. Output the digest: Z ←Cpost(M ,V , y1, y2),

where we call Cpre = (Cpre
1 ,Cpre

2) for Cpre
1 ,Cpre

2 : {0,1}s × {0,1}m → {0,1}κ× {0,1}n a preprocessing func-

tion and Cpost : {0,1}s × {0,1}m × {0,1}n × {0,1}n → {0,1}s a postprocessing function. In particular, if

s = 2n, then we call hE 1,E 2
a double-call DBL blockcipher-based.

Here we note that the underlying blockciphers do not necessarily have to be different; i.e., it is

allowed that E 1 = E 2.

34

2.3. Compression Functions Based on Blockciphers

M Cpre
1 E 1

V Cpost Z

Cpre
2 E 2

s

m

n n

n n

s

κ

κ

Figure 2.6 – Double-call blockcipher-based compression functions (see Definition 2.3.8).

Single-Call DBL Hash Functions from Double-Key Blockciphers

Here we consider the possibility of building a DBL blockcipher-based compression function with

single-call to blockcipher with 2n-bit key and n-bit blocks; i.e., single-call blockcipher-based com-

pression functions with s = κ = 2n and m = n (Definition 2.3.6). Promising results are previously

given by Lucks [112], who gives a scheme secure only in the iteration, and Stam [191], who gives a

general framework for security of the (supercharged) compression functions. However, his frame-

work does not include the earlier work by Lucks; an extension to Stam’s framework for secure hash

functions (that use weak supercharged single-call DBL compression functions) is given in [150].

In [191] Stam also gives a concrete proposal (also known as quadratic-polynomial-based design:

QPB-DBL) for the DBL case with almost optimal collision resistance.

Although the efficiency of blockcipher-based compression functions is usually measured by the

rate, this metric does not always give accurate efficiency estimates. In particular, both Lucks’ and

Stam’s constructions require twoF2n finite field multiplications. In practical situations, these field

multiplications might actually cost more than a blockcipher call. For this reason, single-call DBL

hash functions are not widely accepted in practice and DBL constructions, with more than one call

to the underlying blockcipher, attracted much more attention.

Double-Call DBL Hash Functions from Double-Key Blockciphers

These constructions correspond to the case where s = κ= 2n and m = n (Definition 2.3.8). The two

classic hash functions of this type are Tandem Davies–Meyer (Tandem-DM) and Abreast Davies–

Meyer (Abreast-DM) [102]. Both schemes employ a single blockcipher called twice, where for Tandem-

DM the calls are made in sequence (hence not captured by Definition 2.3.8) and for Abreast-DM they

are made in parallel (see Figure 4.4 on page 79 for an illustration). Although both are widely believed

to be (close to) optimally collision resistant, for a long time no security proof of this was known for

either construction. Only recently Lee et al. [107] give a proof of collision resistance up to (almost)

the birthday bound for Tandem-DM; a proof for the collision resistance up to (almost) the birthday

bound for Abreast-DM is given in [64, 104]. For both schemes proving preimage resistance beyond

the birthday bound had been an open problem until the recent work of Armknecht et al. [8].

There are some other DBL hash functions based on two calls to a double-key blockcipher that enjoy

collision resistance up to the birthday bound. Hirose [75] proposes several conditions to achieve

optimal security for the linear instances of pre and postprocessing functions for rate-1/2 in this

category. In a way, these schemes can be regarded for this class to be what the PGV schemes are

35

Chapter 2. Cryptographic Hash Functions

for the classic, single-block-length setting. In his constructions, two independent blockciphers are

called, which is sometimes considered as a disadvantage. Later, taking inspiration from earlier work

by Nandi [128], Hirose [76] presents a scheme with optimal collision resistance using only one

blockcipher (see Figure 4.5 on page 80 for the illustration).

Satoh et al. [178] mount several collision and preimage attacks on the compression functions of

double-call hash functions from double-key blockciphers where only one blockcipher is used. They

also provide a set of conditions for the case where the message length is equal to the digest length,

which may be optimally collision resistant; he then left its investigation for future work. This work

has been pursued further by Hattori et al. [73]. They first investigate a case uncovered by the analysis

of Satoh et al., then show that the compression functions, which were not attacked by Satoh et al.,

are at most as secure as those of single-block-length hash functions.

Other DBL Hash Functions

There are two classic DBL blockcipher-based compression functions withκ= m = n (Definition 2.3.8),

namely MDC-2 and MDC-4 [37], where MDC-2 makes two calls and MDC-4 four calls to compress

a single message block 14. The compression function of MDC-2 is known to be collision resistant

only up to 2n/2 queries (thus offering no improvement over single-block-length constructions), but

the iterated hash function was widely believed to provide near-optimal collision resistance. Stein-

berger [192] gives the first non-trivial result in the ideal cipher model for the collision resistance of

MDC-2 by showing that an adversary asking fewer than 23n/5 queries has only a negligible chance

of finding a collision in the iteration, e.g., when used with sMD. Knudsen et al. [90] give a collision

attack of time-complexity approximately 2n/n, nibbling a logarithmic factor off the optimal birthday

bound (they also give a preimage attack on MDC-2 of time-complexity 2n). Thus, there remains a

large gap with respect to the collision resistance security of MDC-2. For a more complicated (yet less

efficient) scheme such as MDC-4 even less is known.

Recently, an alternative DBL construction to MDC-2—called MJH—was proposed by Lee and

Stam [105], which is inspired by the compression function of JH [206] (one of the SHA-3 final-

ists). As in the case of MDC-2, MJH uses two calls to a single-key blockcipher and the compression

function itself does not provide security beyond what a single-block-length compression function

can offer. Yet, in the iteration, Lee and Stam show that we need (asymptotically in n)Ω(22n/3−logn)

queries to the underlying blockcipher to find a collision with high probability. Lee and Stam’s work is

the first design on this class of compression functions that beat the collision resistance lower bound

of MDC-2. Constructing a double-call DBL compression function with κ= m = n (Definition 2.3.8)

with collision resistance bound beyond 2n/2 queries has been an open problem; similarly, for the

same class, beating the lower bound of MJH in the iteration is still open.

Another classic work on the double-call DBL hash functions with s = m = 2n and κ = n (Defini-

tion 2.3.8) is by Knudsen et al. [94] who show that for allF2-‘block’-linear schemes collisions can be

found (with high probability) in time roughly 23n/4 and preimages in time close to 2n . Knudsen et

al.’s work is a clear indication for an impossibility result of creating a highly efficient double-call DBL

hash function.

14. MDC-2 and MDC-4 are originally designed for use with DES; the generalization allowing key-size equal to the block
size is immediate.

36

2.3. Compression Functions Based on Blockciphers

Finally, we note the work of Peyrin et al. [154] who mimic the approach of PGV done on single-call

single-block-length blockcipher-based compression functions to the case for DBL compression

functions with varying blockcipher calls 15. Consequently, they determine, under a very general

attack-based approach (only considering time-complexity upper bounds), necessary conditions to

have a secure compression function. They conclude that we need at least five calls to the (single- or

double-key) blockciphers in order to thwart some generic attacks and they propose some construc-

tions that satisfy their criteria. In a later work, Peyrin and Seurin [180] follow a more proof-centric

approach and derive (suboptimal) query-complexity lower and upper bounds for their propos-

als (improving the bounds given in [180] and showing the security in the iteration are still open

problems).

2.3.5 Extensions: Knudsen–Preneel Compression Functions

In Section 2.3.4, we saw how to achieve blockcipher-based compression functions that output more

than the block-length of the underlying blockcipher. The output expansion is typically achieved by

calling the blockcipher(s) multiple times and combining the resulting blockcipher outputs in some

clever way. In almost all these classic examples, the standard approach in designing wider-output

compression functions has been to fix a target output size (and often a number of blockcipher calls)

and then to try to build a compression function that is optimally collision-resistant for that size.

In three papers [91–93], Knudsen and Preneel adopt a different approach, specifically to let the

output size and (relatedly) the number of blockcipher calls vary as needed in order to guarantee a

particular security target. Given r independent ideal compression functions (or PuRFs) f 1, . . . , f r ,

each mapping cn bits to n bits, they create a new ‘bigger’ compression function outputting r n bits.

The functions f 1, . . . , f r are run in parallel, and each of their inputs is some linear combination of

the blocks of message and chaining variable that are to be processed. The r n-bit output of their

construction is the concatenation of the outputs of these parallel calls. Knudsen and Preneel also

propose to instantiate the underlying ideal compression functions with a blockcipher run in the

Davies–Meyer mode and to iterate the compression function to obtain a blockcipher-based hash

function (when iterated, we could compress the final state to some desired length depending on the

security target).

The elegance of the KP construction is in how the inputs to f 1, . . . , f r are computed: A generator

matrix of an [r,k,d] linear error-correcting code overF2c determines how the ck input blocks of the

‘big’ compression function are XORed together to form the inputs to the underlying r functions. (In a

generalization they consider the f i as mapping from bcn′ to bn′ bits instead and use a code over

F2bc). Under a broad—but prima facie not unreasonable—assumption related to the complexity of

finding collisions in parallel compression functions, Knudsen and Preneel show that any attack needs

time at least 2(d−1)n/2 to find a collision in their construction. For preimage resistance, Knudsen

and Preneel conjecture that attacks will require at least 2(d−1)n time. They also give preimage- and

collision-finding attacks that are mostly independent of the minimum distance.

Watanabe [205] was the first to point out a collision attack demonstrating that the proven collision-

resistance lower bound given by Knudsen and Preneel is incorrect whenever 2k > r and d > 3. For a

15. They actually consider multi-call, multi-block-length compression functions based on smaller PuRFs 2n → n and
3n → n bits rather than blockciphers.

37

Chapter 2. Cryptographic Hash Functions

code with minimum distance d = 3, he matches the Knudsen–Preneel 2n collision-resistance lower

bound, but does not violate it. Yet this is the first indication that something is amiss with the claim

by Knudsen and Preneel.

2.4 Contributions

The contributions of this thesis are three-fold: Firstly, in Chapter 4, following the generalization

proposed by Stam for single-call blockcipher-based compression functions, we provide a novel

framework for the security analysis of a special class of DBL blockcipher-based hash functions (i.e.,

with κ= 2n and m = n). Secondly, in Chapter 5 we introduce a new double-call DBL compression

function, inspired by incidence geometry, with improved collision resistance bound for the same

class (i.e., with κ= m = n as MDC-2 and MJH). Finally, in Chapter 6, we (re)analyze the preimage

and collision resistance of the Knudsen–Preneel compression functions, a large class of compression

functions briefly introduced in Section 2.3.5. Below, we describe these contributions in more detail.

Another Look at Double-Block-Length Hash Functions

In Chapter 4, we propose a novel framework for the security analysis for double-call DBL blockcipher-

based compression and hash functions (Definition 2.3.8) by extending the recent generalization

presented by Stam at FSE ’09 for single-call constructions (Definition 2.3.6). We focus on the designs

with parameters κ= s = 2n and m = n, and restrict ourselves to two parallel calls (both identical and

two independently sampled blockciphers). We analyze the kind of pre and postprocessing functions

that are sufficient to obtain close-to-optimal collision resistance, either in the compression function

or in the iteration.

We group the schemes according to two important characteristics: Firstly, we distinguish between

collision resistance in the compression function (Type-I) and collision resistance in the iteration

(Type-II), as was done by Black et al. [26]. Secondly, for secure compression functions only, we

differentiate between schemes where the two blockciphers E 1 and E 2 are distinct (and independently

sampled) and schemes where only a single blockcipher is used, so E 1 = E 2.

We show that Type-I schemes enjoy near-optimal collision resistance in the ideal cipher model. For

preimage resistance, we are only able to prove resistance up to the birthday bound. The recent work

of Armknecht et al. [8] improves our result on preimage resistance to almost optimal bound. For

Type-II schemes, the generalization from the classical single-call case is less straightforward. In fact,

we can only prove slightly suboptimal collision resistance, although we do believe that our conditions

suffice for optimal collision resistance.

Regarding preimage resistance, we show that preimages can be found for Type-II schemes with

O (23n/2) queries (for a digest size of 2n) by providing a concrete preimage-finding attack. Finally, we

investigate the ramifications of our framework forF2-‘block’-linear instances of Cpre and Cpost for

Type-I and Type-II schemes. The contributions detailed in Chapter 4 are published in [150], at the

proceedings of the 12th IMA International Conference, Cryptography and Coding 2009.

38

2.4. Contributions

A Compression Function Exploiting Discrete Geometry

In Chapter 5, we study the open question of constructing a double-call (PuRF-based) DBL compres-

sion function with m = κ= n having collision resistance bound beyond 2n/2 queries. This is similar

to MDC-2 or the recently proposed MJH. However, unlike these proposals, we show for any δ> 0

and q ≤ 22n(1−δ)/3 that Advcollh (q) = o(1) (asymptotically in n). To the best of our knowledge, this is

the first construction (of this type) attaining collision resistance lower bound beyond 2n/2 queries.

A key challenge for our design is to bound the yield(q); to this end, we use an innovative preprocess-

ing function Cpre where any given valid input pair to the underlying ideal primitives corresponds

to an incidence between a point and a line (i.e., the point lies on the line) in the affine plane F2
2n .

A classic result from discrete geometry—the Szemerédi–Trotter theorem over finite fields—is sub-

sequently applied to bound the number of these incidences, and with it the yield. An appropriate

postprocessing function, together with a careful (non-trivial) analysis, then formally gives us the

remarkable collision-resistance lower bound. For the preimage resistance, we show for any δ> 0 and

q ≤ 2n(1−δ) that Advepreh (q) = o(1) (asymptotically in n). This work [81] will appear at the proceedings

of TCC (Theory of Cryptography Conference) 2012.

Attacking the Knudsen–Preneel Compression Functions

In Chapter 6, we (re)analyze the preimage and collision resistance of the Knudsen–Preneel compres-

sion functions in the setting of public random functions by mounting concrete attacks against them.

Our attacks are based on two key observations. First, by using the right kind of queries it is possible to

mount (non-adaptive) preimage or collision attacks of a surprisingly low query-complexity (optimal

even in the case of preimage attacks). Second, by exploiting the dual code and the dual code of the

shortened code, the subsequent problem of reconstructing a preimage, respectively a collision from

the queries can be dealt with very efficiently.

Our new preimage attack consistently beats the one given by Knudsen and Preneel and demonstrates

that the gap between Watanabe’s collision attack and the actual preimage resistance is surprisingly

small. Moreover, our new attack falsifies the Knudsen–Preneel (conjectured) preimage resistance

security bound. Complementing our attack is a formal analysis of the query-complexity (both lower

and upper bounds) of preimage-finding attacks. In this analysis we show that for many concrete

codes the time-complexity of our attack is optimal.

For collision resistance, we also fold in the idea originating from Watanabe and we actually arrive

at a family of attacks. This makes expressing the final time-complexity in closed form difficult; yet

our best attack has a time-complexity strictly smaller than the block-size (thus beating Watanabe’s

attack) for all but two of the parameter sets suggested by Knudsen and Preneel.

Consequently, our new attacks falsify both (conjectured) preimage resistance and proven collision

resistance security bound given by Knudsen and Preneel; and we conclude that, with the possible

exception of two of the proposed parameter sets, the Knudsen–Preneel compression functions do

not achieve the security level they were designed for. The proceeding versions [149, 151] (presented

in Asiacrypt 2010 and FSE 2010) of our contributions are currently being (jointly) prepared for a

submission to the Journal of Cryptology.

39

3 Setting the Stage

This chapter is dedicated to the introduction of the tools required in the subsequent chapters: First, in

Section 3.1 we recall the mathematical basics and related notation that we will be using throughout.

In Section 3.2 we introduce the generalization of the compression functions we considered in

Chapter 2 to the multi-call multi-block-length setting, as well as the blockwise-linear constructions,

the designs often used in practice for their simplicity. Finally, in Section 3.3 we discuss the techniques

for the probabilistic analysis of (adaptive) adversaries, the tools we will be using very often.

3.1 Some Mathematical Basics

Linear Error-Correcting Codes

An [r,k,d]2e linear error-correcting code C is the set of elements (codewords) in a k-dimensional

subspace ofFr
2e (for r ≥ k), where the minimum distance d is defined as the minimum Hamming

weight (taken over all non-zero codewords in C). The dual code [r,r−k,d⊥]2e is the set of all elements

in the r −k-dimensional subspace orthogonal to C (with respect to the usual inner product), and

its minimum distance is denoted d⊥. The Singleton bound puts a limit on the minimum distance:

d ≤ r −k +1. Codes matching the Singleton bound are called maximum distance separable (MDS).

An important property of an MDS code is that its dual is MDS as well, so d⊥ = k +1.

An [r,k,d]2e code C can be generated by a matrix G ∈Fk×r
2e , meaning that C = {x ·G|x ∈Fk

2e } (using

row vectors throughout). A generator matrix G is called systematic if and only if it has the form

G = [Ik |P] where Ik the identity matrix inFk×k
2e and P is a matrix inFk×(r−k)

2e . Furthermore, G is the

generator matrix of an MDS code if and only if any k columns are linearly independent.

For an index set I ⊆ {1, . . . ,r } we define G I ∈Fk×|I |
2e as the restriction of G to those columns indexed

by I . For a code and any index set I ⊆ {1, . . . ,r }, we want to define Ĩ ⊂ {1, . . . ,r } such that G Ĩ is invertible

(thus in particular |Ĩ | = k) and Ĩ ⊆ I or I ⊆ Ĩ . For MDS codes, the existence of such an Ĩ can be shown

easily (and we can impose uniqueness e.g., by virtue of an ordering). For non-MDS codes there exist

some I for which such an Ĩ does not exist (for example the I ⊂ {1, . . . ,r } for which |I | = k but G I is

not invertible), however for any target cardinality it is possible to find an I (of that cardinality) that

does have an Ĩ (e.g., by first going through the systematic columns, i.e., the Ik part); we call such an I

admissible.

41

Chapter 3. Setting the Stage

A given [r,k,d]2e code C can be shortened to obtain a new, derived code C ′. Let i ∈ {1, . . . ,r }, then

consider the set of all codewords in C that are 0 on position i . The new code C ′ consists of these

codewords with position i dropped, however we sometimes ‘quasi-shorten’ and keep the superfluous

zeros present (we always keep the original indexing). It is easy to see that C ′ is an [r −1,k −1,d]2e

code unless all codewords in C had a 0 on position i or k = 1 (in the latter case the shortening might

result in the trivial one-codeword code {0r−1}). The shortening of an MDS code is an MDS code

itself. By repeated applications we can shorten by any index set I0 ⊂ {1, . . . ,r } for which θ = |I0| < k to

obtain a derived [r −θ,k −θ,d] MDS code.

Binary Field Representation

There are multiple ways to represent any given (binary) finite fieldF2e . One common approach is to

construct the field by adjoining an appropriate root ω, that isF2e =F2(ω). If we let f be the minimal

polynomial of ω, we reach an alternative representation by consideringF2[x]/ f (x). In this case, we

know that f has degree e and there is a one-to-one correspondence between elements inF2e and

polynomials inF2[x] of degree smaller than e (being the unique representatives of the equivalence

classes inF2[x]/ f (x)). This allows us to view the field as an e-dimensional vector spaceFe
2 overF2,

for instance by regarding (1, x, . . . , xe−1) as a basis.

The mappingF2e →F2[x]/ f (x) is easily seen to be a group isomorphism and, more generally, let

ψ :F2e →F
e
2 be a group isomorphism that takes the field to the vector space. The multiplicative

operation in the field consequently induces an action on the vector space (as it is a bijective trans-

formation). The field paradigms imply that for any given element g ∈Fe
2, the corresponding map

Lg (on the vector space) is linear: in order to see that let Lg : Fe
2 → F

e
2 be the map defined by

Lg (x) =ψ(g x). Then

Lg (x + y) =ψ(g (x + y)) =ψ(g x + g y)) =ψ(g x)+ψ(g y) =Lg (x)+Lg (y)

and for any a ∈F2, we obtain

Lg (ax) =ψ(g ax) = aψ(g x) = aLg (x)

because a is simply equal to either zero or one. As Lg is linear, it can be represented by a matrix. In

other words, there is a map ϕ :F2e →F
e×e
2 such that ϕ(g)ψ(h) =ψ(g h) for all g ,h ∈F2e . It is not too

hard to see that this map is in fact an injective ring homomorphism:

1. As for all f , g ,h ∈F2e it holds that

ϕ(f g)ψ(h) =ψ(f g h) =ϕ(f)ψ(g h) =ϕ(f)ϕ(g)ψ(h) ,

we also have that ϕ(f g) =ϕ(f)ϕ(g).

2. Similarly

ϕ(f + g)ψ(h) =ψ((f + g)h) =ψ(f h + g h) =ψ(f h)+ψ(g h) =ϕ(f)ψ(h)+ϕ(g)ψ(h) ,

which results in ϕ(f + g)ψ(h) = (ϕ(f)+ϕ(g))ψ(h) .

42

3.2. Multi-Call Multi-Block-Length Compression Functions

Cpre
1 f 1

W Cpost Z

Cpre
r f r

...
...

tn

tn

cn

x1

n

y1

cn

xr

n

yr

sn

Figure 3.1 – General form of a tn-to-sn–bit single-layer PuRF-based compression function with
feedforward based on r calls to underlying PuRFs with cn-bit inputs and n-bit outputs.

3.2 Multi-Call Multi-Block-Length Compression Functions

In Chapter 2, we formally introduced the single-block- and double-block-length primitive-based

compression functions and discussed several related security properties. Here our goal is to make

a further step and generalize our definitions to the multi-call and multi-block-length setting. We

note that our security definitions (Definitions 2.3.2 and 2.3.3) naturally (and nicely) extend to the

multi-call multi-block-length setting; in order to avoid repetitions we do not re-introduce these

definitions here.

Throughout this thesis, we study single-layer compression functions. This means that the oracle calls

are (or at least can be) made in parallel and the output of the compression function is computed

based on the results of these calls, as well as the input itself (so we allow for feedforward). For

simplicity, consider PuRF-based compression functions h f 1,..., f r
.

Definition 3.2.1. Let f 1, . . . , f r ∈ Func(cn,n) and let t , s be two positive integers such that t > s. We

call a PuRF-based compression function h f 1,..., f r
: {0,1}sn × {0,1}(t−s)n → {0,1}sn multi-call multi-

block-length if, given input (V , M) (for V ∈ {0,1}sn and M ∈ {0,1}(t−s)n), the output is computed as

follows:

1. Prepare the inputs: xi ←Cpre
i (V , M) for all i ∈ {1, . . . ,r };

2. Make the calls: yi ← f i (xi) for all i ∈ {1, . . . ,r };

3. Output the digest: Z ←Cpost(V , M , y1, . . . , yr).

We call Cpre = (Cpre
1 , . . . ,Cpre

r) the preprocessing function where Cpre
i : {0,1}tn → {0,1}cn for i = 1, . . . ,r

and Cpost : {0,1}tn × ({0,1}n)r → {0,1}sn the postprocessing function.

Of note here is that we can interpret blockcipher-based constructions PuRF-based as well because

a blockcipher operating on n-bit blocks and (c −1)n-bit key can be interpreted as a function from

{0,1}cn → {0,1}n . One difference for the blockcipher-based case is that we should assign two input

blocks; one for the key and one for the plaintext of the underlying blockciphers. As another difference,

sampling ideal ciphers is quite different from sampling random functions: By choosing a random

element of Block(κ,n), denoted E
$←Block(κ,n), we mean that for each K ∈ {0,1}κ we choose a

permutation EK (·) over {0,1}n uniformly at random.

Most PuRF-based (and blockcipher-based) compression functions defined via Definition 3.2.1 are

of a special type. Instead of arbitrary pre and postprocessing functions, we find only functions

that are blockwise-linear (see Definition 3.2.2). The PGV compression and hash functions, as well

43

Chapter 3. Setting the Stage

as many other concrete examples from the literature, are simple examples of this. An advantage

of a blockwise approach is that it yields simple-looking hash functions whose security is easily

seen to be determined by the block-size n. Linearity allows for relatively efficient implementation

via bitwise exclusive-or of n-bit blocks. (In contrast, Lucks’ and Stam’s DBL schemes [112, 191]

require fullF2n -arithmetic.) So, let us define formally a blockwise-linear single-layer PuRF-based

compression function, an unwieldy name that we shorten to blockwise-linear scheme. For simplicity,

we consider a single compression function input W ∈ {0,1}tn such that W = (V , M) (for V ∈ {0,1}sn

and M ∈ {0,1}(t−s)n) and h f 1,..., f r
(V , M) = h f 1,..., f r

(W) = Z .

Definition 3.2.2 (Blockwise-linear scheme). Let b,c,r, t , s be positive integers and let matrices Cpre ∈
F

r cb×tb
2 , Cpost ∈ Fsb×(t+r)b

2 be given. We define h = BLb(Cpre,Cpost) to be a family of single-layer

PuRF-based (multi-call multi-block-length) compression functions hn : {0,1}tn → {0,1}sn , for all

positive integers n with b|n. Specifically, let bn′ = n and f 1, . . . , f r ∈ Func(cn,n). Then on input

W ∈ {0,1}tn (interpreted as column vector), h
f 1,..., f r

n (W) computes the digest Z ∈ {0,1}sn as follows:

1. Compute X ← (Cpre⊗ In′) ·W ;

2. For X = (x1|| . . . ||xr) compute yi = f i (xi);

3. For Y = (y1|| . . . ||yr) output Z = (Cpost⊗ In′) · (W ||Y) ,

where (W ||Y) ∈ {0,1}(t+r)n is interpreted as column vector, ⊗ denotes the Kronecker product and In′

is the identity matrix inFn′×n′
2 .

In the definition above we identified {0,1}n with the vector space Fn
2 . The map corresponding to

(Cpre⊗ In′) will occasionally be denoted by Cpre. It will be convenient for us to write the co-domain

of Cpre as a direct sum, so we identify {0,1}r cn with
⊕r

i=1 Vi where Vi =Fcn
2 for i= 1, . . . ,r . If x1 ∈V1

and x2 ∈ V2, then consequently x1 + x2 will be in V1 ⊕V2. This extends naturally to L1 +L2 when

L1 ⊂V1,L2 ⊂V2. If we want to add ‘normally’ inFcn
2 we write x1⊕x2 which conveniently corresponds

to exclusive or and the result will be inFcn
2 as expected.

Now our goal is to determine a lower bound for yield(q) of blockwise-linear schemes; Theorem 3.2.3

serves for this purpose. This result is important in that it provides a good indication for the security

of the schemes that can be defined via Definition 3.2.2. The interpretation and the discussion of

Theorem 3.2.3 will follow shortly.

Theorem 3.2.3. Let h=BLb(Cpre,Cpost) be a blockwise-linear scheme with parameters c,r, s, t . Con-

sider hn with b dividing n (in particular, bn′ = n). Then

yieldh(q) ≥ 2b log q
bc cbt ≈ q t/c ,

where q is the total number of queries made to each primitive (hence the total number of queries is

bounded by r q).

Proof. Recall that t is the number of external n-bit input blocks and c the number of internal n-bit

input blocks and that all n-bit blocks are subdivided into b n′-bit blocks. Set nq = blog q/(bc)c and

X = (0n′−nq × {0,1}nq)bc . For each of the bc internal input sub-blocks, set the leftmost n′−nq bits

to zero and let the rest range over all possibilities in {0,1}nq . All combinations of the internal input

sub-blocks are combined (under concatenation) to give (2nq)bc ≤ q distinct inputs for any particular

44

3.3. On the Probabilistic Analysis of Adaptive Adversaries

0. . .0

nqn′−nq

0. . .0

nqn′−nq
. . . 0 . . .0

nqn′−nq

0. . .0

nqn′−nq

x1 x2 xe−1 xe

Figure 3.2 – An illustration of the bit-strings used in the proof of Theorem 3.2.3 is provided for a single
PuRF input X = (x1, . . . , xe) ∈ {0,1}cn . The input block X is divided into e = bc chunks each consisting
of n′ bits, in particular xi ∈ (0n′−nq × {0,1}nq). The shaded rectangles illustrate the (presumably)
non-zero part of each chunk, whereas the rest shows the zero-bit blocks.

internal function. Query the f i on these inputs (precisely corresponding to X defined above), for

i = 1, . . . ,r .

Consider an external input W that consists of a concatenation of sub-blocks each with the first

n′−nq bits set to zero. Then, due to linearity, (Cpre⊗ In′) ·W will map to a collection of PuRF-inputs

all corresponding to the queries formed above, and hence this W will contribute to the yield. As there

are 2nq bt possible W that adhere to the format, we achieve the stated lower bound on the yield. The

approximation follows by ignoring the floor and simplifying the resulting expression. Although this

can lead to slight inaccuracies, for increasing n there will be more and more values of q for which the

expression is precise (so when q = 2αn for rational α the expression is precise infinitely often).

Intuitively, when the yield for a tn-to-sn compression function gets close to 2sn/2, a collision is

expected (birthday bound) and once it surpasses 2sn a collision is guaranteed (pigeonhole) and a

preimage expected. The bounds for permutation-based compression functions by Rogaway and

Steinberger [174] are based on formalizing this intuition (under the assumption that the yield results

in more or less uniform values). In the claims below we relate what the bound on the yield implies

for preimage and collision resistance, assuming that the yield results in more or less uniform values.

Note that the assumption certainly does not hold in general (hence ‘presumably’).

Claim 3.2.4 (Consequences for blockwise-linear schemes). Let h=BLb(Cpre,Cpost) be a blockwise-

linear scheme with parameters c, t , s,r . Consider hn with b dividing n.

1. If q ≥ 2scn/t then yield(q) ≥ 2sn and a collision in hn can be found with certainty (due to the

pigeonhole principle); preimages can presumably be found with high probability.

2. If q ≥ 2scn/(2t) then yield(q) ≥ 2sn/2 and collisions in hn can presumably be found with high

probability (due to the birthday paradox).

3.3 On the Probabilistic Analysis of Adaptive Adversaries

In this section we look at some of the existing techniques (and also introduce novel ones) to analyze

the advantages of adaptive adversaries in achieving certain events. The collision- and preimage-

finding experiments, which we consider in this thesis, can be seen as special examples of the events

considered here. In addition, by looking at the common techniques for hash function security proofs,

we develop a higher level intuition on how these proofs actually work; such a unified approach will

provide a background for the analysis performed in the next chapters. We believe this contribution

to be of independent theoretical interest 1.

1. We remark that in [81], we provide a similar framework using game-playing arguments.

45

Chapter 3. Setting the Stage

�

�

�

�

ExpE-ad
f (A):

Let i ← 0,Q0 ←;
While i ≤ q do

i ← i +1
xi ←A (Qi−1)
yi ← f (xi)
Qi ←Qi−1 ∪ {(xi , yi)}

Return E(Qq).

�

�

�

�

ExpE-na
f (A):

(x1, . . . , xq) ←A ()
Let i ← 0,Q0 ←;
While i ≤ q do

i ← i +1
yi ← f (xi)
Qi ←Qi−1 ∪ {(xi , yi)}

Return E(Qq).

Figure 3.3 – Standard adaptive (ExpE-ad(A)) and non-adaptive (ExpE-na(A)) security games for
(monotone) condition E. Here, Qi denotes the list of queries and corresponding answers up to (and
including) the i ’th step.

Most of the security proofs in the literature for compression and hash functions rely on the same

principle. Consider the game given in Figure 3.3, where the adversary has access to some underlying

primitive f (source of randomness) and tries to set a predicate E that is defined for all collections of

query-response pairs. We are primarily interested in monotone predicates E, that once set cannot be

‘unset’ by additional queries. A predicate E is monotone if for all Q ⊆Q′, E(Q) ⇒ E(Q′). Additionally,

we impose non-triviality of the predicate meaning that the predicate is not set from the outset

(i.e., E(;) = false). For collision resistance, one should read coll (Definition 2.3.2) for E and for

preimage resistance epreZ
2 (Definition 2.3.3). Note that coll and epreZ are always monotone and

that, for our analysis, both coll and epreZ are non-trivial.

Bounding an advantage is then tantamount to bounding Pr[E(Q)], where the probabilities are taken

over the randomness of f and the coins of A , if any. In the following, we show how we can analyze

such events in a stepwise approach to determine useful upper bounds.

There is a crucial distinction between adaptive and non-adaptive adversaries (see Figure 3.3). The

latter are required to commit to a fixed set of queries at the very beginning of the game. Consequently,

maximizing over all q-query (non-adaptive) adversaries becomes equivalent to maximizing over

all possible query sets of cardinality q . This considerably simplifies the proofs. For instance, when

providing a proof in the ideal cipher model (using a union bound), for a non-adaptive adversary

every response can be considered fully random, whereas for an adaptive adversary previous queries

to the cipher might influence the outcome.

Maurer [119] (see also Pietrzak [155]) develops a methodology (using random systems) to equate

adaptive and non-adaptive adversaries in certain cases. Although it is a possibility to use his results

in our analyses, for many of our winning conditions—or those relevant to (blockcipher-based) hash

functions in general—adaptive adversaries do have an advantage over non-adaptive adversaries

making the application of adaptive vs. non-adaptive comparison problematic. Instead, we opt for

a more direct approach, where we take our inspiration from both common hash-function security

proofs and the techniques introduced by Maurer and Pietrzak. Henceforth, unless otherwise stated,

we consider adaptive adversaries only (and consequently drop the “ad” suffix in naming experiments

and advantages) and try to determine their advantages in corresponding experiments.

2. We remark that in epreZ game (or in other security related games) the adversaries are also given the target digest Z
as input (respectively additional inputs) although it is not explicitly mentioned in the simplified game given in Figure 3.3.

46

3.3. On the Probabilistic Analysis of Adaptive Adversaries

3.3.1 Preliminaries

Following the terminology and notation of [119, 155], we use P
f
A for probabilities (over f) Pr[A = a]

where the subscript corresponds to the random variable A and the superscript f corresponds to the

source of randomness. If it is clear from the context, we often omit the source of randomness and the

specific values and simply use, e.g., PA|BC to denote P[A = a|B = b ∧C = c].

Random Systems Various cryptographic systems can be seen as random systems [119] that are

modeled as the mathematical abstraction of interactive systems: An (X ,Y)-random system takes the

inputs X1, X2, . . . ∈X and for each input Xi it generates an output Yi ∈Y depending probabilistically

on X i = (X1, . . . , Xi) and Y i−1 = (Y1, . . . ,Yi−1) (cf. the primitive f from Figure 3.3). Random systems

have been used in the literature (see e.g., [119–121]) to unify, simplify, generalize, and in some cases

strengthen security proofs. Definition 3.3.1 formally defines the term.

Definition 3.3.1 (Random system). An (X ,Y)-random system f is a (possibly infinite) sequence of

conditional probability distributions P
f
Yi |X i Y i−1 for i ≥ 1; specifically, the distribution of the outputs Yi

conditioned on X i = xi (i.e., the i ’th query xi and all previous queries xi−1 = (x1, . . . , xi−1)) and

Y i−1 = y i−1 (i.e., all previous outputs y i−1 = (y1, . . . , yi−1)). Define

P
f
Y i |X i :=

i∏
j=1

P
f
Y j |X j Y j−1 ,

where, for completeness,

P
f
Y1|X 1Y 0 :=P

f
Y1|X 1 =P

f
Y1|X1

.

Two (X ,Y)-random systems f and g are said to be equivalent (denoted by f ≡ g) if

P
f
Yi |X i Y i−1 =P

g
Yi |X i Y i−1

for all i ≥ 1.

Example 3.3.2 (Random system). Random functions and random permutations are special cases

of random systems. If (X ,Y) is any pair of sets, a random function X → Y is a random variable

whose values are functions X →Y . For any finite set X , a random permutation is a random variable

taking values in the set of permutations of X . A uniformly random function f is a random function

with uniform distribution over all functions X →Y . Using random systems, we have the following

probabilities for a uniformly random function f :

P
f
Yi |X i Y i−1 =


1 if xi = x j for some j < i and yi = y j ,

0 if xi = x j for some j < i and yi 6= y j ,

1/|Y | else.

(3.1)

A uniformly random permutation is defined analogously; these two primitives are the two idealized

objects that are used throughout the thesis.

One of the key concepts in cryptographic security definitions and proofs is the notion of indis-

tinguishability. The first implicit reference to computational indistinguishability appears in the

fundamental work of Blum and Micali [29] where one gives a precise mathematical meaning to

47

Chapter 3. Setting the Stage

the idea that a random variable X looking uniformly random is a relative notion depending on a

specified model of computation and a specified amount of computational resources. This naturally

leads to a rigorous definition of a pseudo-random bit generator by requiring that the output bits

cannot be distinguished from truly random bits by an efficient algorithm (distinguisher). More gen-

erally, computational indistinguishability allows for reducing the security analysis of a cryptographic

primitive to analyzing an ideal primitive (e.g., a uniformly random function or permutation) that is

trivially secure. Both pseudo-randomness and computational indistinguishability are thus notions

from the complexity-theoretic setting.

Indistinguishability has a natural analogue in the information-theoretic setting as well (which is

the main setting in this thesis) by imposing different restrictions on the distinguisher’s resources:

Here, we impose a constraint on the number of samples queried by the distinguisher and allow for

unlimited computational power 3. The simplest example in this setting is how easy it is to distinguish

two random variables X and Y by a distinguisher that is allowed to query one sample from one of

the two variables chosen uniformly at random. It is not hard to see that the success probability of the

optimal distinguishing algorithm (the distinguisher’s advantage) is simply the statistical distance of

the two probability distributions for X and Y .

With the increasing number of sophisticated cryptographic schemes appearing in the literature (e.g.,

blockciphers, compression functions, message authentication codes), the level of complexity of

proving indistinguishability becomes very complicated and technical; random systems provide a

nice tool for that purpose. In order to distinguish two (X ,Y)-random systems f and g , we model

the distinguisher as a random system itself. A distinguisher interacts with random systems by

making queries to either f or g and outputs a binary decision bit after a certain number of queries.

Definition 3.3.3 formally introduces the concept of a distinguisher.

Definition 3.3.3 (Distinguisher). An (X ,Y)-distinguisher A is a (Y ,X)-random system defined

by (possibly infinite) sequence of conditional probability distributions PA
Xi |Y i−1 X i−1 . That is, it is a

(Y ,X)-random system that is one query ahead. An (X ,Y)-distinguisher A and an (X ′,Y ′)-random

system f are said to be compatible if X ′ =X and Y ′ =Y .

We model the interaction of a distinguisher with a random system via a random experiment (anal-

ogous to the one given in Figure 3.3) that is a sequence of conditional probability distributions

denoted by P
A♦ f
Xi Yi |X i−1Y i−1 and defined simply as

P
A♦ f
Xi Yi |X i−1Y i−1 :=P

f
Yi |X i Y i−1 PA

Xi |X i−1Y i−1 .

Intuitively, this models the probabilities of the distinguisher choosing a given query xi at the i ’th

step and the random system returning a given response yi conditioned on the history. Moreover, we

define

P
A♦ f
X i Y i :=

i∏
j=1

P
A♦ f
X j Y j |X j−1Y j−1 =

i∏
j=1

P
f
Y j |X j Y j−1 PA

X j |X j−1Y j−1 .

Now we can formulate the monotone predicates in the context of random systems. The monotonicity

3. As far as we know, the explicit term “indistinguishability” in the information-theoretic setting first appeared in
Maurer’s work [119] where he used the term “quasi-random” as an information-theoretic analogue of “pseudo-random”.

48

3.3. On the Probabilistic Analysis of Adaptive Adversaries

condition gives rise to a sequence of binary probabilities P
f
¬E(Qi)|X i Y i ∈ {0,1} with the property that

∀i ≥ 1, P
f
¬E(Qi)|X i Y i = 1 ⇒ P

f
¬E(Qi−1)|X i−1Y i−1 = 1 .

Associated to a random system with a monotone predicate, we have the probability distributions

P
f
Yi |X i Y i−1 (data defining f), as well as the binary probabilities P

f
¬E(Qi)|X i Y i (binary probabilities for E).

Using P
f
Yi |X i Y i−1 and P

f
¬E(Qi)|X i Y i , we can now derive various other probabilities:

Event probabilities for E: These are the probabilities denoted by

P
f
¬E(Qi)|¬E(Qi−1)X i Y i−1 .

Intuitively, it is the probability of setting the predicate ¬E(Qi) to true conditioned on the query/re-

sponse history, as well as on the fact that ¬E(Qi−1) holds. It is derived from P
f
Yi |X i Y i−1 and P

f
¬E(Qi)|X i Y i

as follows:

P
f
¬E(Qi)|¬E(Qi−1)X i Y i−1 =

∑
yi

P
f
¬E(Qi)|X i Y i P

f
Yi |X i Y i−1 . (3.2)

Here, we can also derive the probability distributions P
f
E(Qi)|¬E(Qi−1)X i Y i−1 simply by using

P
f
E(Qi)|¬E(Qi−1)X i Y i−1 = 1−P

f
¬E(Qi)|¬E(Qi−1)X i Y i−1 .

It is important to note that if the condition ¬E(Qi−1)X i Y i−1 evaluates to false for all yi for a given

(xi , y i−1), this probability is set to zero; hence A provokes E(Qi) with probability one. It simply

means that A provokes E(Qi) regardless of the response yi .

A random system conditioned on E not failing: Consider the conditional probabilities

P
f
Yi |¬E(Qi)X i Y i−1

that can be derived from Bayes’ rule as follows:

P
f
Yi |X i Y i−1 P

f
¬E(Qi)|X i Y i =P

f
¬E(Qi)Yi |X i Y i−1 =P

f
Yi |¬E(Qi)X i Y i−1 P

f
¬E(Qi)|X i Y i−1 , (3.3)

where the middle term (which has not been defined yet) is a formal symbol for the corresponding

probability. Assuming that (along with the monotonicity of E and that P
f
¬E(Qi−1)|X i−1Y i−1 = 1)

P
f
¬E(Qi)|X i Y i−1 =P

f
¬E(Qi)|¬E(Qi−1)X i Y i−1 6= 0 ,

(which is not an invalid assumption given the predicates and constructions we are interested in) we

can thus derive the conditional probabilities

P
f
Yi |¬E(Qi)X i Y i−1 =

P
f
Yi |X i Y i−1 P

f
¬E(Qi)|X i Y i

P
f
¬E(Qi)|¬E(Qi−1)X i Y i−1

. (3.4)

49

Chapter 3. Setting the Stage

Intuitively, this looks like a random system except that we have conditioned on the predicate ¬E(Qi).

Note that this need not be a probability distribution: For instance, consider the example of a uni-

formly random function f : {0,1}n → {0,1}n and define the predicate ¬E(Qq) as the predicate that

is set if there exists no collision between an input and an output. It might occur that x2 = y1 (as

a clever adaptive adversary can choose x2 adaptively based on previous responses) in which case

¬E(Q2)X 2Y 1 will always evaluate to false and thus, the probability P
f
Y2|¬E(Q2)X 2Y 1 = 0 for all y2, so it

will not represent a well-defined distribution on the variable Y2. In cases when this degeneracy does

not occur, we can consider the random system f conditioned on E (denoted f |E) as a true random

system g , i.e., f |E ≡ g .

A random system with a predicate E: This is the random system that can be derived by

P
f
¬E(Qi)Yi |¬E(Qi−1)X i Y i−1 :=P

f
Yi |¬E(Qi)X i Y i−1 P

f
¬E(Qi)|¬E(Qi−1)X i Y i−1 , (3.5)

where the probabilities on the right-hand side are assumed to be well-defined (see the discussion

above). We also define

P
f
¬E(Qi)Y i |X i :=

i∏
j=1

P
f
¬E(Q j)Y j |¬E(Q j−1)X j Y j−1 .

Moreover, we consider distinguishers (or adversaries) trying to provoke E again via a sequence of

probability distributions. To indicate the link with E, we denote these distributions by

PA
Xi |¬E(Qi−1)X i−1Y i−1 .

As in the case of true random systems, this models the probability distribution of an adversary

choosing the i ’th query based on the previous responses and the predicate ¬E(Qi−1) (meaning that

the desired event E(Qi−1) has not occurred after the (i −1)’st query/response pair).

Using this data, we can derive various probabilities and distributions by imposing Bayes’ rule. We

define the probabilities for the random experiment A♦ f by

P
A♦ f
¬E(Qi)Xi Yi |¬E(Qi−1)X i−1Y i−1 :=P

f
¬E(Qi)Yi |¬E(Qi−1)X i Y i−1 PA

Xi |¬E(Qi−1)X i−1Y i−1 . (3.6)

Intuitively, this models the probability of choosing a particular query, obtaining a particular response

and the predicate ¬E(Qi) conditioned on the history and the predicate ¬E(Qi−1). Finally, let

P
A♦ f
¬E(Qi)X i Y i :=

i∏
j=1

P
A♦ f
¬E(Q j)X j Y j |¬E(Q j−1)X j−1Y j−1 . (3.7)

Similarly, we define an expression for E(Qi). We are now ready to define the advantage of the

distinguisher (adversary) A in provoking the desired event E(Qi):

Definition 3.3.4. Given q > 0 (i.e., the total number of queries made by an adversary A to f), define

AdvE
f (A) to be the advantage of the (adaptive) distinguisher A in provoking the event E(Qq) in the

random experiment A♦ f . That is

50

3.3. On the Probabilistic Analysis of Adaptive Adversaries

AdvE
f (A) = ∑

(xq ,y q)∈X q×Y q

P
A♦ f
E(Qq)X q Y q =

∑
(xq ,y q)∈X q×Y q

(
q∏

i=1
P

f
¬E(Qi)Yi |¬E(Qi−1)X i Y i−1 PA

Xi |¬E(Qi−1)X i−1Y i−1

)
.

Furthermore, for all q ≥ 1, define

AdvE
f (q) := max

A

{
AdvE

f (A)
}

.

3.3.2 Known Techniques

We start with the known techniques for the probabilistic analysis of adaptive adversaries; our goal is

to provide a unified approach for describing these techniques, as well as to establish a background

for the extensions we present subsequently. First, we study what we call the straightforward approach

(Proposition 3.3.6): It is used in many papers [26,27,191] in the context of hash functions. Second, we

deal with the case using an auxiliary monotone flag F(Q) (Proposition 3.3.7): Several recent examples

that make use of this method can be found in the literature [107, 192]. In the subsequent chapters,

we benefit from both methods.

The Straightforward Approach

The standard way of dealing with adaptive adversaries, as exemplified for instance by the security

proofs [26,27,191] for the PGV compression functions [160], is the following: Suppose an adversary A

makes q queries in total. These are necessarily made in sequence, so we denote by Qi the set of query-

responses (xi is the i ’th query made by A and yi is the corresponding response) after i queries have

been made (where i ∈ {0, . . . , q}). The overall probability of setting E(Qq) can then be upper bounded

by a sum (over i) of the maximum (over all adversaries) probability of winning on the i ’th step, where

these ‘stepwise’ probabilities are only taken over the choice of yi . This makes the derivation of the

overall bound relatively easy (even when taking into account the accompanying maximization). We

first state an hypothesis that is commonly used in random system proofs; corresponding proposition

follows the hypothesis.

Hypothesis 3.3.5. Let f be an (X ,Y)-random system and let E be a monotone predicate on f (hence

we assume that the probabilities given in (3.2) are well defined). There exists an (X ,Y)-random system

g such that f |E ≡ g , i.e., for all i ≥ 1 and all (xi , y i) ∈X i ×Y i ,

P
f
Yi |¬E(Qi)X i Y i−1 =P

g
Yi |X i Y i−1 .

Proposition 3.3.6. Let f be an (X ,Y)-random system and let E be a monotone predicate on f .

Assuming that
q∑

i=1
max

(x i ,y i−1)

{
P

f
E(Qi)|¬E(Qi−1)X i Y i−1

}
< 1 ,

for all q ≥ 1 and all (xq , y q−1) ∈X q ×Y q−1, we have

AdvE
f (q) ≤

q∑
i=1

max
(x i ,y i−1)

{
P

f
E(Qi)|¬E(Qi−1)X i Y i−1

}
.

51

Chapter 3. Setting the Stage

Proof. We first show that Hypothesis 3.3.5 holds for all i ≤ q and all (xi , y i). This is equivalent to at

least one of the probabilities P
f
Yi |¬E(Qi)X i Y i−1 being non-zero. Since assumption implies that

P
f
E(Qi)|¬E(Qi−1)X i Y 1−1 < 1 i.e., P

f
¬E(Qi)|¬E(Qi−1)X i Y i−1 > 0

and since

P
f
¬E(Qi)|¬E(Qi−1)X i Y i−1 =

∑
yi

P
f
Yi |¬E(Qi)X i Y i−1 P

f
¬E(Qi)|X i Y i−1 ,

it follows that at least one summand is non-zero, i.e., there exists yi for which

P
f
Yi |¬E(Qi)X i Y i−1 6= 0

which implies the hypothesis. Thus, there exists an (X ,Y)-random system g such that f |E ≡ g , i.e.,

for all i ≥ 1 and all (xi , y i) ∈X i ×Y i ,

P
f
Yi |¬E(Qi)X i Y i−1 =P

g
Yi |X i Y i−1 .

Instead of directly studying AdvE
f (q), we now look at an equivalent problem, where we minimize the

advantage of any adversary A whose goal is to provoke ¬E(Qq). We write

1−AdvE
f (q) = min

A

{ ∑
(xq ,y q)

P
A♦ f
¬E(Qq)X q Y q

}

= min
A

{ ∑
(xq ,y q)

(
q∏

i=1
P

f
Yi |¬E(Qi)X i Y i−1 P

f
¬E(Qi)|¬E(Qi−1)X i Y i−1 PA

Xi |¬E(Qi−1)X i−1Y i−1

)}

= min
A

{ ∑
(xq ,y q)

(
q∏

i=1
P

g
Yi |X i Y i−1 P

f
¬E(Qi)|¬E(Qi−1)X i Y i−1 PA

Xi |¬E(Qi−1)X i−1Y i−1

)}

= min
A

{ ∑
(xq ,y q)

(
q∏

i=1
P

g
Yi |X i Y i−1

(
1−P

f
E(Qi)|¬E(Qi−1)X i Y i−1

)
PA

Xi |¬E(Qi−1)X i−1Y i−1

)}
.

Because of the inequality

q∏
i=1

(
1−P

f
E(Qi)|¬E(Qi−1)X i Y i−1

)
≥ 1−

q∑
i=1

P
f
E(Qi)|¬E(Qi−1)X i Y i−1 := Bq ,

we arrive at

1−AdvE
f (q) ≥ min

A

{ ∑
(xq ,y q)

Bq

(
q∏

i=1
P

g
Yi |X i Y i−1 PA

Xi |¬E(Qi−1)X i−1Y i−1

)}
.

Note that we can bound Bq in the following way:

Bq ≥ 1−
q∑

i=1
max

(x i ,y i−1)

{
P

f
¬E(Qi)|¬E(Qi−1)X i Y i−1

}
:= B ′

q .

Since B ′
q is independent of A , we can pull it out the minimum and derive

52

3.3. On the Probabilistic Analysis of Adaptive Adversaries

1−AdvE
f (q) ≥ B ′

q min
A

{ ∑
(xq ,y q)

(
q∏

i=1
P

g
Yi |X i Y i−1 PA

Xi |¬E(Qi−1)X i−1Y i−1

)}

= B ′
q min

A

{ ∑
(xq−1,y q−1)

(
q−1∏
i=1

P
g
Yi |X i Y i−1 PA

Xi |¬E(Qi−1)X i−1Y i−1

)
∑
xq

PA
Xq |¬E(Qq−1)X q−1Y q−1

∑
yq

P
g
Yq |X q Y q−1

}

= B ′
q min

A

{ ∑
(xq−1,y q−1)

(
q−1∏
i=1

P
g
Yi |X i Y i−1 PA

Xi |¬E(Qi−1)X i−1Y i−1

)}
= B ′

q .

The last line follows by (finite) induction and the facts that

P
g
Yi |X i Y i−1 and PA

Xi |¬E(Qi−1)X i−1Y i−1

are conditional probability distributions. Hence, we conclude the proof.

Using an Auxiliary Flag

Although easy, the standard approach has the disadvantage that for more complex constructions,

the maximum probabilities can get too large. This is typically due to the maximum being attained

only for relatively obscure values for Qi , values that themselves are extremely unlikely to occur. To

weed out these unwanted cases, the analysis is often enhanced by splitting the monotone predicate

into a set of auxiliary events. For some positive integer k, let E1, . . . ,Ek be (monotone, non-trivial)

predicates such that (for all Q)

E(Q) ⇒
k∨

i=1
Ei(Q) ,

then a union bound implies

Pr[E(Q)] ≤
k∑

i=1
Pr[Ei(Q)] .

Several examples of proofs using auxiliary events can be found in the realm of double-block-length

hash functions (e.g., [107, 192]).

The events Ei(Q) themselves are usually composed as the conjunction of a monotone event and a

negated monotone event. In the simplest case, consider a second (non-trivial) monotone predicate F.

If we define E1 = E∧¬F and E2 = F, then E ⇒ E1 ∨E2 is satisfied. To bound Pr[E2(Q)] = Pr[F(Q)] we

can use Proposition 3.3.6; for Pr[E1(Q)] = Pr[E(Q)∧¬F(Q)] Proposition 3.3.7 shows how the use of

the predicate F effectively allows us to consider a more restricted class of Q (see Figure 3.4 for the

corresponding game).

All this can be rigorously modeled using random systems as follows: Suppose that f is a random

system with a monotone predicate F (here, F represents the flag event). Suppose further that f condi-

tioned on F, i.e., f |F, is equivalent to another random system g (i.e., f |F ≡ g). Now, we simply impose

a monotone predicate E on g . Equivalently, we need to specify the corresponding probabilities and

53

Chapter 3. Setting the Stage

distributions as we did previously. Suppose that we are given the following data:

1. Event probabilities for the random system g :

P
g
¬E(Qi)|¬E(Qi−1)X i Y i−1 also denoted by P

f
¬E(Qi)|¬E(Qi−1)¬F(Qi)X i Y i−1

to indicate better what they are supposed to model.

2. Conditional probabilities:

P
g
Yi |¬E(Qi)X i Y i−1 =P

f
Yi |¬E(Qi)¬F(Qi)X i Y i−1 .

3. Distinguisher A relative to E, namely, probability distributions:

PA
Xi |¬E(Qi−1)¬F(Qi−1)X i−1Y i−1 .

This data allows us to upper bound the advantage AdvE∧¬F
f (q) following exactly the same steps as

in the straightforward method (for the random system g and the monotone event E). Moreover, we

assume all the corresponding notation. The following proposition provides an upper bound on the

adaptive advantage.

Proposition 3.3.7. Let f be an (X ,Y)-random system with a monotone predicate F with the property

that there exists a random system g such that f |F ≡ g . Let E be a monotone predicate on g . Assuming

that
q∑

i=1
max

(x i ,y i−1)

{
P

f
E(Qi)|¬E(Qi−1)¬F(Qi)X i Y i−1

}
< 1 ,

for all q ≥ 1 and all (xq , y q−1) ∈X q ×Y q−1, we have

AdvE∧¬F
f (q) ≤

q∑
i=1

max
(x i ,y i−1)

{
P

f
E(Qi)|¬E(Qi−1)¬F(Qi)X i Y i−1

}
.

Proof. That a slightly different version of Hypothesis 3.3.5 is satisfied can be shown as in the proof

of Proposition 3.3.6. That is, we can show that there exists an (X ,Y)-random system h such that

g |E ≡ h; hence for all i ≥ 1 and all (xi , y i) ∈X i ×Y i ,

P
f
Yi |¬E(Qi)F(Qi)X i Y i−1 =Ph

Yi |X i Y i−1 .

It simply follows from the hypothesis (as in Proposition 3.3.6) that

q∑
i=1

max
(x i ,y i−1)

{
P

f
E(Qi)|¬E(Qi−1)¬F(Qi)X i Y i−1

}
< 1 .

Now observe that

P
A♦ f
E(Qq)¬F(Qq) ≤P

A♦ f
E(Qq)|¬F(Qq) =P

A♦g
E(Qq) .

Therefore, it is sufficient to get an upper bound for the latter probability to bound AdvE∧¬F
f (q). In the

following, we proceed as in the proof of Proposition 3.3.6: we have

54

3.3. On the Probabilistic Analysis of Adaptive Adversaries

�

�

�

�

ExpE∧¬F
f (A):

Let i ← 0,Q0 ←;
While i ≤ q do

i ← i +1
xi ←A (Qi−1)
yi ← f (xi)
Qi ←Qi−1 ∪ {(xi , yi)}

Return E(Qq)∧¬F(Qq).

�

�

�

�

ExpE,κ
f (A):

Let i ← 0,Q0 ←;,ctr(0) ← 0
While i ≤ q do

i ← i +1
xi ←A (Qi−1)
yi ← f (xi)
Qi ←Qi−1 ∪ {(xi , yi)}
If hiti then ctri ← ctri−1 +1

If ctrq > κ then return true

Return false .

Figure 3.4 – The experiments analyzed in Propositions 3.3.7 and 3.3.10 illustrated (on the left and
right, respectively).

1−max
A

{
P

A♦ f
E(Qq)|¬F(Qq)

}
= min

A

{
P

A♦ f
¬E(Qq)|¬F(Qq)

}
= min

A

{ ∑
(xq ,y q)

P
A♦ f
¬E(Qq)X q Y q |¬F(Qq)

}

= min
A

{ ∑
(xq ,y q)

(
q∏

i=1
P

f
Yi |¬E(Qi)¬F(Qi)X i Y i−1 P

f
¬E(Qi)|¬E(Qi−1)¬F(Qi)X i Y i−1

PA
Xi |¬E(Qi−1)¬F(Qi−1)X i−1Y i−1

)}
≥ min

A

{ ∑
(xq ,y q)

(
1−

q∑
i=1

P
f
E(Qi)|¬E(Qi−1)¬F(Qi)X i Y i−1

)
(

q∏
i=1

Ph
Yi |X i Y i−1 PA

Xi |¬E(Qi−1)¬F(Qi−1)X i−1Y i−1

)}

= min
A

{ ∑
(xq ,y q)

(
1−

q∑
i=1

P
f
E(Qi)|¬E(Qi−1)¬F(Qi)X i Y i−1

)}
.

Using the stepwise maximization we thus arrive at the desired claim as in Proposition 3.3.6.

3.3.3 Considering More General Games

Now we aim to generalize the methods introduced in the previous section to be able to capture

a broader spectrum of events and to derive better upper bounds. To this end, we consider two

methods whose analyses are given in Propositions 3.3.8 and 3.3.10. In the first experiment, we simply

take the straightforward approach with a crucial twist in the analysis: Instead of taking step-specific

maximization, we opt for a direct upper bound BΣ where we take the maximum of the sum of stepwise

probabilities. The second, however, is the natural generalization of the first. These two techniques

are crucial in the analysis performed in Chapter 5 (where the bounds given in Propositions 3.3.6

and 3.3.7 are not sufficiently good).

Before proceeding, let us develop some intuition for the analysis performed using BΣ. For concrete-

ness, consider a collision-finding adversary that adaptively makes three queries. Customarily (using

Proposition 3.3.6 or 3.3.7), we would upper bound the maximum probability Bi (for i = 1,2,3) that

55

Chapter 3. Setting the Stage

an adversary causes a collision on the i ’th query, say with 1/4 each; taking a union bound leads to an

overall bound 3/4. In this case, using the union bound is fine. Now, instead of step-specific bound,

consider the global requirement B1 +B2 +B3 ≤ 1/2. Here, each Bi could be 1/2 itself; yet using
∑

i Bi

would lead to an overall bound of 3/2 (which is vacuous for a probability). Nevertheless, (intuitively)

no adversary should be able to do better than 1/2.

In the following proposition, we make this observation formal and use this fact to obtain (possibly)

better upper bounds for some of the experiments we are interested in. We remark that a further

complication arises when we require the adversary to obtain a success at least twice, or more (e.g.,

finding not a single but multiple preimages for a digest Z). While it is still easy to deal with non-

adaptive adversaries, properly taking care of adaptive adversaries is non-trivial. We consider this

event (counting more successes) in Proposition 3.3.10 (see also Figure 3.4) using the bounds obtained

in Proposition 3.3.8.

Proposition 3.3.8. Let f be a random system with a monotone predicate E. If there exists a value

BΣ ∈ (0,1) such that for all (xq , y q) ∈X q ×Y q

q∑
i=1

P
f
E(Qi)|¬E(Qi−1)X i Y i−1 ≤ BΣ ,

then

AdvE
f (q) ≤ BΣ .

Proof. We first show that Hypothesis 3.3.5 holds for all i ≤ q and all (xi , y i); this follows as in the

proof of Proposition 3.3.6. Specifically, BΣ < 1 implies that

P
f
E(Qi)|¬E(Qi−1)X i Y i−1 < 1 and hence P

f
¬E(Qi)|¬E(Qi−1)X i Y i−1 > 0 .

So, for a random system g , Hypothesis 3.3.5 holds; specifically, for all i ≥ 1 and all (xi , y i) ∈X i ×Y i ,

P
f
Yi |¬E(Qi)X i Y i−1 =P

g
Yi |X i Y i−1 .

Following the similar steps from the proof of Proposition 3.3.6, we thus arrive at:

1−AdvE
f (q) ≥ min

A

{ ∑
(xq ,y q)

(
1−

q∑
i=1

P
f
E(Qi)|¬E(Qi−1)X i Y i−1

)
q∏

i=1

(
P

f
Yi |¬E(Qi)X i Y i−1 PA

Xi |¬E(Qi−1)X i−1Y i−1

)}

= min
A

{ ∑
(xq ,y q)

(
1−

q∑
i=1

P
f
E(Qi)|¬E(Qi−1)X i Y i−1

)
q∏

i=1

(
P

g
Yi |X i Y i−1 PA

Xi |¬E(Qi−1)X i−1Y i−1

)}
,

where we pulled out the term (
1−

q∑
i=1

P
f
E(Qi)|¬E(Qi−1)X i Y i−1

)
by using step-specific maximization. Now instead, we leave it inside the minimum intentionally.

Now suppose that there exists a value BΣ > 0 such that for all (xq , y q) ∈X q ×Y q

q∑
i=1

P
f
E(Qi)|¬E(Qi−1)X i Y i−1 ≤ BΣ .

56

3.3. On the Probabilistic Analysis of Adaptive Adversaries

As BΣ is independent of A , we can pull the term containing BΣ out of the minimum and achieve

1−AdvE
f (q) ≥ (1−BΣ)min

A

{ ∑
(xq ,y q)

(
q∏

i=1
P

g
Yi |X i Y i−1 PA

Xi |¬E(Qi−1)X i−1Y i−1

)}
= 1−BΣ .

The claim follows after noting that the big sum results in one.

We remark that the above approach is not limited to the experiment ExpE
f (A) and it can well be used

for the analysis of ExpE∧¬F
f (A). The following proposition states our corresponding claim.

Proposition 3.3.9. Let f be a random system with a monotone predicate F with the property that

there exists a random system g such that f |F ≡ g . Let E be a monotone predicate on g . Suppose that

there exists a value BΣ ∈ (0,1) such that for all (xq , y q) ∈X q ×Y q

q∑
i=1

P
f
E(Qi)|¬E(Qi−1)¬F(Qi)X i Y i−1 =

q∑
i=1

P
g
E(Qi)|¬E(Qi−1)X i Y i−1 ≤ BΣ .

Then

AdvE∧¬F
f (q) ≤ BΣ .

Proof. The proof follows from the proof of Propositions 3.3.7 and 3.3.8.

In Proposition 3.3.8 we are mainly interested in estimating the maximum probability of one success

occurring. Nevertheless, in some scenarios, the major monotone predicate E might depend on an

auxiliary event that requires a higher number of successes to hold. As an example, let p be a uniformly

random permutation p : X →X for X = {0,1}n and let E(Qi) be the predicate that is set to true if

y j = x j for more than κ values of j ≤ i where y j = p(x j) and κ is a positive integer. More precisely,

E(Qi) is the predicate that is set to true if there exist more than κ fixed points after the i ’th query.

Such a general problem can be modeled and studied using random systems as follows: Suppose

that f is an (X ,Y)-random system. We then attach a predicate called hiti to the random system f ;

this is the success event at step i . Note that hiti is not monotone. Moreover, we introduce a random

variable ctri to indicate the number of successes up to step i . In other words, ctr0 = 0 and for every

j ≥ 1, ctr j = ctr j−1 +1 if hit j occurs and ctr j = ctr j−1 otherwise. Finally, we can associate monotone

predicates Eκ(Qi) for every integer κ≥ 0, so that Eκ(Qi) is the predicate that is set to true if there are

more than κ successes after the i ’th query (see Figure 3.4 on page 55 for the corresponding game).

Obviously, for κ= 0 we are in the same scenario as in Proposition 3.3.8.

In order to attach the success event to the random system, we provide the following additional

probabilities besides P
f
Yi |X i Y i−1 (data defining f):

1. Binary probabilities P
f
hiti |X i Y i for every xi ∈X i and y i ∈Y i .

2. Probabilities P
f
hiti |X i Y i−1 (derived from P

f
Yi |X i Y i−1 and P

f
hiti |X i Y i via Bayes’ rule) for every xi ∈X i

and y i−1 ∈Y i−1:

P
f
hiti |X i Y i−1 =

∑
yi

P
f
hiti |X i Y i P

f
Yi |X i Y i−1 .

3. Monotone predicate probabilities (as in (3.2)) denoted by P
f
¬Eκ(Qi)|¬Eκ(Qi−1)X i Y i−1 .

57

Chapter 3. Setting the Stage

Proposition 3.3.10. Let κ be a non-negative integer and suppose that there exists a value BΣ ∈ (0,1)

such that for all (xq , y q) ∈X q ×Y q ,

q∑
i=0

P
f
hiti |X i Y i−1 ≤ BΣ and P

f
hiti |X i Y i−1 > 0 ∀i ≤ q .

Then

AdvE,κ
f (q) ≤ Bκ+1

Σ .

Proof. We use induction on κ+q where the inductive hypothesis is the following:

Hypothesis (κ, q): For any random system f , any success events {hiti }q
i=1 and any BΣ > 0 for which

q∑
i=0

P
f
hiti |X i Y i−1 ≤ BΣ

holds for any (xq , y q) ∈X q ×Y q , it follows that

AdvE,κ
f (q) ≤ Bκ+1

Σ .

We first check Hypothesis (κ, q) when either κ = 0 or q = 1. For κ = 0, this is Proposition 3.3.8. If

q = 1, the statement is trivial to verify. Next, fix a pair (κ, q) such that κ≥ 1 and q ≥ 2 and assume

Hypothesis (κ′, q ′) whenever κ′+q ′ < κ+q . Our goal is to find lower bounds on

1−AdvE,κ
f (A) = ∑

(xq ,y q)

(
q∏

i=1
P

f
¬Eκ(Qi)Yi |¬Eκ(Qi−1)X i Y i−1 PA

Xi |¬Eκ(Qi−1)X i−1Y i−1

)

=∑
x1

PA
X1

∑
y1

P
f
Y1|X 1

∑
(x2,...,xq)
(y2,...,yq)

(
q∏

i=2
P

f
¬Eκ(Qi)Yi |¬Eκ(Qi−1)X i Y i−1 PA

Xi |¬Eκ(Qi−1)X i−1Y i−1

)
.

Here, we have used the fact that ¬Eκ(Q1) holds whenever κ> 0, i.e.,

P
f
Y1|¬Eκ(Q1)X 1 =P

f
Y1|X 1 .

Next, fix x1 ∈X and let p(x1) =P
f
hit1|X1

. Then

P
f
Y1|X 1 =P

f
Y1|hit1 X 1 P

f
hit1|X 1 +P

f
Y1|¬hit1 X 1 P

f
¬hit1|X 1 = p(x1)P f

Y1|hit1 X 1 + (1−p(x1))P f
Y1|¬hit1 X 1 . (3.8)

The sums over (x2, . . . , xq) and (y2, . . . , yq) can be interpreted in terms of new random systems that
have already been introduced by Maurer and Gazi [68], namely, projected random systems denoted
by f [x1, y1] and defined as follows:

P f [x1,y1][Yi = y ′
i |X i = (x ′

1, . . . , x ′
i),Y i−1 = (y ′

1, . . . , y ′
i−1)] =P f [Yi+1 = y ′

i |X i+1 = (x1, x ′
1, . . . , x ′

i),Y i = (y1, y ′
1, . . . , y ′

i−1)] .

Moreover, consider a success event for f [x1, y1] derived from the success event hiti : The success
event at step i for f [x1, y1] will correspond to the success event at step i +1 for f where the first
query/response pair is exactly (x1, y1). The probabilities thus satisfy:

P f [x1,y1][hiti |X i = (x ′
1, . . . , x ′

i),Y i−1 = (y ′
1, . . . , y ′

i−1)] =P f [hiti+1|X i+1 = (x1, x ′
1, . . . , x ′

i),Y i = (y1, y ′
1, . . . , y ′

i−1)] .

58

3.3. On the Probabilistic Analysis of Adaptive Adversaries

Furthermore, consider the naturally defined projected distinguisher for the projected random sys-

tem g . The above formula for Adv¬E,κ
f (A) together with (3.8) imply

Adv¬E,κ
f (A) =∑

x1

PA
X1

∑
y1

P
f
Y1|hit1 X 1 p(x1)Adv¬E,κ−1

f [x1,y1]
(A ′)+∑

x1

PA
X1

∑
y1

P
f
Y1|¬hit1 X 1 (1−p(x1))Adv¬E,κ

f [x1,y1]
(A ′) ,

where A ′ behaves as the adversary A after the first query/response pair is obtained. As

q−1∑
i=1

P
f [x1,y1]
hiti |X i Y i−1 ≤ BΣ−p(x1) ,

we can apply the inductive hypothesis to get

Adv¬E,κ−1
f [x1,y1]

(A ′) ≥ 1− (BΣ−p(x1))κ and Adv¬E,κ
f [x1,y1]

(A ′) ≥ 1− (BΣ−p(x1))κ+1 .

Substituting these bounds and using∑
y1

P
f
Y1|hit1 X1

= 1 and
∑
y1

P
f
Y1|¬hit1 X1

= 1

(these follow from the condition 0 <P
f
hit1|X1

< 1), we finally get

Adv¬E,κ
f (A) ≥∑

x1

PA
X1

(
1−p(x1)(BΣ−p1)κ− (1−p(x1))(BΣ−p(x1))κ+1) .

As

1−p(x1)(BΣ−p(x1))κ− (1−p(x1))(BΣ−p(x1))κ+1 ≥ 1−Bκ+1
Σ

whenever 0 < p(x1) < BΣ < 1 and as ∑
x1

PA
X1

= 1 ,

we obtain the desired bound.

59

4 Another Look at Double-Block-Length
Hash Functions

In this chapter, we take Stam’s approach [191] (see Theorem 2.3.7) on single-call blockcipher-based

compression functions, introduced in Section 2.3.3, as a basis and generalize his method to the

double-call DBL blockcipher-based compression functions (Definition 2.3.8) with κ= s = 2n and

m = n (see Figure 4.1). Our motivation is not very different from that of Stam: There are certain

double-call DBL blockcipher-based compression functions (e.g., [75, 76]), with the above mentioned

parameters, already proposed in the literature; nevertheless, there is not a single work that captures

a deeper understanding and reasoning of what makes these designs secure or insecure. Our goal

is therefore to provide a more conceptual understanding for a large class of double-block-length

compression functions of this type and study the sufficient conditions required to make them secure.

Moreover, we work out the sufficient conditions to get a close-to-optimal collision resistant (iterated)

hash function even if the underlying compression is not optimally collision resistant (i.e., without

using the Merkle–Damgård paradigm).

To this end, we group the schemes according to two important characteristics: Firstly, we distinguish

between collision resistance in the compression function (Type-I) and collision resistance in the

(Merkle–Damgård) iteration (Type-II), similarly to the classic case by Black et al. [26, 27]. Secondly,

for secure compression functions only (Type-I), we differentiate between schemes where the two

blockciphers E 1 and E 2 are distinct and independently sampled from Block(2n,n) (see Section 2.3.1

for the definition of Block(κ,n)); and schemes where only a single blockcipher is used, so E 1 = E 2.

Each type is defined, similar to Theorem 2.3.7, by a set of conditions on pre and postprocessing func-

tions. For Type-I schemes with distinct blockciphers, the requirements are a rather straightforward

generalization of those by Stam for single-call constructions. For Type-I schemes with only a single

blockcipher, we follow Hirose’s [76] (and Nandi’s [128]) approaches for implicit domain separation

based on some extra conditions on Cpre
2 (C−pre

1 (·)) (see Definition 2.3.8 for the definition of Cpre
1 and

Cpre
2 , as well as Figure 4.1).

We show that for Type-I schemes we need to askΩ(2n) queries (asymptotically in n) to the underlying

blockciphers in order to find a collision with high probability (see Theorems 4.1.2 and 4.2.2 for the

precise statements). For preimage resistance, we are able to show the same bound; obviously it is

suboptimal (as the digest size is 2n bits). We make use of the recent work of Armknecht et al. [8] to

improve our result on preimage resistance to an almost optimal bound. For Type-II schemes, the

generalization from the classic single-call case is less straightforward. In fact, we can only prove

(slightly) suboptimal collision resistance—we lose a factor that is logarithmic in n—although we

61

Chapter 4. Another Look at Double-Block-Length Hash Functions

M Cpre
1 E 1

V Cpost Z

Cpre
2 E 2

2n

n

n n

n n

2n

2n

2n

Figure 4.1 – Double-call DBL blockcipher-based compression functions (see Definition 2.3.8 with
parameters κ= s = 2n and m = n) considered in Chapter 4. In Section 4.2, only a single blockcipher
is used, so E 1 = E 2. In Section 4.3, we consider compression functions without feedforward (i.e., V
and M are not fed into Cpost).

do believe that our conditions suffice for optimal collision resistance (see Figure 4.3 on page 76 for

the comparison of our collision resistance bounds obtained in this chapter for n = 128). Finally, we

conclude that the preimage resistance of Type-II schemes are not optimal; we illustrate this with a

concrete preimage attack with O (23n/2) queries.

The chapter is organized as follows: In Section 4.1, we study the constructions with distinct and

independently sampled blockciphers. In Section 4.2, we investigate the secure compression functions

instantiated with a single blockcipher. In Section 4.3, we look at the security in the iteration and

finally in Section 4.4 we detail the ramifications of our results onF2-‘block’-linear instances of Cpre

and Cpost.

4.1 Compression Functions with Distinct and Independent Blockciphers

Definition 4.1.1 introduces the Type-I compression functions, which we construct by naturally

extending the conditions given in Theorem 2.3.7 for single-call blockcipher-based compression

functions. In the following we use the notation used in Definition 2.3.8.

Definition 4.1.1. A double-call DBL blockcipher-based compression function hE 1,E 2
: {0,1}3n →

{0,1}2n (see Definition 2.3.8 with κ= s = 2n and m = n, as well as Figure 4.1) is called Type-I if and

only if the following three conditions hold:

1. Cpre
1 : {0,1}3n → {0,1}3n (the map that takes V , M to k1 and x1) and Cpre

2 : {0,1}3n → {0,1}3n (the

map that takes V , M to k2 and x2) are both bijections;

2. Cpost(V , M , ·, ·) (the map {0,1}2n → {0,1}2n that takes y1 and y2 to Z for a fixed (V , M)) is a

bijection (from 2n to 2n bits, for all (V , M));

3. Caux
1 =Cpost(C−pre

1 (k1, ·), y1, ·) is a bijection (for all k1, y1) and Caux
2 =Cpost(C−pre

2 (k2, ·), ·, y2) as

well (for all k2, y2). Here Caux
1 is the function that maps x1 and y2 to Z for a fixed (k1,y1); and

Caux
2 is the function that maps x2 and y1 to Z for a fixed (k2,y2).

The first condition is bijectivity of Cpre
1 and Cpre

2 ; it guarantees that each E 1, D1, E 2 and D2 query

leads to a single compression function output. This limits the growth of the maximum number of

compression function evaluations given the query quota, i.e., yield(q) (Definition 2.3.1). The second

condition ensures the transfer of the full randomness from the E 1 and E 2 outputs to the compression

62

4.1. Compression Functions with Distinct and Independent Blockciphers

function output Z . We note that the compression function input (V , M) is fed to Cpost (we call it

feedforward) to avoid straightforward collision- and preimage-finding (see Theorem 4.3.2 for the

corresponding attacks when the feedforward is omitted). The third condition is similar to Cpost in

the sense that the unpredictability of the decryption queries followed by an encryption query is used

optimally for the compression function output (note the difference between calling D1 and D2 due

to two different auxiliary functions Caux
1 and Caux

2).

The following result gives close-to-optimal collision resistance for DBL Type-I compression functions:

It states that for any number of queries q at most 2n−1, the advantage of any collision-finding

adversary is less than 1/2 (see Figure 4.3 on page 76 for the illustration of the bound obtained from

Theorem 4.1.2 as a function of log2(q)). In the proof below, the adversary makes at most q queries

to each of its two primitives E 1 and E 2 (where the decryption queries to D1 and D2 are counted for

their respective encryption primitive). Because a compression function evaluation itself takes two

queries, this means we lose a factor of at most four in the bound below, compared to the lower bound

based on a generic (birthday) collision attack against the compression function.

Theorem 4.1.2. Let hE 1,E 2
be a DBL Type-I compression function (Definition 4.1.1). Then the advantage

of an adversary in finding a collision in hE 1,E 2
after q ≤ 2n−1 queries can be upper bounded by

Advcollh (q) ≤ q(q −1)

2(2n −q)2 .

Proof. A collision consists of two compression function input pairs (V , M) and (V ′, M ′) that satisfy

hE 1,E 2
(V , M) = hE 1,E 2

(V ′, M ′) and (V , M) 6= (V ′, M ′). We construct a list of triples (V , M , Z) such that

Z = hE 1,E 2
(V , M) and we assume that the adversary has made the relevant queries to E 1 and E 2

(where the decryption queries to D1 and D2 are counted for their respective encryption primitive).

We bound the probability of a collision occurring in this list by making use of Proposition 3.3.6. In

particular, we upper bound the maximum probability that any adversary can trigger collisions on

the i ’th step, given the adversary’s i ’th query, query history up to the i ’th step and that collisions

are not present yet (note that we let coll(Q) ≡ E in the terminology of Proposition 3.3.6; in other

words, coll(Q) does not depend on other auxiliary monotone events). Then the union bound (over q

queries) provides the overall upper bound.

Bijectivity of Cpre
1 ensures that any query to E 1 (or D1) adds at most one triple (V , M , Z) to yieldseth(Q)

(Definition 2.3.1). Moreover, any query to E 1 corresponds uniquely to a forward query (x2,k2) to E 2,

by the bijectivity of Cpre
2 . (In the case of a query to D1, the relevant value of (x2,k2) is only known after

the D1-query has been answered.) The case for queries made to E 2 is similar due to symmetry. We

assume that an adversary asks a query to E 1 and the corresponding query to E 2 in conjunction—or

rather, we consider a derived adversary obeying this rule—and henceforth refer to these tuples as

query pairs. Note that after q queries by the original adversary, there are at most q query pairs for the

derived adversary and that the advantage of the derived adversary is at least that of the original one 1.

As a result, after i − 1 query pairs yieldseth(Q) contains exactly i − 1 triples (V , M , Z). We claim

that the probability of the i ’th query pair causing a collision with any of these triples is at most

1. To justify this, simply note that A queries E 1 followed by E 2 (or vice versa); or D1 (or D2) followed by E 2 (E 1,
respectively). The derived adversary A ′ runs A and collects queries without making extra ones. Therefore, the query
list of the derived adversary A ′ contains the same set of queries (and responses) as A ; thus a collision is present for A ′
whenever A finds a collision and Advcoll

h
(A) ≤Advcoll

h
(A ′).

63

Chapter 4. Another Look at Double-Block-Length Hash Functions

(i −1)/(2n − i +1)2. Using a union bound, the probability of a collision after q queries can then be

upper bounded by
q∑

i=1

(i −1)

(2n − i +1)2 ≤ q(q −1)

2(2n −q)2 .

To finalize the proof, we need to back-up our claim for success on the i ’th query pair. Let us distin-

guish the analysis depending on the first query of the pair.

Consider a forward query (k1, x1) to E 1. By the bijectivity of Cpre
1 and Cpre

2 , the corresponding values

(V , M) and (k2, x2) are uniquely determined. Suppose that so far t1 ≤ i −1 queries to E 1 have been

made involving key k1 and t2 ≤ i −1 to E 2 involving key k2. The answer to a fresh query to E 1
k1

(·) is

therefore distributed uniformly over a set of 2n − t1 possible outcomes and, similarly, the answer to a

fresh query to E 2
k2

(·) is distributed uniformly over a set of at least 2n − t2 possible outcomes. Each

possible answer (y∗
1 , y∗

2) is combined under Cpost with the pair (V , M) that is consistent with the

(k1, x1) and (k2, x2) queries being made, leading to a possible compression function outcome Z∗.

Because Cpost is bijective when the pair (V , M) is fixed, distinct (y∗
1 , y∗

2) lead to distinct Z∗, so there

are at least (2n − (i −1))2 possible outcomes Z∗, all equally likely. The probability of hitting a set of

size (i −1) is therefore at most (i −1)/(2n − i +1)2, as claimed. Because the situation is symmetric for

a forward query made to E 2, the same analysis follows.

Similarly, consider an inverse query (k1, y1). This yields a unique x1 and hence by the bijectivity

of Cpre
1 , there is a unique pair (V , M) corresponding to this query once answered. Thus, each inverse

query adds one triple (V , M , Z) to the adversary’s list of computable values. Again, the unique pair

(V , M) fully determines (k2, x2) and (obviously) y2, by the bijectivity of Cpre
2 and E 2. Now, suppose that

so far t1 queries to E 1 (or D1) have been made involving key k1, resulting in t1 plaintext-ciphertext

pairs. The answer to a fresh query to D1
k1

(·) is therefore different from the previous plaintexts. More-

over, each of the 2n − t1 answers is equally likely if E 1 is an ideal cipher. Each possible answer x∗
1 is

combined under C−pre
1 and produces a unique (V , M) pair which also determines the forward query

to E 2. Assuming E 2 is an ideal cipher, the output y∗
2 of this query is distributed uniformly over a set of

at least 2n −(i −1) possible outcomes. This time, the bijectivity of Caux
1 implies that the uncertainty in

x∗
1 and y∗

2 is fully inherited by Z ; in other words, Z is uniform over a set of size at least (2n − (i −1))2.

Again the probability of hitting any of the i −1 previously computed digests is as claimed. The result

for the inverse query made to D2 follows similarly because Caux
2 is bijective. Hence, the statement

follows.

The following result gives an upper bound for Advepreh (q), which implies a bound by Hirose [75].

However, this expression is far from optimal and vacuous for q Ê 2n . Indeed, the denominator of the

upper bound gets closer to zero once the number of queries surpasses 2n−1. Nevertheless, it states

that the success probability of finding a preimage is negligible if q ≤ 2n−1.

Theorem 4.1.3. Let hE 1,E 2
be a DBL Type-I compression function (Definition 4.1.1). Then the advantage

of an adversary in finding a preimage in hE 1,E 2
after q ≤ 2n−1 queries can be upper bounded by

Advepreh (q) ≤ q

(2n −q)2 .

Proof. Let A be an adversary trying to find a preimage for its input σ, asking a total of q queries

to (E 1,D1,E 2,D2). As done in the proof of Theorem 4.1.2, we only consider a derived adversary

64

4.1. Compression Functions with Distinct and Independent Blockciphers

that makes its queries to E 1 and E 2 in pairs, allowing it to construct triples (V , M , Z) such that

Z = hE 1,E 2
(V , M). A preimage of σ is found if and only if σ occurs as Z in the list of triples constructed

this way, so it suffices to bound this probability instead.

As before, the i ’th query pair adds one triple (V , M , Z) to the list of computable values where Z is

uniform over a set of size at least (2n − i +1)2 (by the bijectivity of Cpost for forward-forward queries

and Caux
j for backward-forward queries for j = 1,2). Thus, the probability that the i ’th query pair

finds a preimage is at most 1/(2n − i +1)2. With a union bound, the probability of finding a preimage

after q queries can then be upper bounded by

q∑
i=1

1

(2n − i +1)2 ≤ q

(2n −q)2 ,

which concludes the proof.

Unfortunately in the above bound, once the number of queries q approaches 2n , the denominator

tends to zero; thus the upper bound gets too large. Consequently, we cannot prove resistance

beyond 2n queries using the above proof technique. The main reason for this is the term q appearing

in the denominator; if we can somehow remove it from the denominator or at least diminish its

negative effect, then there will be a hope to attain better security bounds.

Armknecht et al. [8] manage to find a way to achieve this by using “super queries”. The idea is the

following. Assume that an adversary makes queries to the blockcipher with the very same key K . Once

the number of queries with this K is above a certain threshold, say 2n−1, then the remaining 2n−1

queries (again with the same key K) are given to the adversary for free. By “free" we mean that they

are not counted as the resource used by the adversary; but they may well be used by the adversary

(non-adaptively) for preimage-finding. By a super query, we mean the set of 2n−1 free queries that

are given to A . Although the information gathered by the adversary, as well as its preimage-finding

advantage increase considerably this way, this approach does not lead to an unacceptable security

bound, as shown in Theorem 4.1.4: Almost optimal preimage resistance can be guaranteed using

DBL Type-I blockcipher-based compression functions.

Theorem 4.1.4 (Armknecht et al. [8]). Let hE 1,E 2
be a DBL Type-I blockcipher-based compression

function (Definition 4.1.1). If (additionally) there exists a permutation ξ : {0,1}2n → {0,1}2n such that

k2 = ξ(k1), where ki is the key used in E i for i = 1,2, then the advantage of an adversary in finding a

preimage in hE 1,E 2
after q ≤ 22n−3 queries can be upper bounded by

Advepreh (q) ≤ 8q

22n .

Proof. Let A be an adversary that tries to find a preimage for its input σ. We follow a similar strategy

as in the proof of Theorem 4.1.3 when A selects its queries. Specifically, when A makes an E 1-query,

the corresponding E 2-query is asked in conjunction; or as preferred by Armknecht et al., it is given

to A for free. Similarly, when A makes a D1-query, the corresponding E 2-query is given for free as

well. We note again that these free queries are not counted as queries asked by A .

The strategy for using super queries is as follows. Assume that A makes 2n−1 queries (without loss of

generality) to E 1 all with the key k1; the remaining 2n−1 queries that contain k1 are given to A for

65

Chapter 4. Another Look at Double-Block-Length Hash Functions

free. The adversary A simply uses these queries non-adaptively to find a preimage. In addition, by

using the fact that there exists a permutation ξ : {0,1}2n → {0,1}2n such that k2 = ξ(k1), we give the

corresponding E 2 queries (with the key k2 = ξ(k1)) to A for free as well. Note that a query (with k1) is

part of a super query if and only if the query with the corresponding key k2 = ξ(k1) is as well, where

we use the term super query to denote the set of 2n−1 free query pairs. Note that once a super query

is completed (with a specific pair of keys, e.g., k1 and ξ(k1)), A cannot make any more queries with

the keys corresponding to the super query in question. We stress that A can only find a preimage

either using a normal 2 query or a query that is part of a super query. We bound the probability of

finding a preimage for each case and, with a union bound, complete the proof. Let us investigate

each case one by one; we begin with finding a preimage with normal queries.

Consider a forward query (k1, x1) to E 1. By the bijectivity of Cpre
1 and Cpre

2 , the corresponding values

(V , M) and (k2, x2) are uniquely determined. Moreover, by the bijectivity of Cpost, there is a unique

pair (y1, y2) that can lead to a preimage for σ. Now assume that there are at most 2n−1 queries to E 1

that have been made involving key k1 and 2n−1 to E 2 involving key k2. The answers to the fresh

queries to E 1
k1

(·) and E 2
k2

(·) are therefore distributed uniformly over a set of at least (2n−1)2 possible

outcomes. The probability of hitting Z is then at most 1/(2n−1)2 = 4/22n . As the situation is symmetric

for a forward query made to E 2, the same analysis follows. Furthermore, bounding the probability

for an inverse query followed by a forward query is analogous. In this case, only the bijectivity of Caux
1

and Caux
2 is used. Because A makes at most q queries, the probability of obtaining a collision with

normal queries is at most 4q/22n .

Now consider the event that A completes the preimage by using a query that is part of a super query.

Recall that if (x1,k1) is part of a super query, so is the corresponding E 2-query (x2,k2); hence we

consider these queries as pairs. It is easy to see that out of q queries, we can form a set of super

queries of cardinality at most q/2n−1 (as each super query requires an initial cost of 2n−1); and each

super query contains 2n−1 query pairs. For each pair in a super query, the probability of completing

a preimage is 1/(2n−1)2. Indeed, as these queries are asked non-adaptively by A , their responses are

distributed randomly over the responses; using that Cpost is bijective we attain the above probability.

With a first union bound over 2n−1 pairs in a single super query, followed by a second over the set of

super queries (of cardinality at most q/2n−1) lead to the overall upper bound

2n−1
(q

2n−1

)(
4

22n

)
= 4q

22n .

Summing up the various probabilities completes the proof.

4.2 Using a Single Blockcipher: Implicit Domain Separation

Previously, we assumed two independently sampled blockciphers. In practice, it is more realistic

if only one blockcipher is used, twice in this case per compression function. From a theoretical

point of view, this can easily be enforced by using explicit domain separation at only a small cost.

In particular, we can define E 1
K ′(X) = E0||K (X) and E 2

K ′(X) = E1||K (X). Here the domain separation is

explicit in the sense that the key spaces of E 1 and E 2 are ensured explicitly to be different. Although

the cost of this explicit separation is only one key bit, it is not an entirely satisfactory situation; many

2. By normal query, we mean a query that is not a part of super query.

66

4.2. Using a Single Blockcipher: Implicit Domain Separation

Cpre
1 E

(V , M) Cpost Z

Cpre
2 E

X Y

X ′ Y ′

K

K ′

Cpre
1 E

(V ′, M ′) Cpost Z ′

Cpre
2 E

X ′ Y ′

X Y

K ′

K

Figure 4.2 – The conjugate pairs (V , M)-(V ′, M ′) and (K , X)-(K ′, X ′) for IDS DBL Type-I compression
functions illustrated for p =Cpre

2 (C−pre
1 (·)); hence p(K , X) = (K ′, X ′).

existing constructions do not use this explicit separation and they would consequently fall outside

any framework that relies upon it.

Recently Nandi [128] and Hirose [76] have shown how implicit domain separation can be achieved

based on an involution without fixed points. In particular, consider p =Cpre
2 (C−pre

1 (·)); then p is an

involution without fixed points if and only if p(x) 6= x yet p2(x) = x for all x ∈ {0,1}3n . (Note that Nandi

and Hirose always assume Cpre
1 to be the identity function.) The focus of Nandi and Hirose is on the

hash function constructions with multiple calls to the same primitive; however, during execution,

the inputs of these primitives are guaranteed to be different. This input separation is not achieved

explicitly; the same blockciphers are used during execution. In contrast, it is imposed implicitly

using the fact that p(x) 6= x. More precisely, an E-query (K , X) corresponds to yet another E-query

(K ′, X ′) = p(K , X) and because p(x) 6= x holds, both queries are guaranteed to be different. The same

holds for the decryption queries. We incorporate this approach into our general framework.

In the definition below, we first repeat the first three requirements from Definition 4.1.1 (where

the domain separation was still explicit). New requirement 4. below captures the notion of p =
Cpre

2 (C−pre
1 (·)) being an involution without fixed points. The advantage of using involutions is that,

as in the case for explicit domain separation, relevant queries to E still come in pairs. That is, for

(K , X) ∈ {0,1}3n we call (K ′, X ′) = p(K , X) its conjugate (and note that (K , X) = p(K ′, X ′)). Queries

EK (X) and EK ′(X ′) are similarly called conjugate queries. An inverse query DK (Y), once answered,

has a uniquely defined conjugate (forward) query as well. Finally (V , M) ∈ {0,1}3n has conjugate

(V ′, M ′) =C−pre
2 (Cpre

1 (V , M))

(see Figure 4.2 for an illustration). Fixed points in p are prohibited. They would correspond to the

situation where

Cpre
1 (V , M) =Cpre

2 (V , M) ,

so a single query (to E) would suffice to evaluate the compression function (for that particular input

(V , M)). If p would consist of only fixed points (i.e., equal the identity function), then the construction

is essentially a supercharged single-call compression function [191] (see Section 2.3.3). As it is known

that even in this case almost optimal collision resistance can be achieved, in principle a smaller

number of fixed points in p could theoretically also be dealt with.

Similarly, new requirement 5. below, which states that two conjugate message-state pairs never

collide with each other, could be relaxed to a situation where conjugate message-state pairs only

67

Chapter 4. Another Look at Double-Block-Length Hash Functions

cause a collision (with each other) with a certain probability 3. The theorem statement below can be

amended by adding the sum of the largest such ‘conjugate-internal’ collision probabilities to the

upper bound on the advantage.

Definition 4.2.1. A double-call DBL blockcipher-based compression function hE : {0,1}3n → {0,1}2n

(see Definition 2.3.8 where E 1 = E 2) with κ= s = 2n and m = n is called IDS DBL Type-I if and only if

the following five conditions hold: 1., 2. and 3. as in Definition 4.1.1 and additionally

4. For all V , M ,V ′, M ′, if Cpre
1 (V , M) =Cpre

2 (V ′, M ′) then

(V , M) 6= (V ′, M ′) and Cpre
1 (V ′, M ′) =Cpre

2 (V , M) .

5. For all (V , M) 6= (V ′, M ′) with Cpre
1 (V , M) =Cpre

2 (V ′, M ′) and all y1, y2, it holds that

Cpost(V , M , y1, y2) 6=Cpost(V ′, M ′, y2, y1) .

As in the proof of Theorem 4.1.2 (and, of course, in the proofs given by Hirose and Nandi [76,128]) we

only consider a derived adversary that always asks conjugate queries together. However, in contrast

to the scenario with two distinct blockciphers, in this case such a query pair yields two compression

function evaluations (for some (V , M) and its conjugate). Consequently, the bound here is bigger

(roughly by a factor of two) for the same number of queries compared to that of Theorem 4.1.2 (see

Figure 4.3 on page 76 for a more concrete comparison).

Finally, we do not consider more general functions p; we only look at involutions. In particular,

our framework does not include the well-known Abreast-DM [102] scheme. In that case, we can

generalize by regarding longer cycles in p as well. This has recently been worked out (independently)

by Lee and Kwon [104] and Fleischmann et al. [65]. Roughly speaking, they prove that if pc is the

identity function for (smallest) c > 2 (and given certain natural restrictions on the postprocessing),

then the collision-finding advantage can be upper bounded by

1

2

(
cq

(2n − cq)

)2

.

For Abreast-DM it holds that c = 6. We remark that the proof of Theorem 4.2.2 can easily be general-

ized to capture this case as well.

Theorem 4.2.2. Let hE be an IDS DBL Type-I compression function (Definition 4.2.1). Then the

advantage of an adversary in finding a collision in hE after q < 2n−1 queries can be upper bounded by

Advcollh (q) ≤ 2q(q −1)

(2n −2q)2 .

Proof. Let A be a collision-finding adversary asking its oracles E and D a total of q queries. We

consider the derived adversary A ′ that asks conjugate queries in pairs: I.e., if A queries (K , X) to E ,

then A ′ queries both (K , X) and its conjugate (K ′, X ′) = p(K , X). We bound the probability of the i ’th

query pair causing a collision.

3. We remark that many concrete examples in this class do not satisfy the requirement 5. We leave this rather strong
requirement here for simplicity; as it can be seen from the proof of Theorem 4.2.2, requirement 5. can be easily dropped at
the expense of an additive term in the bound that provides an upper bound for the probability of occurring of requirement 5.

68

4.2. Using a Single Blockcipher: Implicit Domain Separation

Our claim is that the probability that the i ’th query pair causing a collision is upper bounded by

4(i −1)

(2n − (2i −2))(2n − (2i −1))
.

Note that the new query pair adds two triples (V , M , Z) and (V ′, M ′, Z ′) to the list of computable

digests, where (V , M) and (V ′, M ′) are conjugates. Moreover (by requirement 5. in Definition 4.2.1),

we are guaranteed that Z 6= Z ′; so we only need to worry about either Z or Z ′ being in the list of

digests already known.

We proceed similarly to the proof of Theorem 4.1.2: As each query pair adds two tuples to the list,

there are 2(i −1) possible digest values to hit, either by (V , M , Z) or by (V ′, M ′, Z ′). Although the two

distributions are strongly dependent, each of Z and Z ′ is distributed individually over a set of size at

least (2n − (2i −2))(2n − (2i −1)) (see below for the justification). With a union bound, the probability

of a collision on the i ’th query can therefore be upper bounded by

4(i −1)

(2n −2i +1)2 .

Using a further union bound, the probability of a collision after q queries can be upper bounded by

2q(q −1)

(2n −2q)2 .

We still need to prove our claim on the distribution of Z and Z ′.

For a forward-forward pair, y1 is distributed uniformly random over a set of cardinality at least

(2n − (2i − 2)) and y2 over a set of cardinality at least (2n − (2i − 1)) (assuming y1 is queried first,

otherwise the roles change). Because Cpost is bijective, the claim follows. For a mixed inverse-forward

pair first x1 is returned by a query (k1, y1) to D. It is distributed uniformly over a set of size at least

(2n − (2i − 2)). Subsequently y2 is returned by the conjugate query (k2, x2) to E ; it is distributed

uniformly over a set of size at least (2n − (2i −1)). Bijectivity of Caux
1 and Caux

2 finishes the proof.

The following result gives an upper bound for Advepreh (q) for IDS-DBL Type-I compression functions

(Definition 4.2.1). Similar to the one given in Theorem 4.1.3, it is vacuous for q Ê 2n−1 and only

concludes that the success probability of finding a preimage is negligible for q ≤ 2n−2. Similar to

the distinct and independently sampled blockciphers case, we can improve the bound given in

Theorem 4.2.3 to an almost optimal bound using the methods of Armknecht et al.; we present this

case in Theorem 4.2.4.

Theorem 4.2.3. Let hE be a DBL compression function of IDS-DBL Type-I (Definition 4.2.1). Then the

advantage of an adversary in finding a preimage in hE after q < 2n−1 queries can be upper bounded by

Advepreh (q) ≤ 2q

(2n −2q)2 .

Proof. Let A be an adversary that tries to find a preimage for its input σ. We assume that A asks

each of its oracles E and D a total of q queries. Similarly to the proof of Theorem 4.2.2, we consider

the derived adversary A ′ that asks conjugate queries in pairs. We want to bound the probability that

the i ’th query pair leads to a preimage for σ.

69

Chapter 4. Another Look at Double-Block-Length Hash Functions

After i−1 queries, we know that the list of computable values contains exactly 2(i−1) triples (V , M , Z).

The i ’th query adds the pair (V , M , Z) and (V ′, M ′, Z ′) to the list of computable digests, where (V , M)

and (V ′, M ′) are conjugates. Our claim is that the probability that the i ’th query pair leads to a

preimage for σ is upper bounded by

2

(2n − (2i −2))(2n − (2i −1))
.

By the same reasoning from the proof of Theorem 4.2.2, Z and Z ′ are distributed over a set of size

at least (2n − (2i −2))(2n − (2i −1)). As we have only one value to hit, the probability of finding a

preimage for each conjugate queries is at most

1

(2n − (2i −2))(2n − (2i −1))
,

hence twice this probability for the i ’th pair. Union bound (over q conjugate query pairs) together

with the fact that

(2n − (2i −2))(2n − (2i −1)) > (2n −2q)2

give the desired result.

Similar to Theorem 4.1.4, the bound given in Theorem 4.2.3 can be improved by using the methods

of Armknecht et al. [8] who only give a proof of close-to-optimal preimage resistance of Hirose’s

scheme [76], which can be seen as an example of the IDS-DBL Type-I compression function with a

slight modification (i.e., without requirement 5.). Here, we generalize their result to IDS-DBL Type-I

compression functions.

Theorem 4.2.4. Let hE be an IDS-DBL Type-I blockcipher-based compression function (Defini-

tion 4.2.1). If (additionally) there exists a permutation ξ : {0,1}2n → {0,1}2n such that ξ(K) = K ′,
where K and K ′ denote the keys used in conjugate query pairs, then the advantage of an adversary in

finding a preimage in hE after q ≤ 22n−4 queries can be upper bounded by

Advepreh (q) ≤ 8q

22n + 4q

2n−1(2n−1 −1)
.

Proof. The proof goes along similar lines with that of Theorem 4.1.4 with a minor modification

that considers the conjugate queries. Let A be a preimage-finding adversary that tries to find a

preimage for its input σ. When A makes an E-query (K , X), its conjugate query pair (K ′, X ′) (for

p(K , X) = (K ′, X ′) and ξ(K) = K ′) is given to A for free. Similarly, when A makes a D-query (K ,

Y), (after the response is returned) the conjugate query pair (K ′, X ′) is given to A for free as well.

Furthermore, we again use the concept of a super query in the sense detailed and explained in the

proof of Theorem 4.1.4. In the following, we divide the analysis into two where a preimage is found

using a query from a super query or a normal query (here again the latter refers to a query that is not

part of a super query).

First, we look at the event that a preimage forσ is found using a query that is not part of a super query.

Assume, without loss of generality, that A makes a forward query (K , X) (the case for a decryption

query follows analogously). Because Cpre is bijective, there is a unique (V , M) that corresponds to

(K , X); moreover as Cpost is bijective, for this particular (V , M) there exists a unique (Y ,Y ′) that leads

70

4.3. Towards Close-to-Optimal Collision Resistance in the Iteration

to a preimage. As (by assumption) (K , X) is not part of a super query, we know that there exist at most

2n−1 −2 (taking into account also the free conjugates) queries that have been asked by A using K ;

similarly, the case for the queries with key ξ(K) = K ′ is at most 2n−1 −1. Therefore, there are at most

(2n − (2n−1 −2))(2n − (2n−1 −1)) > 22(n−1)

possible outcomes for the queries (K , X) and (K ′, X ′). So, the probability of finding a preimage with

this query pair is at most 1/22(n−1); considering the conjugate pair, along with a union bound, we

obtain an upper bound of
2q

22(n−1)
= 8q

22n

for the probability of finding a preimage with a query that is not a part of super query.

Second, let us study the case for queries that are part of a super query. Consider the super query

corresponding to the key K . Necessarily (because conjugate queries come in pairs and there exists a

permutation ξ such that ξ(K) = K ′), we assume that 2n−1 queries (paired in 2n−2 conjugates) have

already been asked by A using K and K ′. Moreover, we observe that A can construct a set of super

queries of cardinality at most q/2n−2.

Let (K , X) and (K ′, X ′) be a part of the super query with corresponding compression function in-

puts (V , M) and (V ′, M ′), respectively. Now we set up some notation: We define Rpost(V , M , ·,Y ′),

Rpost(V , M ,Y , ·), Rpost(V ′, M ′, ·,Y) and Rpost(V ′, M ′,Y ′, ·) to be the effective ranges of Cpost(V , M , ·,Y ′),

Cpost(V , M ,Y , ·), Cpost(V ′, M ′, ·,Y) and Cpost(V ′, M ′,Y ′, ·), respectively. Clearly, we end up with a

preimage if there exist conjugate query pairs to the underlying blockcipher such that

σ ∈ Rpost(V , M , ·,Y ′)∩Rpost(V , M ,Y , ·) or σ ∈ Rpost(V
′, M ′, ·,Y)∩Rpost(V

′, M ′,Y ′, ·) .

Because the output of the query (K , X) is returned uniformly at random, the probability of the

event that σ ∈ Rpost(V , M , ·,Y ′) or σ ∈ Rpost(V ′, M ′, ·,Y) is at most 2/2n−1. Now conditioned on the

above event, the probability of obtaining σ ∈ Rpost(V ′, M ′, ·,Y) or σ ∈ Rpost(V ′, M ′,Y ′, ·) is at most

2/(2n−1 −1). Hence, by Bayes’ rule, the probability that (V , M) or (V ′, M ′) is a preimage is at most

4

2n−1(2n−1 −1)
.

A first union bound over 2n−2 pairs, followed by a second over q/2n−2 super queries gives an upper

bound of
4q

2n−1(2n−1 −1)

for finding a preimage with a query that is part of a super query. Summing up the obtained probabili-

ties completes the proof.

4.3 Towards Close-to-Optimal Collision Resistance in the Iteration

We have seen how to construct collision-resistant compression functions by using two blockcipher

calls. In this section, our goal is to consider security in the iteration for the same class (without

imposing high-level security in the compression function level). Our hope is that this will lead to

new schemes with less overhead than existing options.

71

Chapter 4. Another Look at Double-Block-Length Hash Functions

In the definition below we define DBL Type-II compression functions where we do not allow explicitly

a feedforward from the input of the compression function to the postprocessing (thus making the

Type-II schemes disjunct from the Type-I schemes). From a practical point of view, not having a

feedforward is certainly good news. Indeed, as exploited by Bogdanov et al. [33], feedforward has

a considerable cost in hardware implementations and removing it altogether leads to significantly

more efficient schemes. To illustrate, in [33] Bogdanov et al. show that when Hirose’s scheme [76] is

instantiated with the lightweight blockcipher Present-128, feedforward takes up to 20% of the overall

area requirements, in a hardware implementation.

The bound we give on the collision resistance is still somewhat removed from optimal: It only proves

collision resistance up to roughly 2n/n queries. Moreover for a smaller number of queries, the

advantage is too high. We do not believe that this is a problem inherent with the scheme at hand, but

rather a shortcoming of the current proof and testament to the complications that arise concerning

security in the iteration.

Definition 4.3.1. A double-call DBL blockcipher-based compression function hE 1,E 2
: {0,1}3n →

{0,1}2n (Definition 2.3.8) with κ= s = 2n and m = n is called DBL Type-II if and only if the following

three conditions hold:

1. Cpre
1 : {0,1}3n → {0,1}3n and Cpre

2 : {0,1}3n → {0,1}3n are both bijections;

2. Cpost(y1, y2) (the map Cpost : {0,1}2n → {0,1}2n that takes (y1, y2) to the Z) is a bijection and

independent of V and M ;

3. C−pre
1 (k1, ·) and C−pre

2 (k2, ·) are injections when restricted to V with effective ranges R−pre(k1, ·)
and R−pre(k2, ·), respectively. Assume that there are at most 2n different effective ranges (when

considering different keys). Note that C−pre
1 (k1, ·) and C−pre

2 (k2, ·) are maps from n bits to n bits;

therefore, there exist at most 2n different effective ranges although there exist 22n such maps.

The following theorem illustrates that the collisions and preimages for the DBL Type-II compression

functions can be found after roughly 2n/2 and 2n queries, respectively; hence the compression

functions in question are not optimal. Moreover, preimages for the iterated hash function constructed

with DBL Type-II compression functions can be found after 23n/2 queries, which is suboptimal for a

DBL hash function.

Theorem 4.3.2. Let hE1,E2 be a DBL Type-II compression function (Definition 4.3.1). Then collisions

and preimages for hE1,E2 can be found (asymptotically in n) with O (2n/2) and O (2n) queries, respec-

tively. Preimages for the (Merkle–Damgård) iterated hash function constructed with hE1,E2 can be

found (asymptotically in n) with O (23n/2) queries.

Proof. We first describe the collision attack on hE1,E2 ; a very similar preimage attack on hE1,E2 and its

extended version (to the iterated hash function) follow later. Given the DBL Type-II compression

function hE1,E2 , consider the following collision-finding strategy: Let an adversary A first fix the

ciphertext y1; this limits the cardinality of the effective range Rpost(y1, ·) of Cpost(y1, ·) to 2n . Now,

A makes successive E 1 queries (k∗
1 , y1) by only changing the k∗

1 component. Each fresh answer x∗
1 ,

which satisfies E 1
k∗

1
(x∗

1) = y1, defines the unique compression function input (V ∗, M∗), as well as

the E 2 inputs (k∗
2 , x∗

2). As the corresponding E 2 output y∗
2 is returned uniformly random over a set

of size at most 2n , the compression function output Z∗ = Cpost(y1, y∗
2) will be a uniform element

from Rpost(y1, ·). Therefore after 2n/2 iterations, the collisions are present by the birthday paradox

72

4.3. Towards Close-to-Optimal Collision Resistance in the Iteration

with high probability. In addition, because Cpre
1 is bijective, each different k∗

1 defines a different

compression function input (V ∗, M∗). Furthermore, as Cpre
2 is bijective, each different (V ∗, M∗) pair

defines a different E 2 input (k∗
2 , x∗

2). Hence, the collision is output with reasonable probability.

Preimage attack goes along similar lines; let the target for which the preimage is to be found be σ.

We first note that because Cpost is bijective, there is a unique (y1, y2) that corresponds to σ. Let a

preimage-finding adversary fix y1 and follow the same strategy as in the collision attack with as sole

exception that this time the goal is to hit the specific y2, rather than finding collisions. As E 2 outputs

are uniformly random over a set of size at most 2n , after 2n queries we hit the desired y2 hence obtain

the preimage with high probability.

Finally, we describe our preimage attack on the iterated hash function. Here, we do not consider

any specific padding scheme; the attack described here should be extended to the hash function

constructed using any concrete padding scheme (e.g., Merkle’s padding as given in Section 2.2.1). The

only difference between the attack to be presented here and the one with a concrete padding scheme

is that a preimage needs to be found for the compression function somewhere in the iteration; as we

show above that the preimages can be found for the compression function with O (2n) queries, the

overall query-complexity of our attack would not change.

Let the target digest Z be given. We use the same notation as in Definition 2.2.1. Our aim is to

find M = (M1, . . . , M4) for Mi ∈ {0,1}n and i = 1,2,3,4 such that Hh(M) = v4 = Z . The attack starts

with inverting v4 under hE1,E2 . In this step, we call our preimage-finding algorithm (given above)

against hE1,E2 as a subroutine; yet with a minor modification. Our goal is now to find 2n/2 preimages,

rather than only one. Iterating a single step of the above preimage-finding algorithm against the

compression function 23n/2 times instead of 2n , we achieve the desired number of preimages. Note

again that as Cpre
1 is bijective we obtain different preimages. Moreover, we have enough freedom

to mount the attack as 23n/2 < 22n . Therefore, with 23n/2 queries, we can generate 2n/2 preimages

(v3, M4) such that hE1,E2 (v3, M4) = v4 =σ.

Next, starting from any given IV, our aim is to hit one of v3 values generated in the previous step.

Observe that we can generate at most 2n digests at each iteration as the message length is n. We

suggest to proceed in the following way: Pick 2n/2 random Mi for each i = 1,2,3, iterate the compres-

sion function accordingly with a given IV and look for a correspondence with the existing v3 values.

Note that we can generate 23n/2 such forward states v3 and there already exist 2n/2 of those that were

generated in the first step. Moreover, because E 1 and E 2 are chosen to be ideal and Cpost is bijective,

all the fresh forward states v3 are uniform over a set of size at most 22n . Thus, the probability of

hitting a single target v3 value with a forward node generated in this step is at least 2−2n ; as there

exist 2n/2 targets and 23n/2 forward nodes, we expect to end up with a single match. Hence, the claim

follows.

Theorem 4.3.3. Let hE1,E2 be a DBL Type-II compression function (Definition 4.3.1). Then the advan-

tage of an adversary in finding a collision in the (Merkle and Damgård) iterated hash function Hh

after q queries is upper bounded by

AdvcollH (q) ≤ 2κq

(2n −q)
+ q2

(2n −q)2 +2n+1
(

2n q

(2n −q)2

)κ+1

for any positive integer κ.

73

Chapter 4. Another Look at Double-Block-Length Hash Functions

Proof. As with [27], we only deal with message blocks of length n; the messages that are not multiples

of n can be dealt with using standard padding techniques. As in the proof of Theorem 4.1.2, we

consider a derived adversary only that makes corresponding queries to E 1 and E 2 in conjunction

(as Cpre
1 and Cpre

2 are bijections as usual). Thus, the derived adversary either makes a query pair

consisting of two forward queries, or a mixed pair consisting of an inverse query followed by a

forward query.

We define a directed graph G = (VG ,EG) with vertex set VG = {0,1}2n , corresponding to all 22n possible

chaining values, and initially an empty edge set EG =;. We dynamically add edges based on the

queries to E 1,E 2 and D1, D2. In particular, we add an arc (V , Z), labeled by M , if we know a message

M such that Z = hE 1,E 2
(V , M) and the relevant queries to two primitives E 1 and E 2 have been made

(where the decryption queries to D1 and D2 are counted for their respective encryption primitive). If

an arc is added as a consequence of a forward query pair, then the node corresponding to Z becomes

a forward node. If an arc is added as a consequence of a mixed query pair, both nodes become

mixed nodes. Initially none of the nodes has a status except for the initial vector, which is treated as a

forward node.

Our first observation is that in order to find a collision, we require the construction of a “ρ-shape": It

occurs only if a cycle is found within the IV component or the IV component is connected to a cycle.

Either way, one of the following three (bad) events needs to occur (on the i ’th query pair, for some i):

1. A forward query pair leads to a digest that is already a forward node (i.e., previously resulted as

digest of a forward query pair, or equals the initial value).

2. A forward query pair leads to a digest that is already a mixed node (i.e., previously resulted as

digest or chaining variable of a mixed query pair).

3. A mixed query pair leads to a digest or chaining variable that is already a forward node

(i.e., previously resulted as digest of a forward query pair, or equals the initial value).

In particular, we can ignore the fact that a mixed query pair leads to a digest or chaining variable that is

already a mixed node. To see this, first observe that these are all the four possibilities for constructing

longer chains within the graph. Secondly, by allowing an arbitrary number of occurrences of only the

fourth (discarded) event, a collision can never be found for the simple reason that the initial vector

is not part of the chain (because hitting the initial vector with a mixed query would have triggered

the third event). We now bound the probability of any of the above bad events occurring on the i ’th

query pair.

1. Consider a forward query pair to E 1 and E 2, corresponding to a unique pair (V , M). Suppose that

so far t1 ≤ i queries to E 1 have been made involving key k1. The answer y1 to a fresh query to E 1
k1

(·) is

therefore distributed uniformly over a set of 2n − t1 possible outcomes. Similarly, suppose that t2 ≤ i

queries to E 2 have been made involving key k2, so that the answer y2 to E 2
k2

(·) is uniform over a set of

2n − t2. Moreover, y1 and y2 are independent, so that the probability that (y1, y2) hits any particular

value in {0,1}2n is at most 1/(2n −i)2. As Cpost is bijective when the pair (V , M) is fixed, the probability

that any particular digest Z is hit is at most 1/(2n − i)2. There are at most i possible Z -values labeled

as a forward node, therefore, the probability of the i ’th forward pair prompting this bad event is at

most i /(2n − i)2.

2. Again, consider a forward query pair to E 1 and E 2, corresponding to a unique pair (V , M). As there

are at most 2(i −1) nodes labeled as mixed node at this point, the probability of the i ’th forward pair

74

4.3. Towards Close-to-Optimal Collision Resistance in the Iteration

prompting this bad event is at most 2(i −1)/(2n − i)2.

3. Finally, consider a mixed query pair. We assume it consists of a D1-query followed by an E 2-query,

the other case is analogous. This time we can argue that x1 and y2 are both distributed uniformly

and independently over sets of cardinality at least 2n − i . Consequently, the same holds for chaining

variable V and digest Z . As there are at most i forward nodes that can be hit, this gives (with a union

bound) a probability of success upper bounded by 2i /(2n − i). Unfortunately, this upper bound is

too large to be useful.

Although there are up to i forward nodes, not all of them are relevant. Indeed, the query to D1

essentially fixes k1 and y1. Because Cpost is bijective, this leaves only 2n possible digests. Similarly, as

C−pre
1 is injective, it leaves only 2n possible chaining variables. Thus, we only need to consider the

number of forward nodes in the effective range of Cpost and C−pre
1 , respectively after fixing (k1, y1).

Let this number be κ (maximum for Cpost or C−pre
1), then the probability of the bad event occurring

(on the i ’th mixed query) is at most 2κ/(2n − i).

The question is whether good bounds on the number κ of relevant forward nodes can be found. Let

us fix some k1 and consider the probability that a forward query lands in R−pre(k1, ·). We have already

seen that a forward query leads to an almost uniform distribution of the resulting digest and we

know that R−pre(k1, ·) has cardinality 2n . Hence if the total number of forward query pairs is q , then

each query pair has a probability at most 2n/(2n −q)2 to hit our set (effective range). Now, writing

B
[
Q; p

]
for the random variable counting the number of successes in Q independent Bernoulli trials,

each with success probability p, a Chernoff bound can be used to bound the tail probability for any

κ>Qp, namely

Pr
[
B

[
Q; p

]> κ]< (
epQ

κ

)κ
.

So, with a Chernoff bound, we have that for any given set the probability it is hit more than κ times is

less than (
e2n q

κ(2n −q)2

)κ
.

Note that we can obtain a similar bound if we use Proposition 3.3.10 as well. Using the terminology

and the notation of Proposition 3.3.10, define (for D1 query/response pairs (X i ,Y i))

PD1

hiti |X i Y i−1 =
2n

(2n −q)2 and BΣ = 2n q

(2n −q)2

and observe that D1 can be defined as a random system as it is simply a uniformly random permuta-

tion for any fixed key. It is not difficult to see that the hypotheses of Proposition 3.3.10 are satisfied

for values of q for which BΣ < 1 (otherwise the bound is too loose to be useful). Then, we achieve that

for any given set the probability that we have more than κ hits is at most Bκ+1
Σ . As there are at most

2n+1 different sets of size 2n (2n for each of the effective ranges of Cpost and C−pre
1) to consider we

can apply a union bound, resulting in an extra factor of 2n+1. Summing up the various probabilities

proves the theorem statement.

75

Chapter 4. Another Look at Double-Block-Length Hash Functions

Figure 4.3 – Collision resistance bounds illustrated for n = 128. The horizontal axis is log2(q) and
vertical axis is AdvcollH (q). The black, solid curve is the birthday bound; the dotted curve is the bound
obtained from Theorem 4.3.3 (with an optimization for κ). Red and blue curves are the bounds from
Theorem 4.2.2 and 4.1.2, respectively; note that we use Theorem 2.3.4 to derive the corresponding
bounds for the hash function.

Optimization of the Bound and Comparison

Note that the bound given in Theorem 4.3.3 is dependent on an integer κ that can be chosen

arbitrarily. Here we deal with how to choose the value of κ so that the overall upper bound gets

optimized; furthermore, we compare the resulting upper bound with the previous collision resistance

bounds given in this chapter. We start with the following observation: Once the terms containing κ

are chosen to be close-to-equal, then the overall bound becomes close-to-optimal. Moreover, we

have q ≤ 2n−1; hence 2n −q ≥ 2n−1. Therefore, the overall bound becomes:

AdvcollH (q) ≤ 2κq

2n−1 +
(q

2n−1

)2
+2n+1

(
e2n q

κ(2n−1)2

)κ
.

We simply look at the equation:
2κq

2n−1 = 2n+1
(

e2n q

κ(2n−1)2

)κ
.

Solving for κ in turn gives

κ= 2n +1− log2(q)− log2(κ)

n −2− log2(q)− log2(e)+ log2(κ)
≤ 2n +1− log2(q)

n −2− log2(q)− log2(e)
= κ̄ .

We pick κ= dκ̄e for our bound. In Figure 4.3, we illustrate, for n = 128, various bounds we obtained

for AdvcollH (q) as a function of log2(q), when the iterated hash function is constructed using DBL

Type-I , DBL Type-II and IDS DBL Type-I compression functions. The bounds given for DBL Type-I

and IDS DBL Type-I compression functions (in Theorem 4.1.2 and 4.2.2, respectively) are rather

straightforward to compute (along with a standard use of Theorem 2.3.4); for the bound given in

Theorem 4.3.3, we optimize the bound by finding an appropriate κ as detailed above. Consequently,

the bounds obtained in Theorem 4.1.2 and 4.2.2 are very close to the birthday bound, whereas the

76

4.4. Implications for Linear Schemes

security in the iteration for a DBL Type-II compression function can only be guaranteed up to roughly

2n/n queries.

4.4 Implications for Linear Schemes

In this section, we investigate the implications of our results, on the designs withF2-‘block’-linear

instances of Cpre and Cpost, by following the analogue of the analysis by Stam [191] on single-call

blockcipher-based constructions. Our focus is again on the double-call DBL blockcipher-based

compression functions (Definition 2.3.8) with parameters κ = s = 2n and m = n. The reason for

restricting ourselves toF2-‘block’-linear instances is mainly efficiency related:F2-‘block’-linear Cpre

and Cpost result in relatively simple and fast implementations. Moreover, when chosen properly, it is

possible to profit from formal security proofs. PGV compression functions (see Section 2.3.3) for the

single-block-length case, as well as many suggested double-block-length compression functions are

of this type (see below for examples with the parameters in question).

In Section 4.4.1, we concern ourselves with compression functions with two independent blockci-

phers. In Section 4.4.2, we revisit the well-known construction of Hirose [76] who suggests a scheme

with a single blockcipher; and finally in Section 4.4.3, we look at the constructions that are collision

resistant when iterated.

4.4.1 Secure Compression Functions with Distinct and Independent Blockciphers

Here our focus is on the secure compression functions that use two distinct and independently

sampled blockciphers, along withF2-‘block’-linear pre and postprocessing functions. Hirose [75]

suggests a method to construct DBL Type-I compression functions that are optimally collision

resistant with F2-‘block’-linear instances of Cpre and Cpost and that are based on two different

blockciphers. Our constructions are a generalization of his work, and indeed, when we restrict

ourselves toF2-‘block’-linear constructions without output mixing (T1 = (10) and T2 = (01) in the

notation below), we get exactly the same set of schemes as Hirose does.

Let us first set up some notation. We treat V and Z as V = (v1||v2) and Z = (z1||z2) where vi , zi ∈ {0,1}n

for i = 1,2; and we represent the schemes using matrices. We useZ3×3
2 to express the way (ki , xi) are

functions of M and (v1, v2) for i ∈ {1,2}. Thus Cpre
1 is represented by matrix

(K1
X1

)
with K1 ∈Z2×3

2 and

X1 ∈Z1×3
2 . The vector X1 ∈Z1×3

2 corresponds to

x1 = X1 · (M , v1, v2)T ,

making a distinction between the linear map X1 ∈Z1×3
2 and the value x1 ∈ {0,1}n . Similarly, K1 ∈Z2×3

2

corresponds to

k1 = K1 · (M , v1, v2)T .

We represent Cpre
2 analogously by K2 and X2. Postprocessing function Cpost is given by matrices(

T1

T2

)
∈Z2×2

2 and

(
U1

U2

)
∈Z2×3

2 .

77

Chapter 4. Another Look at Double-Block-Length Hash Functions

The compression function output is then computed as follows:

(
z1

z2

)
=

(
T1

T2

)
·
(

y1

y2

)
⊕

(
U1

U2

)
·

v1

v2

M

 .

We are now ready to see what the requirements from Definition 4.1.1 mean in terms of Ki ,Xi ,Ui and

Ti and hence for the classification and security of Hirose’s schemes.

Corollary 4.4.1. AnF2-‘block’-linear DBL blockcipher-based compression function hE 1,E 2
: {0,1}3n →

{0,1}2n is DBL Type-I (Definition 4.1.1) if and only if

1.
(K1

X1

)
and

(K2
X2

)
are both invertible matrices.

2.
(T1

T2

)
is an invertible matrix.

3.
(U1

U2

) · (K1
X1

)−1(k1
x1

)⊕ (T1
T2

) · (y1
y2

)
is bijective as a function of x1 and y2 for all k1 and y1.

4.
(U1

U2

) · (K2
X2

)−1(k2
x2

)⊕ (T1
T2

) · (y1
y2

)
is bijective as a function of x2 and y1 for all k2 and y2.

Proof. We check the three conditions in Definition 4.1.1. First, Cpre
1 and Cpre

2 are bijections. This is

equivalent to
(K1

X1

)
and

(K2
X2

)
being invertible. The second condition is that Cpost(M ,V , ·, ·) is a bijection

(from 2n to 2n bits, for all (M ,V)) which is the case if and only if
(T1

T2

)
is invertible. Finally, we should

have Caux
1 and Caux

2 are bijections for all k1, y1 and k2, y2, respectively, which is simply rephrased to

the linear case in the third and fourth requirements from the corollary.

Tweaked Abreast-DM To make the discussion above more concrete, we consider a tweaked version

of Abreast-DM, dubbed Abreast-DM-t, that can be proven collision resistant using our framework

(it was also considered by Hirose [75]). Abreast-DM (see Figure 4.4) and its sister design Tandem-

DM, both proposed in the early 1990s [102] by Lai and Massey, are two of the classic examples of

double-block-length compression (and hash) function designs. In [102], Lai and Massey conjecture

that Abreast-DM (as well as Tandem-DM) is optimally collision and preimage resistant as they could

not find a successful attack. Later, it was proved that the claim of Lai and Massey is correct: An

almost optimal collision resistance for Abreast-DM has been proved recently in [64, 104]. Preimage

resistance, however, has been studied by Armknecht et al. [8] and similarly shown to be close-to-

optimal. We show, using Theorem 4.1.2 and Corollary 4.4.1, that Abreast-DM-t enjoys similar collision

resistance 4.

As it stands, Abreast-DM does not fit the framework above as it uses the same blockcipher twice. Let

us therefore define the tweaked version Abreast-DM-t as follows:

z1 = v1 ⊕E 1
v2 ||M (v1) and z2 = v2 ⊕E 2

M ||v1
(v2) .

4. We note that the application of Theorem 4.1.4 is not immediate as Abreast-DM-t does not satisfy the additional
requirement of Theorem 4.1.4. Nevertheless, the preimage resistance proof of Armknecht et al. on Abreast-DM should be
applicable to Abreast-DM-t as well.

78

4.4. Implications for Linear Schemes

v1 E z1

M

v2 E z2◦

n

n

n

n

n

Figure 4.4 – The Abreast-DM compression function illustrated where ◦ denotes the bitwise comple-
mentation. Abreast-DM-t makes use of two distinct and independently sampled blockciphers and
omits bitwise complementation.

According to the notation introduced above, we have

K1 =
(

0 1 0

0 0 1

)
, X1 =

(
1 0 0

)
, U1 =

(
1 0 0

)
, T1 =

(
1 0

)
,

K2 =
(

0 0 1

1 0 0

)
, X2 =

(
0 1 0

)
, U2 =

(
0 1 0

)
, T2 =

(
0 1

)
.

So,
(K1

X1

)
,
(K2

X2

)
, and

(T1
T2

)
are all invertible matrices. For the third condition, we obtain that

(
U1

U2

)
·
(

K1

X1

)−1(
k1

x1

)
⊕

(
T1

T2

)
·
(

y1

y2

)
=

(
1 0 0

0 1 0

)
·

 0 0 1

1 0 0

0 1 0

 ·

 k1
1

k2
1

x1

⊕
(

1 0

0 1

)
·
(

y1

y2

)
=

(
x1 ⊕ y1

k1
1 ⊕ y2

)
,

is bijective as a function of x1 and y2 for all k1 and y1. Similarly, the fourth condition is verified:

(
U1

U2

)
·
(

K2

X2

)−1(
k2

x2

)
⊕

(
T1

T2

)
·
(

y1

y2

)
=

(
1 0 0

0 1 0

)
·

 0 1 0

0 0 1

1 0 0

 ·

 k1
2

k2
2

x2

⊕
(

1 0

0 1

)
·
(

y1

y2

)
=

(
k2

2 ⊕ y1

x2 ⊕ y2

)
.

Therefore, Abreast-DM-t satisfies the requirements of Corollary 4.4.1 and the bounds from Theo-

rems 4.1.2 and 4.1.3 apply.

A Simpler Proposal Now we consider a simpler proposal; simpler in the sense that it requires the

keys of the underlying blockciphers to be the same (which might result in a more efficient scheme in

practice). Moreover, it satisfies the requirements of both Theorem 4.1.2 and Theorem 4.1.4. Therefore,

almost optimal collision and preimage resistance are guaranteed. Here is the proposal:

z1 = v1 ⊕E 1
v2 ||M (v1) and z2 = v1 ⊕E 2

v2 ||M (v1) .

Using the notation introduced above, we have

K1 = K2 =
(

0 1 0

0 0 1

)
, X1 = X2 =

(
1 0 0

)
, U1 = U2 =

(
1 0 0

)
,

(
T1

T2

)
=

(
1 0

0 1

)
.

79

Chapter 4. Another Look at Double-Block-Length Hash Functions

v1 E z1

v2

M

c̄ E z2

n

n

n

n

n

n

Figure 4.5 – The Hirose’s DBL compression function illustrated where c̄ ∈ {0,1}n \ {0}n .

It is easy to check that the hypotheses of Corollary 4.4.1 are satisfied. Moreover, because the keys of

the underlying blockciphers are the same, Theorem 4.1.4 applies automatically.

4.4.2 Using a Single Blockcipher

Abreast-DM suffers from a performance drawback that, although run in parallel, the underlying

blockciphers require two separate key-schedule routines. Hirose’s construction [76] overcomes this

problem by sharing the key scheduling for the two blockcipher calls (see Fig. 4.5). Even nicer, the

design also enjoys almost optimal collision resistance (recently, it has been proved by Armknecht et

al. [8] that the construction has close-to-optimal preimage resistance as well).

Hirose’s scheme is one of the existing schemes which is covered by Definition 4.2.1 (and a suitable

adaptation of Corollary 4.4.1), with a minor modification. We first recall the scheme (see Figure 4.5):

z1 = v1 ⊕Ev2 ||M (v1) and z2 = v1 ⊕ c̄ ⊕Ev2 ||M (v1 ⊕ c̄) ,

where c̄ is a non-zero constant in {0,1}n . Let us check the requirements given in Definition 4.2.1 with

p(v2 ||M , v1) = (v2 ||M , v1 ⊕ c̄) .

Clearly, p is an involution without fixed points because c̄ ∈ {0,1}n \ {0}n (hence the requirement 4.

from Definition 4.2.1 holds). Moreover, Cpre
1 is a bijection as it is simply the identity map; for Cpre

2 , we

have

Cpre
2 (M , v1 ||v2) = (M , v1 ⊕ c̄ ||v2)

which is indeed a bijection. Finally, it is easy to see that both

Caux
1 (x1, y2) = (

x1 ⊕ y1||x1 ⊕ c̄ ⊕ y2
)

and Caux
2 (x2, y1) = (

x2 ⊕ c̄ ⊕ y1||x2 ⊕ y2
)

are bijections (for all y1,k1 and y2,k2, respectively). We note that requirement 5. from Definition 4.2.1

is not satisfied. Specifically, the conjugate pairs can collide once the following holds:

v1 ⊕Ev2 ||M (v1) = v1 ⊕ c̄ ⊕Ev2 ||M (v1 ⊕ c̄) ,

which implies

Ev2 ||M (v1)⊕Ev2 ||M (v1 ⊕ c̄) = c̄ .

80

4.4. Implications for Linear Schemes

The probability of the above event happening is low and the proof given in Theorem 4.2.2 can be

adjusted by taking into account this extra case without badly affecting the upper bound; indeed, the

proof given in [76] goes along with this idea.

4.4.3 Collision Resistant Constructions in the Iteration

We now study, as a final category, the linear implications of our results to the case where the compres-

sion functions are not optimally secure but turn out to be close-to-optimal collision resistant when

iterated. Using the same notation as above, we consider the compression functions of the following

form (note that the feedforward from the input to the compression function to Cpost is removed):(
z1

z2

)
=

(
T1

T2

)
·
(

y1

y2

)
,

where y1 = E 1
k1

(x1), y2 = E 2
k2

(x2),

xi = Xi · (M , v1, v2)T and ki = Ki · (M , v1, v2)T ,

for i = 1,2, where Xi ∈Z1×3
2 and Ki ∈Z2×3

2 . The following corollary is the analogue of Corollary 4.4.1.

Corollary 4.4.2. AnF2-‘block’-linear DBL blockcipher-based compression function hE 1,E 2
: {0,1}3n →

{0,1}2n is DBL Type-II if and only if

1.
(K1

X1

)
and

(K2
X2

)
are both invertible matrices.

2.
(T1

T2

)
is an invertible matrix.

3.
(K1

X1

)−1(k1
x1

)
and

(K2
X2

)−1(k2
x2

)
are injections when restricted to V , as a function of x1 and x2, respec-

tively.

Proof. The proof follows from the proof of Corollary 4.4.1.

An Example Here is an example of a scheme that satisfies the requirements of Corollary 4.4.2:

z1 = E 1
v2 ||M (v1) and z2 = E 2

v2 ||M (v1) .

Using the notation introduced above, we have

K1 = K2 =
(

0 1 0

0 0 1

)
, X1 = X2 =

(
1 0 0

)
,

(
T1

T2

)
=

(
1 0

0 1

)
.

Note that these are the matrices used for Hirose’s construction; thus the first and the second require-

ment of Corollary 4.4.2 hold. The third requirement is easy to verify as both
(K1

X1

)−1(k1
x1

)
and

(K2
X2

)−1(k2
x2

)
result in v1, which is injective when restricted to V .

81

5 A Compression Function Exploiting Dis-
crete Geometry

In Chapters 2 and 3, we classified the multi-block-length hash function constructions based on the

dimensions of their compression function and its underlying primitives, as well as on the number of

(parallel) primitive calls made per compression function evaluation. In a more fine-grained way, we

can also distinguish independent and identical primitives. For instance, if the independent PuRFs

(public random functions) whose input size matches that of the construction are used, we could

quite easily call the (distinct) PuRFs on the compression function input and concatenate the results

to form the digest: In fact this gives a perfect compression function 1 (complications arise when

switching to blockciphers, especially identical ones, but in the context of collision resistance these

can be resolved, as shown in Chapter 4).

A more challenging scenario is where the domain of the primitive is much ‘smaller’ than the do-

main of the intended compression function, because the inevitable consequence is that any single

primitive query can be relevant for multiple compression function evaluations. This leaves open

the question of constructing a compression function that uses only a few smaller primitives. Of

particular interest is the construction of a provably collision-resistant compression function from 3n

to 2n bits that makes two parallel calls to an ideal primitive from 2n to n bits (either a public random

function or an ideal blockcipher with n-bit blocks and n-bit keys).

This setting corresponds to the double-call DBL primitive-based compression function introduced

in Definition 3.2.1 (see also Definition 2.3.8) with parameters 2 t = 3 and c = r = s = 2. All existing

double-call DBL primitive-based compression function constructions, from the same class, fall

short: A (non-trivial) collision resistance is only provided in the iteration; the primitive calls need

to be made in sequence; or the number of calls is higher. Still, known bounds [174, 190, 193] (see

Conjecture 2.3.5) give no reason that such a construction should not be possible.

In this chapter, we deal with this problem: We study the open question of constructing a double-call

1. This claim can be proved by using the indistinguishability framework of Maurer [119]: Intuitively, the idea is as
follows. Assume the existence of an adversary that tries to distinguish the construction in question from a random
function. Observe that each (different) compression input results in a uniformly random compression function output.
This is because, in this setting, the inputs of the underlying PuRFs can be assigned in such a way that each query to
the compression function assigns a different PuRF input. Consequently, the corresponding PuRF outputs are uniformly
random for each new query; as is the compression function output. Hence, any adversary that tries to distinguish such a
construction from a random function would have a negligible chance at each step that it makes a fresh query.

2. We note, however, that these parameters are not necessarily the only ones that might possibly provide a good collision
resistance bound (cf. Conjecture 2.3.5).

83

Chapter 5. A Compression Function Exploiting Discrete Geometry

DBL compression function h : {0,1}3n → {0,1}2n (Definition 3.2.1) with t = 3 and c = r = s = 2 that

guarantees a collision resistance bound beyond 2n/2 queries. We concentrate on the PuRF scenario;

a detailed analysis for the blockcipher-based instantiation is planned to be carried out in the full-

version of [81]. Our construction has two key innovative components: A preprocessing function

Cpre :F3
2n → (

F
2
2n

)2
that transforms the 3n-bit input into a pair of 2n-bit strings that are passed as

inputs to the two ideal primitive calls; and a postprocessing function Cpost :F5
2n →F

2
2n that combines

the two outputs of the ideal primitives and the 3n-bit compression function input into the 2n-bit

output of the compression function.

A concept that plays a central role in our collision resistance analysis is the maximum number

of possible compression function evaluations given specific query quota, also known as the yield

(Definition 2.3.1). This concept is not new; it has been used in the analysis of several schemes [118,

173, 180, 186], as well as in the derivation of feasibility results [174, 190, 193]. The main idea of yield-

based security analysis is that we can reduce the task of designing a new compression function to

meeting two main challenges: (i) reducing the yield of an adversary, and (ii) ensuring that, regardless

of the adversarial strategy, the resulting compression function evaluations are close-to-uniform. It

will be seen that consequently a yield-optimizing adversary is close-to-optimal and, for collision

resistance, bound to a yield-based birthday bound. In our construction, the preprocessing function

Cpre takes care of (i), whereas the postprocessing function Cpost ensures (ii).

The main innovation of our design is the choice for the preprocessing function Cpre: The 3n-bit

input is transformed into a pair of a line inF2
2n and a point on that line. Therefore, any given valid

input pair to the underlying ideal primitives corresponds to an incidence between a point and a

line in the affine planeF2
2n over the finite fieldF2n ; hence the yield is estimated by the number of

such point-line incidences. We then use a classic result of discrete geometry, the Szemerédi–Trotter

theorem over finite fields, to bound the number of incidences between a set of q lines and a set of q

points onF2
2n :

yield(q) ≤ q3/2 +q

(see Definition 2.3.1 for the definition of yield(q)). The preprocessing function requires one finite

field multiplication, together with an additional XOR; it turns out that to define the aforementioned

lines (hence to derive the above upper bound on yield(q)), multiplication is necessary; although it

leads to a less efficient scheme compared to existing constructions with linear Cpre.

The postprocessing function is inspired by the Rogaway–Steinberger construction [173], where a

special type ofF2n -linear map is used for Cpost. However, we crucially add the product of the two

primitive outputs to the inputs to this linear map. This turns out to be important 3 for our collision

resistance proof, where we show that the best strategy for any collision-finding adversary is (close

to) maximizing yield(q). Putting the pieces together, we show (in Corollary 5.1.7), for any δ> 0 and

q ≤ 22n(1−δ)/3, that (asymptotically in n) Advcollh (q) = o(1) .

Our collision resistance bound (Theorem 5.1.6) can be seen as a function on certain parameters that

can be set to any positive integer; after an optimization over these integers, we achieve an optimized

3. We present a concrete collision-finding attack in Section 5.1.2 against the same compression that uses the
multiplication-less version of Cpost. Moreover, our security proofs require the product of the two primitive outputs
to be added in Cpost. For the record, we study in Section 5.1.3 some other more efficient non-linear postprocessing
functions as alternatives to the product of the two primitive outputs; we show that many simpler choices fall short and
explain the design rationale behind our choice.

84

5.1. Our Construction and the Security Claims

Figure 5.1 – Collision resistance bound (as a function of log2(q)) illustrated for n = 128. The vertical
axis is Advcollh (q) and the horizontal axis is log2(q). The dotted curve (shown in black) is the best
known bound so far for the double-call DBL primitive-based compression functions in question;
the solid curve (in blue) is the bound obtained from Theorem 4.3.3 (with an optimization over the
constant values as detailed in Section 5.1.4 on page 97).

upper bound on Advcollh (q) for concrete values of the output length n of the underlying primitives.

To demonstrate, for n = 128, we plot our bound on Advcollh (q) as a function of log2(q) in Figure 5.1.

There it is shown that in order to have a non-negligible advantage, any adversary needs to ask at least

(roughly) 280 queries to the underlying primitives to find a collision. To the best of our knowledge,

this is the first construction of this type guaranteeing collision resistance beyond 2n/2 queries.

We also study (everywhere) preimage resistance; we show (in Corollary 5.1.9), for any δ > 0 and

q ≤ 2n(1−δ), that Advepreh (q) = o(1). Additionally, we present a preimage attack that requires O (2n)

queries (and time). Again, using a similar optimization as done for our collision resistance proof for

n = 128, we conclude that any adversary needs to ask at least (approximately) 2121 queries to the

underlying primitives to find a preimage with high probability.

This chapter is organized as follows. In Section 5.1, we introduce our design, instantiated with two

different PuRFs, as well as our security claims. It also contains our design rationale, together with

some concrete attacks on somewhat weakened versions of our construction. In Sections 5.2 and 5.3,

we present our proof of collision and (everywhere) preimage resistance, respectively . In Section 5.4,

we discuss (without providing a proof) our construction when instantiated with two (distinct and

independently sampled) blockciphers with n-bit blocks and n-bit keys. Finally, in Section 5.5, we

conclude the chapter with some practical considerations and comparison with earlier work.

5.1 Our Construction and the Security Claims

5.1.1 The Design

In this section, we introduce our compression function h f 1, f 2
: {0,1}3n → {0,1}2n . It is a specific

example of a double-call DBL PuRF-based compression function defined in Definition 3.2.1 with

85

Chapter 5. A Compression Function Exploiting Discrete Geometry

parameters 4 t = 3 and s = c = r = 2. Therefore, the construction uses two parallel calls to independent

PuRFs f 1, f 2 : {0,1}2n → {0,1}n ; moreover, the preprocessing functions Cpre
1 and Cpre

2 both map 3n

bits to 2n bits, whereas the postprocessing function Cpost maps 5n bits to 2n bits. Recall that Cpre
1

and Cpre
2 are the functions that take as input the compression function input and assign the inputs

to the underlying PuRFs. Cpost, however, is the postprocessing function that takes the input of the

compression function as input, as well as the outputs of the underlying PuRFs, and produces the

compression function output.

For notational convenience, we often write the input to the compression function W ∈ {0,1}3n as a

triple (a,b,c) ∈ ({0,1}n)3 and identify {0,1}n withF2n . Note that, in the following, we always treat the

triple (a,b,c) in the same (alphabetic) order it is presented here. That is, we do not concern ourselves

with triples (c,b, a), (b, a,c), etc. We present our concrete proposal in Construction 5.1.1 (see also

Figure 5.2). Our security claims are given in Theorem 5.1.6 and 5.1.8 for collision and (everywhere)

preimage resistance, respectively.

Construction 5.1.1. Let f 1, f 2 : {0,1}2n → {0,1}n be two different and independently sampled PuRFs.

Define a double-call DBL PuRF-based compression function (as in Definition 3.2.1 with parameters

t = 3 and c = r = s = 2)

h f 1, f 2
: {0,1}3n → {0,1}2n

by using the preprocessing function Cpre : F3
2n → (F2

2n)2 for

Cpre = (
Cpre

1 ,Cpre
2

)
, Cpre

1 (a,b,c) = (a,b) and Cpre
2 (a,b,c) = (c, ac +b) ;

and the postprocessing function Cpost : F5
2n →F

2
2n

Cpost(a,b,c, y1, y2) = A ·


a

c

y1

y2

y1 y2

 , where A =
(
ω11 ω12 ω13 ω14 ω15

ω21 ω22 ω23 ω24 ω25

)

is a matrix (over F2n) satisfying certain non-degeneracy conditions that are discussed below (see

Table 5.1 on page 102 for a detailed explanations of the conditions on the entries of A).

Remark 5.1.2. We note that in Cpost the input block shown by b is not used. The reason is that in

our security proofs, we do not require b to be processed by Cpost. This is similar to the well-known

example of a single-block-length blockcipher-based compression function (Definition 2.3.6) Davies-

Meyer, where the entire message block is not used in the corresponding Cpost (see the compression

function number 5 shown in Figure 2.3 on page 31).

In the security proofs, we abstract the properties required of the pre and postprocessing functions

Cpre and Cpost. In Section 5.1.2, we present several fairly generic attacks against somewhat simpler

proposals, which indicates that we did not ‘over-design’ our proposal. We stress that in our security

proofs, we do not focus on a special matrix A; on the contrary, we consider general A that satisfies

certain non-degeneracy conditions as summarized in Table 5.1. Our security proofs are valid for any

4. A blockcipher analogue of this class of compression functions are introduced in Definition 2.3.8 with parameters
m = κ= n and s = 2n.

86

5.1. Our Construction and the Security Claims

a
f 1

b

c f 2⊗

⊗ A Z

n
n

n

n

n

2n

Figure 5.2 – Our compression function h f 1, f 2
: {0,1}3n → {0,1}2n illustrated. The input W to h f 1, f 2

is represented as an element of F3
2n , i.e., W = (a,b,c) ∈F3

2n for a,b,c ∈F2n . The matrix A used in
the postprocessing function Cpost is specified in Section 5.1 (Construction 5.1.1) along with the
conditions on its entries in Table 5.1 on page 102. In the figure, ⊗ and ⊕ denote multiplication and
addition inF2n , respectively.

matrix A with the conditions given in Table 5.1 on page 102. We remark that the conditions given in

Table 5.1 exclude some lower dimensional subspaces from the ten-dimensional space containing

A and there are plenty of matrices that satisfy our constraints (see page 102 for a more rigorous

analysis). Hence, a randomly selected matrix A works for our constructions with high probability. In

practice, however, we recommend using the following matrix (cf. Table 5.1 for the constraints on the

entries of A) as it can be implemented using a few XOR instructions:

A =
(

1 1 0 0 1

0 0 1 1 0

)
.

Therefore the output Z ∈F2n of the compression function can be expressed as

Z =Cpost(a,b,c, y1, y2) =
(

a + c + y1 y2

y1 + y2

)
.

Note that in the context of using the compression function in an iterated fashion, we need to specify

which input blocks of the compression function represent the message block and which represent

the state or chaining variable. Our security results on the compression function are independent of

this choice; the choice may, however, significantly affect the efficiency of the design.

5.1.2 Challenges to Overcome

In this section, we provide several fairly generic collision attacks against some simpler, yet natural

choices for Cpre and Cpost. This demonstrates that our main construction is not over-designed; it also

helps to develop some intuition for the general problem of collision resistance in the compression

function. Firstly, we consider general linear preprocessing function Cpre and show that in order to

have a collision resistance beyond 2n/2 queries, we need to use a non-linear Cpre. Similarly, we show

that non-linear Cpost is necessary. Furthermore, we provide evidence that a feedforward from the

input to the compression function to Cpost is required to improve collision resistance. Our final

observation is a distinguishing attack against our construction.

87

Chapter 5. A Compression Function Exploiting Discrete Geometry

The Need for Non-linear Preprocessing

The notion of yield (Definition 2.3.1) is particularly useful as a first step towards understanding

the security of the compression function. Intuitively, for the construction that interests us, when

yield(q) ≥ 2n , a collision is expected (due to the birthday paradox) and once yield(q) ≥ 22n a preimage

is expected with high probability. For efficiency reasons, the preprocessing functions of most of the

PuRF-based (and blockcipher-based) compression functions proposed so far are of a special type,

namely linear, where a distinction can be made on the type of linearity.

In Theorem 3.2.3, we state a lower bound on yield(q) for the general construction we are interested

in (Definition 3.2.1) where the Cpre is (blockwise) linear; namely, yield(q) ≥ q t/c . Recall that t is

the number of input blocks to the compression function and c the number of input blocks to the

underlying primitive: In our case t = 3 and c = 2, so substituting these parameters leads to a collision

attack of complexity 22n/3 queries. But oftentimes we can achieve a significantly larger yield. Let us

show formally why.

In the following, we consider general F2-linear preprocessing functions Cpre
1 ,Cpre

2 : {0,1}3n → {0,1}2n .

Let K1 = ker(Cpre
1) and K2 = ker(Cpre

2) be the kernels of the linear maps Cpre
1 and Cpre

2 , respectively.

We assume that these kernels have dimensions d1 and d2 (each at least n), respectively. That is,

dimF2 (K1) = d1 and dimF2 (K2) = d2. Define m = dimF2 (K1 ∩K2); then we know that there are linear

subspaces U1 ⊂ K1 and U2 ⊂ K2 (of respective dimensions d1 −m and d2 −m) such that

(K1 ∩K2)⊕Ui = Ki

for i = 1,2. Assume that we have already made the query zero string to both f 1 and f 2. If we

further evaluate f 1 on q −1 (where q ≤ 2min(d1,d2)−m) of the elements in Cpre
1 (U2) and f 2 on q −1

of the elements in Cpre
2 (U1), we obtain a yield of 2m(q −1)2. Indeed, there are 2m elements in the

shared kernel. Besides, f 1-queries result in zero inputs for f 2, which already exists in the query list.

Similarly, f 2-queries result in zero in f 1 inputs as well; moreover, they can be combined in (q −1)2

ways to evaluate the compression function in accordance with the queries already made. So, once

q −1 ≥ 2(n−m)/2, collisions are expected with high probability (due to the birthday paradox) as the

yield will contain at least 2n output points (assuming uniformity of the output points). Because the

maximum number of required queries is achieved for m = 0, which implies d1 = d2 ≥ n, we need

to ask at most 2n/2 queries to each of the underlying primitives to obtain a collision. Note that it is

possible to ask 2n/2 queries in such a scenario as both d1 −m and d2 −m are at least n > n/2. As a

result, we can conclude that, using linear Cpre
1 and Cpre

2 , it is not possible (in the information-theoretic

setting) to achieve collision resistance beyond 2n/2 queries.

This brings us to the question: Is there a less expensive way to get non-linearity in Cpre (without

aversely affecting the security bound) than by using field multiplication as presented in Construc-

tion 5.1.1? The answer is “maybe". In our analysis, we only require Cpre to satisfy two properties in

order to get a useful collision resistance bound: (i) a good upper bound on yield(q) (e.g., the one given

in Proposition 5.1.4) and (ii) the completion property (Definition 5.1.3, see also Proposition 5.1.4).

Our results are valid for any compression function with Cpre satisfying (i) and (ii). Therefore, it is

well possible that a better Cpre (i.e., a more efficient one or one with better upper bound on yield(q))

exists. The reason we use the preprocessing suggested in Construction 5.1.1 is that it provides a

satisfactory upper bound on yield(q) (Proposition 5.1.4). In addition, it satisfies the completion

88

5.1. Our Construction and the Security Claims

property (Proposition 5.1.4). We leave finding a better Cpre (‘better’ in the sense as discussed above)

as an open problem.

The Need for Feedforwarding

Even if f 1 and f 2 are PuRFs without an inverse available to the adversary, a feedforward from the

input of the compression function to the postprocessing function Cpost is necessary to achieve

non-trivial collision resistance. The attack we describe below is a variant of the well-known ‘degrees

of freedom’ attack considered by Peyrin et al. [154], which itself is based on an older attack by

Hohl et al. [78] (however this precursor exploits linearity of Cpre and Cpost in addition to the lack of

feedforward). Peyrin et al. [154] focus on achieving optimal collision resistance and, interestingly

enough, they (correctly) claim that a feedforward is insufficient to prevent their generic attacks.

Seurin and Peyrin [180] later express the stronger belief that a feedforward cannot improve the

collision security of a PuRF-based scheme at all, when the calls to the underlying PuRFs are made

in parallel. However, when collision resistance does not need not be optimal, we conclude that a

feedforward helps and the claim of Seurin and Peyrin is incorrect for non-optimal collision resistance.

Suppose that no feedforward is present, specifically that Cpost effectively only depends on the two

outputs of f 1 and f 2. That is,

Cpost(a,b,c, y1, y2) =Cpost(y1, y2) .

As, on average, every Cpre
2 output has 2n preimages, there is (at least one) f 2 input with at least

2n corresponding f 1 inputs. Query f 2 on this particular input and f 1 on 2n/2 arbitrarily chosen

(distinct) corresponding inputs. Lacking any feedforward, a collision for f 1 will directly lead to a full

collision (as the output of f 2 is essentially fixed). Noting that f 1 is a random function outputting n

bits only, the birthday bound implies that the given number of queries suffices to expect a collision

under f 1. If we cast this attack in the terminology of our proof of collision resistance, the lack of a

feedforward allows us to create and exploit a degenerate partition (cf. Lemma 5.2.1).

The Need for Non-linear Postprocessing

Even if our preprocessing function Cpre is non-linear, a linear postprocessing function (even with

feedforward) might still lead to an attack. Indeed, take for example the Cpre from Construction 5.1.1

and define Cpost as follows

Cpost(a,b,c, y1, y2) = A ·


a

b

c

y1

y2

 , where A =
(
ω11 ω12 ω13 ω14 ω15

ω21 ω22 ω23 ω24 ω25

)

is any matrix A overF2n . Then the following attack illustrates that we can find collisions with only 2n/2

queries by creating collinear output points: Let the adversary choose any (a,b) and query f 1 to obtain

y1 ← f 1(a,b). Note that the dimension of ker(A) (overF2n) is three; hence for any fixed triple (a,b, y1)

89

Chapter 5. A Compression Function Exploiting Discrete Geometry

there exist unique c∗ and y2
∗ ∈ {0,1}n such that

a

b

c∗

y1

y∗
2

 ∈ ker(A) .

Thus, for arbitrary c and y2, we have

A ·


a

b

c

y1

y2

= A ·




a

b

c∗

y1

y2
∗

+


0

0

(c − c∗)

0

(y2 − y2
∗)



= A ·


0

0

(c − c∗)

0

(y2 − y2
∗)

=
(

(c − c∗)ω13 + (y2 − y2
∗)ω15

(c − c∗)ω23 + (y2 − y2
∗)ω25

)
.

To describe the attack, we choose arbitrary pairs (a,b), query f 1 and calculate c∗ for the obtained y1.

The image Z under the compression function of (a,b,c∗) can then be expressed with

Z = (y2 − y2
∗)

(
ω15

ω25

)
.

That is, it lies on a fixed line (independent of (a,b)) through the origin. Moreover, this image is a

uniformly random point on this line (due to the randomness of the function f 2). As the line consists

of only 2n points, after querying 2n/2 random choices of (a,b) (each with corresponding c∗), we get a

collision with high probability. Hence, adding the non-linear term y1 y2 is crucial for our design.

An obvious and efficient remedy to thwart such an attack would be to add the term ac in Cpost. This

has two obvious advantages: (i) It adds non-linearity in Cpost and (ii) as it is already computed while

calculating Cpre, we could gain some speed. Unfortunately, a similar attack still works in spite of the

above trick. Let Cpost be defined as follows

Cpost(a,b,c, y1, y2) = A ·



a

b

c

y1

y2

ac


,where A =

(
ω11 ω12 ω13 ω14 ω15 ω16

ω21 ω22 ω23 ω24 ω25 ω26

)

is a matrix (overF2n). Therefore the compression function output Z ∈F2
2n can be expressed as:

Z = a

(
ω11

ω21

)
+b

(
ω12

ω22

)
+ c

(
ω13

ω23

)
+ y1

(
ω14

ω24

)
+ y2

(
ω15

ω25

)
+ac

(
ω16

ω26

)
.

Let the adversary pick arbitrary (a,b) and query f 1 to obtain y1 ← f 1(a,b). Define(
ω′

13

ω′
23

)
=

(
ω13 +aω16

ω23 +aω26

)
and A′ =

(
ω11 ω12 ω′

13 ω14 ω15

ω21 ω22 ω′
23 ω24 ω25

)
.

90

5.1. Our Construction and the Security Claims

Now let c∗ and y2
∗ ∈ {0,1}n be such that

−
(

a

(
ω11

ω21

)
+b

(
ω12

ω22

)
+ y1

(
ω14

ω24

))
= c∗

(
ω′

13

ω′
23

)
+ y∗

2

(
ω15

ω25

)
.

The existence of such c∗ and y2
∗ ∈ {0,1}n is dependent on the corresponding determinant; yet with

high probability it is non-zero (or a is chosen in such a way that the determinant becomes non-zero).

Then

A ·



a

b

c

y1

y2

ac


= A′ ·


a

b

c

y1

y2

= A′ ·




a

b

c∗

y1

y2
∗

+


0

0

(c − c∗)

0

(y2 − y2
∗)



=
(

(c − c∗)ω′
13 + (y2 − y2

∗)ω15

(c − c∗)ω′
23 + (y2 − y2

∗)ω25

)
.

The rest of the attack works as in the linear Cpost case, specifically, we query (a,b,c∗) at each step

and iterate this procedure 2n/2 times.

A natural question is how to choose a non-linear postprocessing function Cpost that allows for a

rigorous security analysis, as well as efficient implementations. In Section 5.1.3, we explain why we

choose to add y1 y2 (see Construction 5.1.1) as the non-linear term in Cpost and why some other less

expensive alternatives turn out to be less attractive for us.

A Potential Drawback: Indistinguishability

All the attacks discussed so far consider resistance against conventional properties of the compres-

sion functions, in particular collision resistance. Instead, we could focus on another (still fairly

standard) notion, namely indistinguishability. Here an adversary either gets access to a true random

function (from 3n to 2n bits) or to our construction instantiated using ideal primitives (to which the

adversary has no direct access). The adversary’s goal is to distinguish between these two cases and,

in the information-theoretic setting, all that is of interest is the number of queries to the 3n-to-2n bit

interface. To distinguish our construction from a true random function, we show that the number of

required queries is only 2n/2; this is lower than we would ideally hope for.

Consider a double-call DBL compression function (see Definition 3.2.1 with t = 3 and c = r = s = 2)

h f 1, f 2
: {0,1}3n → {0,1}2n with any preprocessing function Cpre = (Cpre

1 ,Cpre
2) for Cpre

1 ,Cpre
2 : F3

2n →F
2
2n

and the postprocessing function Cpost given in Construction 5.1.1. We describe a distinguishing

attack against h f 1, f 2
showing that with only q = 2n/2 queries to the construction h f 1, f 2

we can

distinguish it from an ideal compression function (with high probability). The attack is based on the

observation that a simultaneous collision on the outputs of f 1 and f 2 (i.e., there exist distinct triples

(a,b,c) and (a′,b′,c ′) inF3
2n such that f 1(a,b) = f 1(a′,b′) and f 2(c, ac +b) = f 2(c ′, a′c ′+b′)) leads

to an abnormal and detectable behavior.

Let (a,b,c) and (a′,b′,c ′) be the input triples of h f 1, f 2
that satisfy

f 1 (
Cpre

1 (a,b,c)
)= f 1 (

Cpre
1 (a′,b′,c ′)

)= y1 and f 2 (
Cpre

2 (a,b,c)
)= f 2 (

Cpre
2 (a′,b′,c ′)

)= y2 .

91

Chapter 5. A Compression Function Exploiting Discrete Geometry

Then, the following property is satisfied due to the structure of Cpost:

h f 1, f 2
(a,b,c)+h f 1, f 2

(a′,b′,c ′) =
(

(a +a′)ω11

(a +a′)ω21

)
+

(
(c + c ′)ω12

(c + c ′)ω22

)
. (5.1)

As noted before, regardless of the preprocessing function, every Cpre
2 output has on average 2n

preimages and there exists at least one f 2 input with at least 2n corresponding f 1 inputs. Arbitrarily

choosing 2n/2 distinct ones (among this set) and querying h f 1, f 2
on the corresponding full inputs

makes a collision in f 1 likely. As the f 2 input is fixed, this automatically becomes a simultaneous

collision and (5.1) is satisfied. Crucially, this can be verified based on the inputs and outputs of h f 1, f 2

only; no direct access to the internals f 1 and f 2 is needed. For a random function, however, the

probability for a single pair to satisfy (5.1) is only 2−2n , so the probability to find a pair among the

2n/2 evaluations is at most 2−n . Indeed, we can form
(2n/2

2

)≈ 2n pairs out of 2n/2 queries; hence the

probability of obtaining a pair that satisfies (5.1) is 2n ·2−2n ≈ 2−n .

Conceivably, better indistinguishability could be achieved by introducing further non-linearity in

the postprocessing phase. Because our focus is primarily on achieving collision resistance, we do not

explore this possibility further, nor do we attempt to pin down exact indistinguishability bounds for

our construction. As a final remark, if we consider modes of operation, then bad randomness can

typically be nullified by some suitable postprocessing (cf. [49, 56]) for the hash function.

5.1.3 Design Rationale for Pre and Postprocessing Functions

On the Choice of Szemerédi–Trotter Preprocessing Function

A typical information-theoretic (collision or preimage-finding) adversary can try to arrange its

queries to the underlying primitives in such a way that it maximizes its yield. For our construction,

the preprocessing function Cpre fully determines the relationship between the queries made to

the primitive and the compression function evaluations this enables. Our search is therefore for

preprocessing functions Cpre
1 ,Cpre

2 : {0,1}3n → {0,1}2n such that yield(q) does not grow too fast as a

function of q .

Ideally, if an adversary asks q queries to each of the primitives, this would only result in at most q

full evaluations. However, without taking Cpre into account, an adversary asking q queries to each of

the two primitives can combine them in q2 ways. Although many combinations do not contribute

to the yield (i.e., they are not in the image of Cpre and yield(q) ¿ q2), there is a potential here for

the yield to be significantly larger than q . Indeed, when an adversary asks all 22n possible queries

(for each of the primitives), it will be able to evaluate the compression function at all 23n possible

inputs. Consequently, it is inevitable that for q = 22n the yield is q3/2. The question is whether we

can find a preprocessing function Cpre that has good behavior for q < 22n as well. As it turns out, we

can do reasonably well by exploiting results from incidence geometry. With an eye on the minimum

requirements on Cpre in order for the security proofs to go through, we introduce some additional

terminology.

Definition 5.1.3. Let (a,b), (c,d) ∈F2
2n denote the query pairs made to f 1 and f 2, respectively. We

call a query pair (a,b)–(c,d) compatible if and only if ((a,b), (c,d)) is in the image of Cpre. In addition,

a query (a,b) is called (c,d)-compatible or vice versa if the pair (a,b)–(c,d) is compatible. For the

92

5.1. Our Construction and the Security Claims

preprocessing function Cpre from Construction 5.1.1, a pair (a,b)–(c,d) is compatible if and only if

d = ac +b is satisfied. Finally, a preprocessing function Cpre satisfies the completion property if and

only if (i) (a,b) and c (ii) (c,d) and a uniquely determine a compatible query pair (a,b)–(c,d) for any

a,b,c,d ∈F2n .

Proposition 5.1.4. Cpre from Construction 5.1.1 has the completion property and

yield(q) ≤ q3/2 +q .

The proof of Proposition 5.1.4 relies on the finite field version of a theorem by Szemerédi and

Trotter [197], which is given in Theorem 5.1.5.

Theorem 5.1.5 (Szemerédi–Trotter over finite fields). LetF be a finite field and P (respectively L) be a

set of points (respectively lines) inF2. Let I (P,L) = {(p,`) | (p,`) ∈ P ×L and p ∈ `}. Then

|I (P,L)| ≤ min
(|P ||L|1/2 +|L|, |L||P |1/2 +|P |) .

Proof. We follow the proof given by Tao [198] on his web-page. Using the definition of |I (P,L)|, we

can write it as

|I (P,L)| = ∑
`∈L

|P ∩`| .

Cauchy–Schwarz inequality leads to

∑
`∈L

|P ∩`|2 ≥ |I (P,L)|2
|L| .

Now, using a basic combinatorial argument, we observe that∑
`∈L

(|P ∩`|2 −|P ∩`|)= |{(p, q,`) ∈ P ×P ×L : p 6= q ; p, q ∈ `} | ,

where the right-hand side of the equation is at most |P |2 as two distinct points are incident to at most

one line. Therefore, ∑
`∈L

|P ∩`|2 ≤ |I (P,L)|+ |P |2 .

Finally, we compare the above with the inequality obtained from Cauchy–Schwarz:

|I (P,L)|2
|L| ≤ ∑

`∈L
|P ∩`|2 ≤ |I (P,L)|+ |P |2 ,

which implies

(|I (P,L)|− |P ||L|1/2)≤ |I (P,L)| |L|(|I (P,L)|+ |P ||L|1/2
) = |L|

(|I (P,L)|(|I (P,L)|+ |P ||L|1/2
))

≤ |L| .

A dual argument (swapping the role of lines and points) finalizes the proof.

Proof of Proposition 5.1.4. Firstly, we remark that the completion property can be algebraically ver-

ified: We need to show that an f 1-query pair (a,b) along with c and an f 2-query pair (c,d) with

93

Chapter 5. A Compression Function Exploiting Discrete Geometry

an input block a uniquely determine a compatible query pair (a,b)–(c,d). Assume first that (a,b)

and c are given. Then, by the definition of Cpre
2 we obtain a (unique) d = ac +b (using the finite

field paradigms), which defines the query pair (a,b)–(c,d). Now suppose there exists another f 1-

query pair (a′,b′) with an input block c ′ defining the same query pair (a,b)–(c,d). Then, necessarily,

(a,b) = (a′,b′) and c = c ′; therefore d ′ = a′c ′+b′ = d . Now, let us show that it is also the case for

f 2-query pair (c,d) and an input block a. It defines the query pair (a,b)–(c,d) for unique b = d −ac .

Now assume that there exists yet another f 2-query pair (c ′,d ′) and an input block a′ defining the

same query pair (a,b)–(c,d). Then (c,d) = (c ′,d ′) and a = a′; therefore b′ = d ′−a′c ′ = b.

To determine the yield(q), we interpret the output (a,b) of Cpre
1 as the line ` : y = ax +b inF2

2n and

the output of Cpre
2 as a point on `. This renders bounding the yield an immediate consequence

of the above incidence theorem (originally due to Klein) that is a finite field version of a theorem

(Theorem 5.1.5) of Szemerédi and Trotter over the reals. To finish the proof of Proposition 5.1.4, note

that the sets Q[1] and Q[2] (the list of queries made to f 1 and f 2, respectively) correspond to the

lines L and the points P , respectively, and |I (Q[2],Q[1])| counts exactly the number of compression

function inputs whose mapping can be completely determined by the given queries. Specifying

|Q[1]| = |Q[2]| = q yields the proposition statement.

Non-Linear Matrix-Style Postprocessing

Our postprocessing is clearly inspired by the use ofF2n -matrices by Rogaway and Steinberger [173];

but with the crucial difference that we add non-linearity by introducing the term y1 y2. Omitting

this non-linear term is fatal for security, as shown in Section 5.1.2, which contains a concrete colli-

sion attack on the linear-only version. In contrast, for our construction, the adversary’s control is

significantly reduced.

Now we describe the reasoning behind the choice of the non-linear term y1 y2. We first remark that

allowing for high degree terms in y1 and y2 is beyond our analysis; this is simply because of the fact

that our current choice leads to an easy geometric interpretation of the event of finding a collision

whenever a fresh query is made to f 1 and f 2. Specifically, by considering only lines of the specific

form (see Section 5.2 for the details) in the planeF2
2n , we can analyze the collision resistance of our

construction. Using higher degree terms in y1 and y2 requires the extension of our analysis to curves

overF2
2n which is, for the moment, beyond reach using current proof technique.

Let us see why we do not prefer some simpler choices for Cpost. Observe that our current choice

requires one full finite field multiplication; therefore our search is for the operations with less

overhead. Consider the postprocessing function Cpost : F5
2n →F

2
2n defined by

Cpost(a,b,c, y1, y2) = A ·



a

b

c

y1

y2

F(a,b,c, y1, y2)


, where A =

(
ω11 ω12 ω13 ω14 ω15 ω16

ω21 ω22 ω23 ω24 ω25 ω26

)

is a matrix (overF2n) and F : F5
2n →F2n is a non-linear function. Let us first consider the following

choice: F(a,b,c, y1, y2) = a2 + c2 (similar choices that contain only the input blocks lead to the

94

5.1. Our Construction and the Security Claims

same issue). Compared to F(a,b,c, y1, y2) = y1 y2 in Construction 5.1.1, this function leads to a more

efficient scheme as squaring is, in general, less expensive than full finite field multiplication in binary

extension fields. The digest Z is then expressed as follows:

Z = a

(
ω11

ω21

)
+b

(
ω12

ω22

)
+ c

(
ω13

ω23

)
+ y1

(
ω14

ω24

)
+ y2

(
ω15

ω25

)
+ (a2 + c2)

(
ω16

ω26

)
.

Consider the following strategy. Let an adversary A fix (a,b) and obtain the corresponding y1 =
f 1(a,b) and let

a

(
ω11

ω21

)
+b

(
ω12

ω22

)
+ y1

(
ω14

ω24

)
+a2

(
ω15

ω25

)
= K ∈F2

2n .

Now observe, for a given K ∈F2
2n , that any c∗, y∗

2 ∈F2n satisfying

c∗
(
ω13

ω23

)
+ y∗

2

(
ω15

ω25

)
=−K

leads to

A ·



a

b

c

y1

y2

a2 + c2


= A ·





a

b

c∗

y1

y2
∗

a2 + c∗2


+



0

0

(c − c∗)

0

(y2 − y2
∗)

(c2 − c∗2)




= A ·



0

0

(c − c∗)

0

(y2 − y2
∗)

(c2 − c∗2)


.

To describe the attack, we follow the same reasoning as in the linear Cpost case: We choose arbitrary

pairs (a,b), query f 1 and calculate c∗ (with the above property) for the obtained y1. The image under

the compression function of (a,b,c∗) then lies on a uniformly random point on the fixed line:

(y2 − y2
∗)

(
ω15

ω25

)
.

As the line consists of only 2n points, after querying 2n/2 arbitrary choices of (a,b) (each with

corresponding c∗), we obtain a collision with high probability. The only requirement for the above

attack is ω13ω25 6=ω15ω23 (or ω11ω24 6=ω14ω21, which holds with probability close to one for an

arbitrarily chosen matrix A, if we start fixing (c,d) rather than (a,b)). A variant of the following attack

is also applicable for many (efficient) non-linear functions that require only squaring and XOR.

We leave finding a more efficient postprocessing function Cpost such that the resulting compression

function still has provable properties open. As we detail here and previously, many natural choices

turn out to be either insecure or inadequate in terms of provability.

5.1.4 Security Claims

In Theorems 5.1.6 and 5.1.8 (for collision and everywhere preimage resistance, respectively) we state

our security claims for a large class of double-call DBL PuRF-based compression functions (see

Definition 3.2.1) with parameters t = 3 and c = s = r = 2. Our analysis is valid for any double-call

DBL PuRF-based compression function of the above class whenever Cpre satisfies the completion

95

Chapter 5. A Compression Function Exploiting Discrete Geometry

property and Cpost is the one given in Construction 5.1.1. Our compression function proposal

(Construction 5.1.1) is a special instance of the designs considered in Theorems 5.1.6 and 5.1.8.

Corresponding Corollaries 5.1.7 and 5.1.9 present the ramifications of Theorems 5.1.6 and 5.1.8

to Construction 5.1.1. The proof of Theorems 5.1.6 and 5.1.8 are given in Sections 5.2 and 5.3,

respectively.

Theorem 5.1.6 (Query-complexity coll-security bound). Let h f 1, f 2
be a double-call DBL PuRF-based

compression function (Definition 3.2.1) with parameters t = 3 and c = r = s = 2. Let Cpost be the

postprocessing function given in Construction 5.1.1 and let Cpre be (any) preprocessing function that

satisfies the completion property. Let k,µ,γ and λ be arbitrary positive integers with λ≥ 3. Then

Advcollh (q) ≤ κY

2n + qγ2

2n−1 +
(q
γ

)
2(γ−1)n−1

+22n
(

Y

2n

)k+1

+
(q
µ

)
2(µ−1)n−1

+
(q
λ

)
2(λ−2)n−1

+ q

2n−1 ,

where κ= kλ+µ and Y = yield(q).

Corollary 5.1.7. Let h f 1, f 2
be the compression function given in Construction 5.1.1. Then, for all δ> 0

and q ≤ 22n(1−δ)/3 it holds (asymptotically in n) that

Advcollh (q) = o(1) .

Proof. For any δ> 0, we show asymptotically (in n) that there exist positive constants k,λ,γ,µ and

κ= kλ+µ such that each term in the statement of Theorem 5.1.6 vanishes given that q = 22n(1−δ)/3.

Using the trivial bound
(a

b

)≤ ab for positive integers a and b (where a ≥ b), together with yield(q) ≤
q3/2 +q (Proposition 5.1.4), we obtain

Advcollh (q) ≤ κ(q3/2 +q)

2n +22n
(

q3/2 +q

2n

)k+1

+ qµ

2(µ−1)n−1
+ qλ

2(λ−2)n−1
+ qγ2

2n−1 + qγ

2(γ−1)n−1
+ q

2n−1 .

Substituting q = 22n(1−δ)/3 (and using the fact that q3/2 ≥ q), we get

Advcollh (q) ≤ 2κ2−δn +22n+k+1−δ(k+1)n + 2−2δµ/3

2n(µ/3−1)−1
+ 2−2δλ/3

2n(λ/3−2)−1
+ 2−2δ/3(γ2 +1)

2n/3−1
+ 2−2δγ/3

2n(γ/3−1)−1
,

where

κ2−δn+1 + 2−2δ/3(γ2 +1)

2n/3−1
= o(1) as n →∞ .

Moreover, the remaining terms vanish for k > 2/δ−1,µ,γ > 3,λ > 6,κ = kλ+µ. Hence, the claim

follows.

Theorem 5.1.8 (Query-complexity epre-security bound). Let h f 1, f 2
be a double-call DBL PuRF-based

compression function (Definition 3.2.1) with parameters t = 3 and c = r = s = 2. Let Cpost be the

postprocessing function given in Construction 5.1.1 and let Cpre be (any) preprocessing function that

satisfies the completion property. Then, for arbitrary positive integer κ> 1,

Advepreh (q) ≤ κq

2n−1 +2n+1

(
q

κ

)(
1

2n−1

)κ
+ q

2n−1 .

We remark that yield(q) no longer plays a role in the bound for Advepreh (q); it essentially shows that the

96

5.1. Our Construction and the Security Claims

yield-maximization is not the best strategy to find preimages. Finally we note that the requirements

(listed in Table 5.1 on page 102) for our collision resistance analysis are sufficient (we simply require

a subset of the conditions) for our preimage resistance result as well.

Corollary 5.1.9. Let h f 1, f 2
be the compression function given in Construction 5.1.1. Then, for all δ> 0

and q ≤ 2n(1−δ) it holds (asymptotically in n) that

Advepreh (q) = o(1) .

Proof. The idea is the same as in Corollary 5.1.7: For any δ> 0, we show asymptotically (in n) that

there exists a positive constant κ such that Advepreh (q) vanishes given that q = 2n(1−δ). Substituting

q = 2n(1−δ) in the above theorem statement (and using
(q
κ

)≤ qκ), we reach

Advepreh (q) ≤ 2n+1
(
2n(1−δ)

)κ (
1

2n−1

)κ
+ 2n(1−δ)

2n−1 + κ2n(1−δ)

2n−1 = 2n+κ+1−δnκ+ (κ+1)21−δn .

The last term vanishes as n gets large and so does the first term whenever κ> 1/δ.

Optimization of the Bounds

In the following, we deal with the optimization of the bounds obtained in Theorems 5.1.6 and 5.1.8.

We begin with bounding the expression
(a

b

)
for a > b. By Stirling’s approximation we have:(

a

b

)
≤ 1p

2π

√
a

b(a −b)

aa

bb(a −b)a−b
=

(a

b

)b
√

a

2πb(a −b)

(a

a −b

)a−b
.

Observe that (a

a −b

)a−b
=

(
1+b

(
1

a −b

))a−b

≤ eb ,

where the inequality simply follows from

ex = lim
n→∞

(
1+ x

n

)n
.

Therefore, we attain (
a

b

)
≤

(ae

b

)b
√

a

2πb(a −b)
≤

(ae

b

)b
.

Now consider the bound given in Theorem 5.1.6 for arbitrary positive integers k,µ,γ and λwith λ≥ 3

and κ= kλ+µ:

Advcollh (q) ≤ κY

2n + qγ2

2n−1 +
(q
γ

)
2(γ−1)n−1

+22n
(

Y

2n

)k+1

+
(q
µ

)
2(µ−1)n−1

+
(q
λ

)
2(λ−2)n−1

+ q

2n−1 .

From Proposition 5.1.4 we know that Y ≤ q3/2 +q ; moreover by using the inequality
(a

b

)≤ (ae/b)b

obtained above, we get

Advcollh (q) ≤ κq3/2

2n + κq

2n + qγ2

2n−1 + (eq/γ)γ

2(γ−1)n−1
+22n

(
q3/2 +q

2n

)k+1

+ (eq/µ)µ

2(µ−1)n−1
+ (eq/λ)λ

2(λ−2)n−1
+ q

2n−1 .

97

Chapter 5. A Compression Function Exploiting Discrete Geometry

We neglect the optimization of the terms

κq

2n + q

2n−1

as they are dominated by term κq3/2/2n . For the remaining terms, we note the following straightfor-

ward intuition 5: Once the terms containing the same free parameters are chosen to be close-to-equal,

then the overall bound becomes close-to-optimal. We start our analysis with the expression

qγ2

2n−1 = (eq/γ)γ

2(γ−1)n−1
,

which after standard algebraic manipulations results in

γ= 2n − log2(q)−2log2(γ)

n − log2(q)− log2(e)+ log2(γ)
≤ 2n − log2(q)

n − log2(q)− log2(e)
.

Similarly, optimizing the expression (note that κ= kλ+µ) by equating both terms in

µq3/2

2n + (eq/µ)µ

2(µ−1)n−1

gives

µ≤ 2n − (3/2) log2(q)

n − log2(q)− log2(e)
.

Finally, we study the expression:

kλq3/2

2n +22n
(

q3/2 +q

2n

)k+1

+ (eq/λ)λ

2(λ−2)n−1
.

To proceed, we suggest the following. We choose k = k0 such that the term

22n
(

q3/2 +q

2n

)k0+1

is below a certain threshold (for a given n and an upper bound on q). Then, we use the same method

for the remaining terms to get an optimized λ. More specifically,

λ≤ 3n − (3/2) log2(q)− log2(k0)

n − log2(q)
.

We now illustrate the choice of k0 for n = 128. We choose our threshold probability to be 1/2; hence

22n
(

q3/2 +q

2n

)k0+1

≤ 22n
(

q3/2

2n−1

)k0+1

< 1

2
⇒ k0 > 2n +1

n −1− (3/2) log2(q)
−1 .

We select the smallest positive integer k0 satisfying the above constraint for a given n and an upper

bound on q . To illustrate, for n = 128 and q ≤ 280, we obtain k0 = 36. The graph of Advcollh (q), for

n = 128, k0 = 36 and the optimized values of λ,γ and µ, as a function of log2(q) is illustrated in

5. This technique is not the only way to obtain an optimized bound. Indeed, an alternative method is to look at the
terms that contain the same parameter (say α) and to find the optimal value of α such that the sum achieves its smallest
value. This can be done using standard techniques such as taking the derivative of the sum, setting it to zero and solving
for α; yet the terms in question are transcendental functions, that do not allow for such a direct optimization.

98

5.2. Proof of Collision Resistance (Theorem 5.1.6)

Figure 5.1 on page 85. We note that an immediate application of the above technique to the bound

given in Theorem 5.1.8 gives

κ≤ 2n − log2(q)

n −1− log2(q)− log2(e)
.

This in turn implies, for n = 128, that any adversary needs to ask at least (approximately) 2121 queries

to the underlying primitives to find a preimage with high probability.

5.2 Proof of Collision Resistance (Theorem 5.1.6)

5.2.1 Overall Strategy

Let A be a collision-finding adversary that asks at most q queries to each of the public random

functions f 1 and f 2 (without loss of generality we assume that the adversary asks exactly q queries

to both). Our goal is to bound Advcollh (A), in particular the probability of the event coll(Q), where Q

is adaptively generated by A 6.

We break down the query list Q into Q[1] and Q[2]; this makes a distinction between the query-

response pairs of f 1 and f 2. We slightly abuse notation and use Q (and derived symbols such as Qi)

interchangeably as a random variable (when it is the direct result of playing the collision game), or as

a dummy variable (e.g., when we want to quantify over all possible instantiations), where the context

makes the precise meaning clear. In all cases we can use the global parameter q for the number of f 1

and f 2 queries and Y = yield(q) to bound the yield.

To bound the probability of an adversary finding a collision, we first look at the probability that

any specific query completes the collision: Fix i and consider the event coll(Qi)∧¬coll(Qi−1). Here

we call query i fresh and we say it causes a collision. For concreteness, suppose the i ’th query is an

f 1-query (a,b), then observe that it adds a new point to the yield set for every (a,b)-compatible pair

(c,d) that was already in Qi−1. Now the i ’th query can cause a collision in two different ways:

Case I For some preceding and compatible (c,d) the outcome was already part of the yield, that is

to say, a duo of compatible and colliding pairs (a,b)–(c,d) and (a′,b′)–(c ′,d ′) is formed with

the triple {(a′,b′), (c,d), (c ′,d ′)} ⊆Qi−1 (so in particular (a,b) 6= (a′,b′)).

Case II For two distinct preceding and compatible (c,d) and (c ′,d ′) the two freshly added points

happen to collide. For this, a duo of distinct compatible and colliding pairs exists with (a,b) =
(a′,b′) (and necessarily {(c,d), (c ′,d ′)} ⊆Qi−1).

In general, finding collisions via Case I is easier to achieve; assume there already exist compression

function outputs in the yield. Because we add certain new points and we look for collisions among

those already existing, we (intuitively) increase the chance of a collision compared to Case II, where

we are only interested in collisions among the freshly added points. If there are only freshly added

outputs or the yield contains a small number of elements, Case II might become easier to satisfy.

6. We can define the (X ,Y) random-system h (as in Section 3.3) mimicking the interaction of A with the uniformly
random functions used in Construction 5.1.1. Let X be the set of pairs (x, t) ∈ F2

2n × {1,2}, where t indicates which of the
two uniformly random functions A is making queries to and x is the input to that uniform random function. Similarly, the
set Y denotes the set of elements (y, t) ∈ F2n × {1,2}, where t (deterministic) indicates which of the two uniform random
functions this output comes form and y is an output of that uniform random function (corresponding to the input x).
It is not hard to see that the conditional probability distributions that define the random system h can be derived as in
Example 3.3.2 (taking into account t).

99

Chapter 5. A Compression Function Exploiting Discrete Geometry

When the i ’th query is an f 2-query (c,d), an analogous split can be made and we fold into the two

cases just described. We associate the events collI (Q) and collI I (Q) with these two cases, where

collI (Q) occurs if and only if for some i ’th query Case I occurs. As the first collision to occur needs to

fall into at least one of these two cases, it follows that

coll(Q) ≡ (collI (Q) ∨ collI I (Q))

or considering the i ’th time that A makes its query we have

coll(Qi)∧¬coll(Qi−1) ≡ (collI (Qi)∧¬coll(Qi−1)) ∨ (collI I (Qi)∧¬coll(Qi−1)) .

The probability of these events depends strongly on the number of compatible queries already

in Qi−1; we denote this number by (random variable) ni . Although we know (by design) that

2q∑
i=1

ni ≤ yield(q) ,

a straightforward union bound fails to take this into account properly: Because potentially ni ≈ q ,

naive bounding of
∑2q

i=1 ni would be quadratic in q (which is typically much larger than yield(q)).

Dealing with this in the case of non-adaptive adversaries is straightforward (because such an adver-

sary needs to commit to the ni values in advance), but requires a more careful treatment in the case

of adaptive adversaries. The tools developed in Section 3.3 serve for this purpose.

To bound the probability of collI (Q), we additionally condition under the event where there is not

too many collinear output points. More precisely, the elements Z ∈F2
2n that feature in yieldseth(Q),

are considered as points in the two-dimensional vector space (over F2n). For positive integer κ,

badcl[κ](Q) is set if and only if Q gives rise to more than κ collinear output points. The reason to

consider collinearity will become evident shortly.

A High-Level Overview of the Proof and the Road Map

To improve the readability of the proof of our collision resistance, we now present a high-level

overview of it, as well as a road map that facilitates the tracking of the key points in the proof. We

start with the observation, for any Q, that

coll(Q) ≡ (collI (Q)∨collI I (Q)) ≡ (collI (Q)∧¬collI I (Q)) ∨ collI I (Q) .

The expression (collI (Q)∧¬collI I (Q)) is equivalent to(
collI (Q)∧¬collI I (Q)∧¬badcl[κ](Q)

) ∨ (
collI (Q)∧¬collI I (Q)∧badcl[κ](Q)

)
.

Using the fact that(
collI (Q)∧¬collI I (Q)∧¬badcl[κ](Q)

) ⇒ (
collI (Q)∧¬badcl[κ](Q)

)
and (

collI (Q)∧¬collI I (Q)∧badcl[κ](Q)
) ⇒ (¬collI I (Q)∧badcl[κ](Q)

)

100

5.2. Proof of Collision Resistance (Theorem 5.1.6)

Pr[E2]Pr[E1] Pr[E3]

Corollary 5.2.11

Theorem 5.1.6

Lemma 5.2.5

Proposition 3.3.9

Lemma 5.2.6

Lemma 5.2.4 Proposition 3.3.7

Proposition 5.2.10

Proposition 5.2.7 Proposition 5.2.8

Lemma 5.2.2 Lemma 5.2.1Lemma 5.2.9 Lemma 5.2.3

Proposition 3.3.10 Proposition 3.3.6

Figure 5.3 – A tree representation of the hierarchical relations of the statements used in the proof of
Theorem 5.1.6. Probabilities do not correpond to a node in the tree; they are added for illustrative
purposes to show the correspondence with the related statements. Solid lines show that the proof of
the statement that appears in the parent node makes use of the statement shown in the child node.
Dashed lines show that the child node is implied by the parent node.

we reach

coll(Q) ⇒ (
collI (Q)∧¬badcl[κ](Q)

)︸ ︷︷ ︸
E1

∨ (¬collI I (Q)∧badcl[κ](Q)
)︸ ︷︷ ︸

E2

∨ collI I (Q)︸ ︷︷ ︸
E3

. (5.2)

The idea of our proof is to find separate upper bounds for the probability of the events Ei for i = 1,2,3

and then use the union bound to finalize the proof in Corollary 5.2.11 (i.e.,
∑3

i=1 Pr[Ei] provides the

overall upper bound). Now we explain step by step where we provide these upper bounds in the

subsequent sections and to which terms in Theorem 5.1.6 they correspond. Figure 5.3 illustrates the

abstract overview of the road map used in the proof.

Let us start by looking at the event E1. An upper bound for Pr[E1] is given in Lemma 5.2.5 (which

itself is based on Proposition 3.3.9). The bound that Lemma 5.2.5 gives corresponds to the term

κY /2n in Theorem 5.1.6.

Similarly, an upper bound for Pr[E3] is established in Lemma 5.2.6: The probability of the event E3 is

upper bounded by using an auxiliary flag; its probability of happening is bounded in Lemma 5.2.4.

101

Chapter 5. A Compression Function Exploiting Discrete Geometry

Condition Where used Reference
(Theorem 5.1.6) (Section 5.2)

C1: ω13ω25 6=ω15ω23 (S) Non-degeneracy of L1:-lines (5.3)
(N) Non-parallel P1:-partitions Lemma 5.2.2

C2: ω14ω25 6=ω15ω24 (S) Non-degeneracy of L2:-lines (5.4)
(N) Non-parallel P2:-partitions Lemma 5.2.2

C3: (ω11,ω21) 6= 0 (N) Non-degeneracy of P1:-partitions Lemma 5.2.1
C4: (ω12,ω22) 6= 0 (N) Non-degeneracy of P2:-partitions Lemma 5.2.1
C5: (ω15,ω25) 6= 0 (N) Non-linearity of Cpost Construction 5.1.1

Table 5.1 – A summary of the properties of the entries of A (see Construction 5.1.1) used in the proof
of Theorem 5.1.6. (N) denotes that the condition is necessary, whereas (S) denotes it is sufficient.

With the use of Proposition 3.3.7, an upper bound for Pr[E3] is then obtained. The terms

qγ2

2n−1 + qγ

2(γ−1)n−1

from Theorem 5.1.6 correspond to the upper bound for Pr[E3].

Finally, we explain where the bounds for Pr[E2] (i.e., the remaining terms from Theorem 5.1.6)

come from. We note that the overall Section 5.2.4 is devoted to bound Pr[E2]. More specifically, we

use Proposition 5.2.10 to establish an implication that leads to an upper bound for Pr[E2], which

itself uses Propositions 5.2.7 and 5.2.8. Moreover, several auxiliary events, which are defined and

investigated in Sections 5.2.2 and 5.2.4, are required to finalize the bound Pr[E2]: The upper bound

for the auxiliary events are given in Lemmas 5.2.1, 5.2.2, 5.2.3 and 5.2.9.

On the Matrix A Used in Cpost

In the following, we consider a general matrix A (see Construction 5.1.1) overF2n

A =
(
ω11 ω12 ω13 ω14 ω15

ω21 ω22 ω23 ω24 ω25

)

for the proof of Theorem 5.1.6. The conditions on the entries of the matrix A required throughout, as

well as where exactly they are used, are provided in Table 5.1. For comparison, we can check that the

suggested matrix A

A =
(

1 1 0 0 1

0 0 1 1 0

)
satisfies the requirements given in Table 5.1.

Now let us investigate how many matrices of the above form satisfy the conditions listed in Table 5.1

and see with what probability an arbitrarily selected matrix works for our construction. We start with

the number of possibilities for the fifth column as it is the shared column for properties C1 and C2

(and observe that conditions C1 and C2 imply condition C5). Excluding the zero column, there are

((2n)2 −1) choices for the fifth column. For each such choice, we have ((2n)2 −2n) possibilities for the

third and the fourth columns (for conditions C1 and C2): These columns can be anything but the

102

5.2. Proof of Collision Resistance (Theorem 5.1.6)

multiples of the fifth column. Finally, we are left with ((2n)2 −1) possibilities for columns one and

two. All in all, there are(
(2n)2 −1

)3 · ((2n)2 −2n)2 = (2n −1)5 · (2n)2 · (2n +1)3 ≈ 210n

matrices for our purposes. Therefore, the probability that a randomly selected matrix A satisfies our

criteria is close to one and there are plenty of matrices that are suitable for our construction.

Output Lines

As we assume that an adversary can only output a collision for which it has made all necessary

queries, an f 1-query (a,b) can only complete a collision using an already present compatible f 2-

query (c,d). Let (a,b) be an f 1-query and let (c,d) be a preceding (a,b)-compatible f 2-query with

y2 = f 2(c,d). The output Cpost(a,b,c, y1, y2) of the compression function on input (a,b,c) then lies

on the line (inF2
2n)

L1:c,d ,y2;a :

{(
aω11 + cω12 + y2ω14

aω21 + cω22 + y2ω24

)
+ y1

(
ω13 + y2ω15

ω23 + y2ω25

)
| y1 ∈F2n

}
, (5.3)

where we get the actual output point for (a,b,c) by setting y1 = f 1(a,b). The randomness of f 1 results

in a random point on L1:c,d ,y2;a . In the following, we call the vector(
ω13 + y2ω15

ω23 + y2ω25

)

the slope of the line; and the vector (
aω11 + cω12 + y2ω14

aω21 + cω22 + y2ω24

)

is called the offset. Note that the line cannot be degenerate (see condition C1 in Table 5.1), i.e., it has

non-zero slope, as ∣∣∣∣∣ω13 ω15

ω23 ω25

∣∣∣∣∣ 6= 0 ⇒
(
ω13 + y2ω15

ω23 + y2ω25

)
6= 0 .

(An alternative sufficient condition for non-degeneracy is (ω15,ω25) = 0 6= (ω13,ω23).) Similarly, let

(c,d) be an f 2-query and let (a,b) be a preceding (c,d)-compatible f 1-query. The output of the

compression function on (a,b,c) then lies on the line:

L2:a,b,y1;c :

{(
aω11 + cω12 + y1ω13

aω21 + cω22 + y1ω23

)
+ y2

(
ω14 + y1ω15

ω24 + y1ω25

)
| y2 ∈F2n

}
. (5.4)

This time the output point is obtained by setting y2 = f 2(c,d). Again, the randomness of f 2 results

in a random point on L2:a,b,y1;c . We note that now non-degeneracy follows from the condition C2

given in Table 5.1. Now it is easy to see why we do not want too many collinear points: It would

ease the collision-finding considerably. The reason is simply that, due to the above lines, the freshly

generated compression function outputs lie on a well-defined (output) line. If there are too many

103

Chapter 5. A Compression Function Exploiting Discrete Geometry

already existing digest values lying on the newly added output lines, then the probability of finding a

collision will increase significantly. We quantify the effect of collinearity with the event badcl[κ](Q):

For a positive integer κ, badcl[κ](Q) is set to true if and only if Q gives rise to more than κ collinear

output points (we need badcl[κ](Q) both for the aforementioned events E1 and E2, see (5.2)).

5.2.2 Building Tools for the Proof: Partitions, Bunches and Some Auxiliary Events

Here we present some additional terminology required in the subsequent sections. First we discuss

the partitions and bunches: These are the geometric objects defined via the output lines introduced

above. Briefly (a more formal treatment follows shortly), a partition, which is defined separately for

varying a and c values (corresponding to f 1- and f 2-queries), is a set of parallel (output) lines that

partitions F2
2n . A bunch, however, is defined again as a set of lines—this time for a fixed f 1 or f 2

query—yet it is different from a partition in the sense that it contains (possibly) a set of non-parallel

lines.

Second, we introduce certain auxiliary events and provide upper bounds for their probabilities

to occur. These events are important while we analyze collinearity; in particular the event Pr[E2]

(introduced in (5.2)). Specifically, we are interested in four auxiliary events: degenerate partitions,

parallel partitions, local collinearity and target local collinearity.

Degenerate partition occurs when a partition collapses to a single line rather than partitioning the

output plane. Parallel partition, however, is the event where two or more different partitions happen

to be the same. Finally, we are interested in the events local and target local collinearity; these events

convey information about the collinearity of certain points (that are different from output points)

in F2
2n . The only difference between these two is that the target local collinearity requires these

output points to be on a line with a prescribed slope.

Partitions and Bunches

Suppose that an f 2-query (c,d) resulted in y2 = f 2(c,d). By the completion property, we get, for each

a ∈F2n , a unique b such that (a,b) is (c,d)-compatible. Now we recall that if we query f 1(a,b), the

resulting yield point lies on the line L1:c,d ,y2;a . From Equation (5.3) of L1:c,d ,y2;a , it follows that the

slope of these lines is fixed (because (c,d) and y2 are fixed) and independent of a; hence by ranging

over all possible a values inF2n we achieve a set of (parallel) lines. This is what we call a partition

(created via a values):

P1:c,d ,y2 = {L1:c,d ,y2;a | a ∈F2n } .

In our proof of collision resistance, a partition conveys information about how the query y2 = f 2(c,d)

might be used in future use. Similarly, we define the partition P2:a,b,y1 defined via different c values

inF2n as follows:

P2:a,b,y1 = {L2:a,b,y1;c | c ∈F2n } .

The opposite notion to a partition is a bunch: It conveys information about how a current query

f 1(a,b) might lead to an immediate collision. For all preceding and (a,b)-compatible (c j ,d j) ∈Q,

for some integer j ≥ 1, the bunch of interest is the collection of lines

B1:(a,b)(Q) =
{
L1:c j ,d j ,y2: j ;a | y2: j = f 2(c j ,d j) , (c j ,d j , y2: j) ∈Q∧ (c j ,d j) compatible with (a,b)

}
.

104

5.2. Proof of Collision Resistance (Theorem 5.1.6)

(We also write B1:i if the i ’th query is an f 1-query (a,b).) The idea is that the answer y1 = f 1(a,b)

specifies a point on each of these lines to be added to the yield set; we refer to this as realizing the

bunch. For the record, B2:(c,d)(Q) is defined analogously:

B2:(c,d)(Q) =
{
L2:a j ,b j ,y1: j ;c | y1: j = f 1(a j ,b j) , (a j ,b j , y1: j) ∈Q∧ (a j ,b j) compatible with (c,d)

}
.

Both partitions and bunches will be our central tools while we analyze collinearity, in particular the

event badcl[κ](Q) and Pr[E2].

Degenerate Partitions

We have seen that a partition contains a set of parallel lines. If different choices of a lead to different

lines, the lines compatible to (c,d) necessarily partition the output plane (justifying our terminology).

It is possible however that regardless of the a values, we end up with identical lines (though with

a different parametrization). In such a case, a partition collapses to a single line and we speak of a

degenerate partition 7.

A degenerate partition causes problems in our proof, because it allows an adversary to create many

collinear points (by ranging over a). Let baddp(Q) denote the event that Q gives rise to a degenerate

partition (either via different a or c values). The following proposition states an upper bound for

Pr
[
baddp(Q)

]
.

Lemma 5.2.1 (Degenerate partitions). Let Q be generated by an adaptive adversary, then

Pr
[
baddp(Q)

]≤ q

2n−1 ,

and if

ω11ω23 6=ω13ω21 , ω12ω24 6=ω14ω22 , ω11ω25 =ω15ω21 and ω12ω25 =ω15ω22 ,

then

Pr
[
baddp(Q)

]= 0 .

Proof. Let us fix c,d and y2 such that y2 = f 2(c,d). It follows from (5.3) that a partition P1:c,d ,y2 ,

corresponding to (c,d) with y2 = f 2(c,d), is degenerate if and only if the vectors(
ω11

ω21

)
and

(
ω13 + y2ω15

ω23 + y2ω25

)

are collinear. As both vectors are non-zero, collinearity is equivalent to the condition that

(ω11ω23 −ω13ω21)+ y2(ω11ω25 −ω15ω21) = 0 .

If

ω11ω23 −ω13ω21 6= 0 yet ω11ω25 −ω15ω21 = 0

7. Indeed, our attack from Section 5.1.2 against the feedforward-less version of Cpost exploits degenerate partitions
where all the output points lie on the same line.

105

Chapter 5. A Compression Function Exploiting Discrete Geometry

this equation has no solution for y2 and, consequently, no degenerate partition P1:c,d ,y2 can exist.

(Note that the above argument is independent from the choice of c,d and y2 and it holds for any

given such triple.) Otherwise, there is at most one solution and, for a given f 2-query, it is returned

with probability 2−n . The case for f 1-queries follows from (5.4) by symmetry. Then,

(ω12ω24 −ω14ω22)+ y1(ω12ω25 −ω15ω22) = 0

has to be avoided. As there are in total 2q queries (q to each of f 1 and f 2), a union bound leads to

the stated upper bound. We remark that the analysis of this event can also be performed by using

Proposition 3.3.6; we only need to define E(Q) = baddp(Q) and proceed accordingly.

Parallel Partitions

Now we define another bad event, parallel partitions, that can potentially help a collision-finding

adversary create collinear points. We have seen that, once answered, a single f 2-query (c,d) deter-

mines a well-defined slope for the partition P1:c,d ,y2 . If two or more distinct partitions (of the same

type) have the same slope, we call the partitions parallel. Specifically, µ> 1 parallel partitions exist if

there exist distinct (ci ,di) for i = 1, . . . ,µ such that

f 2(c1,d1) = ·· · = f 2(cµ,dµ) = y2 .

The case for the parallel partitions due to f 1-queries is defined analogously.

Parallel partitions can be exploited by an adversary to create collinear points. Assume there exist

µ > 1 parallel partitions (without loss of generality) P1:c1,d1,y2 , . . . ,P1:cµ,dµ,y2 . The idea is to pick a

line, say, L1:c1,d1,y2;a1 ∈ P1:c1,d1,y2 and then to choose the same line from the remaining partitions

P1:c2,d2,y2 , . . . ,P1:cµ,dµ,y2 by selecting the correct a values that result in L1:c1,d1,y2;a1 , i.e., L1:c1,d1,y2;a1 =
. . . =L1:cµ,dµ,y2;aµ . In turn, this process makes the corresponding points f 1(ai ,bi) (for i = 2, . . . ,µ) lie

on the line that was selected.

The number of parallel partitions is tightly related to a standard occupancy problem. Consequently,

avoiding parallel partitions altogether is not realistic, yet we can put reasonable bounds on too much

parallelism occurring. This suffices for our bounding of collinear points. We define badpp[µ](Q) to be

the event when Q results in at least µ parallel partitions (of identical type). The following lemma

serves for stating an upper bound for Pr
[
badpp[µ](Q)

]
.

Lemma 5.2.2 (Parallel partitions). Let Q be generated by an adaptive adversary, then

Pr
[
badpp[µ](Q)

]≤
(q
µ

)
2(µ−1)n−1

for any integer µ> 0 .

Proof. Without loss of generality, let us consider the parallel partitions due to f 2-queries only (the

other case is disjunct and similar). We begin with the base case µ = 2. In order for two partitions

(corresponding to y2 = f 2(c,d) and y ′
2 = f 2(c ′,d ′)) to be parallel, it is necessary and sufficient that

106

5.2. Proof of Collision Resistance (Theorem 5.1.6)

the slope vectors (
ω13 + y2ω15

ω23 + y2ω25

)
and

(
ω13 + y ′

2ω15

ω23 + y ′
2ω25

)
are collinear. The latter is equivalent to

(y2 − y ′
2)(ω13ω25 −ω15ω23) = 0 .

Given that the determinant is non-zero (see condition C1 in Table 5.1), this boils down to the

condition that y2 = y ′
2

8. Hence, the probability of having µ= 2 parallel partitions can be bounded

from above by a straightforward collision bound
(q

2

)
/2n . The case for arbitrary µ follows similarly

from the above analysis; it requires in particular a µ-way collision among the y2 values (explaining

the stated bound after taking into account the analogous f 1-case as well).

Local Collinearity

Now we discuss another auxiliary event that is used in our collinearity analysis. Suppose an f 1-query

results in y1 = f 1(a,b). We associate with this query-response pair a point (a, y1) ∈ F2
2n . Let badlc[λ](Q)

be the event that there exist at least λ pairs of f 1-queries (ai ,bi) with distinct ai values, such that the

associated points (ai , y1:i) are collinear or, alternatively, that there exist at least λ pairs of f 2-queries

(ci ,di) with distinct ci values, such that the points (ci , y2:i) are collinear. We use the following lemma

for bounding Pr
[
badlc[λ](Q)

]
.

Lemma 5.2.3 (Local collinearity). Let Q be generated by an adaptive adversary, then

Pr
[
badlc[λ](Q)

]≤ (q
λ

)
2(λ−2)n−1

for any integer λ> 0 .

Proof. Without loss of generality, let us consider local collinearity due to f 1-queries. Selecting λ pairs

(a,b) out of q f 1-queries with distinct a values can be done in at most
(q
λ

)
different ways; and for

any λ pairs of queries, the probability that the corresponding points lie on the same line is 1/2(λ−2)n :

Once two of the y1 values for the corresponding a values are specified, the remaining y1 values are

determined uniquely. Local collinearity due to f 2-queries is similar; applying a union bound gives

the stated claim.

Target Local Collinearity

For local collinearity, we are interested in any λ associated points being collinear, without worrying

about which line they are on. However, in an upcoming case we are only interested in points all lying

on a line with a pre-specified slope (the offset of the line is not fixed in advance). Let badslc[γ](Q)

be the event that Q[1] or Q[2] leads to more than γ associated points collinear with pre-specified,

non-vertical, slope (where the slopes for Q[1] and Q[2] might differ). Lemma 5.2.4 provides an upper

bound for Pr
[
badslc[γ](Q)

]
.

8. Our attack in Section 5.1.2 against the linear version of Cpost, whereω15 =ω25 = 0, indeed exploits parallel partitions.

107

Chapter 5. A Compression Function Exploiting Discrete Geometry

Lemma 5.2.4 (Target local collinearity). Let Q be generated by an adaptive adversary, then

Pr
[
badslc[γ](Q)

]≤
(q
γ

)
2(γ−1)n−1

for any integer γ> 0 .

Proof. The proof follows from Lemma 5.2.3 taking into account the fact that the fixed slope and a

single point is sufficient to determine all the remaining points.

5.2.3 Bounding Collisions: Focusing on Pr[E1] and Pr[E3]

We now have all the tools required in the subsequent sections to finalize the proof of Theorem 5.1.6;

hence starting with this subsection, we can proceed on the road map we provided in Figure 5.3.

We begin our analysis with upper bounding the probabilities of the events E1 and E3 given in (5.2).

Firstly, we provide an upper bound for

Pr[E1] = Pr[collI (Q)∧¬badcl[κ](Q)]

in Lemma 5.2.5. Secondly, we analyze

Pr[E3] = Pr[collI I (Q)]

in Lemma 5.2.6.

Bounding Pr[E1]: We bound in the following lemma the probability of finding a collision relative

to an existing yield point, provided that there are not too many collinear points yet. Recall that

badcl[κ](Q) is set if and only if Q gives rise to more than κ collinear output points.

Lemma 5.2.5. Let i be a positive integer that satisfies i ≤ q and Let Qi be arbitrary query list that

satisfies ¬badcl[κ](Qi) (for some positive integer κ). Then the probability that the i ’th query causes a

collision with an element in yieldseth(Qi−1) can be upper bounded by niκ/2n , where ni denotes the

number of elements in Qi−1 that are compatible with the i ’th query. Moreover

Pr[E1] = Pr[collI (Q)∧¬badcl[κ](Q)] ≤ κY

2n ,

where Y = yield(q).

Proof. Each of the ni compatible elements, together with the i ’th query, defines a line such that the

random answer to the i ’th query determines which point is added to the yield set. The condition

¬badcl[κ](Qi) implies that on each of these lines, there are at most κ previous yield points. As the

underlying primitive is a random function, the answer is fully random and for a given line, one

of the previous yield points is hit with probability at most κ/2n . A union bound over the ni lines

gives the local bound niκ/2n . To obtain the major bound, we use BΣ = κY /2n (Proposition 3.3.9) as∑2q
i=1 ni ≤ Y .

108

5.2. Proof of Collision Resistance (Theorem 5.1.6)

Bounding Pr[E3]: We now bound the probability of finding an instantaneous collision with a

fresh query, first given that ¬badslc[γ](Qi) holds. Recall that badslc[γ](Q) is the event that Q[1] or

Q[2] leads to more than γ associated points collinear with a pre-specified, non-vertical slope (see

Lemma 5.2.4 for an upper bound for badslc[γ](Q)). Then we finalize our bound for Pr[collI I (Q)] using

Proposition 3.3.7 along with Lemma 5.2.4 (cf. Figure 5.3).

Lemma 5.2.6. Let i be a positive integer that satisfies i ≤ q and let Q be generated by an adaptive

adversary. Then

Pr
[
collI I (Qi)∧¬collI I (Qi−1)∧¬badslc[γ](Qi)

]≤ γ2

2n

and

Pr[E3] = Pr[collI I (Q)] ≤ qγ2

2n−1 +Pr
[
badslc[γ](Q)

]
for any integer γ> 0 .

Proof. We only bound the probability of an f 1-query (a,b) that causes an instantaneous collision;

the argument for f 2-queries is analogous. Suppose (c,d) and (c ′,d ′) are both distinct and (a,b)-

compatible, and already part of the query history so that y2 = f 2(c,d) and y ′
2 = f 2(c ′,d ′). Suppose

that y1 = f 1(a,b), then (by using the definition of output lines from (5.4) on page 103) the statement

that the two resulting outputs Z and Z ′ collide (Z = Z ′) is equivalent to(
(c − c ′)ω12 + (y2 − y ′

2)ω13

(c − c ′)ω22 + (y2 − y ′
2)ω23

)
= y1

(
(y2 − y ′

2)ω15

(y2 − y ′
2)ω25

)
. (5.5)

This implies that, for any given duo of (a,b)-compatible pairs (c,d) and (c ′,d ′), there is at most one

solution for y1 that would give rise to a collision. Moreover, (5.5) reduces to

(ω13ω25 −ω15ω23)(y2 − y ′
2)2 + (ω12ω25 −ω22ω15)(c − c ′)(y2 − y ′

2) = 0 .

As y2 = y2
′ in conjunction with (5.5) (and the completion property) would imply (c,d) = (c ′,d ′), we

can simplify it even further to (note the condition C1 from Table 5.1 for non-zero denominator)

(y2 − y ′
2) = (c − c ′)

∣∣∣∣∣ω12 ω15

ω22 ω25

∣∣∣∣∣∣∣∣∣∣ω13 ω15

ω23 ω25

∣∣∣∣∣
.

This is equivalent to saying that the points (c, y2) and (c ′, y ′
2) are on a line with pre-specified slope

(and not vertical). Given ¬badslc[γ](Qi), we know that there exist at most γ collinear points with

a prescribed slope; hence we can create instantaneous collisions only by using one of
(γ

2

)
pairs

generated among those γ points. As for each pair there is a unique y1 and the probability of hitting

the correct y1 is 1/2n , we obtain the first claim (here we use the trivial upper bound
(γ

2

)≤ γ2). The

second, however, follows from a union bound (over all f 1- and f 2-queries), along with Lemma 5.2.4

and Proposition 3.3.7.

109

Chapter 5. A Compression Function Exploiting Discrete Geometry

We finalize our overall collision resistance bound with the analysis of

Pr[E2] = Pr[¬collI I (Q)∧badcl[κ](Q)]

(cf. Figure 5.3), which is carried out in Section 5.2.4.

5.2.4 Bounding Overall Collinearity: Bounding Pr[E2]

We now turn our attention to bounding the probability of event E2, i.e., of ‘too much’ collinearity

within the yield set given that collI I (Q) does not occur. The main difficulty in establishing a good

bound for Pr[E2] is knowing how to properly separate the randomness of the f 1- and f 2-queries. After

all, each f 1-query serves simultaneously to add points to the yield set directly (based on preceding

compatible f 2-queries), as well as to set up possible future f 2-queries.

In a non-adaptive setting, the problem can be simplified considerably by rearranging the queries, so

that all f 1-queries are asked first. However, even then problems remain: Although any individual

yield point is distributed uniformly random in the output plane, two points depending on the same

f 1-query are clearly dependent. Thus, we cannot just look at the much easier problem of collinearity

among, say, Y = yield(q) points randomly distributed in the output plane.

To overcome these technical difficulties (in the adaptive setting), we use a method that we refer to as

bunching. Now, fix i and suppose the i ’th query is an f 1-query (a,b). Recall that for the f 1-query

(a,b) having ni compatible preceding f 2-queries (c j ,d j) (with y2: j = f 2(c j ,d j) for j = 1, . . . ,ni), we

define the bunch B1:i consisting of the lines L1:c j ,d j ,y2: j ;a . The answer y1 = f 1(a,b) adds a single

point to the yield set for each compatible f 2-query (c j ,d j). These ni new points lie on the lines

L1:c j ,d j ,y2: j ;a , thereby realizing the bunch B1:i . We refer to the set of freshly added points inside a

bunch as a constellation, denoted by

C1:i (Q) = {h f 1, f 2
(a,b,c j) | d j = ac j +b ∧ (c j ,d j) ∈Qi−1 ∧ (c j ,d j) compatible with (a,b)} .

In order to determine maximum collinearity within the yield set, we estimate (i) the probability of too

much collinearity occurring within a single constellation (Proposition 5.2.8) and (ii) the probability

of too many constellations being collinear (Lemma 5.2.9). Here, a set of constellations is collinear

if and only if we can choose a point from each constellation in the set such that all these selected

yield points are collinear. If we know that at most λ points are collinear within a single constellation,

and at most k constellations are collinear, we can conclude that at most κ= kλ points are collinear

overall. This is formalized in the proposition below, taking into account an additional technicality

(due to parallel partitions). Recall that badint[λ](Q) and badpp[µ] denote the events local collinearity

and parallel partitions, respectively. Proposition 5.2.7 shows that badcl[κ](Q) can be broken down

into several (monotone) sub-events, including badint[λ](Q) and badpp[µ].

Proposition 5.2.7. Let k,λ, and µ be fixed positive integers and let κ= kλ+µ. Let badint[λ](Q) be the

event that there exists a constellation containing more than λ collinear points. Let badext[k](Q) be

the event that there exists a line ` passing through more than k constellations whose bunches do not

contain `. Then (for arbitrary Q)

badcl[κ](Q) ⇒ (
badint[λ](Q) ∨ badext[k](Q) ∨ badpp[µ](Q)

)
.

110

5.2. Proof of Collision Resistance (Theorem 5.1.6)

Proof. Suppose conversely that

¬(
badint[λ](Q) ∨ badext[k](Q) ∨ badpp[µ](Q)

)
and that κ points are collinear, on some line `. We know that there are at most µ partitions parallel

to this line. Each parallel partition can only contribute to one point on `. Remove these partitions

and we know that there are at most k constellations collinear to this line and that each constellation

contains at most λ points on the line. Thus the maximum number on the line ` is kλ+µ, implying

κ≤ kλ+µ.

Bounding Collinearity Within a Single Constellation

Recall that badint[λ](Q) is the event that after all the queries, there exists a constellation (induced

by Q) containing more than λ collinear points. We can decompose this event into two auxiliary

events we introduced earlier.

Proposition 5.2.8. For arbitrary Q, if (integer) λ≥ 3 then(¬collI I (Q)∧badint[λ](Q)
) ⇒ (

baddp(Q)∨badlc[λ](Q)
)

.

Proof. For simplicity, we start our analysis with the case λ= 3; the case of an arbitrary λ follows easily.

Let Q be such that ¬collI I (Q)∧badint[3](Q) holds. Suppose that the event badint[3](Q) is caused

by collinearity within C2: j (Q), where (c,d) is the j ’th query made by the adversary to f 2 such that

y2 = f 2(c,d). (The case of collinearity within some C1:i (Q) is analogous.) Then there exist distinct

(c,d)-compatible f 1-queries (a1,b1), (a2,b2), and (a3,b3) in Q j−1, where we simplify the indexing

from e.g., ai1 to a1. Notice that ai 6= ai ′ for i 6= i ′ (otherwise we would have bi = bi ′ for i 6= i ′ by the

completion property). For i = 1,2,3, let y1:i = f 1(ai ,bi) and let the yield point (ti ,ui) be equal to the

compression function evaluated at input (ai ,bi ,c). These three output points (ti ,ui) are all distinct

due to ¬collI I (Q) and they lie on the same line if and only if

(u2 −u1)(t3 − t1) = (u3 −u1)(t2 − t1) .

Expanding the explicit form of Cpost, we obtain(
ω21 +B2(ω23 + y2ω25)

)(
ω11 +B3(ω13 + y2ω15)

)= (
ω21 +B3(ω23 + y2ω25)

)(
ω11 +B2(ω13 + y2ω15)

)
,

where Bi = (y1:i − y1:1)/(ai −a1) for i = 2,3. The above equation simplifies to

(B2 −B3)

(∣∣∣∣∣ω11 ω13

ω21 ω23

∣∣∣∣∣+ y2

∣∣∣∣∣ω11 ω15

ω21 ω25

∣∣∣∣∣
)
= 0 .

If B2 6= B3, then we obtain a unique y2 that only depends on the matrix A defining Cpost. By inspection,

it is precisely the y2 that causes degenerate partitions in event baddp(Q) (its probability is bounded

in Lemma 5.2.1). The event B2 = B3, however, occurs if and only if

y1:3 = y1:1 + a3 −a1

a2 −a1
(y1:2 − y1:1) ,

which is equivalent to the points (a1, y1:1), (a2, y1:2) and (a3, y1:3) being collinear. This corresponds to

111

Chapter 5. A Compression Function Exploiting Discrete Geometry

the local collinearity badlc[3](Q); its probability is bounded in Lemma 5.2.3. This concludes the proof

of (¬collI I (Q)∧badint[λ](Q)
) ⇒ (

baddp(Q)∨badlc[λ](Q)
)

for λ= 3. For larger λ, observe that unless baddp(Q) occurs, for any triple of points local collinearity

needs to hold, which in turn implies badlc[λ](Q).

Bounding Collinearity Between Constellations

To bound collinearity between constellations, we first consider collinearity with a given line `. More

precisely, given a line ` in the output plane, we are interested in bounding the probability that at

least k constellations are incident to `. For a line `, integer k and query history Q, let bad`−hit[k](Q)

be the event that at least k constellations are incident to `, restricted to those constellations whose

corresponding bunch does not contain `. Recall that badext[k](Q) is the event that there exists a line

` passing through more than k constellations whose bunches do not contain `.

Lemma 5.2.9. Let ` be given (also to the adversary) and let Q be generated adaptively. Then

Pr
[
bad`−hit[k](Q)

]≤ (
Y

2n

)k+1

and Pr
[
badext[k](Q)

]≤ 22n
(

Y

2n

)k+1

.

Proof. Let ctr`−hit(Q) be the number of constellations that are incident to `, again restricted to those

constellations whose corresponding bunch does not contain `. Clearly, the event bad`−hit[k](Q)

is equivalent to ctr`−hit(Q) ≥ k. Note that for any i , we have ctr`−hit(Qi)−ctr`−hit(Qi−1) ∈ {0,1} as

constellation i can be counted at most once (specifically if it is incident to `). Let hit`−hit(i) be the

event that the bunch Bi upon realization is incident to `. Suppose that ` 6∈Bi and that Bi consists

of ni lines (each containing an output point). Because ` intersects each line in a bunch in at most

one point, we obtain that

0 < Pr[hit`−hit(i)] ≤ ni

2n .

Due to yield restrictions,
∑2q

i=1 ni ≤ Y . The lemma statement follows from applying Proposition 3.3.10

with BΣ = Y /2n . The statement for Pr
[
badext[k](Q)

]
follows from the union bound over all lines `.

Proposition 5.2.10. Let k,λ, and µ be fixed positive integers with λ ≥ 3 and κ = kλ+µ. Then, for

arbitrary Q (¬collI I (Q)∧badcl[κ](Q)
)⇒ flag(Q) ,

where

flag(Q) ≡ (
badext[k](Q) ∨ badpp[µ](Q) ∨ badlc[λ](Q) ∨ baddp(Q)

)
.

Moreover,

Pr[E2] ≤ Pr[flag(Q)] ≤ Pr[badext[k](Q)]+Pr[badpp[µ](Q)]+Pr[badlc[λ](Q)]+Pr[baddp(Q)] .

112

5.3. Proof of Everywhere Preimage Resistance (Theorem 5.1.8)

Proof. For any Q, we have (using Proposition 5.2.7):(¬collI I (Q)∧badcl[κ](Q)
) ⇒ ¬collI I (Q)∧ (

badint[λ](Q)∨badext[k](Q)∨badpp[µ](Q)
)

⇒ (¬collI I (Q)∧badint[λ](Q)
)∨badext[k](Q)∨badpp[µ](Q)

(Proposition 5.2.8) ⇒ baddp(Q)∨badlc[λ](Q)∨badext[k](Q)∨badpp[µ](Q)

≡ flag(Q) .

Hence, the claim follows after using the union bound.

5.2.5 Finishing the Proof

The following corollary concludes what we have discussed so far (cf. Figure 5.3) and finishes the

proof of Theorem 5.1.6 with the help of earlier obtained bounds (Lemmas 5.2.1, 5.2.2, 5.2.3 5.2.5, 5.2.6

and 5.2.9).

Corollary 5.2.11. Let Q be generated by an adaptive adversary, then

Pr[coll(Q)] ≤ Pr[collI (Q)∧¬badcl[κ](Q)]+Pr[collI I (Q)]+Pr
[
flag(Q)

]
,

where Pr
[
flag(Q)

]
can be upper bounded by

Pr
[
flag(Q)

]≤ Pr
[
badext[k](Q)

]+Pr
[
badpp[µ](Q)

]+Pr
[
badlc[λ](Q)

]+Pr
[
baddp(Q)

]
.

Here, the last term Pr
[
baddp(Q)

]
is optional (depending on the matrix A).

Proof. The proof follows from the decomposition of the collision event given in (5.2)

coll(Q) ⇒ (
collI (Q)∧¬badcl[κ](Q)

)︸ ︷︷ ︸
E1

∨ (¬collI I (Q)∧badcl[κ](Q)
)︸ ︷︷ ︸

E2

∨ collI I (Q)︸ ︷︷ ︸
E3

,

together with the use of union bound.

5.3 Proof of Everywhere Preimage Resistance (Theorem 5.1.8)

Here, assuming familiarity with the notions introduced in Section 5.2, we prove Theorem 5.1.8.

Moreover, we assume that the conditions on the matrix A provided in Table 5.1 are satisfied. Let Z be

the target digest to be inverted and let A be a preimage-finding adversary that asks at most q queries

to each of the public random functions f 1 and f 2. Our goal is to bound Advepreh (A), in particular

the probability of the event epreZ (Q). Similar to the collision resistance proof, we first bound the

probability of finding a preimage on the i ’th query (either to f 1 or f 2), conditioned on an auxiliary

event not having occurred yet (Lemma 5.3.1). Then, we finalize the proof by bounding the probability

of the auxiliary event (Lemma 5.3.2).

Now, for a set of queries Q, let bad(1)
κ (Q) be the event that there exists a bunch B1:(a,b) (obtained

from queries in Q only) having more than κ> 1 lines passing through Z . Similarly, let bad(2)
κ (Q) be

the event that there exists a bunch B2:(c,d) (obtained from queries in Q only) that has more than κ

113

Chapter 5. A Compression Function Exploiting Discrete Geometry

lines passing through Z . We define

F(Q) ≡ badκ(Q) ≡ (
bad(1)

κ (Q)∨bad(2)
κ (Q)

)
.

Lemma 5.3.1. Let Cpost be the postprocessing function from Construction 5.1.1 (with non-degenerate

lines only) and Cpre be any preprocessing function that satisfies the completion property. Then

Pr
[
epreZ (Qi) | ¬epreZ (Qi−1)∧¬badκ(Qi)

]≤ κ

2n

for any positive integers κ> 1 and i ≤ q .

Proof. Consider the i ’th query; assume that it is an f 2-query, so y2 ← f 2(c,d) (the f 1-case is anal-

ogous). Due to the condition ¬badκ(Qi), we know that there are at most κ lines from the bunch

associated to (c,d) that go through Z . Next, it follows from (5.4) that for each of these lines, there is a

unique y∗
2 that leads to the target preimage Z . As the probability that y2 = y∗

2 is 1/2n , a union bound

(over at most κ lines) results in the desired probability.

Lemma 5.3.2. Let Cpost be the postprocessing function from Construction 5.1.1 (with non-degenerate

lines only) and Cpre be any preprocessing function that satisfies the completion property. Then

Pr[badκ(Q)] ≤ 2n+1

(
q

κ

)(
1

2n−1

)κ
+Pr

[
baddp(Q)

]
for any positive integer κ> 1 .

Proof. Without loss of generality, we concentrate on bad(2)
κ (Q) (the analysis of the event bad(1)

κ (Q) is

symmetric); for a fixed pair (c,d) consider the event Z ∈L2:a,b,y1;c for any (c,d)-compatible f 1-query

pair (a,b) chosen by the adversary. Using (5.4) and exploiting the non-degeneracy of the output lines,

we obtain that Z ∈L2:a,b,y1;c if and only if

Z =
(

z1

z2

)
=

(
aω11 + cω12 + y1ω13

aω21 + cω22 + y1ω23

)
+ y2

(
ω14 + y1ω15

ω24 + y1ω25

)

for some y2 ∈F2n . This holds if and only if the vectors(
z1

z2

)
−

(
aω11 + cω12 + y1ω13

aω21 + cω22 + y1ω23

)
and

(
ω14 + y1ω15

ω24 + y1ω25

)

are collinear. This condition reduces, after several standard algebraic manipulations, to

y2
1

∣∣∣∣∣ω13 ω15

ω23 ω25

∣∣∣∣∣+y1

(∣∣∣∣∣ω14 ω13

ω24 ω23

∣∣∣∣∣− c

∣∣∣∣∣ω12 ω15

ω22 ω25

∣∣∣∣∣−a

∣∣∣∣∣ω11 ω15

ω21 ω25

∣∣∣∣∣+
∣∣∣∣∣z1 ω15

z2 ω25

∣∣∣∣∣
)
−

∣∣∣∣∣z1 ω14

z2 ω24

∣∣∣∣∣+a

∣∣∣∣∣ω11 ω14

ω21 ω24

∣∣∣∣∣+c

∣∣∣∣∣ω12 ω14

ω22 ω24

∣∣∣∣∣= 0 .

Therefore, there exist at most two y1 values (because ω13ω25 6=ω15ω23 due to non-degeneracy of

the output lines; see condition C1 in Table 5.1) satisfying Z ∈ L2:a,b,y1;c for any (c,d)-compatible

f 1-query pair (a,b).

In general, once κ different (c,d)-compatible f 1-query pairs are specified (along with the target

114

5.3. Proof of Everywhere Preimage Resistance (Theorem 5.1.8)

digest Z), κ quadratic equations need to hold, each having at most two solutions. As choosing κ

distinct (c,d)-compatible f 1-query pairs can be done in at most
(q
κ

)
ways and the f 1 outputs are

uniformly and independently drawn over {0,1}n , we get the probability(
q

κ

)(
1

2n−1

)κ
in order for the bunch B2:(c,d)(Q) to have at least κ lines containing Z . We remark here that this

holds under the assumption that there exist no degenerate partitions. A set of lines would collapse

to a single line otherwise; thus, once a single line contains Z , then so does the entire degenerate

partition. Note also that the above analysis is independent of d and y2; only c values are counted.

As A can choose c values in 2n possible ways, we can use a union bound over all c values to get an

overall bound. Moreover, considering the symmetric event bad(1)
κ (Q) in turn gives

Pr
[
badκ(Q)|¬baddp(Q)

]≤ 2n+1

(
q

κ

)(
1

2n−1

)κ
.

The claim follows from

Pr[badκ(Q)] ≤ Pr
[
badκ(Q)|¬baddp(Q)

]+Pr
[
baddp(Q)

]
.

We conclude the proof of Theorem 5.1.8 by summing up various bounds we obtain from Lemmas 5.3.1

and 5.3.2.

An Attack (Almost) Matching the Bound

Theorem 5.1.8 guarantees that an adversary limited (asymptotically in n) to O (2n(1−δ)) queries

(for any δ> 0) has a disappearing advantage to find preimages; it is clearly suboptimal for a DBL

compression function construction. Unfortunately, this is inherent to the construction and not an

artifact of the proof: Indeed the proof itself is almost constructive in giving an attack with advantage

at least q/2n as well, as exploited below.

Claim 5.3.3. Let h f 1, f 2
be the compression function given in Construction 5.1.1 and let Z be an

arbitrary target digest. Then, a preimage for Z under h f 1, f 2
can be found with reasonable probability

after O (2n) queries.

Proof. Consider the following preimage-finding adversary A on input target digest Z . Let A ran-

domly pick an f 2-query (c,d) and obtain its response y2 = f 2(c,d). This defines a partition P1:c,d ,y2 .

Unless the partition is degenerate (which happens with negligible probability), there is a unique

a value such that the line L1:c,d ,y2;a contains Z . Choose this a and the (unique) b such that (a,b)

is (c,d)-compatible and query f 1(a,b). The probability (over f 1) of hitting Z is 1/2n as the output

point is randomly assigned for the generated line. Hence after iterating this procedure 2n times, a

preimage is expected with reasonable probability. Note that the attack is (mildly) adaptive, has virtu-

ally no overhead (so the time-complexity matches the query-complexity and memory consumption

is negligible) and parallelizes trivially.

115

Chapter 5. A Compression Function Exploiting Discrete Geometry

5.4 Blockcipher-Based Instantiation

When instantiating (the primitives used by) the compression function from Construction 5.1.1 with

(ideal) blockciphers, there are several ways to proceed. We only discuss two, an insecure and a

possibly (we leave the security proof for this construction as a future work) secure way. Note that

the original PuRF-based proof is no longer valid once the underlying primitives are replaced by

ideal blockciphers, mainly due to the availability of decryption queries, as exploited by the following

attack.

5.4.1 Straightforward Adaptation

Let the double-call DBL blockcipher-based compression function hE 1,E 2
(Definition 2.3.8 with m =

κ= n and s = 2n) be defined by the same Cpre and Cpost as in Construction 5.1.1 by setting f 1(a,b) =
E 1

b(a) and f 2(c,d) = E 2
d (c). This leads to an insecure instantiation, as illustrated by the following

attack.

Claim 5.4.1. For the compression function hE 1,E 2
defined by the same Cpre and Cpost as in Con-

struction 5.1.1, collisions can be found with high probability using O (2n/2) queries and O (2n/2) time

(asymptotically in n).

Proof. We sketch two possible attacks by making use of the decryption oracle to generate all yield

points on the very same line (hence limiting the possible number of compression function outputs

to 2n). The trick is suggested by our collision resistance proof (in the PuRF setting), where we can

easily violate the specific conditions required in the proofs of two of the auxiliary degenerate events,

i.e., degenerate partitions and parallel partitions (in Lemmas 5.2.1 and 5.2.2, respectively). In the

PuRF scenario, it is indeed hard to satisfy the corresponding bad events, but for the given blockcipher-

based instantiation we have the freedom to call decryption oracles. Take for instance the y2 condition

from Lemma 5.2.1 that leads to a degenerate partition.

If ω11ω25 6=ω15ω21 then we can simply ask the decryption of y2 (with any key) to cause the condition.

This allows an adversary to adaptively construct compatible (a,b)–(c,d)-pairs in such a way that the

corresponding output points are collinear. This reduces the collision search to a line (of containing 2n

points). As the output points are uniformly distributed on this line, the birthday bound applies and a

collision is expected after O (2n/2) steps.

If ω11ω25 =ω15ω21, however, we cannot exploit degenerate partitions. Yet, it is still possible to attack

the plain blockcipher-based instantiation; this time using parallel partitions. First note that we can

easily create µ> 1 parallel partitions (say P1:c,d ,y2 , without loss of generality) by using a single cipher-

text as we are just aiming for collisions in the ciphertexts, which are trivial to generate (i.e., choose a

single y2 and call D2 µ times with µ different keys).

Turning the above observation into a collision attack is again based on creating collinear output

points: We first fix both the partition P1:c,d ,y2 and a line L1:c,d ,y2;a ∈P1:c,d ,y2 . Then, we pick a random

d ′ 6= d , query D2
d ′(y2) and obtain the corresponding unique c ′ = D2

d ′(y2) (now we are in a partition

parallel to P1:c,d ,y2). Next, we select the a′ value that corresponds to the line L1:c,d ,y2;a in the newly

generated partition (note L1:c,d ,y2;a =L1:c ′,d ′,y2;a′). Finally, we obtain the unique corresponding b′

and query E 1
b′(a′). The result lies on L1:c,d ,y2;a thanks to the way we have chosen our queries. As the

116

5.5. Practical Considerations and Comparison

output points created this way will all be collinear yet random (as the outputs of E 1 are random),

collisions are expected with high probability after repeating the above procedure 2n/2 times (due to

the birthday paradox).

5.4.2 “DM”plified Version

In order to thwart the above-mentioned weaknesses, we suggest (without a security proof) using

the underlying blockciphers in the Davies–Meyer mode, i.e., we feedforward the plaintext into the

ciphertexts via (field) addition. Note that there is no need to change Cpre; the only modification is

required in Cpost.

Construction 5.4.2. Let E 1,E 2 ∈ Block(n,n) be fixed randomly and independently sampled blockci-

phers. Define the double-call DBL blockcipher-based compression function hE 1,E 2
: {0,1}3n → {0,1}2n

(Definition 2.3.8 with m = κ= n and s = 2n) by using the preprocessing function Cpre : F3
2n →

(
F

2
2n

)2
,

where

Cpre = (
Cpre

1 ,Cpre
2

)
, Cpre

1 (a,b,c) = (a,b) and Cpre
2 (a,b,c) = (c, ac +b)

and the postprocessing Cpost : F5
2n →F

2
2n ,

Cpost(a,b,c, y1, y2) = A ·


a

c

a + y1

c + y2

(a + y1)(c + y2)

 , where A =
(
ω11 ω12 ω13 ω14 ω15

ω21 ω22 ω23 ω24 ω25

)

is the same matrix given in Section 5.1.1.

5.5 Practical Considerations and Comparison

By design, our construction consists of a number of XOR operations (to implement the matrix

multiplication) plus two multiplications in the finite fieldF2n : one during the preprocessing and

one during the postprocessing. In the following, we briefly present two ways of optimizing the

performance of our construction in the iteration (we focus on the blockcipher-based instantiation

and aim to see the performance of it; note that we do not make security claims for this case).

Depending on the platform (and relative constraints), we may benefit from either method. A more

in-depth performance analysis of our design is left mainly unexplored.

Firstly, we focus on reducing the overhead of the two (full) finite field multiplications; they consist of

the major computational overhead compared to existing compression function constructions. Sec-

ondly, we attempt to run several key-scheduling units simultaneously to reduce the effect of multiple

(and sequential) re-keying. The second approach is particularly important for the architectures that

support the AES instruction-set (AES-NI) 9. Indeed, as exploited by the recent comprehensive perfor-

mance comparison (by Bos et al. [35]) of AES-driven DBL hash functions on modern architectures

that support the AES-NI, reducing the cost of the key-scheduling is a key factor to obtain an efficient

scheme.

9. AES key-scheduling requires roughly 1.5 times more cycles to compute than encryption when AES-NI is used [35].

117

Chapter 5. A Compression Function Exploiting Discrete Geometry

Let us define (a,b||c) ← (Mi , vi−1) (see Definition 2.2.1 for the notation) and look at the overall

overhead by using the proposed matrix A from Section 5.1. It is not too difficult to see that we can run

simultaneously the full finite field multiplications y1 y2 and ac that appear at the i ’th and (i +1)’st

iterations, respectively. Furthermore, at each compression function evaluation, two blockcipher calls

can be made independently. The remaining overhead is simply a few XOR instructions required for

the matrix multiplication (together with some loading and storing) that we can safely assume to be

negligible. All in all, the performance in the Merkle–Damgård iterated hash function (when used

with our compression function) is expected to be determined by two parallel blockcipher calls (along

with the corresponding key-scheduling units) plus two parallel (full) finite field multiplications.

Here we describe our second optimization where our major goal is to reduce the effect of frequent key-

scheduling. Let Mi denote the message to be compressed at the i ’th iteration and let vi−1 be the state

value that is output from the (i −1)’st compression function evaluation. We treat vi−1 = (v1
i−1||v2

i−1)

(for v1
i−1, v2

i−1 ∈ {0,1}n) and define (a,b,c) ← (v1
i−1, Mi , v2

i−1). As the input block b, which is assigned

to the message block Mi , is directly fed to the key-schedule of the first blockcipher call, we can run

several key-schedules (only for E 1) in parallel for multiple iterations; hence we might reduce the

overall cost.

Previous Proposals

The only published—and not badly broken—hash functions that use a double-call DBL blockcipher-

based compression function in the same class as ours (making two parallel calls to an n-bit key, n-bit

block blockcipher) are MDC-2 [37] and MJH [105]. Although MDC-2 only has minimal overhead (a

small number of XOR operations) and calls the same blockcipher twice, its compression function

only provides a collision resistance ofΘ(2n/2) queries. The construction thus relies crucially on the

iteration to improve its security. Even then, even if MDC-2 remains essentially unbroken in the

iteration [90], the best security proof implies that we needΩ(23n/5) queries [192] to find a collision.

Similar to MDC-2, MJH can provide non-trivial collision resistance only in the iteration; currently the

best proof shows that we needΩ(22n/3−logn) queries to find a collision. Its computational overhead

consists of only a small number of XOR operations and a shift; moreover, the two blockcipher calls

have the advantage of using the same key (allowing shared key-schedule).

When allowing for two calls to a blockcipher with 2n-bit key, several proposals achieve (close to)

optimal collision resistance [65, 76, 104, 106]. Some of these constructions, such as Abreast-DM, are

built using a single blockcipher that is called twice in parallel with minimal overhead (a few XOR

operations). Usually 2n-bit key blockciphers are, both in software and hardware, more costly than

the n-bit key ones as more rounds are needed to properly disperse the key. Nonetheless, the added

cost is likely less than a full finite field multiplication.

There are also DBL compression functions that make only a single call to a blockcipher with 2n-bit

keys. Lucks [112] (see also [150]) gives a compression function that achieves near-optimal collision

resistance in the iteration, and Stam [190, 191] gives a compression function (QPB-DBL) with near-

optimal collision resistance. Lee and Steinberger [108] prove that we can replace the 3n-to-n bit PuRF

in the original construction with, instead, a cascade of two 2n-to-n bit PuRFs while maintaining

near-optimal collision resistance. This Lee–Steinberger–Stam construction has as overhead of two

full finite field multiplications, so the computational cost is similar to that of our construction.

118

5.5. Practical Considerations and Comparison

However, neither the PuRF calls nor the finite field multiplications can be made in parallel (yielding

a latency double that of our construction).

Finally, there are DBL constructions (Definition 3.2.1) based on a 2n-to-n bit primitive that make

more than two calls (per compression function evaluation). An example is Nandi et al.’s construc-

tion [129] that makes three calls (and with only two XOR operations as overhead). Furthermore,

several schemes proposed by Peyrin et al. [154] and Knudsen and Preneel [93] (with only several XOR

operations as overhead) fall into this category. For Peyrin et al.’s compression functions, collision

resistance has been established to beΘ(q3/22n) in the information-theoretic setting [180]; for the

Knudsen–Preneel schemes, precise bounds for collision resistance are still open (see Chapter 6 for

the details).

A Quick Glance at the Performance of Our Design Using AES-NI

Finally, following the methodology in [35] and instantiating the underlying blockciphers with AES-

128 (with appropriate domain separation to obtain two distinct blockciphers), we can achieve a

clear benchmark with almost all existing multi block-length hash function designs by using their

framework. We first introduce some background material.

AES AES is a member of the Rijndael blockcipher suite [51]. It was standardized by the US National

Institute of Standards and Technology (NIST) after a public competition similar to the one currently

ongoing for SHA-3. AES operates on an internal state of 128 bits while supporting 128-, 192-, and

256-bit keys. The internal state is organized in a 4×4 array of 16 bytes, which is transformed by a

round function Nr times. The number of rounds is Nr = 10 for the 128-bit key, Nr = 12 for the 192-bit

key, and Nr = 14 for the 256-bit key variants. In order to encrypt, the internal state is initialized, then

the first 128-bits of the key are XORed into the state, after which the state is modified Nr −1 times

according to the round function, followed by a slightly different final round (for the exact details see

the AES specification [51]).

The AES Instruction Set (AES-NI) In the last decade, use of the single instruction, multiple data

(SIMD) paradigm has become a general trend in computer architecture design. It enhances the speed

of software implementations by off-loading the computational work to special units that operate on

larger data types, thus improving overall throughput. In 1999, Intel introduced the streaming SIMD

extensions (SSE), a SIMD instruction set extension to the x86 architecture.

One of the latest additions to these extensions is the AES instruction set [70] available in the 2010 Intel

Core processor family based on the 32nm Intel micro-architecture named Westmere. This instruction

set will also be supported by AMD in their next-generation CPU “Bulldozer”. This instruction set

consists of six new instructions. At the same time, a new instruction for performing carry-less

multiplication was released in the CLMUL instruction set extension. We can summarize the new

instructions as follows [70]:

• AESENC and AESDEC perform a single round of encryption, respectively decryption.

• AESENCLAST and AESDECLAST perform the last round of encryption, respectively decryption.

• AESKEYGENASSIST is used for generating the round keys used for encryption.

• AESIMC is used for converting the encryption round keys to a form usable for decryption using the

119

Chapter 5. A Compression Function Exploiting Discrete Geometry

Algorithm Primitive Speed
Abreast-DM [102] AES-256 11.21
Hirose-DBL [76] AES-256 9.82
MDC-2 [37] AES-128 10.00
MJH [105] AES-128 7.45
QPB-DBL [190] AES-256 14.12
Our Construction AES-128 17.40

Table 5.2 – The performance comparison of certain DBL compression function designs that compress
128-bit message blocks and output 256-bit digest. The primitive employed and the achieved speed (in
cycles per byte) using the AES instructions are shown in the second and third column, respectively.

Equivalent Inverse Cipher.

• PCLMULQDQ performs carry-less multiplication of two 64-bit operands to an 128-bit output.

Based on preliminary analysis, our (not very optimized) implementation achieves 17.40 cycles/byte

(on an Intel Core i5 650 (3.20GHz)) using C intrinsics and the recent AES instruction set (AES-NI)

extensions. A comparison of our performance results with some of those given in [35] is presented in

Table 5.2. We leave a more detailed exploration of the performance of our construction as an open

problem.

120

6 On the Security of Knudsen–Preneel
Compression Functions

This chapter offers a new security analysis of the Knudsen–Preneel (KP) construction [91–93] (see

also the background from Section 2.3.5) when the underlying compression functions are modeled

as public random functions (PuRFs). Recall that Knudsen–Preneel compression functions make

use of an [r,k,d] linear error-correcting code overF2e (for e > 1) to build a compression function

from underlying blockciphers operating in the Davies–Meyer mode. From a security point of view,

Knudsen and Preneel show that, in the complexity-theoretic setting, finding collisions takes time

at least 2(d−1)n/2 for their constructions [93, Theorem 4]. Preimage resistance, however, is simply

conjectured to be the square of the collision resistance.

In this chapter, we study both the KP-conjectured preimage resistance and the claimed collision

resistance bounds: We describe new attacks, taking into account both query- and time-complexity

(and to a lesser extent space-complexity). The relevant complexities (ignoring constants and factors

that are polynomial in n) of our attacks, as well as the KP-parameters in question, are summarized

in Table 6.1. We note that our attacks are not specific to the cases where the underlying PuRFs are

2n → n or 3n → n. For instance, as we detail in Appendix C, they also work against the compression

functions suggested by Knudsen and Preneel with PuRFs that compress 5n-bit to n-bit 1.

Our secondary result is a preimage-resistance security proof for the Knudsen–Preneel compression

functions. In Theorem 6.3.14, we determine a lower bound on the query-complexity of preimage-

finding attacks, including attacks mounted by computationally unbounded adversaries. The theorem

gives a concrete bound, and a related corollary (Corollary 6.3.15) provides an asymptotic assessment

of the bound that is easier to grasp. In particular, it shows that the query-complexity of our new

preimage attack is essentially optimal (up to the factors that are polynomial in n).

Because the lower bounds on the query-complexity serve as ‘best case’ lower bounds for the com-

plexity of real-world attacks, we can conclude that our new preimage-finding attack is optimal

whenever the time-complexity of our attack matches its query-complexity. This happens for 9 out of

the 16 schemes: for the seven MDS schemes with d = 3, and for codes [8,5,3]4 and [12,9,3]4. For the

remaining seven schemes, we leave a gap between the information-theoretic lower bound and the

real-life upper bound (i.e., the attack that we are able to achieve). For our optimized collision attacks,

we can show that for 12 out of 16 suggested parameters, we can mount a collision attack whose

time-complexity matches its query-complexity (ignoring constants and factors that are logarithmic

1. This parameter mimics MD4 and MD5 compression function.

121

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

Collision Resistance Preimage Resistance
New Results KP Claim New Results KP Conjecture

Code Compression Our Attack KP (Time) Our Attack KP (Time)
Function Complexity Lower Complexity Lower

Query Time Bound Query Time Bound

[r,k,d]2e 2kn/(3k−r) Sec. 6.4 2(d−1)n/2 2r n/k Sec. 6.3 2(d−1)n

[5,3,3]4 (5+1)n → 5n 23n/4 23n/4 2n 25n/3 25n/3 22n

[8,5,3]4 (8+2)n → 8n 25n/7 25n/7 2n 28n/5 28n/5 22n

[12,9,3]4 (12+6)n → 12n 23n/5 23n/5 2n 24n/3 24n/3 22n

[9,5,4]4 (9+1)n → 9n 25n/6 25n/6 23n/2 29n/5 211n/5 23n

[16,12,4]4 (16+8)n → 16n 23n/5 24n/5 23n/2 24n/3 27n/3 23n

[6,4,3]16 (6+2)n → 6n 22n/3 22n/3 2n 23n/2 23n/2 22n

[8,6,3]16 (8+4)n → 8n 23n/5 23n/5 2n 24n/3 24n/3 22n

[12,10,3]16 (12+8)n → 12n 25n/9 25n/9 2n 26n/5 26n/5 22n

[9,6,4]16 (9+3)n → 9n 22n/3 22n/3 23n/2 23n/2 22n 23n

[16,13,4]16 (16+10)n → 16n 213n/23 220n/23 23n/2 216n/13 22n 23n

[4,2,3]8 (4+2)n → 4n × × 2n 22n 22n 22n

[6,4,3]8 (6+6)n → 6n 22n/3 22n/3 2n 23n/2 23n/2 22n

[9,7,3]8 (9+12)n → 9n 27n/12 27n/12 2n 29n/7 29n/7 22n

[5,2,4]8 (5+1)n → 5n × × 23n/2 25n/2 23n 23n

[7,4,4]8 (7+5)n → 7n 24n/5 24n/5 23n/2 27n/4 29n/4 23n

[10,7,4]8 (10+11)n → 10n 27n/11 29n/11 23n/2 210n/7 22n 23n

Table 6.1 – Knudsen–Preneel constructions (cf. [93, Table V and VIII]) based on a 2n-to-n and 3n-to-n
bit primitive (PuRF), their (incorrect) collision resistance claim, (incorrect) preimage resistance
conjecture and our findings, are summarized. Non-MDS (forF22) and Watanabe-resistant parame-
ters (forF23) are given in italics. The symbol × shows that our techniques are not applicable to the
corresponding codes. Our attacks serve as an upper bound on the level of collision and preimage
resistance.

in n). We leave the information-theoretic security proof for collision resistance as an open problem.

From a practical point of view, the time-complexities of our attacks are better than the previously best

known attack (Knudsen and Preneel for preimages [93], Watanabe for collisions [205]) in every case

but two, specifically when the code is either [4,2,3]8 or [5,2,4]8; in both cases we match the original

preimage attack. Moreover, we show that this is optimal for [4,2,3]8. A disadvantage of our attacks is

their relatively high space-complexity, which is typically higher than that of previous attacks.

From a theoretical point of view, our attacks go well below the conjectured (for finding preimages) and

the proven (for finding collisions) time-complexity lower bound. This demonstrates the incorrectness

of the bounds claimed (for collision resistance) and conjectured (for preimage resistance) by Knudsen

and Preneel. As a result, we conclude that with the possible exception of two of the proposed

parameter sets (i.e., [4,2,3]8 and [5,2,4]8), the Knudsen–Preneel compression functions do not

achieve the security level they were designed for.

The Preimage Attack in Detail We begin with the simple observation that (0a ||x1)⊕(0a ||x2) yields

a string of the form (0a ||X) (cf. the proof of Theorem 3.2.3). More generally, any linear combination

of strings with the same pattern of fixed zero bits will yield a string of the same form. By restricting

PuRF queries to strings with the same (blockwise) pattern we can optimize the yield of these queries

(in particular yield(q), see Definition 2.3.1), or the maximum number of KP compression function

122

evaluations an adversary can compute for a given number of queries. This observation allows us

to reduce the query-complexity of a preimage-finding attack to the (proven) bare minimum and,

notably, also allows the attack to be non-adaptive.

When mounting our reduced-query attack against a KP construction with parameters [r,k,d]2e , the

result is r lists with partial preimages (under each of the PuRF) and a full preimage is expected

to ‘hide’ among these lists. That is to say, when we consider all possible combinations of partial

preimages, some will correspond to a codeword and others will not. To reduce the time-complexity

of our attack, we need to be able to find a codeword efficiently among all possibilities.

Finding full preimages from the lists of partial preimages is the core innovation of our attack. (Sec-

tion 6.3 gives the details.) We exploit the fact that codewords in the dual code can be used to express

relations among PuRF-inputs that correspond to a preimage. We also leverage known techniques for

solving the generalized birthday problem (see e.g., [41, 47, 179, 200]) in order to prune the partial-

preimage lists and, consequently, find a preimage for the compression function faster (than a naive

approach or that of KP).

Here is a concrete example to give some quick, initial intuition. For the [5,3,3]4 code given by

Knudsen and Preneel [93, Section C], we observe that the (four) inputs to the PuRFs satisfy the

equation x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0 (cf. Example 6.1.3). This relationship extends to the lists of partial

preimages, so we begin by enumerating all solutions to this equation using the elements of the first

four lists. This takes only quadratic time in the size of the lists because we can look for collisions

x1 ⊕ x2 = x3 ⊕ x4 instead. We finalize the preimage search by checking whether or not any of these

solutions can be extended in a way that their fifth component x5 is in the fifth final list of partial

preimages. If so, we have found a preimage.

Upon closer inspection, the relation used in this example corresponds to a codeword in the dual code.

We will see that using a dual codeword of minimal distance allows the ‘merge’ stage of the attack

(i.e., enumerating all solutions) to be the most efficient. Thus the minimum dual distance plays

an important role in expressing the complexity of our attack. Furthermore, for maximum distance

separable (MDS) codes, we show that one merge stage is sufficient, and we can finalize the preimage

search straight away (as in the example above). For non-MDS codes a second stage of merging might

be necessary to improve the overall complexity of the preimage-finding attack. In the non-MDS case

expressing algebraically the time-complexity becomes a bit difficult; nevertheless, it is always easy to

evaluate, given the generator matrix (of the linear code) that defines the compression function.

Finally, we note that our attacks should carry over to the blockcipher setting without much extra

work; adapting the security proofs rigorously is less straightforward. The attacks also carry over to

the iterative setting, provided the adversary gets to choose the initial vector; for a fixed IV we do not

believe that our attacks work very effectively. However, a faster preimage attack on the compression

function, as we present it, can be used in the Lai–Massey meet-in-the-middle attack [102].

The Collision Attacks in Detail For our improved collision attacks, we mainly follow in the foot-

steps of our preimage attack, yet with some subtle differences, e.g., to incorporate the idea under-

pinning Watanabe’s collision attack (Algorithm 6.4.4). To this end, the mise en place in Section 6.4.1

provides a detailed mathematical characterization of the preprocessing function of the Knudsen–

Preneel compression functions. As a first simple result, this allows us in Section 6.4.2 to revise the

123

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

attack of Watanabe in a way that slightly reduces the time requirements, yet significantly increases

the number of collisions it can produce. More precisely, after an initial effort of d2n , we can generate

(up to) 2c(k−d)n collisions in constant time (for k > d).

In our revised version of Watanabe’s attack (see Section 6.4.2), we also arrive at a new, symbiotic

collision-finding attack (Algorithm 6.4.9) with time-complexity 2dn/(d+1). The attack is a combination

of the ideas of Watanabe’s attack and our preimage attack and works whenever d ≤ k (so the same

two codes [4,2,3]8 and [5,2,4]8 as in Watanabe’s case are excluded from our attack). Even more

important is that if the inequality is strict; in other words, if d < k, the adversary can create further

collisions (like our revised Watanabe attack) in constant time (up to 2c(k−d)n collisions).

In Section 6.4.3 we introduce a novel parametrized information-theoretic collision attack (Algo-

rithm 6.4.12). It turns out that the new symbiotic attack and the standard yield-based information-

theoretic collision attack (Proposition 6.2.1) are both on opposite ends of the spectrum of parametrized

attacks, yet optimality is typically achieved somewhere in the middle—with [4,2,3]8 and [5,2,4]8 as

sole exceptions—yielding query-complexity 2kn/(3k−r).

Our final contribution (presented in Sections 6.4.5 and 6.4.6) is a reduced-time variant of our opti-

mized (parametrized) attack above. For this, we use the same ideas as in our preimage attack, but

with a significant twist: This time we use the dual code of the shortened code to search for collisions.

As a result, for 12 out of 16 (KP) suggested parameters, we can mount a collision attack whose

time-complexity matches its query-complexity (ignoring constants and factors that are logarithmic

in n). Even better, only for [4,2,3]8 and [5,2,4]8 are we unable to surpass the time-complexity of any

prior attack we are aware of, for the rest we set new records.

6.1 The Knudsen–Preneel Hash Functions

Knudsen and Preneel [91, 92] introduce a family of hash functions employing linear error-correcting

codes (we use the journal version [93] as our frame of reference). Although their work ostensibly

targets blockcipher-based designs, the main technical thread of their work develops a transform that

extends the range of an ‘ideal’ compression function (blockcipher-based, or not) in a manner that

delivers some target level of security.

In fact, the KP transform is a special instance of a blockwise-linear scheme (Definition 3.2.2), in which

the inputs to the underlying PuRFs are determined by a linear error-correcting code over a binary

field with extension degree e > 1, i.e., F2e , and with Cpost being the identity matrix over Fr b×r b
2

(corresponding to concatenating the PuRF outputs). The extension field F2e is represented as a

sub-ring of the matrix ring (of dimension equaling the extension degree) over the base field. We

formalize this by an injective ring homomorphism ϕ :F2e →F
e×e
2 and let ϕ̄ :Fr×k

2e →F
r e×ke
2 be the

component-wise application of ϕ and subsequent identification of (Fe×e
2)r×k withFr e×ke

2 (we use ϕ̄

for matrices overF2e of arbitrary dimensions).

Definition 6.1.1 (Knudsen–Preneel transform). Let [r,k,d] be a linear error-correcting code overF2e

with generator matrix G ∈Fk×r
2e . Let ϕ :F2e →F

e×e
2 be an injective ring homomorphism and let b

be a positive divisor of e such that ek > r b. Then the Knudsen–Preneel compression function h =
KPb([r,k,d]2e) equals h=BLb(Cpre,Cpost) (see Definition 3.2.2) with Cpre = ϕ̄(GT) and Cpost = Ir b .

124

6.1. The Knudsen–Preneel Hash Functions

If h=KPb([r,k,d]2e), then hn : {0,1}kcn → {0,1}r n with c = e/b is defined for all n for which b divides n.

(As b is uniquely determined, given e and c, we often omit it.) Below is an example (Example 6.1.3)

to help illustrate this formalism. For use of h in an iterated hash function, note that per invocation

(of h) we can compress (ek/b − r) message blocks (hence the requirement ek > r b ensures actually

compression is taking place).

Remark 6.1.2. In our definition of KPb([r,k,d]e), the given parameters do not uniquely determine

the matrix Cpre (and can lead to different compression functions). We list the three freedoms:

1. Choice of a linear error-correcting code of the given parameters [r,k,d]2e .

2. Choice of a generator matrix G for the chosen code.

3. Choice of an injective homomorphism ϕ.

We concentrate on the case (b,e) ∈ {(1,2), (2,4), (1,3)} and then in particular on the 16 parameter

sets given by Knudsen and Preneel. Our results—and those of Knudsen and Preneel—are largely

unaffected by these three choices, with a possible exception for non-MDS codes, as we will see later.

(Nevertheless, the actual cost of implementing the compression function depends on the choice of

Cpre.) For completeness, Table 6.2 contains the systematic (see Section 3.1) generator matrices we

consider, as given by Magma’s BKLC (Best Known Linear Codes) routine.

Example 6.1.3. Consider the compression function h = KP1([5,3,3]4), in particular hn (see Defini-

tion 3.2.2). This builds a 6n → 5n compression function that uses five (independent) PuRFs f i , for

i = 1, . . . ,5, each mapping 2n → n. The relevant parameters are e = 2, c = 2 and b = 1. The preprocess-

ing function Cpre of hn is defined by a generator matrix G of the code [5,3,3]4. We use the following ϕ

as proposed by Knudsen and Preneel [93]:

ϕ(0) =
(

0 0

0 0

)
, ϕ(1) =

(
1 0

0 1

)
, ϕ(w) =

(
1 1

1 0

)
and ϕ(w2) =

(
0 1

1 1

)
,

whereF22 =F2(w) and p(x) = x2 +x +1 is the minimal polynomial of w. Moreover, we choose the G

as given in [93]. Hence, we reach

G =

1 0 0 1 1

0 1 0 1 w

0 0 1 1 w2

 and Cpre =



1 0 0 0 0 0 1 0 1 0

0 1 0 0 0 0 0 1 0 1

0 0 1 0 0 0 1 0 1 1

0 0 0 1 0 0 0 1 1 0

0 0 0 0 1 0 1 0 0 1

0 0 0 0 0 1 0 1 1 1


.

Therefore, given W ∈ {0,1}6n , hn computes the digest Z ∈ {0,1}5n as follows:

1. Compute X ← (Cpre⊗ In) ·W ;

2. For X = (x1|| . . . ||x5), where xi ∈ {0,1}2n (i = 1, . . . ,5), compute yi = f i (xi);

3. For Y = (y1|| . . . ||y5), where yi ∈ {0,1}n (i = 1, . . . ,5), output Z = (I5 ⊗ In) ·Y ; equivalently Z =
y1 || . . . || y5.

More intuitively, for an input W ∈ {0,1}6n where W = w1 || . . . ||w6 and wi ∈ {0,1}n for i = 1, . . . ,6, the

125

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

Code P T

F22 − [5,3,3]

(
1 1 1
1 w w2

)

F22 − [8,5,3]

 0 w2 0 w w2

w2 w w2 1 0
w2 1 w 0 w2


F22 − [12,9,3]

 w2 1 w 0 0 0 w2 w2 w2

w2 0 1 1 1 w 0 w w
w2 w2 0 w2 1 w2 w2 w2 1



F22 − [9,5,4]


0 w 1 w 0
1 w2 0 1 w2

1 1 w2 0 1
w w w w2 w2



F22 − [16,12,4]


1 w2 0 1 w2 w w w2 1 0 w2 1
0 w w2 1 w 1 0 1 w 1 w2 w

w2 1 w 1 0 1 w 1 w2 w 0 1
w2 0 1 w2 w w w2 1 0 w2 1 1


F24 − [6,4,3]

(
w8 w12 w14 w9

w12 w14 w9 1

)
F24 − [8,6,3]

(
w10 w7 w8 w12 w14 w9

w7 w8 w12 w14 w9 1

)
F24 − [12,10,3]

(
w7 w10 w3 w3 w10 w7 w8 w12 w14 w9

w10 w3 w3 w10 w7 w8 w12 w14 w9 1

)

F24 − [9,6,4]

 w4 w8 w6 w11 w2 w14

w10 w3 w4 w7 w6 w14

w8 w6 w11 w2 w14 1


F24 − [16,13,4]

 w14 w2 w11 w6 w8 w4 w12 w4 w8 w6 w11 w2 w14

w6 w7 w4 w3 w10 w13 w13 w10 w3 w4 w7 w6 w14

w2 w11 w6 w8 w4 w12 w4 w8 w6 w11 w2 w14 w1


F23 − [4,2,3]

(
w3 w4

w4 1

)
F23 − [6,4,3]

(
w5 w5 w3 w4

w5 w3 w4 1

)
F23 − [9,7,3]

(
1 w4 w3 w5 w5 w3 w4

w4 w3 w5 w5 w3 w4 w1

)

F23 − [5,2,4]

 w4 w3

w2 w3

w3 1


F23 − [7,4,4]

 w4 w6 w4 w3

w w w2 w3

w6 w4 w3 1


F23 − [10,7,4]

 1 1 1 1 1 1 1
1 w w2 w3 w4 w5 w6

1 w2 w4 w6 w w3 w5


Table 6.2 – The codes (overF2e for e ∈ {2,3,4}) and the leading compression functions suggested by
Knudsen–Preneel. Here, the generator matrix G is of the form G = [Ik |P] and the table contains P T .
The Magma command BKLC(GF (2e),r,k) gives the resulting code [r,k,d]2e where d is the best known
value for the given parameters (matching with the codes given by KP).

inputs to the underlying PuRFs are formed as follows:

x1 = (w1 ||w2) , x2 = (w3 ||w4) , x3 = (w5 ||w6) , x4 = (w1 ⊕w3 ⊕w5 ||w2 ⊕w4 ⊕w6) ,

x5 = (w1 ⊕w3 ⊕w4 ⊕w6 ||w2 ⊕w3 ⊕w5 ⊕w6).

The digest is obtained by the concatenation of the corresponding PuRF outputs yi for all i ∈ {1, . . . ,5}.

126

6.1. The Knudsen–Preneel Hash Functions

Knudsen–Preneel’s Security Claims

Knudsen and Preneel concentrate on the collision resistance of their compression function in the

complexity-theoretic model. Under a fairly generous (but plausible) assumption, they essentially

show that if h=KPb([r,k,d]2e), then finding collisions in hn takes time at least 2(d−1)n/2. For preimage

resistance, Knudsen and Preneel do not give a corresponding theorem or an assumption, yet they

do conjecture it to be the square of the collision resistance; that is, they conjecture that finding a

preimage takes at least time 2(d−1)n . We first state the KP assumption for finding collisions, then we

continue with their security claims both for collision and preimage resistance.

KP Assumption [93]: Assume that a collision for a Knudsen–Preneel compression function h =
KPb([r,k,d]2e) has been found; say for hn with the pair (W,W ′). Thus, hn(W) = hn(W ′). We call

an underlying PuRF f i active, if the colliding pair (W,W ′) results in xi 6= x ′
i for the inputs of the

corresponding PuRF f i . Let N be the number of active PuRFs of which N − t̄ can be attacked

independently (i.e., collision search for N − t̄ PuRFs can be mounted independently) and let t̄min be

the minimum of all such t̄ values. Then, it is assumed that collision-finding against hn takes at least

2t̄minn/2 time.

Proposition 6.1.4 (Knudsen–Preneel lower bounds [93]). Let h = KPb([r,k,d]2e) be given and con-

sider hn (with b dividing n). Then

1. (Conjectured) Finding preimages takes time at least 2(d−1)n .

2. (Under KP Assumption) Finding collisions takes time at least 2(d−1)n/2.

In the proof of the above collision resistance claim, Knudsen and Preneel show (incorrectly) that

t̄min = d −1; their idea is the following. Because a collision requires the compression function inputs

to be different, there has to be at least one active PuRF in the systematic portion. Specifically, there

has to be an i ∈ {1, . . . ,k} such that f i is active. Consequently, there must exist at least d −1 active

PuRFs in the non-systematic portion as the minimum distance of the underlying code is d .

Knudsen and Preneel’s erroneous conclusion is that whatever the number of active PuRFs in the

systematic portion, the number of active PuRFs in the non-systematic part remains at least d −1.

Therefore, based on their assumption, the claimed lower bound holds as the PuRFs corresponding to

the non-systematic portion cannot be attacked independently. However, as we detail in Section 6.4,

it turns out that t̄min = 0; simply note that whenever d ≤ k, we can find d active PuRFs in the

systematic portion, all of which can be attacked independently. Thus, the KP assumption leads to

a lower bound of only one. Our collision attacks, as well as the one by Watanabe, are based on this

simple observation. Regarding preimage resistance, this observation does not lead to a meaningful

interpretation, and indeed Section 6.4 shows that the preimage resistance is independent of the

number of active PuRFs.

Knudsen and Preneel also present two attacks, one for finding preimages [93, Proposition 3] and

one for finding collisions [93, Proposition 4]. We only describe the preimage-finding attack in detail

(see Algorithm 6.1.5); the collision-finding attack operates on the same principle. For all proposed

parameters, the preimage attack runs (asymptotically in n) in time O (2(r−k)n) implying that for MDS

codes, with r −k = d −1, it matches the conjectured lower bound.

127

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

Algorithm 6.1.5 (Knudsen–Preneel Preimage Attack).

Input: h = KPb([r,k,d]2e), a systematic generator matrix G = (Ik |P), a block-size n with
b|n (for b n′ =n) and target digest Z ∈ {0,1}r n .

Output: A preimage W ∈ {0,1}ken/b such that hn(W) = Z = z1 || . . . ||zr for z1, . . . , zr ∈ {0,1}n .

1. QUERY PHASE. For i= 1, . . . ,k, let Q[i] ⊆ {0,1}cn such that |Q[i]| = 2r n/k . Query f i on
all xi , j ∈Q[i]. Keep a list Li of all partial preimages xi , j ∈Q[i] satisfying f i (xi , j) = zi .

2. MERGE PHASE. Create L̃ = L1 × . . .×Lk .

3. FINALIZATION. For all X ∈ L̃ create the unique W corresponding to it and check
whether it results in hn(W) = Z . If so, output W .

Proposition 6.1.6 (Knudsen–Preneel attacks [93]). Let h=KPb([r,k,d]2e) be given and consider hn

(with b dividing n). Then (asymptotically in n)

1. Preimage-finding requires O (max(2n(r−k),2r n/k)) time and O (2(r−k)n/k) n-bit blocks of memory.

2. Collision-finding requires O (max(2n(r−k)/2,2(r+k)n/(2k))) time and O (2(r−k)n/2k) n-bit blocks of

memory.

Proof. For the preimage attack on hn , given the target digest Z ∈ {0,1}r n (by construction Z =
y1|| . . . ||yr), the aim is to find W ∈ {0,1}ken/b such that hn(W) = Z holds. Note that (due to restricting to

a systematic generator matrix for C) the first k different PuRFs f 1, . . . , f k have mutually independent

inputs. This allows us to find partial preimages for y1, . . . , yk independently. More precisely, (in QUERY

PHASE) for all i ∈ {1, . . . ,k}, 2(r−k) n
k +n (arbitrary) queries are asked to each f i and those whose answers

hit the target partial image yi are stored in the lists Li . As each target value is expected to be hit 2(r−k) n
k

times, the lists contain about 2(r−k) n
k partial preimages. This step can be performed in k2(r−k) n

k +n

PuRF evaluations with a memory requirement of ek2(r−k)n/k n-bits.

Now, in the MERGE PHASE, all the lists are combined in all possible ways to query the remaining PuRFs

f k+1, . . . , f r . Notice that as f 1, . . . , f k correspond to the systematic portion of the code, any tuple

(x1, . . . , xk) of partial preimages uniquely defines a tuple of queries (xk+1, . . . , xr) for the remaining

r −k PuRFs. Following this remark (and the fact that the elements in k lists are independent), as there

are roughly 2(r−k) n
k elements in each list, the overall number of possible combinations is 2(r−k)n .

This is sufficient to expect a preimage for the remaining (r −k) PuRFs, however to find it potentially

requires 2(r−k)n PuRF evaluations (and negligible additional memory).

For the collision attack, the same technique can be employed, but the number of possible combi-

nations only needs to be 2(r−k)n/2 (in order to expect a collision for the remaining (r −k) PuRFs).

Consequently, in the first step of the attack, the attacker only needs to ask 2(r−k) n
2k +n = 2(r+k)n/2k

queries to each f i and after some bookkeeping the claim follows.

6.2 Yield-based Information-Theoretic Attacks

The following proposition is a consequence of the yield-based information-theoretic attacks pre-

sented in Theorem 3.2.3. Briefly, it provides (a non-adaptive) information-theoretic attack against

Knudsen–Preneel compression functions: Preimages can be expected after 2r n/k queries and colli-

sions can be expected after 2r n/(2k) queries to the underlying primitives.

128

6.2. Yield-based Information-Theoretic Attacks

Proposition 6.2.1. Let h=KPb([r,k,d]2e) be given. Consider hn with b dividing n. If [r,k,d]2e is MDS

or [r,k,d] ∈ {[8,5,3], [12,9,3], [9,5,4], [16,12,4]} is given with a generator matrix G for [r,k,d]4, as given

by Magma’s BKLC (Best Known Linear Code) routine (see Table 6.2); then preimages can be expected

after 2r n/k queries and collisions can be expected after 2r n/(2k) queries.

Proof. Let [r,k,d]2e be an MDS code. For simplicity (and without loss of generality), let us assume

that its generator matrix is systematic. We first investigate the claim on preimage resistance. The

yield maximizing adversary from the proof of Theorem 3.2.3 asks at most q queries to the PuRFs

corresponding to the systematic portion of the compression function. Hence, the expected number

of partial preimages per PuRF there is q/2n . Now consider the input xi of any PuRF f i from the

non-systematic part (i.e., i ∈ {k +1, . . . ,r }). Our claim is that xi is dependent on x j for all j ∈ {1, . . . ,k}.

This is equivalent to say that the column vector vi in the generator matrix can be written as

vi =
k∑

j=1
e j v j for e j 6= 0 and e j ∈F2e ,

otherwise the condition that [r,k,d]2e being an MDS is violated. Assume the contrary; then there

exists at least one j0 ∈ {1, . . . ,k} such that e j0 = 0 and

vi −
∑

∀ j∈{1,...,k}− j0

e j v j = e j0 v j0 = 0 where e j 6= 0 for j ∈ {1, . . . ,k}− j0 .

Then the vectors vi and v j for j ∈ {1, . . . ,k}− j0 are linearly dependent; hence the k ×k sub-matrix

containing these vectors is of rank strictly less than k, which is a contradiction. Hence, all of the

inputs from the systematic part will contribute to evaluate the PuRF f i . All in all, (q/2n)k (1/2n)

inputs will hit the targeted value yi . As there exist r −k PuRFs in total in the non-systematic portion,

the total expected number of preimages is (q/2n)k (1/2n)r−k = qk /2r n . So, preimages can be expected

after 2r n/k queries.

Similarly for collisions, the expected number of partial collisions per PuRF is q2/2n for the systematic

part; this yields a total of
(
q2/2n

)k
partially-colliding pairs. By the above, we have again that xi is

dependent on x j for all j ∈ {1, . . . ,k}. Hence,
(
q2/2n

)k
(1/2n) of the colliding pairs are expected to

collide also under f i . Running this argument iteratively for all i ∈ {k +1, . . . ,r }, we finally attain

(
q2

2n

)k (
1

2n

)r−k

= q2k

2r n

colliding pairs. So, after q = 2r n/2k queries collisions are output with a high probability.

Now suppose [r,k,d] ∈ {[8,5,3], [12,9,3], [9,5,4], [16,12,4]} is given with a generator matrix G for

[r,k,d]4 (as given by Magma’s BKLC routine, see Table 6.2). We prove our claim for the code [8,5,3]4,

the remaining cases are analogous. Moreover, we show the preimage attack in detail, the collision

attack follows the same principle using the techniques in the preimage attack and the case for MDS

codes. Assume that at most 28n/5 queries are made to the underlying PuRFs corresponding to the

systematic portion of the code. As above, we expect to end up with 28n/5/2n = 23n/5 partial preimages

for f i for all i ∈ {1, . . . ,5}. Consider the PuRF f 6 and its corresponding input x6 obtained from the

generator matrix given in Table 6.2. Clearly, x6 is dependent only on x2, x4 and x5.

129

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

Combining all possible preimage candidates corresponding to the PuRFs f 2, f 4 and f 5, we expect to

obtain (23n/5)3(1/2n) = 24n/5 partial preimages (hitting y2, y4, y5 and y6 in conjunction). We repeat

the same analysis for f 7 and its corresponding input x7. This time the relevant inputs from the

systematic portion are x1, x2, x3 and x4. We have now (23n/5)2 additional candidates that were not

used so far (i.e., x1 and x3) to be combined with 24n/5 partial preimages that we have obtained earlier.

All in all,

(23n/5)224n/5
(

1

2n

)
= 2n

preimage candidates are expected to hit the target digest besides y8. As there is no freedom left

from the systematic portion, we must complete the attack with the remaining 2n candidates, which

is sufficient to end up, with a high probability, with a single preimage output. Note that a similar

attack work for the collision resistance with q = 28n/10 queries. By running a similar argument for the

remaining KP-suggested non-MDS codes, we complete the proof.

6.3 Revisiting the Preimage Resistance

6.3.1 Practical Preimage Attack Against KP1([5,3,3]4) in O (25n/3) Time

Section 6.2 contains a theoretical attack with a minimal number of queries. This already allows us to

turn Knudsen–Preneel’s preimage attack from adaptive into non-adaptive one. In this section, we

address reducing the time-complexity, while still keeping our attack non-adaptive.

Let h = KPb([r,k,d]2e) and n be given, where b|n (and bn′ = n, c = e/b as before). Consider a non-

adaptive preimage-finding adversary A against hn , that tries to find a preimage for Z ∈ {0,1}r n . For

each i= 1, . . . ,r , A commits to query lists Q[i] ⊆Vi = {0,1}cn which, after querying, will result in a

list of partial preimages

Li = {xi ∈Q[i]| f i (xi) = zi } .

Because f i is presumed random, we can safely assume that Li is a set of approximately |Q[i]|/2n

randomly drawn elements of Q[i]. Finding a preimage then becomes equivalent to finding an

element X = (x1, . . . , xr) in the range of Cpre for which xi ∈ Li for all i= 1, . . . ,r , X ∈ ∏r
i=1 Li . Due to

the linearity of Cpre at hand, the range-check itself is efficient for any given X , so a naive approach

would be to simply exhaustively search
∏r

i=1 Li . This would take time
∏r

i=1 |Li |.

An improvement can already be obtained by observing that, when a systematic matrix G is used to

generate the code, any element in
⊕k

i=1 Vi can uniquely (and efficiently) be extended to some X in

the range of Cpre. This lies at the heart of Knudsen and Preneel’s adaptive attack and it can be adapted

to the non-adaptive setting: for all elements in
∏k

i=1 Li compute its unique completion X and check

whether for the remaining i= k +1, . . . ,r the resulting xi ∈ Li . This reduces the time-complexity to∏k
i=1 |Li |; still, we can do better. Before describing our preimage attack in its full generality, we present

an example of it applied to the compression function h=KP1([5,3,3]4).

Claim 6.3.1. For the compression function h=KP1([5,3,3]4), preimages in hn can be found in O (25n/3)

time (asymptotically in n) with a memory requirement of O (24n/3) n-bit blocks.

Proof. We refer to Example 6.1.3 for the details of G , ϕ and Cpre. Let target digest Z = z1|| . . . ||z5

be given where zi ∈ {0,1}n for i = 1, . . . ,5. Our aim is to find the PuRF inputs xi = (x1
i ||x2

i) ∈ {0,1}2n

130

6.3. Revisiting the Preimage Resistance

f 5 y5 = z5

f 4 y4 = z4

f 3 y3 = z3

f 2 y2 = z2

f 1 y1 = z1Q[1]

Q[2]

Q[3]

Q[4]

Q[5]

L1

L2

L3

L4

L5

L̃{1,2}

L̃{3,4}

L̃{1,2,3,4}FW

2n

25n/3

n

2n

25n/3

n

2n

25n/3

n

2n

25n/3

n

2n

25n/3

n
22n/3

22n/3

22n/3

22n/3

22n/3

24n/3

24n/3

2n1

Figure 6.1 – Our preimage attack on hn =KP1([5,3,3]4) illustrated. The (unlabeled) inputs to f 1, . . . , f 5

correspond to (x1
1 , x2

1), . . . , (x1
5 , x2

5). Here, F denotes the FINALIZATION phase.

with x1
i , x2

i ∈ {0,1}n such that f i (xi) = zi holds for all i = 1, . . . ,5, and X = (Cpre⊗ In′) ·W for some

compression function input W (where X is comprised of the five xi , i.e., X = (x1, . . . , x5)). In this case,

W is a preimage for Z . An outline of the attack is given in Figure 6.1, we proceed with the details.

The attack starts with what we call the QUERY PHASE. Specifically, for each i = 1, . . . ,5 and for all

x1
i , x2

i ∈ 0n/6 × {0,1}5n/6 ,

we query f i (xi) and keep a list Li of pairs that hit the target digest zi . We set the first n/6 bits to zero

for both x1
i and x2

i and exhaust all possibilities for the rest. As a result, a total of 25n/3 queries are made

(in 25n/3 time) per PuRF, resulting in |Li | ≈ 25n/3/2n = 22n/3 (as each query has probability 2−n to hit

its target). Because any triple (x1, x2, x3) ∈ L1 ×L2 ×L3 uniquely determines a preimage candidate W ,

finding a preimage is equivalent to finding an element X ∈ L1 × . . .×L5 in the range of Cpre. To do

this efficiently, we first identify the tuples (x1, x2, x3, x4) in the lists that can be complemented (not

necessarily using x5 ∈ L5) to an element in the range. From the generator matrix G it can be seen that

this complementation is possible if and only if x1 ⊕x2 ⊕x3 ⊕x4 = 0. So let us define

L{1,2,3,4} = {(x1, x2, x3, x4) ∈ L1 ×L2 ×L3 ×L4 | x1 ⊕x2 ⊕x3 ⊕x4 = 0} .

We can construct L{1,2,3,4} efficiently by using a standard technique related to the generalized birthday

problem [200]. It starts with the MERGE PHASE, where we create the lists L̃{1,2} and L̃{3,4} defined by

L̃{1,2} = {((x1, x2), x1 ⊕x2) | (x1, x2) ∈ L1 ×L2} and L̃{3,4} = {((x3, x4), x3 ⊕x4) | (x3, x4) ∈ L3 ×L4} ;

both are sorted on their second components. In the JOIN PHASE, we look for the collisions in their

second components. As |Li | ≈ 22n/3, creating either L̃ takes (asymptotically in n) about O (n24n/3)

time and O (24n/3) memory. (In general, the smallest L̃ is sorted and stored, and the other is used for

collision check.) As L̃{1,2} and L̃{3,4} both have roughly 24n/3 elements and they need to collide on 2n

bits, of which n/3 bits are set to zero, the expected number of collisions is about (see Figure 6.1)

(24n/3)2

2(2−1/3)n
= 2n = |L{1,2,3,4}| .

131

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

We now have the collision list L{1,2,3,4} and all that needs to be done is to check, for each of its

elements, whether the corresponding x5 ∈ L5. If this is the case, then (x1, x2, x3) produces a valid

preimage. This last step we call the FINALIZATION phase. It is clear that it cannot take much longer

than it took to create L{1,2,3,4}. Moreover, the expected number of preimages output is one. Note that

|L{1,2,3,4}| ≈ 2n and |L5| ≈ 22n/3. Again, we need to check the correspondence on 2n bits, of which

n/3 are set to zero. Hence, we do expect to find 2(1+2/3)n/2(2−1/3)n = 1 preimage. Summing up the

stepwise time and memory-complexities gives the desired result.

Remark 6.3.2. The above attack takes a direct approach to finding all solutions of x1⊕x2⊕x3⊕x4 = 0

in the MERGE and JOIN PHASE of our preimage-finding algorithm. Even though this approach signifi-

cantly improves the currently best known attack in terms of time-complexity, its memory-complexity

is not the best we can achieve. Indeed, we can reduce the memory-complexity (asymptotically in n)

to O (22n/3) by applying the techniques proposed in the literature [41, 47, 200] (see Section 6.3.5 for

the revised algorithm together with its application to other KP-suggested parameters).

6.3.2 Generic Attack Against MDS Schemes

In this section, we generalize our attack on the compression function KP1([5,3,3]4) to other Knudsen–

Preneel compression functions. Note that the attack in Section 6.3.1 consists of four steps:

1. QUERY PHASE to generate the lists of partial preimages;

2. MERGE PHASE where two sets of lists are each merged exhaustively;

3. JOIN PHASE where collisions between the two merged lists are selected resulting in fewer partial

preimages that are, however, preimage of a larger part of the target digest; and

4. FINALIZATION where the remaining partial preimages are filtered for being a full preimage.

As all Knudsen–Preneel compression functions are blockwise-linear, we are always able to run a

non-adaptive attack. The question is whether we are always able to efficiently find a full preimage,

given the lists of partial preimages Li . For the [5,3,3]4 example we could significantly reduce our

workload because we found an easy-to-verify relation that the inputs to the PuRFs, thus in particular

the elements in Li , had to satisfy. The question is whether we were lucky to have found this relation,

or whether there is a deeper underlying reason for it. Additionally, it is not immediately obvious that,

even if we can somehow efficiently merge and join, there is an efficient way to finalize. We will proceed

to describe the reason the attack worked and show that this naturally leads to a generalization to all

Knudsen–Preneel schemes based on MDS codes. The slightly more complicated non-MDS case is

discussed in Section 6.3.3.

The Core Observation From a high-level, our approach is simple: We first identify an index set I ⊆
{1, . . . ,r } defining a subspace

⊕
i∈I Vi for which the range of Cpre (when restricted to this subspace),

is not surjective. By (blockwise-linear) construction, Cpre then maps to a subspace of
⊕

i∈I Vi of at

most dimension (|I |−1)cn (overF2). As a consequence, we are able to prune significantly the total

collection of candidate preimages in
∏

i∈I Li , keeping only those elements that are possibly in the

range of Cpre restricted to
⊕

i∈I Vi . In the following, we show how to efficiently find an index set I ,

and how to efficiently prune.

It turns out that an important parameter determining the runtime of our preimage attack is d⊥, the

minimum distance of the dual code. Let χ be the function that maps h ∈Fr
2e to the set of indices of

132

6.3. Revisiting the Preimage Resistance

non-zero entries in h. Thus, χ(h) ⊆ {1, . . . ,r } and |χ(h)| equals the Hamming weight of the codeword.

If h ∈C ⊥, then for I =χ(h) we have precisely the property that allows us to prune
∏

i∈I Li for partial

preimages. The following proposition develops the key result for understanding our attack and the

role the dual code plays in it. The interpretation follows the proposition.

Proposition 6.3.3. Let h=KPb([r,k,d]2e) and M ∈Fe×cr
2 be given. Suppose that M = ϕ̄(hT) for some

h ∈Fr
2e , then for all positive integers n′ = n/b it holds that

(M ⊗ In′) · (Cpre⊗ In′) ·W = 0

for all W ∈ {0,1}ken′
if and only if

h ∈C ⊥ .

Proof. Let h ∈Fr
2e and W ∈ {0,1}ken′

be given. Let M = ϕ̄(hT) and recall that Cpre = ϕ̄(GT) where G is

a generator of C . Then

(M ⊗ In′) · (Cpre⊗ In′) ·W = (ϕ̄(hT)⊗ In′) · (ϕ̄(GT)⊗ In′) ·W
= ((ϕ̄(hT) · ϕ̄(GT))⊗ In′) ·W
= (ϕ̄((Gh)T)⊗ In′) ·W .

The statement that (ϕ̄((Gh)T)⊗ In′) ·W = 0 for all W ∈ {0,1}ken′
is equivalent to the statement that

ϕ̄((Gh)T) = 0. As ϕ is injective, this in turn is equivalent to (Gh)T = 0. By definition, it holds that

Gh = 0 if and only if h ∈C ⊥.

In essence, this proposition tells us that if we are given a codeword h ∈C ⊥ and an element X ∈Fr cn
2

(to be input to the PuRFs), then X can only be in the range of Cpre if

(ϕ̄(hT)⊗ In′) ·X = 0 .

As the only parts of X relevant for this check are those lining up with the non-zero entries of h, we

obtain that I =χ(h) is what we are looking for. Indeed, an element X ∈∏
i∈χ(h) Li can be completed

to an element in the range of Cpre if and only if

(ϕ̄(hT)⊗ In′) · (X +0) = 0

(where we write X +0 for embedding into the larger
⊕r

i=1 Vi). Efficient creation of

Lh =
{

X ∈ ∏
i∈χ(h)

Li | (ϕ̄(hT)⊗ In′) · (X +0) = 0

}

is done adapting standard techniques [41, 47, 179, 200] by splitting the codeword in two and looking

for all collisions in the corresponding entries. Suppose that h = h0 +h1 with χ(h0)∩χ(h1) =;, and

define, for j = 0,1

L̃h j =
{

(X j , (ϕ̄(h j
T)⊗ In′) · (X j +0)) | X j ∈

∏
i∈χ(h j)

Li

}
.

Then Lh consists of the elements X0 + X1 for which (X0,Y0) ∈ L̃h0 , (X1,Y1) ∈ L̃h1 , and Y0 = Y1. By

sorting L̃h0 and L̃h1 , the time-complexity of creating Lh is then roughly the maximum cardinality of

133

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

Algorithm 6.3.4 (Preimage attack against MDS-based schemes).

Input: h=KPb([r,k,d]2e), block-size n with b|n (for b n′ =n) and target digest Z ∈ {0,1}r n .

Output: A preimage W ∈ {0,1}ken/b such that hn(W) = Z = z1|| . . . ||zr .

1. QUERY PHASE. Define
X = ({0}

n
b − r n

ek × {0,1}
r n
ek)e

and, for i= 1, . . . ,r let Q[i] = X ⊂ Vi . Query f i on all xi ∈ Q[i]. Keep a list Li of all
partial preimages xi ∈Q[i] satisfying f i (xi) = yi = zi .

2. (FIRST) MERGE PHASE. Find a non-zero codeword h ∈C ⊥ of minimum Hamming
weight d⊥. Let h = h0 +h1 with χ(h0)∩χ(h1) =; and of Hamming weights bd⊥/2c
and dd⊥/2e, respectively. Create, for j = 0,1

L̃h j =
{(

X j , (ϕ̄(h j
T)⊗ In′) · (X j +0)

) | X j ∈
∏

i∈χ(h j)
Li

}

both sorted on their second component.

3. (FIRST) JOIN PHASE. Create Lh consisting exactly of those elements X0 +X1 for which
(X0,Y0) ∈ L̃h0 , (X1,Y1) ∈ L̃h1 , and Y0 = Y1.

4. FINALIZATION. For all X ∈ Lh create the unique W corresponding to it and check
whether it results in xi ∈ Li for all i= 1, . . . ,r . If so, output W .

the three sets L̃h0 , L̃h1 , and Lh involved. It therefore clearly pays to minimize the Hamming weights

of h0 and h1, which is done by choosing a codeword h ∈C ⊥ of minimum distance d⊥ and splitting

it (almost) evenly (i.e., with |χ(h0)| = bd⊥/2c and |χ(h1)| = dd⊥/2e). For an MDS code, we know that

d⊥ = k +1. As a result, if h attains this, the map Cpre is injective when restricted to
⊕

i∈χ(h) Vi (or else

the minimum distance would be violated). Hence, we know that all possible preimages given all the

lists Li are represented by the partial preimages contained in Lh . We can finalize by simply checking

for all elements in L̃h whether its unique completion to X ∈ ⊕r
i=1 Vi corresponds to xi ∈ Li for all

i= 1, . . . ,r . The complete preimage-finding algorithm is given in Algorithm 6.3.4.

Reinterpreting the Example Let us revisit our preimage attack example on h = KP1([5,3,3]4) to

see how it fits within the general framework. In the preimage attack example on h=KP1([5,3,3]4),

we more or less “magically” came up with the relation x1 ⊕x2 ⊕x3 ⊕x4 = 0. We can now appreciate

that this constraint is really imposed by the dual codeword h = (1 1 1 1 0) ∈F5
22 . Thus our example

corresponds to Algorithm 6.3.4 with χ(h0) = {1,2} and χ(h1) = {3,4} (leading to an even division).

Note that we can also perform the attack based on other dual codewords of minimum distance,

for instance h = (
1 w w 2 0 1

)
. In general, finding a minimum distance codeword might be more

involved, but the dimensions are sufficiently small to allow for an exhaustive search.

Analysis of the Attack We proceed with the analysis of the generic preimage attack by providing

the justifications of our claims and the overall time- and memory-complexities. We initially maintain

d⊥ in the expressions for future use (when discussing non-MDS codes). Moreover, we use α to

denote the value r /k to keep the statement simple. We note that for d = 3 the overall time-complexity

134

6.3. Revisiting the Preimage Resistance

Query Cardinalities related to Complexity
Code Complexity our attack Time Memory

[r,k,d]2e d⊥ |Q[i]| |Li | |L̃h0 | |L̃h1 | |Lh | Theorem 6.3.5
[5,3,3]4 4 25n/3 22n/3 24n/3 24n/3 2n 25n/3 24n/3

[6,4,3]16 5 23n/2 2n/2 2n 23n/2 2n 23n/2 2n

[8,6,3]16 7 24n/3 2n/3 2n 24n/3 2n 24n/3 2n

[12,10,3]16 11 26n/5 2n/5 2n 26n/5 2n 26n/5 2n

[9,6,4]16 7 23n/2 2n/2 23n/2 22n 22n 22n 23n/2

[16,13,4]16 14 216n/13 23n/13 221n/13 221n/13 22n 22n 221n/13

[4,2,3]8 3 22n 2n 2n 22n 2n 22n 2n

[6,4,3]8 5 23n/2 2n/2 2n 23n/2 2n 23n/2 2n

[9,7,3]8 8 29n/7 22n/7 28n/7 28n/7 2n 29n/7 28n/7

[5,2,4]8 3 25n/2 23n/2 23n/2 23n 22n 23n 23n/2

[7,4,4]8 5 27n/4 23n/4 23n/2 29n/4 22n 29n/4 23n/2

[10,7,4]8 8 210n/7 23n/7 212n/7 212n/7 2n 22n 212n/7

Table 6.3 – An overview of the list cardinalities and computational complexity of preimage attacks on
the Knudsen–Preneel compression functions based on MDS codes.

simplifies to O (2αn), asymptotically in n, which coincides with the query-complexity. The proof of

Theorem 6.3.5 (together with that of Theorem 6.3.7) is given in Section 6.3.4. Table 6.3 contains an

overview for the various cardinalities and complexities for all the compression functions that are

based on MDS codes.

Theorem 6.3.5. Let h=KPb([r,k,d]2e) be given and let d⊥ be the minimum distance of the dual code

of C . Suppose C is MDS and consider the preimage attack described in Algorithm 6.3.4 run against hn

by using q = 2αn queries for α= r /k (|Q[i]| = 2r n/k). Then the expected number of preimages is equal

to one and the expectations for the internal list sizes are:

|Li | = 2(α−1)n , |Lh | = 2(d⊥(α−1)−α)n , |L̃h0 | = 2b d⊥
2 c(α−1)n , |L̃h1 | = 2d d⊥

2 e(α−1)n .

The average case time-complexity of the algorithm is a small multiple of

max
(
q, |L̃h1 |, |Lh |

)
,

whereas the memory-complexity is |L̃h0 | (expressed in the number of cn-bit blocks where e = bc). For

d = 3 and substituting d⊥ = k +1 the time-complexity simplifies to O (2αn), asymptotically in n, which

is optimal (up to a small constant).

In our attack, we set the number of queries as suggested by a yield-based bound (Proposition 6.2.1).

Hence, as long as this first querying phase dominates, we know that our attack is optimal, as in the

case, for example, against KP1([5,3,3]4) (see also Table 6.3). Note that the memory requirements of

the preimage-finding algorithm given in Algorithm 6.3.4 can be further reduced using the techniques

introduced in [47, 200]. We investigate a more space-efficient variant of our attack (without violating

the time-complexity) in Section 6.3.5.

135

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

Algorithm 6.3.6 (Preimage attack against non-MDS-based schemes).

Input: h=KPb([r,k,d]2e), block-size n with b|n and target digest Z ∈ {0,1}r n .

Output: A preimage W ∈ {0,1}ken/b such that hn(W) = Z = z1|| . . . ||zr .

1. QUERY PHASE. As in Algorithm 6.3.4.

2. FIRST MERGE PHASE. As in Algorithm 6.3.4.

3. FIRST JOIN PHASE. As in Algorithm 6.3.4.

4. SECOND MERGE PHASE. Find a codeword h′ ∈ C ⊥\F2e h of minimum Hamming
weight (possibly exceeding d⊥). Let h′ = h′

0 +h′
1 with

χ(h′
0)∩χ(h′

1) =; , χ(h′
1)∩χ(h) =;

and of Hamming weights yet to be determined. Create

L̃h′
0
=

{(
X0, (ϕ̄(h′

0
T)⊗ In′) · (X0 +0)

)
| X0 ∈ Lh + ∏

i∈χ(h′
0)\χ(h)

Li

}

L̃h′
1
=

{(
X1, (ϕ̄(h′

1
T)⊗ In′) · (X1 +0)

)
| X1 ∈

∏
i∈χ(h′

1)

Li

}
.

5. SECOND JOIN PHASE. Create Lh′ consisting exactly of those elements X0+X1 for which
(X0,Y0) ∈ L̃h′

0
, (X1,Y1) ∈ L̃h′

1
, and Y0 = Y1.

6. FINALIZATION. For all X ∈ Lh′ create the unique W corresponding to it and check
whether it results in xi ∈ Li for all i= 1, . . . ,r . If so, output W .

6.3.3 Generic Attack Against Non-MDS Schemes

For non-MDS codes, we try to mount the preimage attack given by Algorithm 6.3.4, but in the

FINALIZATION we encounter a problem. As d⊥ < k +1 for non-MDS codes, the map Cpre restricted

to
⊕

i∈χ(h) Vi is no longer injective and we can no longer reconstruct a unique W corresponding to

some X ∈ Lh . There are two possible solutions to this problem. One is to simply merge as yet unused

lists Li into Lh until reconstruction does become unique.

However, a more efficient approach is to perform a second stage of merging and joining. In Algo-

rithm 6.3.6, we simply paste in extra MERGE and JOIN phases in order to maintain the low complexity.

We have only included one extra merge-join phase for non-MDS codes. For the parameters pro-

posed by Knudsen and Preneel, this always suffices. For other parameters, possibly extra merge-join

phases are required before full rank is achieved, we did not investigate this. We present concrete

preimage-finding attack against h=KP1([8,5,3]22) at the end of this subsection.

Analysis of the Attack Although the addition of one extra round of MERGEing and JOINing sounds

relatively simple, the analysis of it is slightly tedious, mainly because the first joining creates some

asymmetry between the cardinality of the lists (that was not present for the MDS case). We note

that in Theorem 6.3.7, the value j for which T1 attains its minimum really only has two choices; but

its algebraic optimization would not ease readability and would obscure the underlying meaning.

Nevertheless, for the codes suggested by Knudsen and Preneel, it is always easy to determine the

136

6.3. Revisiting the Preimage Resistance

Code Cardinalities related to our attack Complexity

[r,k,d]2e d⊥ |Q[i]| |L̃h0 | |L̃h1 | |Lh | max
(
|L̃h′

0
|, |L̃h′

1
|
)

|Lh′ | Time Memory

[8,5,3]4 4 28n/5 26n/5 26n/5 24n/5 27n/5 2n 28n/5 26n/5

[12,9,3]4 7 24n/3 2n 24n/3 2n 24n/3 2n 24n/3 2n

[9,5,4]4 4 29n/5 28n/5 28n/5 27n/5 211n/5 22n 211n/5 28n/5

[16,12,4]4 11 24n/3 25n/3 22n 27n/3 27n/3 22n 27n/3 25n/3

Table 6.4 – An overview of the list cardinalities and computational complexity of preimage attacks on
the Knudsen–Preneel compression functions based on non-MDS codes.

resulting complexities due to the small parameters in question.

Because it is less clear from the theorem what the actual cardinalities will end up being (and conse-

quently which step will be dominating), Table 6.4 summarizes the relevant quantities for the four

non-MDS based compression functions KP1([r,k,d]4) suggested by Knudsen and Preneel [93]. Only

for the [9,5,4]4 code does the second stage dominate the overall runtime.

Theorem 6.3.7. Let [r,k,d] ∈ {[8,5,3], [12,9,3], [9,5,4], [16,12,4]} be given with a generator matrix G

for [r,k,d]4 (as given by Magma’s BKLC routine); let d⊥ be the minimum distance of the dual code

of C . For h=KP1([r,k,d]4) consider the preimage attack described in Algorithm 6.3.6 run against hn

by using q = 2αn queries for α= r /k (|Q[i]| = 2r n/k). Then, the expected number of preimages is equal

to one, and the expectations for the internal list sizes for the first merge-join are as before (see Theorem

6.3.5) and for the second merge-join phase they are

max(|L̃h′
0
|, |L̃h′

1
|) ≤ 2T1n , min(|L̃h′

0
|, |L̃h′

1
|) ≤ 2T2n , |Lh′ | ≤ 2(r−k−2)n ,

where

T1 = min
j∈{0,...,k−d⊥+1}

(
max{(k −d⊥+2− j)(α−1), ((j +d⊥)(α−1)−α)}

)
and T2 = k(α−1)+α−2−T1.

The expected time-complexity of the algorithm is a small constant multiple of

max
(
q, |L̃h1 |, |Lh |, |L̃h′

0
|, |L̃h′

1
|, |Lh′ |

)
,

whereas the expected memory-complexity is max
(
|L̃h0 |,min(|L̃h′

0
|, |L̃h′

1
|)
)

(expressed in cn-bit blocks).

Choice of Code Our attacks against the four non-MDS codes are based on the generator matrix

given by Magma’s BKLC routine. It is conceivable that different, non-equivalent codes perform

differently under our attack. Most importantly, they might not have the same d⊥, which will certainly

change some of the cardinalities involved in our attack. Although this does not automatically mean

the attack becomes faster or slower, it is certainly a possibility. We note that there is a trivial bound

d⊥ ≤ k (or else the code would be MDS), but in none of the four cases did we achieve this bound.

Additionally, even for non-equivalent codes with identical dual distance, slight variations in the run-

time are conceivable. In the analysis upon which Theorem 6.3.7 is based, we conservatively assume

137

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

that, in the second merge, all remaining lists take part in the merge. If the second case dominates,

however, a second codeword of minimum weight, or a low-weight codeword with significant overlap

with the first, might reduce the listed complexity.

Finding Preimages for h=KP1([8,5,3]22) in O (28n/5) Time

To illustrate our preimage attack on non-MDS schemes, we use h=KP1([8,5,3]4) as an example. As

in the KP1([5,3,3]4) case (Section 6.3.1), we are able to mount a preimage attack with almost optimal

time-complexity.

Claim 6.3.8. For the compression function h=KP1([8,5,3]4) preimages can be found, asymptotically

in n, using O (28n/5) time and O (26n/5) memory (expressed in 2n-bits).

Proof. In this case, we are building a 10n → 8n compression function that uses eight calls to respec-

tive 2n → n ideal primitives. In this attack, given the target digest Z = z1|| . . . ||z8, we aim to find PuRF

inputs xi = (x1
i ||x2

i) ∈ {0,1}2n such that f i (xi) = zi for all i = 1, . . . ,8, and X = (Cpre⊗ In′) ·W for some

compression function input W (where X is comprised of the eight xi values). In this case W is a

preimage for Z .

Below is a systematic generator matrix for the code [8,5,3]22 that we use as a frame reference (note

that the choice of this matrix does not affect the runtime of our attack as long as d⊥ = 4):

G =


1 0 0 0 0 0 w2 w2

0 1 0 0 0 w2 w 1

0 0 1 0 0 0 w2 w

0 0 0 1 0 w 1 0

0 0 0 0 1 w2 0 w2

 .

By using this G and ϕ from Example 6.1.3 we can construct the corresponding Cpre.

In the QUERY PHASE, we ask queries (to each PuRF) of a special form and keep the partial preimage

lists to be used in the later stages of the algorithm. More precisely, we choose the queries of the form

x1
i , x2

i ∈ 0n/5 × {0,1}4n/5

to evaluate fi (x1
i , x2

i) and keep a list Li of pairs that hit the target partial digest zi for all i = 1, . . . ,8.

As a result, 28n/5 elements are queried per PuRF (in O (28n/5) time), which produces an approximate

partial preimage size of |Li | ≈ 23n/5 (as each partial digest is assumed to be hit with a probability

of 2−n). Next, we make use of the dual codeword

h = (
0 w2 0 w w 2 1 0 0

) ∈F8
22

in the FIRST MERGE-JOIN PHASE so as to efficiently prune the irrelevant preimage candidates. This is

done in accordance with the techniques detailed in Sections 6.3.2 and 6.3.3. As a result, we achieve

the following relations (defined by the above h) between the inputs of the PuRFs f 2, f 4, f 5 and f 6:

x2
2 ⊕x1

4 ⊕x2
4 ⊕x2

5 = x1
6 and x1

2 ⊕x2
2 ⊕x1

4 ⊕x1
5 ⊕x2

5 = x2
6 .

138

6.3. Revisiting the Preimage Resistance

The merging is performed with the conditions χ(h0) = {2,4} and χ(h1) = {5,6}. Moreover, we have

h0 =
(
0 w2 0 w 0 0 0 0

)
and h1 =

(
0 0 0 0 w2 1 0 0

)
. We now create the lists L̃h j , for j = 0,1:

L̃h j =
{(

X j , (ϕ̄(h j)⊗ In′) · (X j +0)
) | X j ∈

∑
i∈χ(h j)

Li

}

both sorted again on their second components. More specifically, we create the lists of the form:

L̃h0 =
{
(x2, x4),

(
(x2

2 ⊕x1
4 ⊕x2

4)||(x1
2 ⊕x2

2 ⊕x1
4

) | (x2, x4) ∈ L2 ×L4
}

,

L̃h1 =
{
(x5, x6),

(
(x2

5 ⊕x1
6)||(x1

5 ⊕x2
5 ⊕x2

6)
) | (x5, x6) ∈ L5 ×L6

}
.

Because |Li | ≈ 23n/5, creating L̃h j takes roughly O (n26n/5) time and O (26n/5) memory. The lists L̃h j

contribute roughly 212n/5 elements in total for the FIRST JOIN PHASE, which collide on 2n bits (in the

second component of the lists L̃h j), of which 2n/5 bits are set to zero; hence

|Lh | ≈
212n/5

2(2−2/5)n
= 24n/5 .

Collision-finding can be performed in conjunction with the FIRST MERGE PHASE in O (n26n/5) time

and O (26n/5) memory. Now, by using the dual codeword

h′ = (
w2 w w 2 1 0 0 1 0

) ∈F8
22 ,

we perform another MERGE-JOIN PHASE (as we cannot generate a unique preimage W using the

elements contained in Lh and using h′ is more efficient in terms of time-complexity). In order to

further optimize the time-complexity, we take χ(h′
0) = {1,2,4} and χ(h′

1) = {3,7} to create the lists L̃h j
′ ,

for j = 0,1 (note that this is the optimal solution, considering the asymmetry between the list sizes).

Projected to the L2 and L4 components, we obtain only 24n/5 possibilities in Lh corresponding to L2

and L4. Each of he remaining lists L1, L3 and L7, however, contains roughly 23n/5 elements. Therefore,

|L̃h′
0
| ≈ 27n/5 and |L̃h′

1
| ≈ 26n/5 .

As both lists contribute roughly 213n/5 elements that need to collide on 2n bits, of which 2n/5 bits

are set to zero, we have

|Lh′ | = 213n/5

2(2−2/5)n
= 2n .

Collision-finding can be performed in conjunction with the FIRST MERGE-JOIN PHASE in O (n27n/5)

time and O (26n/5) memory.

We have 2n preimage candidates W ′ satisfying Cpre
6 (W ′) = x6 and Cpre

7 (W ′) = x7. So, for the FINAL-

IZATION, there is a list of 2n partial preimages on all but one output. So, we expect one of these

partial preimages to be part of list L8 and to be a full collision; hence this partial preimage creates a

preimage. This step can be performed by simply doing another membership-check with the list L8.

The time-complexity of this step (which is O (2n)) is dominated by the previous stages of the algo-

rithm. Therefore, summing up the stated complexities results in a time-complexity of O (28n/5) (due

to QUERY PHASE) with a memory requirement of O (26n/5) 2n-bits.

139

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

6.3.4 Proof of Theorems 6.3.5 and 6.3.7

We proceed step by step to prove Theorems 6.3.5 and 6.3.7. The first three steps are common for

the MDS and non-MDS cases (where for MDS codes d⊥ = k +1). The remaining steps are treated

separately. In the complexity estimations below, we concentrate on expected values and largely

ignore (the effects of) factors that are polynomial in n; memory requirements are measured in

multiples of cn-bit blocks.

QUERY PHASE. The time-complexity of this step is simply 2αn PuRF evaluations forα= r /k as q = 2αn .

Per Li we need |Li | ≈ q/2n = 2(α−1)n memory.

(FIRST) MERGE PHASE. The main computational requirement of this step is the generation of the

lists L̃h j for j = 0,1. The time required for generating L̃h0 and L̃h1 is essentially equal to their respective

sizes, namely |Li ||χ(h0)| and |Li ||χ(h1)|. We left i unspecified, as all the Li should be about the same size,

namely |Li | ≈ 2(α−1)n . Because, by construction, |χ(h0)| = bd⊥/2c and |χ(h1)| = dd⊥/2e, the respective

cardinalities become 2(α−1)bd⊥/2cn and 2(α−1)dd⊥/2en . This is clearly dominated by the latter.

(FIRST) JOIN PHASE. This step constructs Lh by finding collisions between L̃h0 and L̃h1 in their

second components. As |L̃h0 | · |L̃h1 | ≈ 2d⊥(α−1)n and we are interested in collisions on αn bits, the

expected cardinality of Lh is |Lh | ≈ 2(d⊥(α−1)−α)n (substituting α and d⊥ = k +1 results in 2(r−k−1)n

for MDS codes). Note that each colliding element can be forwarded directly to the next step, thus

eliminating the need to store Lh . Moreover, the collision search can be performed in conjunction

with (FIRST) MERGE PHASE by storing L̃h0 and checking (and processing) collisions on-the-fly when

generating L̃h1 . This way the memory requirements are reduced to |L̃h0 | ≈ 2(α−1)bd⊥/2cn .

SECOND MERGE PHASE and SECOND JOIN PHASE (for non-MDS codes). For this scenario we restrict

ourselves to the four codes suggested by Knudsen and Preneel. For the (chosen) systematic generator

matrices we can always find (by inspection) h,h′ ∈C ⊥ with the property that h has minimal weight,

{1, . . . ,k} ⊂ χ(h)∪χ(h′) (so we reach reach full rank and can FINALIZE afterwards) and the number

of i ∈ χ(h′) for which i ∉ χ(h) equals k −d⊥+2. As a result, the relation defined by h′ (and thus

the second phase) involves k −d⊥+2 ‘fresh’ lists Li (those for which i ∉ χ(h) and i ∈ χ(h′)) with

|Li | = 2(α−1)n , as well as Lh , for which |Lh | = 2(d⊥(α−1)−α)n . Hence, regardless of the way of MERGEing

and JOINing there are

2(d⊥(α−1)−α)n ·2(k−d⊥+2)(α−1)n = 2(α+k(α−1)−2)n

elements in total to be checked for collisions. As in the previous step, collisions are searched for

on αn bits. This leads to a list Lh′ of roughly |Lh′ | = 2(k(α−1)−2)n = 2(r−k−2)n elements at the end of

SECOND JOIN PHASE.

To minimize the complexity of the merging phase, we need to find the sets χ(h′
0) and χ(h′

1) such

that χ(h′
0)∩χ(h′

1) =; and the full 2(α+k(α−1)−2)n elements (involved in the merging) are distributed

as evenly as possible without violating the constraints imposed by the asymmetric list sizes. The

condition χ(h)∩χ(h′
1) = ; implies that Lh is merged into L̃h′

0
; assume that j further fresh Li are

merged into L̃h′
0
. This automatically means that |χ(h′

1)| = (k −d⊥+2− j) and furthermore that

|L̃h′
1
| = 2(k−d⊥+2− j)(α−1)n and |L̃h′

0
| = 2 j (α−1)n+(d⊥(α−1)−α)n .

Given a particular j , the merging time is governed by the maximum of |L̃h′
1
| and |L̃h′

0
|, whereas the

140

6.3. Revisiting the Preimage Resistance

storage requirement is similarly the minimum of that pair. In order to optimize the overall time-

complexity, we take the minimum (of the maximum just mentioned) over all j , denote the value

by T1 and, for the value j used, denote by T2 the corresponding ‘memory’-minimum. Note that

T1 +T2 = k(α− 1)+α− 2. Collision-finding can then be performed in 2T1n time with a memory

requirement of roughly 2T2n .

FINALIZATION. For each element in Lh (respectively in Lh′ for non-MDS codes) we need to perform

a simple check (we assume it costs unit time and constant memory). For MDS codes, after the FIRST

JOIN PHASE, we obtain that Lh has size roughly 2(r−k−1)n . For the non-MDS case, we have shown that

|Lh′ | = 2(r−k−2)n (at least for the four non-MDS codes provided by Knudsen and Preneel).

Summing up the obtained complexities for the various steps concludes the proof. (See our results on

the compression functions suggested by Knudsen and Preneel in Tables 6.3 and 6.4).

Remark 6.3.9. For the schemes for which our attack is not optimal, the time-complexity is higher

than the query-complexity. Thus it is natural to consider increasing the query-complexity in order to

bring the overall complexity down, as is so effectively demonstrated by Wagner [200] for the ordinary

generalized birthday problem. However, our situation differs crucially from that ordinary one, as we

show below.

Normally the lists are constructed as outputs of a compression function (or PuRF). Thus increasing

the amount of queries simply leads to more elements (uniformly distributed) in the same set. In other

words, the density of available elements increases with the number of queries. In our setting, the lists

are constructed as inputs of a compression function, depending on whether they hit a specific target.

Moreover, for our attack to work, we choose our inputs very carefully and exhaust all inputs of the

prescribed format. To increase the number of queries, we need to relax the prescribed format. So

although we get more answers, they will be chosen from a larger space (which will be felt throughout

the algorithm). Thus, the density of elements remains the same (namely 2−n), making it less likely for

a Wagner-style attack to go through. (From a more technical perspective, the way Wagner achieves

an increase in speed is by selecting those elements that have a certain zero-bit-pattern; because we

already control the zero-bit pattern of the elements that end up in the list to some extent, intuitively

there is less for us to gain by relaxing this control.)

6.3.5 A Space-Efficient Preimage Attack

In the preimage attacks 2 presented in Section 6.3, our main tool for reducing the time-complexity of

the MERGE and JOIN PHASES is a general problem whose special instance is a well-known and studied

k-list problem: Given k-lists L1, . . . ,Lk consisting of independent and uniform samples from {0,1}n ,

for each i ∈ 1, . . . ,k, find xi ∈ Li such that x1⊕. . .⊕xk = 0. Our attacks take a direct approach to solving

the k-list problem, by merging pairs of lists and looking for collisions in corresponding entries. This

approach provides an efficient attack in terms of time-complexity, but it is not always sufficiently

space-efficient for us 3.

2. We note that the improvements presented in this section are also applicable to the relevant steps of the collision
attacks given in Section 6.4; yet they do not affect the overall complexity due to the LOCAL COLLISION DETECTION step.

3. We are certainly not the first to face this issue: A series of papers including [41, 47, 179, 200] provide alternatives
with different time/memory trade-offs. See Wagner [200] for a survey of cryptographic applications of the k-list problem
ranging from symmetric-key to public-key cryptography.

141

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

To make things concrete, consider the case of k = 4. To find a single solution for the 4-list prob-

lem (with high probability), it is straightforward to see that the cardinalities of the lists should be

around 2n/4. This also serves as the minimum memory-complexity [47, 179] among all the known

solutions to the 4-list problem. Whereas, the known algorithms requiring 2n/4 memory are able to

achieve only about 2n/2 time-complexity. Wagner’s work [200] presents an excellent compromise,

achieving time-complexity 2n/3 and also memory-complexity 2n/3. In terms of time-complexity to

find a single solution to the 4-list problem, this is the best known result.

From One Solution to All Solutions Rather than looking for a single solution, our attacks are

interested in finding all solutions of a k-list problem (or a related problem, depending on the

relations imposed by the particular code C). Indeed, recall the attacks from Section 6.3: We generate

all solutions by splitting the codeword in two and looking for all collisions in the corresponding

entries in the respective lists.

One simple idea for finding all solutions might involve iterating Wagner’s algorithm. But for us, this

approach is lacking. To illustrate, let us take a look at the relevant steps (i.e., the MERGE and JOIN

PHASES) in our warm-up example from Section 6.3.1. If we apply Wagner’s algorithm iteratively 2n

times (to find the same number of solutions) each with |Li | = 2n/3, we need to generate 24n/3 partial

preimages in total in the QUERY PHASE. This obviously increases the time-complexity of this step,

hence the time-complexity of overall attack. Instead, our approach employs a method (primarily due

to Chose et al. [47]) that can be seen as a special instance of Wagner’s tree algorithm (in particular

for k = 4), and we aim to hold the time-complexity in place while gaining efficiency in memory-

complexity.

Consider again the KP1([5,3,3]4) compression function. We now describe our more space-efficient

attack: The differences between this attack and the one given in Section 6.3.1 are in the MERGE and

JOIN phases; the remaining steps of the algorithm work exactly as before.

Claim 6.3.10. For the compression function h = KP1([5,3,3]4), preimages in hn can be found in

O (25n/3) time with a memory requirement of O (22n/3) n-bit blocks.

Proof. Refer to Figure 6.2 for an illustration of the attack. To avoid repetition, we refer to Section 6.3.1

for the details of the QUERY PHASE and FINALIZATION phases. We give the modifications to the MERGE

and JOIN phases, for which we need to find all solutions of the 4-list problem over the lists L1, . . . ,L4.

The list of tuples containing all the solutions of the 4-list problem is defined by

L{1,2,3,4} = {(x1, x2, x3, x4) ∈ L1 ×L2 ×L3 ×L4 | x1 ⊕x2 ⊕x3 ⊕x4 = 0} .

We follow a step-by-step approach, using a Wagner-style tree-like algorithm given the lists Li with

|Li | ≈ 22n/3. Let l be a positive integer less than 2n; its precise choice will be specified later. We denote

by (xi)l the concatenation of the least significant l /2 bits of the n-bit strings x1
i and x2

i (corresponding

to the non-zero blocks in our queries). We first construct the lists (by looking for a correspondence

on l bits) L̃{1,2} and L̃{3,4} defined by (for some l-bit constant c̃)

L̃{1,2} = {(x1, x2) | (x1)l ⊕ (x2)l = c̃ and (x1, x2) ∈ L1 ×L2} ,

L̃{3,4} = {(x3, x4) | (x3)l ⊕ (x4)l = c̃ and (x3, x4) ∈ L3 ×L4} .

142

6.3. Revisiting the Preimage Resistance

f 5 y5 = z5

f 4 y4 = z4

f 3 y3 = z3

f 2 y2 = z2

f 1 y1 = z1Q[1]

Q[2]

Q[3]

Q[4]

Q[5]

L1

L2

L3

L4

L5

L̃{1,2}

L̃{3,4}

L̃{1,2,3,4}FW

24n/3−l

24n/3−l

2n

25n/3

n

2n

25n/3

n

2n

25n/3

n

2n

25n/3

n

2n

25n/3

n
22n/3

22n/3

22n/3

22n/3

22n/3

2n−l1

Figure 6.2 – Our space-efficient preimage attack on hn =KP1([5,3,3]22) illustrated. The attack works
for l = 22n/3.

Note that constructing each list takes O (n22n/3) time (for sorting and scanning e.g., L1 and L3) and

O (22n/3) memory (for storing L1, . . . ,L4). We are interested in the cardinalities of the lists L̃{1,2} and

L̃{3,4} as they are the main factors affecting the time- and memory-complexity of this phase. It is

expected that both lists have roughly 24n/3−l elements, as we can generate 24n/3 tuples in total (each

from L1 −L2 and L3 −L4) and the probability of hitting one of the c̃ ∈ {0,1}l is 2−l .

Next we look for the correspondence on the remaining 5n/3− l bits of the surviving elements in L̃{1,2}

and L̃{3,4} to obtain all the solutions. As there are 28n/3−2l tuples in total (24n/3−l from each of L̃{1,2}

and L̃{3,4}) and we are interested in correspondence on 5n/3− l bits, we expect to produce

28n/3−2l ·2l−5n/3 = 2n−l

solutions, i.e., |L{1,2,3,4}| = 2n−l . Constructing L{1,2,3,4} then takes (on average) O (n24n/3−l) time and

O (24n/3−l) memory. So, choosing l = 2n/3 gives us the optimal memory-complexity for this particular

case as the QUERY PHASE requires O (22n/3) memory. Consequently, we can produce 2n/3 solutions of

the 4-list problem in O (22n/3) time using O (22n/3) n-bit blocks of memory with a single c̃ ∈ {0,1}2n/3.

The idea for reducing the memory requirements is to iterate this phase for all c̃ ∈ {0,1}2n/3 to obtain 2n

solutions at the end (which is essentially what we require for the FINALIZATION phase). Note that the

trick is to remove the internal lists L̃{1,2} and L̃{3,4} at the end of each iteration to keep the memory

requirements small. All in all, MERGE and JOIN phases take O (n24n/3) time (22n/3 iterations each

requiring O (n22n/3) time) and O (22n/3) memory. Hence, the time-complexity of the overall attack is

still dominated by the QUERY PHASE (asymptotically in n) and the memory requirement is O (22n/3).

So, the claim follows.

Generalization to k > 4 The main idea of generalizing the algorithm for k > 4 is to reduce the k-list

problem to solving a respective 4-list problem. In brief, the algorithm works as follows. Firstly, the

k lists are divided into four groups of lists each containing l0, . . . , l3 smaller lists. More specifically,

we first determine the integers l0, . . . , l3 with l0 ≥ l1, l2 ≥ l3 such that l0 + . . .+ l3 = k. Then, a merging

phase is performed (similar to the one presented in our preimage attacks) in each of the four groups

to generate four large lists (each containing li smaller lists). Finally, the algorithm to find all the

solutions of the 4-list problem is mounted over the four large newly generated lists. In turn, this

143

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

Algorithm 6.3.11 (A Space-Efficient Algorithm for (FIRST) MERGE-JOIN PHASE).

Input: A dual codeword h with Hamming weight d⊥ ≥ 4, partial preimage lists Li , each of
cardinality N = 2(r−k)n/k , whose elements are in {0,1}cn and obtained from the QUERY

PHASE as specified in Algorithm 6.3.4.

Output: Lh = {
X ∈∏

i∈χ(h) Li | (ϕ̄(h)⊗ In′) · (X +0) = 0
}
.

1. MERGE PHASE. Let h = h0 + . . .+h3 with χ(h0)∩ . . .∩χ(h3) = ; and of Hamming
weights l0, . . . , l3, respectively, with l0 ≥ l1, l2 ≥ l3 such that l0+ . . .+ l3 = d⊥. Create for
j = 0, . . . ,3,

L̃h j =
{(

X j , (ϕ̄(h j)⊗ In′) · (X j +0)
) | X j ∈

∏
i∈χ(h j)

Li

}
all sorted on their second component.

2. JOIN PHASE. For all c̃ ∈ {0,1}l (for an l ≤ r n/k to be determined, see the proof of
Theorem 6.3.12),

(a) Construct L̃h0,1 and L̃h2,3 (store and sort L̃h1 and L̃h3 then scan all the elements
in L̃h0 and L̃h2) defined by

L̃h0,1 = {((X0,Y0), (X1,Y1)) ∈ L̃h0 × L̃h1 | (Y0)l ⊕ (Y1)l = c̃},

L̃h2,3 = {((X2,Y2), (X3,Y3)) ∈ L̃h2 × L̃h3 | (Y2)l ⊕ (Y3)l = c̃}.

(b) Obtain (by checking the correspondence on the remaining r n/k − l bits of the
related entries of L̃h0,1 and L̃h2,3)

Lh =
{

X ∈ ∏
i∈χ(h)

Li | (ϕ̄(h)⊗ In′) · (X +0) = 0

}
.

(See also the JOIN PHASE(b) in the proof of Theorem 6.3.12 how to perform this
step in practice.)

3. FINALIZATION. Output Lh .

gives all the solutions to the corresponding k-list problem. Algorithm 6.3.11 provides the detailed

explanation of our novel algorithm for the (FIRST) MERGE-JOIN PHASEs. The analysis is given in

Theorem 6.3.12.

Theorem 6.3.12. Let h=KPb([r,k,d]2e) be given and let d⊥ ≥ 4 be the minimum distance of the dual

code of C . Consider the algorithm described in Algorithm 6.3.11 running as a subroutine for finding

preimages for hn . Then, the expected cardinality of Lh is as in Theorem 6.3.5, the time-complexity of

Algorithm 6.3.11 is O (N max(l0+l1,l2+l3)log N) for N ≈ 2(r−k)n/k and n →∞, and its memory-complexity

is O (N max(l1,l3)) (expressed in the number of cn-bit blocks where e = bc). In particular (without loss of

generality),

l0 = dd⊥/4e , l1 = dd⊥/2e−dd⊥/4e , l2 = bd⊥/2c−bd⊥/4c , l3 = bd⊥/4c

provides an optimal solution (over the partial preimage lists of equal cardinality).

Proof. We first determine the computational complexity of each step separately (neglecting the steps

JOIN PHASE(a) and FINALIZATION). Then, summing up each step’s time and memory complexities

144

6.3. Revisiting the Preimage Resistance

gives the overall computational requirements of Algorithm 6.3.11. In the following, we assume that

N ≈ 2(r−k)n/k and the asymptotic analysis is performed for n →∞. We begin with the MERGE PHASE.

MERGE PHASE. This phase is performed independently over four groups each containing l0, . . . , l3

smaller lists of roughly N elements. So, due to the constraint that l0 ≥ l1 and l2 ≥ l3, the expected

time-complexity of this step is O (N max(l0,l2) log N). Note that memory requirement of this step can

be optimized by running MERGE and JOIN PHASE(a) in conjunction (see the analysis of the next

phase). So it is enough to store only the merged lists L̃h1 and L̃h3 ; hence the memory requirement is

O (N max(l1,l3)) cn-bit blocks.

JOIN PHASE(a). This step constructs L̃h0,1 (and L̃h2,3) by finding collisions between L̃h0 and L̃h1 (re-

spectively L̃h2 and L̃h3) in their second components. As |L̃h0 | · |L̃h1 | ≈ N l0+l1 and |L̃h0 | · |L̃h1 | ≈ N l2+l3

and we are interested in collisions on l bits (which will be determined soon), we expect to have

|L̃h0,1 | ≈ N l0+l1 · 2−l and |L̃h2,3 | ≈ N l2+l3 · 2−l . We can find L̃hi , j (for i < j) by only storing L̃h j and

scanning through all elements in L̃hi . Therefore this step requires O (N max(l0,l2) log N) time with a

memory-complexity of O (N max(l1,l3)) cn-bit blocks. Note that MERGE PHASE can be run as a sub-step

of this phase; we can first generate and store the merged lists L̃h1 and L̃h3 . Then, we can find the

collisions by simply generating the lists L̃h0 , L̃h2 and checking (on-the-fly) the required l -bit relations.

JOIN PHASE(b). In this step, we are interested in the collisions on the remaining r n/k−l non-zero bits

of the related entries of L̃h0,1 and L̃h2,3 . In order to minimize the memory requirements, we store only

the smaller of L̃h0,1 and L̃h2,3 . Therefore, this step can be performed in O (N max(l0+l1,l2+l3)2−l log N)

time with a memory-complexity of O (N min(l0+l1,l2+l3)2−l) cn-bit blocks. As

|L̃h0,1 | · |L̃h2,3 | ≈ N d⊥ ·2−2l

(because l0 + . . .+ l3 = d⊥) and we are looking for collisions on the remaining r n/k − l bits, the

expected cardinality of Lh is

|Lh | ≈ N d⊥ ·2−2l ·2l−r n/k .

Substituting N = 2(r−k)n/k , we get

|Lh | ≈ 2(d⊥(r−k)−r)n/k−l .

Because we iterate this step 2l times, we eventually have

|Lh | ≈ 2(d⊥(r−k)−r)n/k .

This is exactly what we obtained in Theorem 6.3.5. Note that regardless of the choice of l , this

step requires O (N max(l0+l1,l2+l3) log N) time. Whereas, for the memory-complexity, we can choose

the optimal value of l to find the minimum required storage. That is, because we already need

O (N max(l1,l3)) cn-bit blocks of memory, choosing l such that

min(N l0+l1 , N l2+l3) ·2−l = N max(l1,l3)

does not increase the memory requirements. Hence, JOIN PHASE can be performed with O (N max(l1,l3))

cn-bit of memory.

Note that a particular even division among d⊥ lists can be done as follows. Firstly, we group the d⊥

lists into two; one with dd⊥/2e smaller lists and the other with bd⊥/2c. This is an even 2-division.

145

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

Our Attack Complexity
Code Compression Query Time Memory

Function Theorems Theorems
d⊥ 2r n/k 6.3.5, 6.3.7 6.3.12, 6.3.7

[5,3,3]4 4 (5+1)n → 5n 25n/3 25n/3 22n/3

[8,5,3]4 4 (8+2)n → 8n 28n/5 28n/5 23n/5

[12,9,3]4 7 (12+6)n → 12n 24n/3 24n/3 22n/3

[9,5,4]4 4 (9+1)n → 9n 29n/5 211n/5 24n/5

[16,12,4]4 11 (16+8)n → 16n 24n/3 27n/3 2n

[6,4,3]16 5 (6+2)n → 6n 23n/2 23n/2 2n/2

[8,6,3]16 7 (8+4)n → 8n 24n/3 24n/3 22n/3

[12,10,3]16 11 (12+8)n → 12n 26n/5 26n/5 23n/5

[9,6,4]16 7 (9+3)n → 9n 23n/2 22n 2n

[16,13,4]16 14 (16+10)n → 16n 216n/13 22n 29n/13

[4,2,3]8 3 (4+2)n → 4n 22n 22n 2n

[6,4,3]8 5 (6+6)n → 6n 23n/2 23n/2 2n/2

[9,7,3]8 8 (9+12)n → 9n 29n/7 29n/7 24n/7

[5,2,4]8 3 (5+1)n → 5n 25n/2 23n 23n/2

[7,4,4]8 5 (7+5)n → 7n 27n/4 29n/4 23n/4

[10,7,4]8 8 (10+11)n → 10n 210n/7 22n 26n/7

Table 6.5 – Space-efficient results on Knudsen–Preneel Compression Functions based on [r,k,d]2e

codes. Non-MDS parameters in italic.

Then, we proceed similarly with the newly generated smaller groups of lists. Therefore, the choice

l0 = dd⊥/4e , l1 = dd⊥/2e−dd⊥/4e , l2 = bd⊥/2c−bd⊥/4c , l3 = bd⊥/4c

provides an optimal 4-division. Hence, the claim follows.

Remark 6.3.13. Because d⊥ < 4 for KP1([4,2,3]8) and KP1([5,2,4]8), we cannot apply Algorithm 6.3.11

for these compression functions, instead we perform the naive method presented in Algorithm 6.3.4.

These are the only exceptions among the parameters suggested by Knudsen and Preneel. We could

also apply (a variant of) Algorithm 6.3.11 to have a more space-efficient solution for the SECOND

MERGE-JOIN PHASE of the non-MDS case. However, due to the asymmetry between the list sizes,

we need a similar optimization trick to determine the li values. Once this is done, the rest of the

algorithm works exactly in the same way. The ramifications of the space-efficient preimage-finding

algorithm to all compression functions suggested by Knudsen and Preneel are given in Table 6.5.

6.3.6 Information-Theoretic Security Proof

The following result provides a security proof for preimage resistance of the Knudsen–Preneel

compression functions in the information-theoretic model. That is, we give a lower bound on the

query-complexity (for a computationally unbounded adversary) of any preimage-finding attack. This

bound shows that the query-complexity of our new attack is optimal, up to a small factor. Hence,

the time-complexity of our preimage attack becomes optimal whenever the time-complexity of our

attack matches its query-complexity.

146

6.3. Revisiting the Preimage Resistance

Theorem 6.3.14. Let h = KPb([r,k,d]2e) (with systematic generator matrix) and, for b dividing n,

consider hn based on underlying PuRFs f i ∈ Func(cn,n) for i= 1, . . . ,r with c = e/b. Then for q ≤ 2cn

queries to each of the oracles and δ≥ 0 an arbitrary real number:

Advepreh (q) ≤
(

r

k

)
kq1+δ

2(r−k+1)n
+ r p ,

where p = Pr
[
B

[
q ;2−n

]> qδ/(k−1)
]

and B
[
q ;2−n

]
denotes a random variable counting the number of

successes in q independent Bernoulli trials, each with success probability 2−n .

Proof. Let Z = z1 || · · · ||zr be the range point to be inverted. Recall that f 1, . . . , f k are the functions

corresponding to the systematic part of the [r,k,d]2e code. Without loss of generality, we restrict our

attention to an adversary A asking exactly q queries to each of its oracles. Consider the transcript of

the oracle queries and responses. To complete a preimage, in this transcript there must necessarily ex-

ist at least one tuple (x1, . . . , xk) of queries to f 1, . . . , f k such that for all i= 1, . . . ,k we have f i (xi) = zi .

Notice that because f 1, . . . , f k correspond to the systematic portion of the code, any tuple (x1, . . . , xk)

of queries to these k PuRFs uniquely defines a tuple of queries (xk+1, . . . , xr) to the remaining r −k

PuRFs. Thus the number of tuples (x1, . . . , xk) in the transcript such that f i (xi) = zi for all i= 1, . . . ,k

determines the number of tuples (xk+1, . . . , xr) that could possibly be a (simultaneous) preimage for

zk+1 || · · · ||zr . Intuitively, if this number is bounded to be sufficiently small, then Advepreh (A) will also

be small. Let us make this formal.

For all i= 1, . . . ,k, let Li denote the list of partial preimages (at the end of the game), that is the

set of all xi that A queried to f i for which f i (xi) = zi and let Ni = |Li |. Then Ni is the random

variable denoting the number of partial preimages A found. Let bad(Q) be the event that there

exists an i ∈ {1, . . . ,r } such that Ni ≥ qδ/(k−1) where δ≥ 0 is an arbitrary real number. As all the Ni are

independent binomial random variables with success probability 2−n and q trials each, we have that

Pr[bad(Q)] ≤ r Pr
[

B
[
q ;2−n]> qδ/(k−1)

]
= r p .

Let Q j be the transcript of the oracle queries and responses after the j ’th query. Then, we have

(Proposition 3.3.7)

Pr
[
epreZ (Q)

]≤ r p +
(

r

k

)
kq∑
j=1

Pr
[
epreZ (Q j) | ¬epreZ (Q j−1)∧¬bad(Q j−1)

]
,

where the term
(r

k

)
is the maximum number of possible choices for the k linearly independent

PuRF inputs. Given that ¬bad(Q j−1) holds, we know that Ni < qδ/(k−1) and hence
∏

i∈I Ni < qδ for

I ⊂ {1, . . . ,k} with |I | = k −1. Thus, no matter what fresh query is asked to f 1, . . . , f k (and regardless

of order), we know that there will be at most qδ query tuples generated by the fresh query that can

be preimages of z1 || · · · ||zk . By our argument above, then, there will be at most this many tuples

(xk+1, . . . , xr) that can contribute to the occurrence of the event epreZ (Q j).

Consider the j ’th query; without loss of generality, assume that it is asked to f 1. As argued above,

there exist at most qδ query tuples generated by this fresh query that can be preimages of z1 || · · · ||zk .

Now let us study the following experiment: Adversary A ′ is allowed to make at most qδ queries to an

147

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

oracle that, on input an (r −k +1)-tuple (x1, xk+1, . . . , xr), returns(
f 1(x1), f k+1(xk+1), . . . , f r (xr)

)
.

A ′ wins if the oracle ever returns (z1, zk+1, . . . , zr). As the PuRFs f 1, f k+1, . . . , f r are independent, it is

easy to see that the probability that A ′ wins is at most qδ/2(r−k+1)n . Thus in the epre experiment, the

probability that A manages to produce a tuple (x1, xk+1, . . . , xr) that yields z1, zk+1, . . . , zr , given that

at most qδ such tuples can be considered, is at most qδ/2(r−k+1)n . So then

Pr
[
epreZ (Q j) | ¬epreZ (Q j−1)∧¬bad(Q j−1)

]≤ qδ

2(r−k+1)n
.

We use the union bound to conclude the proof.

Corollary 6.3.15. Let h=KPb([r,k,d]2e) (with systematic generator matrix) and, for b dividing n, con-

sider hn based on underlying PuRFs f i ∈ Func(cn,n) for i= 1, . . . ,r with c = e/b. Then asymptotically

for n (with b n′ =n) and

q ≤ g (n)

(
2n

e

)r /k

with g (n) = o(1) it holds that

Advepreh (q) = o(1) .

Proof. Set δ= (r −k)(k −1)/r and substitute q = g (n) (2n/e)r /k in the statement of Theorem 6.3.14.

We will show that asymptotically both terms vanish, starting with the first. After substitution, using

1+δ= (r k −k(k −1))/r ,

we obtain

kq1+δ

2(r−k+1)n
=

k

[
g (n)

(
2n

e

)r /k
](r k−k(k−1))/r

2(r−k+1)n
= kg (n)(r k−k(k−1))/r

er−k+1
,

which clearly vanishes whenever g does. For the second term in the bound of Theorem 6.3.14, we

need to bound the tail probability of a binomial distribution, for which we use Chernoff’s bound

applied to κ= qδ/(k−1) = q (r−k)/r , so

p = Pr
[
B

[
q ;2−n]> κ]< (

eq/(κ2n)
)κ = (e

2n qk/r
)κ

,

where we have left κ in the exponent for brevity. Substituting q = g (n)
(

2n

e

)r /k
in the rightmost side of

the previous equation then leads to

p <
 e

2n

(
g (n)

(
2n

e

)r /k
)k/r

κ = (
g (n)

)kκ/r ,

where kκ/r ≥ (k2)/r , implying that p vanishes as well for g (n) = o(1) as n →∞.

148

6.4. Another Look at Collision Resistance

(F2e)n′

(Fe
2)n′

F
en′
2

(Fn′
2e)r

(Fen′
2)r

F
en′r
2

(Fr
2e)n′

ρ

∼=
∼= ρ̄

∼=
∼=

∼=
ψ :F2e F

e
2

∼=

Figure 6.3 – Auxiliary maps used in Section 6.4.1. The rightmost diagram illustrates the isomorphism⊕n′
j=1 U j → {0,1}er n′

for U j =Fr
2e .

6.4 Another Look at Collision Resistance

6.4.1 Decoding the Knudsen–Preneel Preprocessing

In this section, we develop the tools that are used in the optimized collision-finding algorithms

presented in the subsequent sections. For the preimage resistance, such an analysis was not required

simply because of the simplicity of the algorithms; for collision resistance, we definitely need to give

more mathematical details (we use the same notation as in the previous sections in this chapter; if a

new notion is needed, we introduce related notation and definitions here).

Recall that (see Section 3.1) we are given an injective ring homomorphism ϕ :F2e →F
e×e
2 and a

group isomorphism ψ :F2e →F
e
2 that satisfy ϕ(g)ψ(h) =ψ(g h) for all g ,h ∈F2e . In the following,

as usual, we let [r,k,d]2e be a linear code with generator matrix G ∈Fk×r
2e , let b be a positive divisor

of e such that ek > r b and finally let n = bn′. Then the preprocessing Cpre : {0,1}ekn′ → {0,1}er n′
of

the Knudsen–Preneel compression function is defined by Cpre(W) = (ϕ̄(GT)⊗ In′) ·W (and note that

er n′ = r cn). Throughout this chapter, we denote ℑ(Cpre) to be the image of Cpre.

Characterization of ℑ(Cpre) as a Sum We have previously written the co-domain of Cpre as a

direct sum of PuRF inputs by identifying {0,1}r en′
with

⊕r
i=1 Vi for Vi =Fen′

2 . Here we use a second

interpretation that emphasizes the code. We consider
⊕n′

j=1 U j for U j =Fr
2e . AsFr

2e , and by extension⊕n′
j=1 U j , is a vector space overF2e , whereas {0,1}er n′

is a stand-in for the vector spaceFer n′
2 overF2,

we cannot find a vector space isomorphism. Nonetheless, we can find a suitable group isomorphism

n′⊕
j=1

U j → {0,1}er n′
.

To define the group isomorphism we exploit that, luckily, the underlyingF2e arithmetic is essentially

preserved by Cpre : {0,1}ekn′ → {0,1}er n′
, even though the ‘⊗In′ ’ in Cpre(W) = (ϕ̄(GT)⊗ In′) ·W garbles

things up. To formalize this, let ρ :Fn′
2e →F

en′
2 be the group isomorphism such that

ρ(gδ) = (ϕ(g)⊗ In′) ·ρ(δ)

for all δ ∈Fn′
2e and g ∈F2e . As usual, we extend ρ to e.g., r -tuples of elements inFn′

2e (and hence to

vectors in
(
F

n′
2e

)r
) by component-wise application, i.e., ρ̄ :

(
F

n′
2e

)r →F
en′r
2 . This suffices for a group

isomorphism
n′⊕

j=1
U j → {0,1}er n′

149

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

as well 4 (see Figure 6.3). The following lemma makes the above discussion more concrete in the

context of Knudsen–Preneel preprocessing.

Lemma 6.4.1. Let I0 ⊂ {1, . . . ,r }, C ′ be the (quasi) shortening of C on I0 (see Section 3.1 for the

definition) and let C ′
j =C ′ ⊆U j =Fr

2e for j= 1, . . . ,n′. Then

X = (x1, . . . , xr) ∈ℑ(Cpre)

with xi = 0 for all i ∈ I0 if and only if for all j= 1, . . . ,n′ there exists a unique

g j = (g j 1, . . . , g j r) ∈C ′
j

such that

xi = ρ
(
g1i , . . . , gn′i

)
for all i = 1, . . . ,r .

Proof. Let X ∈ℑ(Cpre). Then, by construction of a Knudsen–Preneel compression function, there is a

unique W ∈Fken′
2 for which X = (ϕ̄(GT)⊗In′)·W . Because the generator matrix (of the corresponding

code C) G is contained in Fk×r
2e , we can write, as usual, X = (ϕ̄(GT)⊗ In′) ·W as for all i ∈ {1, . . . ,r }

and j ′ ∈ {1, . . . ,k}

xi =
k∑

j ′=1

(
ϕ(G j ′i)⊗ In′

) ·w j ′ for W = (w1, . . . , wk) and w j ′ ∈Fen′
2 .

Here G j ′i ∈F2e denotes the entry in the (j ′)’th row and the i ’th column of G . By applying ρ−1 on

both sides (and after some algebraic manipulation together with using ρ(gδ) = (ϕ(g)⊗ In′) ·ρ(δ)),

this leads, for all i ∈ {1, . . . ,r }, to

ρ−1(xi) = ρ−1

(
k∑

j ′=1

(
ϕ(G j ′i)⊗ In′

) ·w j ′

)
=

k∑
j ′=1

ρ−1 ((
ϕ(G j ′i)⊗ In′

) ·w j ′
)= k∑

j ′=1
G j ′i ·ρ−1(w j ′) .

Observing that both ρ−1(xi) and ρ−1(w j ′) are vectors in Fn′
2e yet G j ′i is simply a scalar, the above

expression for ρ−1(xi) is equivalent to (for all j ∈ {1, . . . ,n′} and i ∈ {1, . . . ,r })

g j i := (
ρ−1(xi)

)
j =

k∑
j ′=1

G j ′i ·
(
ρ−1(w j ′)

)
j ,

where we write for
(
ρ−1(xi)

)
j ∈F2e and j ∈ {1, . . . ,n′}

ρ−1(xi) = ((
ρ−1(xi)

)
1 , . . . ,

(
ρ−1(xi)

)
n′

)
.

Similarly, for
(
ρ−1(w j ′)

)
j ∈F2e , we have

4. Note that if Knudsen and Preneel had defined their compression functions slightly differently (we believe the choice
was not made on purpose) namely by Cpre(W) = ϕ̄(GT ⊗ In′) ·W , then we simply could have used ρ = ϕ̄ without any need
for ungarbling; for collision and preimage resistance of the compression function this change is irrelevant in the PuRF
model, as the garbling can effectively be absorbed by the PuRFs.

150

6.4. Another Look at Collision Resistance

ρ−1(w j ′) =
((
ρ−1(w j ′)

)
1 , . . . ,

(
ρ−1(w j ′)

)
n′

)
.

Now, for j= 1, . . . ,n′, we have

g j := (g j 1, . . . , g j r) =
(

k∑
j ′=1

G j ′1 ·
(
ρ−1(w j ′)

)
j , . . . ,

k∑
j ′=1

G j ′r ·
(
ρ−1(w j ′)

)
j

)
∈U j =Fr

2e .

Note that g j ∈C ; this follows from the fact that g j is a codeword obtained from codewords appearing

in the rows of the generator matrix. Indeed, it is obtained by multiplying the codewords in each

row by the constant
(
ρ−1(w j ′)

)
j and summing them up, which clearly gives a valid codeword in C .

Moreover, we have

xi = ρ
(
g1i , . . . , gn′i

)
,

which is easy to verify from the definition of g j i . Finally, for all i ∈ I0 we are given that xi = 0, which

implies ρ−1(xi) = 0 and therefore g j i = 0 for all j= 1, . . . ,n′. Thus, indeed g j ∈C ′ for all j= 1, . . . ,n′.
Running this argument in reverse completes the proof.

Pure Tensors inℑ(Cpre) AsFn′r
2e is isomorphic (as vector space overF2e) to the tensor productFr

2e ⊗
F

n′
2e this leads in a natural way to a function fromF

r
2e ×Fn′

2e to {0,1}r en′
by considering pure tensors

g ⊗δ with g ∈Fr
2e and δ ∈Fn′

2e . Note that we do not discriminate between different representatives,

that is for some non-zero β ∈F2e we have that g ⊗δ= (βg)⊗ (β−1δ). The following lemma provides

an alternative formulation to Lemma 6.4.1.

Lemma 6.4.2. If g ∈Fr
2e and δ ∈Fn′

2e then

ρ̄(g ⊗δ) ∈ℑ(Cpre) ⇔ g ∈C or δ= 0 .

Proof. Let g ∈Fr
2e such that g = (g1, . . . , gr) and δ ∈Fn′

2e with δ= (δ1, . . . ,δn′). Consider n′ copies of g

in the various subspaces that add up toFn′r
2e . Then

g ⊗δ= ((
g1δ1, . . . , g1δn′

)
, . . . ,

(
grδ1, . . . , grδn′

))
,

which implies

ρ̄(g ⊗δ) = (
ρ

(
g1δ1, . . . , g1δn′

)
, . . . ,ρ

(
grδ1, . . . , grδn′

))
.

Writing g j i = giδ j , for i= 1, . . . ,r and j= 1, . . . ,n′, together with Lemma 6.4.1 with empty I0 then

implies that ρ̄(g ⊗δ) ∈ℑ(Cpre) if and only if g ′
j := (

g j 1, . . . , g j r
) ∈C for all j= 1, . . . ,n′. The latter holds

if and only if g ∈C or δ= 0.

Completion Property For a code and any index set I ⊆ {1, . . . ,r } (see Section 3.1), we want to define

Ĩ ⊂ {1, . . . ,r } such that G Ĩ is invertible (thus in particular |Ĩ | = k) and Ĩ ⊆ I or I ⊆ Ĩ . The following

lemma states that invertibility of G Ĩ suffices to invert Cpre.

Lemma 6.4.3. Let G be a generator matrix for an [r,k,d]2e code. Let Ĩ ⊂ {1, . . . ,r } be such that G Ĩ is

invertible, with transposed inverse G−T
Ĩ

. Let n′ be an integer and, for i= 1, . . . ,r , let Vi =Fen′
2 . If given

151

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

xi ∈Vi for i ∈ Ĩ , or equivalently X̃ = (xi1 , . . . , xi|Ĩ |), for {i1, . . . , i|Ĩ |} = Ĩ then

W =
(
ϕ̄(G−T

Ĩ
)⊗ In′

)
· X̃

is the unique element for which X ′ =Cpre(W) satisfies x ′
i = xi for i ∈ Ĩ .

Proof. Simply note that
(
ϕ̄

(
GT

Ĩ

)
⊗ In′

)
·
(
ϕ̄

(
G−T

Ĩ

)
⊗ In′

)
= Ier n′ .

6.4.2 Watanabe’s Collision-Finding Attack Revisited

Knudsen and Preneel leave a considerable gap between the actual complexity of their attacks and

claimed lower bounds in the case of collision resistance. Watanabe [205] points out a collision attack

(Algorithm 6.4.4) that runs in (asymptotically in n) time O (2n). Thus, for many of the parameter sets,

it is better than the one given by Knudsen and Preneel. More interestingly, his attack serves as proof

that the time-complexity lower bound (Proposition 6.1.4) given by Knudsen and Preneel is incorrect

for a large class of parameters: whenever r −k < k (to ensure that the attack works) and d > 3 (so

n < (d −1)n/2). This affects 6 out of 16 parameter sets.

The idea of the attack is to find non-trivial collisions for the PuRFs corresponding to the systematic

portion of the generator matrix while imposing trivial collisions for the rest. Assume that the code’s

generator matrix is systematic, that is G = (Ik |P) with P ∈ Fk×(r−k)
2e . Then the goal is to generate,

for each i ∈ {1, . . . ,k}, a colliding pair of inputs xi 6= x ′
i (and f i (xi) = f i (x ′

i)) in such a way that their

completion to full ‘codewords’ satisfies xi = x ′
i for i ∈ {k +1, . . . ,r }. This is done by ensuring that

xi ⊕x ′
i =∆i where

∆= (∆1, . . . ,∆k) ∈Fken′
2 \{0}

is in the kernel of ϕ̄(P T)⊗ In′ (as r −k < k the kernel is guaranteed to contain a non-trivial element).

Mutual independence of the inputs to the PuRFs corresponding to the code’s systematic part allow

the initial collision searches to be mounted independently. Because the collisions need to be rather

special (due to fixed ∆i values), however, the birthday paradox does not apply and a collision search

costs about 2n queries (per PuRF). On the plus side, the attack is trivially memoryless and can be

parallelized.

Proposition 6.4.5 (Original Watanabe attack [205]). Let h = KPb([r,k,d]2e) be given with r −k < k.

Consider hn (with b|n for b n′ =n). Then collisions for hn can be found in time O (2n), asymptotically

in n, using as many PuRF evaluations.

Revising Watanabe’s Attack

Watanabe’s attack has complexity k2n , requires k > r −k and essentially finds a single collision. Below

we give a revised and improved version of his algorithm (Algorithm 6.4.6). It has a complexity of only

d2n , requires k ≥ d and it potentially results in many collisions. More precisely, if k > d , then after

the initial effort (of d2n) we can find a new collision in constant time, for up to an impressive 2(k−d)cn

number of collisions (recall that e = bc).

In his note, Watanabe describes his attack as a differential attack where originally ∆was computed

as some non-trivial kernel element. We compute ∆ based on a codeword g ∈C of sufficiently low

152

6.4. Another Look at Collision Resistance

Algorithm 6.4.4 (Watanabe’s Original Collision Attack).

Input: h = KPb([r,k,d]2e) satisfying r −k < k, a systematic generator matrix G = (Ik |P),
and a block-size n with b|n (b n′ =n).

Output: A colliding pair
(
W,W ′) ∈ (

{0,1}ekn′)2
such that hn(W) = hn(W ′) and W ⊕W ′ =

∆ 6= 0 with (ϕ̄(P T)⊗ In′) ·∆= 0.

1. INITIALIZATION. Compute 0 6=∆= (∆1, . . . ,∆k) in the kernel of ϕ̄(P T)⊗ In′ .

2. QUERY PHASE. For i= 1, . . . ,k do

a. Generate a random xi ∈Fen′
2 ;

b. Set x ′
i ← xi ⊕∆i ;

c. Query yi ← f i (xi) and y ′
i ← f i (x ′

i);
d. If yi = y ′

i keep (xi , x ′
i) and proceed to the next i , else return to step a.

3. FINALIZATION. For i= 1, . . . ,k set wi ← xi and w ′
i ← x ′

i . Output (W,W ′).

weight and an arbitrary (non-zero) ‘block multiplier’ δ. In particular, we set ∆= ρ̄(g ⊗δ). By using a

minimal weight codeword, the attack performs best.

For the revised attack to work, we need one further ingredient. Watanabe assumes a systematic code

and exploits that, when k < r −k, there exists a non-zero codeword g ∈C for which χ(g) ⊆ {1, . . . ,k}.

This allows for an easy completion of a partial collision to a full collision. Our revised version allows

for an arbitrary (non-zero) codeword g of weight at most k (existence of which requires d ≤ k).

Thus χ(g) might no longer map to the systematic part of the code. Luckily, Lemma 6.4.3 provides

completion to a full collision, provided I =χ(g) is admissible (see Section 3.1). For MDS codes, all

codewords are admissible; for the four non-MDS codes proposed by Knudsen and Preneel, it can be

verified that the minimum distance codewords are admissible.

Theorem 6.4.7 (Revised Watanabe attack). Let h=KPb([r,k,d]2e) be given with d ≤ k. Consider hn

(with b|n and b n′ =n). Then Algorithm 6.4.6 using a minimum-weight codeword g (and an arbitrary

non-zero δ) finds collisions for hn in expected time d2n (using as many PuRF evaluations and ignoring

a small additive constant).

Proof. Before proving the correctness of the algorithm, we quickly verify the complexity claim. For

this we observe that all steps, apart from the QUERY PHASE, are simple linear algebra so we ignore the

related costs. For the QUERY PHASE, remark that for a minimal codeword it holds that |I | = d . Similar

to Algorithm 6.4.4, for each i ∈ I the expected work effort is 2n , as the probability that a pair (xi , x ′
i)

with a predetermined XOR-difference collides under f i is equal to 2−n (and note that |Vi | > 2n ; hence

the collisions are present under f i).

Now all that remains is to show the correctness. For this we first suppose that the algorithm finds xi

and x ′
i for i ∈ Ĩ according to the steps QUERY PHASE and DEGREES OF FREEDOM and computes W

and W ′ as in FINALIZATION. By virtue of Lemma 6.4.3 we are guaranteed that(
Cpre(W)

)
i = xi and

(
Cpre(W ′)

)
i = x ′

i

153

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

Algorithm 6.4.6 (Revised Watanabe Collision Attack).

Input: h=KPb([r,k,d]2e) satisfying d ≤ k, a non-zero g ∈C ⊆Fr
2e with |χ(g)| ≤ k, a block-

size n = bn′, and an arbitrary non-zero δ ∈Fn′
2e .

Output: A colliding pair
(
W,W ′) ∈ (

{0,1}ekn′)2
such that hn(W) = hn(W ′), W 6= W ′ and

Cpre(W)⊕Cpre(W ′) = ρ̄(g ⊗δ).

1. INITIALIZATION. Compute ∆ = (∆1, . . . ,∆r) ← ρ̄(g ⊗δ), set I ← χ(g) and determine
Ĩ ⊇ I for which G Ĩ is invertible.

2. QUERY PHASE. For i ∈ I do
a. Generate a random xi

$←Vi (=Fen′
2) and set x ′

i ← xi ⊕∆i ;
b. Query yi ← f i (xi) and y ′

i ← f i (x ′
i);

c. If yi = y ′
i then keep (xi , x ′

i) and proceed to the next i , else return to step a.

3. DEGREES OF FREEDOM. For i ∈ Ĩ \I pick randomly xi
$←Vi and set x ′

i ← xi .

4. FINALIZATION. For X = (xi1 , . . . , xi|Ĩ |), X ′ = (x ′
i1

, . . . , x ′
i|Ĩ |

) and {i1, . . . , i|Ĩ |} = Ĩ , set

W ←
(
ϕ̄(G−T

Ĩ
)⊗ In′

)
·X and W ′ ←

(
ϕ̄(G−T

Ĩ
)⊗ In′

)
·X ′ .

Output (W,W ′).

for i ∈ Ĩ . By extension, it follows that(
Cpre(W)

)
i ⊕

(
Cpre(W ′)

)
i =∆i

for i ∈ Ĩ and ∆= ρ̄(g ⊗δ). Finally, we need to argue that(
Cpre(W)

)
i ⊕

(
Cpre(W ′)

)
i =∆i

for the remaining i ∈ {1, . . . ,r }\Ĩ . Yet this follows from Lemma 6.4.3 as well: Given (∆ii , . . . ,∆i|Ĩ |)

for Ĩ = {i1, . . . , i|Ĩ |} there is a unique element ∆−1 for which (Cpre(∆−1))i = ∆i for i ∈ Ĩ . However,

because we already know that ∆ ∈ ℑ(Cpre), uniqueness would be violated if ∆i 6=
(
Cpre(∆−1)

)
i for

some i= 1, . . . ,r . Hence, the claim follows.

Remark 6.4.8. We note that for MDS codes the two preconditions (i.e., k ≥ d and 2k > r) in Watanabe’s

attack are equivalent. Indeed, due to the Singleton bound, as r −k = d −1, we get k ≥ d if and only if

2k > r . This does not hold for non-MDS codes in general. Nevertheless, for non-MDS parameters

suggested by Knudsen and Preneel, r −k = d is satisfied. Hence, by using a similar argument above,

we can obtain the equivalence of the two preconditions.

A New Symbiotic Attack

Our revised version of Watanabe’s attack clearly shows that an attacker potentially has much freedom.

Below, we transform some of this freedom into a faster attack. More to the point, as in the revised

Watanabe attack, we still look for a collision with ∆ = ρ̄(g ⊗δ) and fix the codeword g ∈ C , but

we do not fix the multiplier δ up front. Instead, we determine it based on the outcomes of the

queries we make. To increase our success probability, we restrict ourselves to the same kind of

154

6.4. Another Look at Collision Resistance

Algorithm 6.4.9 (New Symbiotic Collision Attack).

Input: h = KPb([r,k,d]2e) satisfying d ≤ k, g ∈ C ⊆Fr
2e with |χ(g)| = d, and a block-size

n = bn′.

Output: A colliding pair
(
W,W ′) ∈ (

{0,1}ekn′)2
such that hn(W) = hn(W ′), W 6= W ′ and

Cpre(W)⊕Cpre(W ′) = ρ̄(g ⊗δ) for some non-zero δ ∈Fn′
2e to be determined.

1. INITIALIZATION. Set α= d/(d +1), I =χ(g) and determine Ĩ . Let g = (g1, . . . , gr) with
gi ∈F2e for i= 1, . . . ,r .

2. QUERY PHASE. Define
X = ({0}

n
b − αn

e × {0,1}
αn
e)e

and, for i ∈ I let Q[i] =X ⊂Vi . Query f i for all xi ∈Q[i] and store the results.

3. LOCAL COLLISION DETECTION. For i ∈ I create a list Li of all tuples(
g−1

i ·ρ−1(xi ⊕x ′
i), xi , x ′

i

)
satisfying xi , x ′

i ∈Q[i], xi 6= x ′
i and f i (xi) = f i (x ′

i).

4. GLOBAL COLLISION DETECTION. Find a set of |χ(g)|-tuples in the respective Li that
all share the same first element. That is, for some δ ∈Fn′

2e and (xi , x ′
i)i∈I it holds for all

i ∈ I that (δ, xi , x ′
i) ∈ Li .

5. DEGREES OF FREEDOM. For i ∈ Ĩ \I pick xi
$←Vi and set x ′

i ← xi .

6. FINALIZATION. For X = (xi1 , . . . , xi|Ĩ |), X ′ = (x ′
i1

, . . . , x ′
i|Ĩ |

) and {i1, . . . , i|Ĩ |} = Ĩ , set

W ←
(
ϕ̄(G−T

Ĩ
)⊗ In′

)
·X and W ′ ←

(
ϕ̄(G−T

Ĩ
)⊗ In′

)
·X ′ .

Output (W,W ′).

queries as in Theorem 3.2.3 (or as in our preimage attacks; hence the name ‘symbiotic’ to refer to the

combination of Watanabe’s attack and our preimage attack). The result is an attack (Algorithm 6.4.9)

that (ignoring small factors) runs in time 2dn/(d+1) provided that d ≤ k (so the two cases KP1([4,2,3]8)

and KP1([5,2,4]8) are excluded as before).

Theorem 6.4.10 (Symbiotic attack). Let h = KPb([r,k,d]2e) be given with k ≥ d. Consider hn (with

b|n and b n′ =n). Then Algorithm 6.4.9 finds collisions for hn in 2dn/(d+1) time (ignoring small factors)

using as many PuRF evaluations and memory (expressed in n-bit blocks).

Proof. The correctness of the statement follows from the proof of Theorem 6.4.7; here we only

prove that a collision is expected and that the query and time-complexities are as claimed. Because

|X | = 2αn by construction, the attack has the stated query-complexity (per PuRF) for α= d/(d +1)

as all queries are made during the QUERY PHASE. Using a naive approach, the LOCAL COLLISION

DETECTION step can be performed in roughly 2dn/(d+1) comparisons, resulting in partial collision

lists of expected cardinality |Li | ≈ 2(2α−1)n for i ∈ I .

For GLOBAL COLLISION DETECTION, we simply enumerate one partial collision list and check for

membership against the others. Assuming constant time memory access, the time complexity of

this step is at most (d −1)maxi∈I {|Li |}. As α< 1 it follows that 2α−1 <α making the QUERY PHASE

155

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

dominant with its time-complexity of 2αn . Because we have d active PuRFs in total, the probability

of finding a common element among d such lists is then∏
i∈I |Li |

|X |d−1
= 2((2α−1)d−α(d−1))n .

To ensure an expected number of collisions of one, we need the second exponent to be at least zero,

and indeed, solving for zero gives the desired α= d/(d +1).

6.4.3 A Parametrized Collision-Finding Attack

The symbiotic attack and the information-theoretic attack given in Section 6.2 have different query

complexities and which one is the best seems very parameter dependent. However, it turns out that

both attacks are the extreme cases of a more general parametrized attack, as given by Algorithm 6.4.12

(which contains a family of collision-finding attacks based on the number of active PuRFs).

Recall that we call a PuRF f i active, if for any W 6=W ′ (that satisfies hn(W) = hn(W ′)), we have xi 6= x ′
i .

Algorithm 6.4.12 is analyzed in Theorem 6.4.11, where we explain how we determine the query-

complexity of the parametrized collision attacks, given the number of active PuRFs. More specifically,

we investigate the query-complexity separately for the cases where the number of active PuRFs is

more than or at most k. The search for the optimal query-complexity—hence the corresponding

number of active PuRFs—is carried out in Corollary 6.4.13. We show that the optimality, which results

in a query-complexity of 2kn/(3k−r) for hn , is achieved in the shared boundary; specifically when the

active number of PuRFs is equal to k (and d ≤ k).

Theorem 6.4.11. Let h=KPb([r,k,d]2e) be given. Consider hn (with b|n and b n′ =n). Then collisions

for hn can be found with Algorithm 6.4.12 by using 2αn queries (per PuRF) where

α=
(r −θ)/(2k −θ) for 0 ≤ θ ≤ min(r −d ,r −k) ;

(r −θ)/(r +k −2θ) for r −k ≤ θ ≤ r −d .

Here r −θ is the number of active PuRFs.

Proof. That the attack has the stated query-complexity follows readily from the usual observation

that |X | = 2αn , combined with the computation of α exactly matching the theorem statement. What

remains to be shown is that collisions are expected to be produced with a good probability.

For correctness, assume (W,W ′) is output by the algorithm and consider X = Cpre(W) and X ′ =
Cpre(W ′). First, Lemma 6.4.3 implies that projecting (X ⊕X ′, X , X ′) onto

⊕
i∈Ĩ Vi is in L Ĩ . If I ⊂ Ĩ , then

DEGREES OF FREEDOM ensures that further projection to
⊕

i∈I Vi gives (∆̃, X̃ , X̃ ′) ∈ L I . If Ĩ ⊂ I , however,

the FILTERING guarantees that the aforementioned projection of (X ⊕ X ′, X , X ′) can be extended

to (∆̃, X̃ , X̃ ′) ∈ L I . Furthermore (by Lemma 6.4.3) we know that in fact (∆̃, X̃ , X̃ ′) is a projection

of (X ⊕ X ′, X , X ′). As L I ⊆ L̃ I it follows that (xi , x ′
i) ∈ Li for i ∈ I and hence by construction (LOCAL

COLLISION DETECTION) that f i (xi) = f i (x ′
i) for those i . Finally, observe from the COLLISION PRUNING

step that ∆̃+0 ∈ℑ(Cpre) and due to DEGREES OF FREEDOM the projections of ∆̃+0 and X ⊕X ′ onto⊕
i∈Ĩ Vi are equal. The uniqueness is again guaranteed by Lemma 6.4.3 (and ∆̃+0 = X ⊕X ′), implying

xi = x ′
i for all i ∈ I0.

156

6.4. Another Look at Collision Resistance

Algorithm 6.4.12 (Parameterized Collision Attack).

Input: h=KPb([r,k,d]2e), an index set I0 ⊂ {1, . . . ,r } with θ = |I0| and 0 ≤ θ ≤ r −d, and a
block-size n = bn′.

Output: A colliding pair
(
W,W ′) ∈ (

{0,1}ekn′)2
such that hn(W) = hn(W ′),W 6=W ′, and if

X =Cpre(W) and X ′ =Cpre(W ′) then for all i ∈ I0 it holds that xi = x ′
i .

1. INITIALIZATION. Set I ← {1, . . . ,r }\I0, determine Ĩ (see Lemma 6.4.3), and set

α←
{

(r −θ)/(2k −θ) for 0 ≤ θ ≤ min(r −k,r −d) ;

(r −θ)/(r +k −2θ) for r −k ≤ θ ≤ r −d .

2. QUERY PHASE. Define
X = ({0}

n
b − αn

e × {0,1}
αn
e)e

and, for i ∈ I let Q[i] =X ⊂Vi . Query f i on all xi ∈Q[i] and store the results.

3. LOCAL COLLISION DETECTION. For i ∈ I create a list Li of all tuples (∆i = xi ⊕x ′
i , xi , x ′

i)
satisfying xi , x ′

i ∈Q[i], xi 6= x ′
i and f i (xi) = f i (x ′

i).

4. MERGE PHASE. Create L̃ I =∏
i∈I Li or more to the point

L̃ I =
{(
∆, X , X ′) |(∆, X , X ′) ∈∏

i∈I
Li

}
.

5. COLLISION PRUNING. Create L I consisting precisely of those elements of L̃ I whose first
vector (when mapped to the full space) is in ℑ(Cpre). Formally

L I =
{
(∆̃, X̃ , X̃ ′)|(∆̃, X̃ , X̃ ′) ∈ L̃ I ∧ ∆̃+0 ∈ℑ(Cpre)

}
.

6. FILTERING. If Ĩ ⊂ I then only select (∆̃, X̃ , X̃ ′) ∈ L I for which X̃ is in the projection
of ℑ(Cpre) onto

⊕
i∈I Vi . Create L Ĩ by projecting the selected elements of L I to the

subspace
⊕

i∈Ĩ Vi .

7. DEGREES OF FREEDOM. If I ⊂ Ĩ then, for i ∈ Ĩ \I pick randomly xi
$←Vi and set x ′

i ← xi .
Create L Ĩ by adding (

(0, xi1 , x ′
i1

), . . . , (0, xi|Ĩ∩I0 |
, x ′

i|Ĩ∩I0 |
)
)

for Ĩ ∩ I0 = {i1, . . . , i|Ĩ∩I0|} to all elements in the L I list.

8. SKIP. If Ĩ = I set L Ĩ ← L I .

9. FINALIZATION. For some element in (∆̃, X̃ , X̃ ′) ∈ L Ĩ create

W ← (ϕ̄(G−T
Ĩ

)⊗ In′) · X̃ and W ′ ← (ϕ̄(G−T
Ĩ

)⊗ In′) · X̃ ′

and output (W,W ′).

Let us move on to the number of expected collisions output. As |X | = 2αn , the expected number of

local collisions found per active PuRF for i ∈ I is

|Li | ≈ |X |2/2n = 2(2α−1)n .

157

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

Using that |I | = r −θ we arrive at a total number of potential collisions of

|L̃ I | ≈ 2(2α−1)(r−θ)n .

For a true collision to occur, we need to find a pair (xi , x ′
i)i∈Ĩ such that their completion to {0,1}er n′

is

a codeword such that xi = x ′
i for i ∈ I0.

If the eventual collision consists of (X , X ′), then ∆ = X ⊕ X ′ is a codeword as well, and the above

implies that it satisfies ∆i = 0 for i ∈ I0. Lemma 6.4.1 applies and ∆̃= (∆i1 , . . . ,∆i|I |) for I = {i1, . . . , i|I |}
is somehow ‘spanned’ by the shortened code. The restriction θ ≤ r −d ensures non-triviality of the

shortened code. We note that shortening any further would lead to a shortened code that consists

of the zero codeword only; it would result in W = W ′ (so no collision). In case of MDS codes, the

shortened code has parameters [r −θ,k −θ,d ′]2e , in particular it has dimension k −θ. (For non-MDS

codes it is possible that a higher dimension is achieved.) As a result, a fraction 2(k−r)αn of the ∆̃ values

are satisfactory, leading to an expected cardinality of

|L I | ≈ 2((2α−1)(r−θ)−α(r−k))n .

If I ⊆ Ĩ or equivalently r −θ ≤ k, we are done whenever |L I | ≥ 1. Because r −θ ≤ k can be rewritten

as θ ≥ r −k, we are in the second case, with α = (r −θ)/(r +k −2θ). Writing F = (log |L I |)/n and

substitution lead to

F ≈ (2α−1)(r −θ)−α(r −k) = (r −2θ+k)(r −θ)/(r +k −2θ)− (r −θ) = 0

or |L I | ≈ 1 as desired. If Ĩ ⊂ I , further filtering is needed. In particular, given a potential ‘half’ of a

collision X , we need to check if it can correspond to a codeword. Because Ĩ ⊂ I , we can uniquely

complete X to a codeword, given k of its elements (all within I). The remaining |I |−k coordinates

need to be in sync. Per remaining element, this occurs with probability 2−αn , leading to |L̃ Ĩ | ≈
|L I | ·2−αn(r−θ−k). We are in the first case as 0 ≤ θ ≤ r −k. Writing F = (log L̃ Ĩ)/n, we obtain

F ≈ ((2α−1)(r −θ)−α(r −k))−α(r −θ−k) =α(2k −θ)− (r −θ).

As we aim for F = 0, it follows that α= (r −θ)/(2k −θ) as desired. Hence the claim follows.

Corollary 6.4.13. Assuming d ≤ k, substitution of θ = r −k in Theorem 6.4.11 gives α= k/(3k − r).

This is optimal (for Algorithm 6.4.12) whenever r ≤ 2k.

Proof. That the substitution does what it says can be readily verified, so we restrict ourselves to

proving the optimality here. Let f1(θ) = (r −θ)/(2k −θ) and f2(θ) = (r −θ)/(r +k −2θ) be two real

valued functions defined over closed intervals 0 ≤ θ ≤ r −k and r −k ≤ θ ≤ r −d , respectively. Note

that both f1(θ) and f2(θ) are continuous in their respective domains (because their respective poles

fall outside the domains). So both f1(θ) and f2(θ) attain their maximum and minimum in the closed

intervals [0,r −k] and [r −k,r −d], respectively. As f ′
1(θ) = (r −2k)/(2k −θ)2 ≤ 0 (for r ≤ 2k) and

f ′
2(θ) = (r −k)/(r +k −2θ)2 ≥ 0, we can conclude that f1(θ) decreases and f2(θ) increases. Therefore,

they both attain their minimum at their shared boundary θ = r −k.

Remark 6.4.14. The only two parameter sets proposed by Knudsen and Preneel, which do not satisfy

the conditions of the corollary above, are [4,2,3]8 and [5,2,4]8. In both cases d > k and only f1(θ) is

158

6.4. Another Look at Collision Resistance

applicable. For [5,2,4]8 we can check that 2k < r and f ′
1(θ) ≥ 0. Hence, the minimum α is attained at

θ = 0. For [4,2,3]8 it holds that 2k = r , so that f1(θ) is in fact a constant function and both θ = 0 and

θ = 1 lead to the same α. At one extreme, the substitution of θ = 0 in Theorem 6.4.11 gives α= r /(2k)

and the resulting query-complexity coincides with that reported in Proposition 6.2.1. At the other

extreme, substitution of θ = r −k gives α = d/(2d − r +k) (assuming d ≤ k). For MDS codes, this

simplifies to α= d/(d +1), this time duly coinciding with our symbiotic attack. For non-MDS codes,

there seems to be a slight mismatch. The reason is that if a non-MDS code is maximally shortened

(by θ = r −d), the shortened code has dimension one, whereas in the derivation of Theorem 6.4.11

we pessimistically assumed k −θ = 0 (at least for the KP non-MDS codes that satisfy r −d = k).

Correcting for this looseness would result in a match with the symbiotic attack.

6.4.4 Practical Collision Attack Against KP1([5,3,3]4) in O (23n/4) Time

When using Algorithm 6.4.12, finding a collision for h=KP1([5,3,3]4) with block-size n and stated

(optimal) query-complexity (for α= 3/4) takes (asymptotically in n) O (23n/2) time (due to MERGE

PHASE and COLLISION PRUNING). In this section, we follow in the footsteps of Algorithm 6.4.12 (with

fixed α= k/(3k − r) obtained in Corollary 6.4.13) and try to reduce its time requirements. Our goal is

to present a collision-finding algorithm with time-complexity almost coinciding with the targeted

query-complexity. In an ideal scenario, this would provide an almost optimal attack (with specifiedα)

for many of the parameter sets suggested by Knudsen and Preneel.

Note that, for this specific compression function, our ideal time-complexity is the same as the one

achieved by the symbiotic attack presented in Algorithm 6.4.9. Although the attack presented in this

section results in better time-complexity for most of the KP-suggested parameters, this is one of

the few exceptions where we get the same time-complexity. We choose this particular compression

function to make our attack illustration easier to understand.

Claim 6.4.15. For the Knudsen–Preneel compression function h=KP1([5,3,3]4), collisions for hn can

be found in O (23n/4) time and memory (n-bit blocks) asymptotically in n.

Proof. In this attack, we generate two different inputs W and W ′ for h such that hn(W) = hn(W ′).

It follows from θ = 2 and r = 5 that we have three active PuRFs. Without loss of generality, let

the first three PuRFs be active (corresponding to the systematic portion), namely I = {1,2,3} (so

Ĩ = I and I0 = {4,5}). To complete a collision, we need to generate the PuRF inputs xi = (x1
i ||x2

i),

x ′
i = (x ′1

i ||x ′2
i) ∈ {0,1}2n such that f i (xi) = f i (x ′

i) for all i = 1, . . . ,5 where xi 6= x ′
i for i = 1,2,3 and

xi = x ′
i for i = 4,5 (hence θ = 2). An outline of the attack is given in Figure 6.4, we proceed with the

details.

As previously argued, finding such input pairs is equivalent to finding two codewords X and X ′ in

ℑ(Cpre) for which the partial components collide under smaller PuRFs. Due to linearity, we know

that ∆= X ⊕X ′ is also a non-zero codeword satisfying ∆4 =∆5 = 0 for ∆= (∆1, . . . ,∆5). Observe that

once we find such a difference ∆ of this form (i.e., ∆ ∈ℑ(Cpre) such that ∆4 =∆5 = 0, or more formally

∆=∆′+0 for ∆′ = (∆1,∆2,∆3)) together with the corresponding PuRF input pairs (xi , x ′
i) for i ∈ Ĩ , we

can easily finalize the global collision regardless of the values (xi , x ′
i) for i = 4,5; it follows from the

fact that both X and X ′ will be the encoded strings of the inputs W and W ′, respectively, (hence

they are guaranteed to be true codewords) while automatically having ∆4 = ∆5 = 0. Note that the

159

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

uniqueness of such a difference follows from Lemma 6.4.3. So, our task is to find such a valid ∆.

We begin our attack with determining the tuples (∆i , xi , x ′
i) subject to the condition that xi ⊕ x ′

i =
∆i 6= 0 and f i (xi) = f i (x ′

i) (for all i = 1,2,3). In the QUERY PHASE, we query f i (xi) for all

x1
i , x2

i ∈ 05n/8 × {0,1}3n/8

and then keep a list Li of pairs (∆i , xi , x ′
i) (where xi ⊕ x ′

i = ∆i 6= 0) that collide under fi for each

i = 1,2,3. The latter phase is the LOCAL COLLISION DETECTION step (see Algorithm 6.4.12). As a result,

a total of 23n/4 queries are asked per PuRF, which results in partial collision lists of cardinality

|Li | ≈ (23n/4)2/2n = 2n/2

for each i = 1,2,3. Note that the steps QUERY PHASE and LOCAL COLLISION DETECTION can be

performed (asymptotically in n) in conjunction in O (23n/4) time (as many PuRF evaluations) and

memory (in n-bit blocks).

To complete the collision, we need to determine whether each newly generated ∆ is contained

in ℑ(Cpre) or not. Thanks to the special form of ∆ (namely ∆4 = ∆5 = 0), rather than searching

for membership in ℑ(Cpre) (specified by the code C), we can work on a smaller space ℑ(C ′pre)

identified by C ′ (that is the shortened code obtained by dropping the zeros of the codewords from

all the positions appearing in I0). Indeed, for any non-zero ∆ ∈ ℑ(Cpre) of the form ∆ = ∆′+0 for

∆′ = (∆1,∆2,∆3), we have that ∆′ ∈ℑ(C ′pre) . Hence, we can now make an easier membership-check

in the smaller space ℑ(C ′pre). Here, C ′ is the [3,1,3]4 MDS code with a generator matrix

G =
(

1 w 1
)

,where we use the mapping ϕ(1) =
(

1 0

0 1

)
, ϕ(w) =

(
1 1

1 0

)

to define its shortened imageℑ(C ′pre). We limit ourselves to the novel shortened string∆′ = (∆1,∆2,∆3)

and check whether it is in ℑ(C ′pre), or not. Let us define (for ∆i = (∆1
i ||∆2

i) where ∆1
i ,∆2

i ∈ {0,1}n)

L{1,2} =
{(

(∆1, x1, x ′
1), (∆2, x2, x ′

2)
) ∈ L1 ×L2 |∆1

1 ⊕∆2
1 =∆1

2 and ∆1
1 =∆2

2

}
.

Note that L{1,2} contains the elements that partially satisfy the linear constraints; that is,

L{1,2} =ℑ(C ′pre)∩
2∏

i=1
Li .

We can construct L{1,2} efficiently as done in our preimage attacks. It starts with the MERGE PHASE

(see Algorithm 6.4.16), where we create 5 the lists L̃{1} and L̃{2} defined by

L̃{1} =
{(
∆1, x1, x ′

1,
(
(∆1

1 ⊕∆2
1)||∆1

1

)) | (∆1, x1, x ′
1) ∈ L1

}
L̃{2} =

{(
∆2, x2, x ′

2, (∆1
2||∆2

2)
) | (∆2, x2, x ′

2) ∈ L2
}

both sorted on their fourth component. In the JOIN PHASE we look for the collisions in their fourth

components to determine possible ∆′ candidates. As |Li | ≈ 2n/2, creating L̃{1} and L̃{2} takes about

5. Normally MERGE PHASE contains merging of several lists which is not the case for our example due to the relatively
small minimum distance of the dual code of C ′, see discussion in Section 6.3.2.

160

6.4. Another Look at Collision Resistance

f 5 y5 = z5

f 4 y4 = z4

f 3 y3 = z3

f 2 y2 = z2

f 1 y1 = z1Q[1]

Q[2]

Q[3]

L1

L2

L3

L̃{1,2}

FW

∆4 = 0

∆5 = 0
2n n

2n n

2n

23n/4

n

2n

23n/4

n

2n

23n/4

n
2n/2

2n/2

2n/2

2n/4

1

Figure 6.4 – Our collision attack on hn =KP1([5,3,3]4) illustrated. The (unlabeled) inputs to f 1, . . . , f 5

correspond to (x1
1 , x2

1), . . . , (x1
5 , x2

5). Here, F denotes the final filtering.

O (n2n/2) time and memory, asymptotically in n. (In general, the smaller of the two is sorted and

stored and the other is used for collision check.) As L̃{1} and L̃{2} both have roughly 2n/2 elements and

they need to collide on 2n bits, of which 5n/4 bits are zero, the expected number of collisions is

(2n/2)2/2(2−5/4)n = 2n/4 = |L{1,2}| .

Now, we have identified roughly 2n/4 candidate ∆′ values that are possibly in ℑ(C ′pre). All that needs

to be done now is to check, for each candidate, whether the corresponding ∆3 is contained in L3. If

this is the case, then ∆′ is in ℑ(C ′pre); so the corresponding ∆ ∈ ℑ(Cpre) as well. This membership-

check is performed in the COLLISION PRUNING phase. It is clear that it cannot take much longer than

it took to create L{1,2}. Moreover, the expected number of remaining candidates is one; note that

|L{1,2}| ≈ 2n/4 and |L3| ≈ 2n/2. Again, we need to check the correspondence on 2n bits, of which 5n/4

are set to zero. Hence, we do expect to find 2(1/4+1/2)n/2(2−5/4)n = 1 difference ∆. Finally, as we are

given a valid∆ and the corresponding input pairs (xi , x ′
i) for i ∈ Ĩ we can set the collision pair (W ,W ′)

uniquely (as done in Algorithm 6.4.16). Summing up the stepwise time and memory complexities

gives the desired result.

6.4.5 Generic Collision Attack Against MDS Constructions

If we want to run Algorithm 6.4.12 (with fixed θ = r −k and α = k/(3k − r) as obtained in Corol-

lary 6.4.13) we ideally want a time-complexity almost coinciding with the targeted query-complexity.

For θ = r −k, it holds that I = Ĩ , obviating the need for the steps FILTERING and DEGREES OF FREEDOM.

We have seen previously that LOCAL COLLISION DETECTION increases the runtime by a small factor

that is logarithmic in n, which leaves only the MERGE PHASE and COLLISION PRUNING to worry

about. Together, these two steps are designed to produce L I . A naive approach would enumerate

all elements in the much larger L̃ I , which is wasteful. Our task is therefore, given the lists of partial

collisions Li for i ∈ I , to create L I more efficiently.

Here, we will follow the footsteps of Section 6.3.2 where the dual code is used in a similar problem

related to the preimage-finding attack. An important innovation for the collision-finding attack

stems from the realization that ∆ can be regarded as belonging to the (quasi) shortened code. This

161

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

allows for the use of the dual code of the shortened code to speed up the search. As the minimum

distance of the dual code is an important parameter in determining the overall time-complexity

and shortening a code reduces the minimum distance of its dual accordingly, we make a significant

efficiency gain this way.

As I = Ĩ and θ = r −k, we know from Algorithm 6.4.12 that it is enough to find a non-zero ∆ ∈ℑ(Cpre)

of the form ∆ = ∆′+0 for ∆′ = (∆i1 , . . . ,∆i|Ĩ |) and Ĩ = {i1, . . . , i|Ĩ |} to complete the collision (see also

Section 6.4.4). Notice that∆′ lies in a smaller space ℑ(C ′pre) identified by C ′ that is the [r −θ,k−θ,d ′]
shortened code obtained from C (by dropping the zeros of the codewords from all the positions

appearing in I0). This observation allows us to guarantee that ∆ ∈ℑ(Cpre) once we determine that a

candidate ∆′ is in ℑ(C ′pre). Hence, it is enough for our purposes to limit ourselves to ℑ(C ′pre) rather

than looking for membership in the larger space ℑ(Cpre).

To this end, we first identify an index set Ih′ ⊆ {1, . . . ,r } (the role of h′ will be explained momentarily)

defining a subspace
⊕

i∈Ih′ Vi for which ℑ(C ′pre) when restricted to this subspace, is not surjective.

As a consequence, we will be able to prune significantly the total collection of candidate ∆′ values

keeping only those that are possibly in ℑ(C ′pre) (restricted to
⊕

i∈Ih′ Vi). Next, we will show how to

efficiently find an index set Ih′ , and how to efficiently prune.

An important parameter determining the runtime of our collision attack is d ′⊥, the minimum

distance of the dual code of the shortened code. Let χ be the function that maps h′ ∈Fr−θ
2e to the set

of indices of non-zero entries in h′. Thus, χ(h′) ⊆ {1, . . . ,r } and |χ(h′)| equals the Hamming weight

of the codeword h′. An easy adaptation of Proposition 6.3.3 shows that if we are given a codeword

h′ ∈C ′⊥ and an element ∆′ ∈F(r−θ)en′
2 , then ∆′ can only be in ℑ(C ′pre) if (ϕ̄(h′T)⊗ In′) ·∆′ = 0, where

the only parts of ∆′ relevant for this check are those lining up with the non-zero entries of h′. Indeed,

an element ∆′
h′ ∈∏

i∈χ(h′) Li can be completed to an element in the range of derived mapping C ′pre if

and only if (ϕ̄(h′T)⊗ In′) · (∆′
h′ +0) = 0. An efficient creation of

Lh′ =
{

(∆′
h′ , X , X ′) ∈ ∏

i∈χ(h′)
Li | (ϕ̄(h′T)⊗ In′) · (∆′

h′ +0) = 0

}

can be done as in Algorithm 6.3.4 by splitting the codeword in two and looking for all collisions in

respective entries. That is, assume that h′ = h′
0 +h′

1 with χ(h′
0)∩χ(h′

1) =;, and define, for j = 0,1

L̃h′
j
=


(
∆′

h′
j
, X j , X ′

j , (ϕ̄(h′
j

T)⊗ In′) · (∆′
h′

j
+0)

)
| (∆′

h′
j
, X j , X ′

j) ∈ ∏
i∈χ(h′

j)

Li

 .

Then Lh′ consists of those elements ∆′
h′

0
+∆′

h′
1

for which (∆′
h′

0
, X0, X ′

0,Y0) ∈ L̃h′
0
, (∆′

h′
1
, X1, X ′

1,Y1) ∈ L̃h′
1

and Y0 = Y1. By the same method as in our preimage attacks, the time-complexity of creating Lh′ is

then roughly the maximum cardinality of the two sets L̃h′
0

and L̃h′
1
. Hence, again the main trick to

reduce the time-complexity is to minimize the Hamming weights of h′
0 and h′

1, which is done by

choosing a codeword h′ ∈ C ′⊥ of minimum distance d ′⊥ and splitting h′ (almost) evenly (into h′
0

and h′
1). The complete collision-finding algorithm is given in Algorithm 6.4.16. We summarize our

analysis in Theorem 6.4.17 whose proof is given in Section 6.4.7.

Theorem 6.4.17. Let h=KPb([r,k,d]2e) be given and C ′ be a shortened [r −θ,k −θ,d]2e code derived

from C for θ = r −k. Let d ′⊥ be the minimum distance of the dual code of C ′. Suppose C is MDS (so is

162

6.4. Another Look at Collision Resistance

Algorithm 6.4.16 (Collision Attack against MDS-based schemes).

Input: h=KPb([r,k,d]2e), an index set I0 ⊂ {1, . . . ,r } with θ = |I0| = r −k and a block-size
n = bn′.

Output: A colliding pair
(
W,W ′) ∈ (

{0,1}ekn′)2
such that hn(W) = hn(W ′),W 6=W ′, and if

X =Cpre(W) and X ′ =Cpre(W ′) then for all i ∈ I0 it holds that xi = x ′
i .

1. INITIALIZATION. Set I ← {1, . . . ,r }\I0 (with |I | = k), I = Ĩ , and set α← k/(3k − r). Ob-
tain C ′ consisting of codewords g ′ ∈C ′ that are constructed from g ∈C by dropping
zeros of g from all the positions appearing in I0.

2. QUERY PHASE. As in Algorithm 6.4.12.

3. LOCAL COLLISION DETECTION. As in Algorithm 6.4.12.

4. (FIRST) MERGE PHASE. Find a non-zero codeword h′ ∈C ′⊥ of minimum Hamming
weight d ′⊥ = 2k − r + 1. Let h′ = h′

0 +h′
1 with χ(h′

0)∩χ(h′
1) = ; and of Hamming

weights dd ′⊥/2e and bd ′⊥/2c, respectively. Create for j = 0,1,

L̃h′
j
=


(
∆′

h′
j
= X j ⊕X ′

j , X j , X ′
j , (ϕ̄(h′

j)⊗ In′) · (∆′
h′

j
+0)

)
| (∆′

h′
j
, X j , X ′

j) ∈ ∏
i∈χ(h′

j)

Li


both sorted on their fourth component.

5. (FIRST) JOIN PHASE. Create Lh′ consisting exactly of those elements ∆′
h′

0
+∆′

h′
1

for

which (∆′
h′

0
, X0, X ′

0,Y0) ∈ L̃h′
0
, (∆′

h′
1
, X1, X ′

1,Y1) ∈ L̃h′
1

and Y0 = Y1.

6. COLLISION PRUNING. For all (∆′
h′ , X , X ′) ∈ Lh′ create the unique ∆′ corresponding to

it and check whether it results in ∆i ∈ Li for all i ∈ I (= Ĩ). If so, keep ∆′ = (∆i1 , . . . ,∆i|Ĩ |)
(for Ĩ = {i1, . . . , i|Ĩ |}) in L I . Formally

L I =
(∆′, X̃ , X̃ ′) = (∆′

h′ , X , X ′) ∈ Lh′ + ∏
i∈Ĩ \χ(h′)

Li |∆′ ∈ℑ(C ′pre)

 .

7. SKIP. As in Algorithm 6.4.12.

8. FINALIZATION. As in Algorithm 6.4.12.

C ′ with d ′⊥ = 2k−r +1) and consider the collision attack described in Algorithm 6.4.16 run against hn

by using q = 2αn queries for α= k/(3k − r). Then the expected number of collision outputs is equal to

one and the expectations for the internal list sizes are (for i ∈ I):

|Li | = 2(2α−1)n , |Lh′ | = 2((2α−1)d ′⊥−α)n , |L̃h′
0
| = 2(2α−1)d d ′⊥

2 en , |L̃h′
1
| = 2(2α−1)b d ′⊥

2 cn .

The average case time-complexity of the algorithm is a small constant multiple of max
(
q, |L̃h′

0
|, |Lh′ |

)
with a memory requirement of max

(
q, |L̃h′

1
|
)

(expressed in en/b-bit blocks).

Table 6.6 contains an overview for the various cardinalities and complexities for all the compression

functions based on MDS codes that were suggested by Knudsen and Preneel [93].

163

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

Query Cardinalities related to Complexity
Code Complexity our attack Time Memory

[r,k,d]2e d ′⊥ |Q[i]| |Li | |L̃h′
0
| |L̃h′

1
| |Lh′ | Theorem 6.4.17

[5,3,3]4 2 23n/4 2n/2 2n/2 2n/2 2n/4 23n/4 23n/4

[6,4,3]16 3 22n/3 2n/3 22n/3 2n/3 2n/3 22n/3 22n/3

[8,6,3]16 4 23n/5 2n/5 22n/5 22n/5 22n/5 23n/5 23n/5

[12,10,3]16 9 25n/9 2n/9 25n/9 24n/9 24n/9 25n/9 25n/9

[9,6,4]16 4 22n/3 2n/3 22n/3 22n/3 22n/3 22n/3 22n/3

[16,13,4]16 11 213n/23 23n/23 218n/23 215n/23 220n/23 220n/23 215n/23

[6,4,3]8 3 22n/3 2n/3 22n/3 2n/3 2n/3 22n/3 22n/3

[9,7,3]8 6 27n/12 2n/6 2n/2 2n/2 25n/12 27n/12 27n/12

[7,4,4]8 2 24n/5 23n/5 23n/5 23n/5 22n/5 24n/5 24n/5

[10,7,4]8 5 27n/11 23n/11 29n/11 26n/11 28n/11 29n/11 27n/11

Table 6.6 – An overview of the list cardinalities and computational complexity of collision attacks on
the Knudsen–Preneel compression functions based on on MDS codes.

6.4.6 Extending the Collision Attack Against Non-MDS Constructions

For non-MDS codes we can try to mount the collision attack given by Algorithm 6.4.16, but after the

JOIN PHASE we may encounter a similar problem as our preimage attack: For some non-MDS codes,

the map C ′pre restricted to
⊕

i∈χ(h′) Vi is not injective and we can no longer reconstruct a unique

(W,W ′) corresponding to some (X , X ′) ∈ Lh′ . Here, we fix this issue as in Section 6.3.3 by performing

a second stage of MERGEing and JOINing.

In Algorithm 6.4.18 we simply paste in extra MERGE and JOIN phases in order to maintain the low

complexity. We only include one extra merge-join phase for non-MDS codes. For the parameters

proposed by Knudsen and Preneel, this always suffices. For other parameters possibly extra merge-

join phases are required before full rank is achieved, we did not investigate this. Note also that

there is another issue regarding non-MDS parameters. This time we do not have enough freedom

to arbitrarily choose the k active PuRFs in the INITIALIZATION step, unlike the MDS case. This is

mainly because of the fact that k arbitrary columns of the generator matrix are not necessarily

linearly independent. Nevertheless, it is still possible to find such an admissible I for the non-MDS

parameters suggested by Knudsen and Preneel. For simplicity, we assign (without loss of generality)

I = Ĩ ; it is the set of positions corresponding to the systematic portion of the code. This assumption

is always sufficient for our attacks to work for all given parameters.

Theorem 6.4.19. Let [r,k,d] ∈ {[8,5,3], [12,9,3], [9,5,4], [16,12,4]} be given along with a generator

matrix G for [r,k,d]4 (as given by Magma’s BKLC routine); Let h = KPb([r,k,d]2e) be given and C ′

be a shortened [r −θ,k −θ,d]2e code derived from C for θ = r −k. Let d ′⊥ be the minimum distance

of the dual code of C ′. Suppose C is not an MDS code and consider the collision attack described in

Algorithm 6.4.18 run against hn using q = 2αn queries for α= k/(3k − r) (i.e., |X | = 2kn/(3k−r)). Then,

the expected number of collision outputs is equal to one and the expectations for the internal list sizes

for the first merge-join are as before (see Theorem 6.4.17) and for the second merge-join phase

max(|L̃h′′
0
|, |L̃h′′

1
|) ≤ 2T1n , min(|L̃h′′

0
|, |L̃h′′

1
|) ≤ 2T2n , |Lh′′ | ≤ 2((2α−1)(2k−r+2)−2α)n ,

164

6.4. Another Look at Collision Resistance

Algorithm 6.4.18 (Collision attack against non-MDS-based schemes).

Input: h=KPb([r,k,d]2e), an index set I0 ⊂ {1, . . . ,r } with θ = |I0| = r −k and a block-size
n = bn′.

Output: A colliding pair
(
W,W ′) ∈ (

{0,1}ekn′)2
such that hn(W) = hn(W ′),W 6=W ′, and if

X =Cpre(W) and X ′ =Cpre(W ′) then for all i ∈ I0 it holds that xi = x ′
i .

1. INITIALIZATION. As in Algorithm 6.4.16.

2. QUERY PHASE. As in Algorithm 6.4.16.

3. FIRST MERGE PHASE. As in Algorithm 6.4.16.

4. FIRST JOIN PHASE. As in Algorithm 6.4.16.

If d ′⊥ > k ′, go to step 7, else proceed with the next step.

5. SECOND MERGE PHASE. Find a codeword h′′ ∈ C ′⊥\F2e h′ of minimum Hamming
weight (possibly exceeding d ′⊥). Let h′′ = h′′

0 +h′′
1 with χ(h′′

0)∩χ(h′′
1) = ;, χ(h′′

1)∩
χ(h′) =;, and of Hamming weights yet to be determined. Create,

L̃h′′
0
=

{(
∆′

h′′
0
, X0, X ′

0, (ϕ̄(h′′
0)⊗ In′) · (∆′

h′′
0
+0)

)
| (∆′

h′′
0
, X0, X ′

0) ∈ Lh′ + ∏
i∈χ(h′′

0)\χ(h′)
Li

}

L̃h′′
1
=

{(
∆′

h′′
1
, X1, X ′

1, (ϕ̄(h′′
1)⊗ In′) · (∆′

h′′
1
+0)

)
| (∆′

h′′
1
, X1, X ′

1) ∈ ∏
i∈χ(h′′

1)

Li

}
.

6. SECOND JOIN PHASE. Create Lh′′ consisting exactly of those elements ∆′
h′′

0
+∆′

h′′
1

for

which (∆′
h′′

0
, X0, X ′

0,Y0) ∈ L̃h′′
0
, (∆′

h′′
1
, X1, X ′

1,Y1) ∈ L̃h′′
1

and Y0 = Y1.

7. COLLISION PRUNING. For all (∆′
h′′ , X , X ′) ∈ Lh′′ (or in Lh′ if d ′⊥ > k ′) create the unique

∆′ corresponding to it and check whether it results in ∆i ∈ Li for all i ∈ I (= Ĩ). If so,
keep ∆′ =∏

i∈Ĩ ∆i in L I . Formally, (or as in Algorithm 6.4.16 if d ′⊥ ≥ k ′)

L I =
(∆′, X̃ , X̃ ′) = (∆′

h′′ , X , X ′) ∈ Lh′′ + ∏
i∈Ĩ \(χ(h′)∪χ(h′′))

Li |∆′ ∈ℑ(C ′pre)

 .

8. SKIP. As in Algorithm 6.4.12.

9. FINALIZATION. As in Algorithm 6.4.12.

where

T1 = min
i∈{0,...,2k−r−d ′⊥+1}

(
max{(2k − r −d ′⊥+2− i)(2α−1), ((2α−1)d ′⊥−α)+ i (2α−1)}

)
and T2 = ((2α− 1)(2k − r + 2)−α)−T1. The expected time-complexity of the algorithm is a small

constant multiple of

max

(
q,2(2α−1)d d ′⊥

2 en , |Lh′ |,2T1n , |Lh′′ |
)

requiring expected memory around max
(
q, |L̃h′

1
|, |L̃h′′

1
|,2T2n

)
(expressed in en/b-bit blocks).

165

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

Code Cardinalities related to our attack Complexity

[r,k,d]2e d ′⊥ |Li | |L̃h′
0
| |L̃h′

1
| |Lh′ | max

(
|L̃h′′

0
|, |L̃h′′

1
|
)

|Lh′′ | Time Memory

[8,5,3]4 2 23n/7 23n/7 23n/7 2n/7 24n/7 22n/7 25n/7 25n/7

[12,9,3]4 4 2n/5 22n/5 22n/5 2n/5 23n/5 22n/5 23n/5 23n/5

[9,5,4]4 2 22n/3 22n/3 22n/3 2n/2 × × 25n/6 25n/6

[16,12,4]4 7 2n/5 24n/5 23n/5 24n/5 24n/5 24n/5 24n/5 23n/5

Table 6.7 – An overview of the list cardinalities and computational complexity of collision attacks on
the Knudsen–Preneel compression functions based on non-MDS codes.

Choice of Code We note, as in our preimage attacks, the obvious caveat that our algorithms against

the four non-MDS codes are based on the generator matrices (hence the corresponding shortened

and dual code of the shortened code) given by Magma’s BKLC (Best Known Linear Codes) routine.

Hence, it is conceivable that different, non-equivalent codes perform differently under our attack.

6.4.7 Proof of Theorems 6.4.17 and 6.4.19

As in Section 6.3.4, we proceed step by step to prove our claims and concentrate on the expected

values and we largely ignore (the effects of) factors that are polynomial in n (e.g., due to memory

access). In the following, memory is measured in multiples of cn-bit blocks. Note that the steps

INITIALIZATION and FINALIZATION require negligible time; so we ignore their analysis.

QUERY PHASE. The time-complexity of this step is simply 2αn PuRF evaluations for α= k/(3k − r).

LOCAL COLLISION DETECTION. In this step, we collect all colliding pairs in partial collision lists Li

for all i ∈ I . Note that collision search can be done for each active PuRF independently. In order to

reduce the time requirements, we suggest to run this phase with the previous step in conjunction.

For each fresh query-response, we simply determine its position among the sorted list of previous

responses. This takes logarithmic time in n using dichotomy search. Then, the task is simply to check

the neighboring states whether they collide or not, which can be performed in constant time. All in

all, this step takes 2αn time and memory (again ignoring the effects of the constants and the factors

that are logarithmic in n). We also note that due to the special form of our queries we cannot directly

exploit the well-known memory efficient collision-finding techniques (such as distinguished points).

(FIRST) MERGE PHASE. The main computational part of this step is the generation of the lists L̃h′
j

whose analysis is very similar to the one performed in Section 6.3.4. The time required for generating

L̃h′
0

and L̃h′
1

is equal to their respective sizes, namely |Li ||χ(h′
0)| and |Li ||χ(h′

1)|. Moreover, we have that

(for i ∈ I)

|Li | ≈ q2/2n = 2(2α−1)n .

As, by construction, |χ(h′
0)| = dd ′⊥/2e and |χ(h′

1)| = bd ′⊥/2c, the relevant cardinalities become

2(2α−1)bd ′⊥/2cn and 2(2α−1)dd ′⊥/2en , respectively. This is clearly dominated by the latter.

(FIRST) JOIN PHASE. This step constructs the set of ∆′ candidates by finding collisions in respective

entries of the merged lists constructed in the previous phase. We assume that a collision search

among two lists is performed naively by storing the smaller list and scanning through all elements

166

6.4. Another Look at Collision Resistance

in the other. As |L̃h′
0
| · |L̃h′

1
| ≈ 2d ′⊥(2α−1)n and we are interested in collisions on αn bits, we expect to

have |Lh′ | ≈ 2((2α−1)d ′⊥−α)n as claimed. Note that each colliding element can be forwarded directly to

the next step eliminating the need for storing Lh′ . Moreover, the collision search can be performed

in conjunction with the previous step storing only L̃h′
1

and checking (and processing) on-the-fly

collisions when generating L̃h′
0
. This way the memory requirements are reduced to |L̃h′

1
|.

SECOND MERGE PHASE and SECOND JOIN PHASE (for non-MDS codes). We limit ourselves to the

four codes suggested by Knudsen and Preneel. For the (chosen) codes (and their shortened and dual

code of the shortened codes) from the Magma’s BKLC routine we can always find (by inspection)

the codewords h′,h′′ in the dual code of C ′ with the property that h′ has minimal weight, {1, . . . ,k} ⊂
χ(h′)∪χ(h′′) and the number of i ∈χ(h′′) for which i ∉χ(h′) equals k−θ−d ′⊥+2 (where substituting

θ = r −k gives 2k − r −d ′⊥+2).

As a result, the relation defined by h′′ (and thus the second phase) will involve 2k − r −d ′⊥+2 ‘fresh’

lists Li (those for which i ∉χ(h′) and i ∈χ(h′′)) with |Li | = 2(2α−1)n , as well as Lh′ , for which we know

from above that

|Lh′ | = 2((2α−1)d ′⊥−α)n .

Hence, regardless of the way of MERGEing and JOINing, there are

(2(2α−1)n)(2k−r−d ′⊥+2) ·2((2α−1)d ′⊥−α)n = 2((2α−1)(2k−r+2)−α)n

elements in total (to be checked for collisions). By construction, collisions are searched for on αn

bits. This leads to a list Lh′′ of roughly

|Lh′′ | = 2((2α−1)(2k−r+2)−2α)n

elements at the end of SECOND JOIN PHASE. To minimize the complexity of the merging phase, we

need to find the sets χ(h′′
0) and χ(h′′

1) such that χ(h′′
0)∩χ(h′′

1) = ; and the full 2((2α−1)(2k−r+2)−α)n

elements (involved in the merging) are distributed as evenly as possible without violating the

constraints imposed by the asymmetric list sizes.

Here, we follow the same reasoning as in Section 6.3.4. The condition χ(h′′
0)∩χ(h′′

1) =; implies that

Lh′ is assigned to h′′
0 ; assume that j further fresh Li are used for h′′

0 . This automatically means that

|χ(h′′
1)| = 2k − r −d ′⊥+2− j and furthermore that

|L̃h′′
1
| = 2(2k−r−d ′⊥+2− j)(2α−1)n and |L̃h′′

0
| = 2 j (2α−1)n+((2α−1)d ′⊥−α)n .

Given a particular j , the merging time will be governed by the maximum of |L̃h′′
1
| and |L̃h′′

0
|, whereas

the storage requirement is the minimum of that pair. In order to optimize the overall time-complexity,

we take the minimum (of the maximum just mentioned) over all j and denote the value by T1 and,

for the value j used, denote by T2 the corresponding ‘memory’-minimum. We also note the trivial

fact: T1 +T2 = (2α−1)(2k − r +2)−α. Collision-finding can then be performed in 2T1n time with a

memory requirement of roughly 2T2n .

COLLISION PRUNING. For MDS codes, there are |Lh′ | ≈ 2((2α−1)d ′⊥−α)n difference candidates ∆′. In

this step, we choose the true codeword among those by checking memberships for the remaining

partial collision lists. Because the shortened code C ′ has parameters [r ′,k ′,d ′] = [k,2k − r,d ′] and

167

Chapter 6. On the Security of Knudsen–Preneel Compression Functions

we have previously reviewed d ′⊥ lists, we still need to perform r ′−d ′⊥ list membership-checks to

do this step. For each membership-check, the probability of hitting one of the elements in each

remaining partial collision list is 2−αn and we have 2(2α−1)n targets to hit. All in all, after r ′−d ′⊥ list

membership-checks the number of remaining candidates becomes (for r ′ = r −θ = k)

2((2α−1)d ′⊥−α)n · (2(2α−1)n ·2−αn)k−d ′⊥
= 2((2α−1)d ′⊥−α)+(α−1)(k−d ′⊥).

Substituting α= k/(3k − r) and d ′⊥ = 2k − r +1 we expect to end up with a single ∆′. Note that the

time-complexity of this step is equal to the cardinality of Lh′ .

Regarding non-MDS codes, for each element in Lh′′ we need to perform a simple check (that we

assume costs unit time and constant memory). We have already shown that

|Lh′′ | = 2((2α−1)(2k−r+2)−2α)n

(at least for the four non-MDS codes provided by Knudsen and Preneel). So, this step takes at most

|Lh′′ | time. As the shortened code C ′ has length k and we have already gone over 2k−r +2 lists, we still

need to perform k − (2k − r +2) list membership-checks to finalize this step. For each membership-

check, the probability of hitting one of the elements in each remaining partial collision list is 2−αn and

there are 2(2α−1)n targets to hit. All in all, after r −k −2 checks the number of remaining candidates

becomes

2((2α−1)(2k−r+2)−2α)n · (2(2α−1)n ·2−αn)r−k−2 = 2((2α−1)(2k−r+2)−2α)+(α−1)(r−k−2).

Substituting α = k/(3k − r), we expect to end up with a single difference ∆′. If d ′⊥ > k ′, however,

several membership-checks need to be performed, which can be done in max(|Li |, |Lh′ |) time and

min(|Li |, |Lh′ |) memory. Note also that this happens only for one parameter: [9,5,4]24 . Substituting

the relevant values indeed result in one collision.

Summing up the obtained complexities for the various steps gives us the desired overall complexity

as stated in Theorems 6.4.17 and 6.4.19.

168

7 Conclusions

In this thesis, we focus on one of the most active areas of cryptographic hash function research: anal-

ysis and design of multi-call multi-block-length primitive-based compression and hash functions.

We investigate certain type of designs that aim to solve the problem of improving the security of a

single-block-length primitive-based compression function, without changing the underlying primi-

tive. We take blockciphers and PuRFs (Public Random Functions) as the underlying primitives and

consider the constructions that can make parallel calls to these primitives. From a theoretical point

of view, most of the designs considered in this thesis are supported by formal security proofs in the

ideal primitive model. From a practical point of view, we concern ourselves with the constructions

that are relevant in practice; indeed, all the schemes we consider make parallel calls to the underlying

primitives thus minimizing the computational overhead. Furthermore, they can be instantiated

with conventional cryptographic primitives, e.g., blockciphers such as AES; hence for resource con-

strained environments, we only need to implement one blockcipher to obtain simultaneously an

encryption scheme and a hash function.

A Quick Glance at the Contributions and Open Problems Regarding the design of provable secure

compression and hash functions, we provide several positive results in Chapters 4 and 5; positive

in the sense that we show the existence of certain double-call DBL blockcipher- and PuRF-based

compression and hash function constructions with security guarantees more than a single-block-

length compression function can offer.

Specifically, in Chapter 4, we limit ourselves to the 3n → 2n double-call DBL blockcipher-based

compression functions with 2n-bit key blockciphers and show that close-to-optimal collision and

preimage resistance can be achieved. More to the point, we present sufficient conditions for a large

class of designs that achieve high-level security; our framework provides a comprehensive and

unified approach that also captures the analysis of many existing schemes.

One major open problem that remains regarding this class of compression functions is performance

related; although the security of these schemes is well-understood, there do not exist many works

(except [33, 35]) in the literature concerning performance. In particular, we believe that the designs

in question might result in lightweight hash function constructions when instantiated with relatively

efficient primitives. The design of lightweight blockciphers is an active area of research; nevertheless,

not many efforts are put in designing lightweight functions that would mimic PuRFs.

169

Chapter 7. Conclusions

Along the same lines, in Chapter 5, we study the open question of constructing a provably collision-

resistant compression function from 3n to 2n bits that makes two parallel calls to an ideal primitive

from 2n to n bits (either a PuRF or an ideal blockcipher with n-bit blocks and n-bit keys). Our major

contribution is the design of a concrete compression function with a collision resistance bound well

beyond 2n/2 queries; in this class this is the first construction with such a collision resistance bound.

As a side contribution motivated by the problems while analyzing our design, we build novel techni-

cal tools for the hash function security proofs, developed in Chapter 3, that can be used to analyze

complex systems; a specific example is our construction given in Chapter 5. We leave the exploration

of the efficiency of our construction as an open problem. Moreover, finding a more efficient con-

struction in the same class as ours with strong security guarantees is also open. Finally, we note that

the point-line incidences used in the preprocessing function can be extended to incidences in higher

dimensions (e.g., point, line and planes) and similar compression functions with higher number of

calls and digest sizes (with better security guarantees) might be achieved. Nevertheless, we believe it

is of only theoretical interest, as the number of finite field multiplications is expected to increase

leading to a less efficient scheme.

From an analysis point of view, we also show some negative results (in Chapter 6) for the well-known

Knudsen–Preneel family of compression functions; by negative we mean that the KP schemes turn

out to be not as secure as they were designed to be. Specifically, by presenting several collision-

and preimage-finding algorithms against the KP compression functions, we falsify the collision

resistance claim and preimage resistance conjecture initially given by Knudsen and Preneel. For

preimage resistance, we provide both lower and upper bounds for any type of KP scheme. Regarding

collision resistance, we can only show upper bounds; we leave proving collision resistance of the KP

compression functions in the ideal primitive model open. In addition, the security analysis of KP

framework in the Merkle–Damgård iteration is also open.

Another Look at Hash Function Research The recent research efforts on cryptographic hash

functions, as well as the results presented in Chapters 4, 5 and 6, shed some light on the future

directions of hash function research. First of all, we remark that the assumptions used in our security

proofs are still far from being practical as we work in the ideal primitive model; hence, weakening

these assumptions or working with some other primitives might be one of the ideas to be pursued

in the future. Additionally, we mainly consider information-theoretic adversaries in this thesis, the

adversaries that are computationally unbounded. To better reflect reality, we should also work in the

complexity-theoretic setting; we leave the exploration of this as an open problem.

Secondly, from a theoretical point of view, there still remain many parameter choices for designing a

multi-call multi-block-length primitive-based compression function with strong security guarantees

(e.g., collision resistance well beyond 2n/2 queries when primitives with output length of n bits

are used) assuming the correctness of Stam’s conjecture (Conjecture 2.3.5). However, as shown in

Chapter 5, such designs might result in less efficient and less attractive schemes to be used in practice;

and indeed many simple choices turn out to be insufficient to obtain a secure construction. The

KP construction is such an example: One of the lessons that we learn from the results of Chapter 6

is that we should be careful with the highly efficient compression functions that use primitives

with domains smaller than that of the compression function and that utilize simple postprocessing

functions. In addition, although making the calls parallel is an attractive choice for efficiency, it might

170

result in less secure schemes.

Thirdly, we note that focusing on the hash function, rather than imposing high-level security in

the compression function (as done in [20]), is another research direction. Indeed, certain SHA-3

candidates (e.g., [19]), as well as new lightweight hash function constructions (e.g., [32, 71]) follow

this idea. Unfortunately, current proof techniques for analyzing security in the domain extension are

not as powerful as the ones for compression functions (without making strong assumptions on the

compression function). Consequently, for the resulting hash functions that do not rely on the Merkle–

Damgård paradigm (Theorem 2.2.5), the proofs are very complex. Finding more effective methods

for analyzing the security in the iteration, as well as designing practical compression functions

that provide improved security for the hash function, are two of the promising research ideas not

only from a theoretical but also from a practical point of view. We believe, especially for hardware

constrained environments, that this design choice is an efficient solution to achieve a lightweight

hash function construction.

Finally, we note that the analysis of the currently available schemes from an efficiency point of view is

another attractive research direction. A hardware benchmark of several multi-call multi-block-length

blockcipher-based compression functions (using the lightweight blockcipher Present) is carried out

in [33]; similarly, a software evaluation using AES and the AES instruction set is done in [35]. However,

these works are still limited in the sense that they use certain primitives on specific platforms.

Extending these benchmarks to a more general setting is still open. More importantly, designing

concrete primitives (that themselves are not sufficient to provide a high-level security when used in

single-block-length mode) to be used along with the multi-call multi-block-length primitive-based

compression functions would be important. In addition, as noted in [32, 71], the currently available

SHA-3 candidates (as well as SHA-2) are not very hardware-friendly: They require a footprint which

is more than an RFID tag or a wireless sensor can afford for security applications. We believe that in

the near future the research community will also be busy designing more lightweight hash function

constructions.

171

Bibliography
[1] Deschall project: World’s first des crack, http://home.earthlink.net/~rcv007/deschall.htm

[2] The eSTREAM project, http://www.ecrypt.eu.org/stream/

[3] Andreeva, E., Mennink, B., Preneel, B.: Security properties of domain extenders for crypto-

graphic hash functions. JIPS 6(4), 453–480 (2010)

[4] Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Three-property preserving iterations of

keyless compression functions, presented at ECRYPT Hash Workshop, 2007

[5] Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving iterated hashing:

ROX. In: Kurosawa [99], pp. 130–146

[6] Andreeva, E., Preneel, B.: A three-property-secure hash function. In: Avanzi, R.M., Keliher, L.,

Sica, F. (eds.) Selected Areas in Cryptography. LNCS, vol. 5381, pp. 228–244. Springer, Heidel-

berg (2009)

[7] Andreeva, E., Stam, M.: The symbiosis between collision and preimage resistance. In: Chen, L.

(ed.) IMA Int. Conf. LNCS, vol. 7089, pp. 152–171. Springer, Heidelberg (2011)

[8] Armknecht, F., Fleischmann, E., Krause, M., Lee, J., Stam, M., Steinberger, J.P.: The preimage

security of double-block-length compression functions. In: Lee and Wang [103], pp. 233–251

[9] Aumasson, J.P., Çağdaş Çalık, Meier, W., Özen, O., Phan, R.C.W., Varıcı, K.: Improved cryptanal-

ysis of Skein. In: Matsui [116], pp. 542–559

[10] Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE. Submission to

NIST (Round 3) (2010), http://131002.net/blake/blake.pdf

[11] Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model scheme for a

hybrid-encryption problem. In: Cachin and Camenisch [40], pp. 171–188

[12] Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and the EMD

transform. In: Lai and Chen [101], pp. 299–314

[13] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient

protocols. In: Proc. 1st ACM Conference on Computer and Communications Security. pp.

62–73 (1993)

[14] Bellare, M., Kohno, T.: Hash function balance and its impact on birthday attacks. In: Cachin

and Camenisch [40], pp. 401–418

[15] Bellare, M., Rogaway, P.: Collision-resistant hashing: Towards making UOWHFs practical. In:

Burt Kaliski and Burton [39], pp. 470–484

[16] Bernstein, D.J.: Cache-timing attacks on AES (2004), available at

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

173

http://home.earthlink.net/~rcv007/deschall.htm
http://www.ecrypt.eu.org/stream/
http://131002.net/blake/blake.pdf

Bibliography

[17] Bernstein, D.J.: Cubehash specification (2.b.1). Submission to NIST (Round 2) (2009), http:

//cubehash.cr.yp.to/submission2/spec.pdf

[18] Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic Systems. http:

//bench.cr.yp.to (2010)

[19] Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 submission. Submission

to NIST (Round 3) (2011), http://keccak.noekeon.org/Keccak-submission-3.pdf

[20] Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiability of the sponge

construction. In: Smart [189], pp. 181–197

[21] Biham, E., Dunkelman, O.: A framework for iterative hash functions - HAIFA. Cryptology ePrint

Archive, Report 2007/278 (2007), http://eprint.iacr.org/

[22] Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.,

Vanstone, S. (eds.) Advances in Cryptography—Crypto’90. LNCS, vol. 537, pp. 2–21. Springer,

Heidelberg (1991)

[23] Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES. In: Brickell, E. (ed.)

Advances in Cryptography—Crypto’92. LNCS, vol. 740. Springer, Heidelberg (1993)

[24] Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In:

Matsui [116], pp. 1–18

[25] Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly efficient blockcipher-based

hash functions. In: Cramer [50], pp. 526–541

[26] Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-

function constructions from PGV. In: Yung [207], pp. 320–335

[27] Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the block-cipher-based hash

functions from PGV. Journal of Cryptology 23(4), 519–545 (2010)

[28] Black, J.: The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash function.

In: Robshaw [170], pp. 328–340

[29] Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo random

bits. In: FOCS. pp. 112–117. IEEE Computer Society (1982)

[30] den Boer, B., Bosselaers, A.: Collisions for the compression function of MD5. In: Helleseth [74],

pp. 293–304

[31] Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full AES. In: Lee

and Wang [103]

[32] Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: Spongent: A

lightweight hash function. In: Preneel and Takagi [161], pp. 312–325

[33] Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash functions

and RFID tags: Mind the gap. In: Oswald, E., Rohatgi, P. (eds.) CHES’08. LNCS, vol. 5154, pp.

283–299. Springer, Heidelberg (2008)

[34] Bos, J.W., Özen, O., Hubaux, J.P.: Analysis and optimization of cryptographically generated

addresses. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC. LNCS, vol. 5735,

pp. 17–32. Springer, Heidelberg (2009)

[35] Bos, J.W., Özen, O., Stam, M.: Efficient hashing using the AES instruction set. In: Preneel and

Takagi [161], pp. 507–522

174

http://cubehash.cr.yp.to/submission2/spec.pdf
http://cubehash.cr.yp.to/submission2/spec.pdf
http://bench.cr.yp.to
http://bench.cr.yp.to
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://eprint.iacr.org/

Bibliography

[36] Boyd, C., Nieto, J.M.G. (eds.): Information Security and Privacy (ACISP’09), LNCS, vol. 5594.

Springer, Heidelberg (2009)

[37] Brachtl, B., Coppersmith, D., Hyden, M., Matyas, S., Jr., Meyer, C., Oseas, J., Pilpel, S., Schilling,

M.: Data authentication using modification detection codes based on a public one-way en-

cryption function. U.S. Patent No 4,908,861 (March 1990)

[38] Brassard, G. (ed.): Advances in Cryptography—Crypto’89, LNCS, vol. 435. Springer, Heidelberg

(1990)

[39] Burt Kaliski, J., Burton, S. (eds.): Advances in Cryptography—Crypto’97, LNCS, vol. 1294.

Springer, Heidelberg (1997)

[40] Cachin, C., Camenisch, J. (eds.): Advances in Cryptography—Eurocrypt’04, LNCS, vol. 3027.

Springer, Heidelberg (2004)

[41] Camion, P., Patarin, J.: The knapsack hash function proposed at Crypto’89 can be broken.

In: Davies, D.W. (ed.) Advances in Cryptography—Eurocrypt’91. LNCS, vol. 547, pp. 39–53.

Springer, Heidelberg (1991)

[42] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. The Computing

Research Repository (CoRR) cs.CR/0010019 (2000)

[43] Canetti, R., Goldreich, O., Halevi, S.: On the random-oracle methodology as applied to length-

restricted signature schemes. In: Naor [131], pp. 40–57

[44] Cannière, C.D., Rechberger, C.: Finding SHA-1 characteristics: General results and applications.

In: Lai and Chen [101]

[45] Canniere, C.D., Sato, H., Watanabe, D.: Hash function Luffa: Specification. Submission to NIST

(Round 2) (2009), http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_Specification_20091002.

pdf

[46] Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.) Advances in

Cryptography—Crypto’98. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

[47] Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic point of view. In: Knud-

sen [89], pp. 209–221

[48] Churchill, W.: “It was thanks to ultra that we won the war”, http://www.history.co.uk/

explore-history/ww2/code-breaking.html

[49] Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: How to construct a

hash function. In: Shoup [185], pp. 430–448

[50] Cramer, R. (ed.): Advances in Cryptography—Eurocrypt’05, LNCS, vol. 3494. Springer, Heidel-

berg (2005)

[51] Daemen, J., Rijmen, V.: The Design of Rijndael. Springer-Verlag New York, Inc. Secaucus, NJ,

USA (2002)

[52] Damgård, I.: A design principle for hash functions. In: Brassard [38], pp. 416–427

[53] Dean, R.D.: Formal Aspects of Mobile Code Security. Ph.D. thesis, Princeton University (1999)

[54] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information

Theory 22(6), 644–654 (1976)

[55] Dobbertin, H.: Cryptanalysis of MD4. Journal of Cryptology 11(4), 253–271 (1998)

175

http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_Specification_20091002.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_Specification_20091002.pdf
http://www.history.co.uk/explore-history/ww2/code-breaking.html
http://www.history.co.uk/explore-history/ww2/code-breaking.html

Bibliography

[56] Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damgård for practical applications.

In: Joux [83], pp. 371–388

[57] Dunkelman, O. (ed.): Fast Software Encryption (FSE’09), LNCS, vol. 5665. Springer, Heidelberg

(2009)

[58] Duo, L., Li, C.: Improved collision and preimage resistance bounds on PGV schemes. Tech. Rep.

462, IACR’s ePrint Archive (2006)

[59] ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.

IEEE Transactions on Information Theory 31(4), 469–472 (1985)

[60] Feistel, H.: Block cipher cryptographic system. U.S. Patent No 3,798,359 (Filed June 30, 1971

(IBM))

[61] Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1. John Wiley and

Sons, Inc. (1968)

[62] Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.:

The Skein hash function family. Submission to NIST (Round 3) (2010), http://www.skein-hash.

info/sites/default/files/skein1.3.pdf

[63] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature

problems. In: Odlyzko, A. (ed.) Advances in Cryptography—Crypto’86. LNCS, vol. 263, pp.

186–194. Springer, Heidelberg (1987)

[64] Fleischmann, E., Gorski, M., Lucks, S.: Security of cyclic double block length hash functions.

In: Parker [153], pp. 153–175

[65] Fleischmann, E., Gorski, M., Lucks, S.: Security of cyclic double block length hash functions

including Abreast-DM. Tech. Rep. 261, IACR’s ePrint Archive (2009)

[66] Franklin, M.K. (ed.): Advances in Cryptography—Crypto’04, LNCS, vol. 3152. Springer, Heidel-

berg (2004)

[67] Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M.,

Thomsen, S.S.: Grøstl – A SHA-3 candidate. Submission to NIST (Round 3) (2011), http://www.

groestl.info/Groestl.pdf

[68] Gazi, P., Maurer, U.: Free-start distinguishing: Combining two types of indistinguishability

amplification. In: Kurosawa, K. (ed.) ICITS. LNCS, vol. 5973, pp. 28–44. Springer, Heidelberg

(2010)

[69] Gilbert, H. (ed.): Advances in Cryptography—Eurocrypt’10, LNCS, vol. 6110. Springer, Heidel-

berg (2010)

[70] Gueron, S.: Intel’s new AES instructions for enhanced performance and security. In: Dunkel-

man [57]

[71] Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In:

Rogaway [176], pp. 222–239

[72] Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hashing. In: Dwork, C.

(ed.) Advances in Cryptography—Crypto’06. LNCS, vol. 4117, pp. 41–59. Springer, Heidelberg

(2006)

[73] Hattori, M., Hirose, S., Yoshida, S.: Analysis of double block length hash functions. In: Paterson,

K. (ed.) CCC’03. LNCS, vol. 2898, pp. 290–302. Springer, Heidelberg (2003)

176

http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.skein-hash.info/sites/default/files/skein1.3.pdf
http://www.groestl.info/Groestl.pdf
http://www.groestl.info/Groestl.pdf

Bibliography

[74] Helleseth, T. (ed.): Advances in Cryptography—Eurocrypt’93, LNCS, vol. 765. Springer, Heidel-

berg (1993)

[75] Hirose, S.: Provably secure double-block-length hash functions in a black-box model. In: Park,

C., Chee, S. (eds.) ICISC’04. LNCS, vol. 3506, pp. 330–342. Springer, Heidelberg (2005)

[76] Hirose, S.: Some plausible constructions of double-length hash functions. In: Robshaw [170],

pp. 210–225

[77] Hirose, S., Park, J.H., Yun, A.: A simple variant of the Merkle-Damgård scheme with a permuta-

tion. In: Kurosawa [99], pp. 113–129

[78] Hohl, W., Lai, X., Meier, T., Waldvogel, C.: Security of iterated hash functions based on block

ciphers. In: Stinson [196], pp. 379–390

[79] Hong, S., Iwata, T. (eds.): Fast Software Encryption (FSE’10), LNCS, vol. 6147. Springer, Heidel-

berg (2010)

[80] Indesteege, S.: The LANE hash function. Submission to NIST (2008), http://www.cosic.esat.

kuleuven.be/publications/article-1181.pdf

[81] Jetchev, D., Özen, O., Stam, M.: Collisions Are Not Incidental: A Compression Function Ex-

ploiting Discrete Geometry. In: Cramer, R. (ed.) TCC. LNCS, vol. 7194, pp. 303–320. Springer,

Heidelberg (2012)

[82] Joux, A.: Multicollisions in iterated hash functions. Application to cascaded constructions. In:

Franklin [66], pp. 306–316

[83] Joux, A. (ed.): Advances in Cryptography—Eurocrypt’09, LNCS, vol. 5479. Springer, Heidelberg

(2009)

[84] Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack. In: Franklin [66], pp.

244–263

[85] Kahn, D.: The Codebreakers. Scribner, New York (1996)

[86] Kaliski, B.: The MD4 message-digest algorithm, request for comments (RFC) 1320. Tech. rep.,

Internet Activities Board, Internet Privacy Task Force (1992)

[87] Kelsey, J., Kohno, T.: Herding hash functions and the nostradamus attack. In: Vaudenay, S. (ed.)

Advances in Cryptography—Eurocrypt’06. LNCS, vol. 4004, pp. 183–200. Springer, Heidelberg

(2006)

[88] Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less than 2n work.

In: Cramer [50], pp. 474–490

[89] Knudsen, L. (ed.): Advances in Cryptography—Eurocrypt’02, LNCS, vol. 2332. Springer, Heidel-

berg (2002)

[90] Knudsen, L.R., Mendel, F., Rechberger, C., Thomsen, S.S.: Cryptanalysis of MDC-2. In: Joux [83],

pp. 106–120

[91] Knudsen, L.R., Preneel, B.: Hash functions based on block ciphers and quaternary codes. In:

Kim, K., Matsumoto, T. (eds.) Advances in Cryptography—Asiacrypt’96. LNCS, vol. 1163, pp.

77–90. Springer, Heidelberg (1996)

[92] Knudsen, L.R., Preneel, B.: Fast and secure hashing based on codes. In: Burt Kaliski and

Burton [39], pp. 485–498

[93] Knudsen, L.R., Preneel, B.: Construction of secure and fast hash functions using nonbinary

error-correcting codes. IEEE Transactions on Information Theory 48(9), 2524–2539 (2002)

177

http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1181.pdf

Bibliography

[94] Knudsen, L., Lai, X., Preneel, B.: Attacks on fast double block length hash functions. Journal of

Cryptology 11(1), 59–72 (1998)

[95] Knuth, D.E.: Fundamental Algorithms, The Art of Computer Programming, vol. 1. Addison

Wesley, 3 edn. (1997)

[96] Knuth, D.E.: Seminumerical Algorithms, The Art of Computer Programming, vol. 2. Addison

Wesley, 3 edn. (1997)

[97] Knuth, D.E.: Sorting and Searching, The Art of Computer Programming, vol. 3. Addison Wesley,

2 edn. (1998)

[98] Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)

[99] Kurosawa, K. (ed.): Advances in Cryptography—Asiacrypt’07, LNCS, vol. 4833. Springer, Hei-

delberg (2007)

[100] Özgül Küçük: The hash function Hamsi. Submission to NIST (updated) (2009), http://www.

cosic.esat.kuleuven.be/publications/article-1203.pdf

[101] Lai, X., Chen, K. (eds.): Advances in Cryptography—Asiacrypt’06, LNCS, vol. 4284. Springer,

Heidelberg (2006)

[102] Lai, X., Massey, J.L.: Hash function based on block ciphers. In: Rueppel, R.A. (ed.) Advances in

Cryptography—Eurocrypt’92. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1992)

[103] Lee, D.H., Wang, X. (eds.): Advances in Cryptography—Asiacrypt’11, LNCS, vol. 7073. Springer,

Heidelberg (2011)

[104] Lee, J., Kwon, D.: The security of Abreast-DM in the ideal cipher model. Tech. Rep. 225, IACR’s

ePrint Archive (2009)

[105] Lee, J., Stam, M.: MJH: A faster alternative to MDC-2. In: Kiayias, A. (ed.) CT-RSA. LNCS, vol.

6558, pp. 213–236. Springer, Heidelberg (2011)

[106] Lee, J., Stam, M., Steinberger, J.: The collision security of Tandem-DM in the ideal cipher model.

Tech. Rep. 409, IACR’s ePrint Archive (2010), http://eprint.iacr.org/

[107] Lee, J., Stam, M., Steinberger, J.P.: The collision security of tandem-dm in the ideal cipher

model. In: Rogaway [176], pp. 561–577

[108] Lee, J., Steinberger, J.P.: Multi-property-preserving domain extension using polynomial-based

modes of operation. In: Gilbert [69], pp. 573–596

[109] Lenstra, A.K., Lenstra, H.W.: The Development of Number Field Sieve. Springer-Verlag Berlin

Heidelberg (1993)

[110] Liskov, M.: Constructing an ideal hash function from weak ideal compression functions. In:

Biham, E., Youssef, A.M. (eds.) Selected Areas in Cryptography. LNCS, vol. 4356, pp. 358–375.

Springer, Heidelberg (2007)

[111] Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B.K. (ed.) Advances in

Cryptography—Asiacrypt’05. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

[112] Lucks, S.: A collision-resistant rate-1 double-block-length hash function. In: Biham, E., Hand-

schuh, H., Lucks, S., Rijmen, V. (eds.) Symmetric Cryptography. No. 07021 in Dagstuhl

Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum für Informatik

(IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany (2007), http://drops.dagstuhl.de/opus/

volltexte/2007/1017

178

http://www.cosic.esat.kuleuven.be/publications/article-1203.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1203.pdf
http://eprint.iacr.org/
http://drops.dagstuhl.de/opus/volltexte/2007/1017
http://drops.dagstuhl.de/opus/volltexte/2007/1017

Bibliography

[113] Manuel, S., Peyrin, T.: Collisions on SHA-0 in one hour. In: Nyberg, K. (ed.) FSE’08. LNCS, vol.

5086, pp. 16–35. Springer, Heidelberg (2008)

[114] Matsui, M.: Linear cryptoanalysis method for DES cipher. In: Helleseth [74], pp. 386–397

[115] Matsui, M.: The first experimental cryptanalysis of the Data Encryption Standard. In: Desmedt,

Y. (ed.) Advances in Cryptography—Crypto’94. LNCS, vol. 839, pp. 1–11. Springer, Heidelberg

(1994)

[116] Matsui, M. (ed.): Advances in Cryptography—Asiacrypt’09, LNCS, vol. 5912. Springer, Heidel-

berg (2009)

[117] Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions,

and applications to the random oracle methodology. In: Naor [131], pp. 21–39

[118] Maurer, U., Tessaro, S.: Domain extension of public random functions: Beyond the birthday

barrier. In: Menezes [123], pp. 187–204

[119] Maurer, U.M.: Indistinguishability of random systems. In: Knudsen [89], pp. 110–132

[120] Maurer, U.M., Pietrzak, K.: Composition of random systems: When two weak make one strong.

In: Naor [131], pp. 410–427

[121] Maurer, U.M., Pietrzak, K., Renner, R.: Indistinguishability amplification. In: Menezes [123],

pp. 130–149

[122] Menezes, A., van Oorschot, P., Vanstone, S.: CRC-Handbook of Applied Cryptography. CRC

Press (1996)

[123] Menezes, A. (ed.): Advances in Cryptography—Crypto’07, LNCS, vol. 4622. Springer, Heidelberg

(2007)

[124] Merkle, R.C.: Secure communications over insecure channels. Communications of the ACM

21(4), 294–299 (1978)

[125] Merkle, R.C.: One way hash functions and DES. In: Brassard [38], pp. 428–446

[126] Miller, V.: Use of elliptic curves in cryptography. In: Williams, H. (ed.) Advances in

Cryptography—Crypto’85. LNCS, vol. 218, pp. 417–425. Springer, Heidelberg (1986)

[127] von Mises, R.: İstanbul Üniversitesi fen fakültesi mecmuası 4, 145–163 (1939)

[128] Nandi, M.: Towards optimal double-length hash functions. In: Maitra, S., Madhavan, C.E.V.,

Venkatesan, R. (eds.) INDOCRYPT’05. LNCS, vol. 3797, pp. 77–89. Springer, Heidelberg (2005)

[129] Nandi, M., Lee, W., Sakurai, K., Lee, S.: Security analysis of a 2/3-rate double length compression

function in black-box model. In: Gilbert, H., Handschuh, H. (eds.) FSE’05. LNCS, vol. 3557, pp.

243–254. Springer, Heidelberg (2005)

[130] Nandi, M.: Characterizing padding rules of md hash functions preserving collision security. In:

Boyd and Nieto [36]

[131] Naor, M. (ed.): Theory of Cryptography Conference, LNCS, vol. 2951. Springer, Heidelberg

(2004)

[132] Naor, M. (ed.): Advances in Cryptography—Eurocrypt’07, LNCS, vol. 4515. Springer, Heidelberg

(2007)

[133] Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications.

In: Johnson, D.S. (ed.) STOC. pp. 33–43. ACM (1989)

179

Bibliography

[134] National Institute of Standards and Technology: Recommendation for the Triple Data En-

cryption Algorithm (TDEA) Block Cipher (1993), NIST Special Publication 800-67 Version

1.1

[135] National Institute of Standards and Technology: Secure Hash Standard (1993), FIPS-180

[136] National Institute of Standards and Technology: Secure Hash Standard (1995), FIPS-180-1

[137] National Institute of Standards and Technology: Announcing Development of a Federal Infor-

mation Processing Standard for Advanced Encryption Standard (1997), http://csrc.nist.gov/

archive/aes/pre-round1/aes_9701.txt

[138] National Institute of Standards and Technology: Data Encryption Standard (DES) (1999), FIPS-

46-3

[139] National Institute of Standards and Technology: Advanced Encryption Standard (2001), FIPS

197

[140] National Institute of Standards and Technology: The Keyed-Hash Message Authentication

Code (HMAC) (2002), FIPS 198

[141] National Institute of Standards and Technology: Secure Hash Standard (2002), FIPS-180-3

[142] National Institute of Standards and Technology: Digital Signature Standard (2009), FIPS 186-3

[143] Needham, R.: "in 1966, we conceived the use of one-way functions to protect the password

file, and this was an implemented feature from day one". The Internet Encyclopedia, Volume

3, by Hossein Bidgoli (2004)

[144] Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-

committing encryption case. In: Yung [207], pp. 111–126

[145] NIST: Cryptographic hash algorithm competition. http://csrc.nist.gov/groups/ST/hash/sha-3/

index.html (2008)

[146] Nivasch, G.: Cycle detection using a stack. Inf. Process. Lett. 90(3), 135–140 (2004)

[147] van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications.

Journal of Cryptology 12(1), 1–28 (1999)

[148] Osvik, D.A.: Efficient implementation of the Data Encryption Standard. Master’s thesis, Univer-

sity of Bergen, Norway (2003)

[149] Özen, O., Shrimpton, T., Stam, M.: Attacking the Knudsen–Preneel compression functions. In:

Hong and Iwata [79], pp. 94–115

[150] Özen, O., Stam, M.: Another glance at double-length hashing. In: Parker [153], pp. 176–201

[151] Özen, O., Stam, M.: Collision attacks against Knudsen–Preneel compression functions. In:

Abe, M. (ed.) Advances in Cryptography—Asiacrypt’10. LNCS, vol. 6477, pp. 76–93. Springer,

Heidelberg (2010)

[152] Özen, O., Varıcı, K., Tezcan, C., Çelebi Kocair: Lightweight block ciphers revisited: Cryptanalysis

of reduced round PRESENT and HIGHT. In: Boyd and Nieto [36], pp. 90–107

[153] Parker, M.G. (ed.): Cryptography and Coding 2009, LNCS, vol. 5921. Springer, Heidelberg (2009)

[154] Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.: Combining compression functions and block

cipher-based hash functions. In: Lai and Chen [101], pp. 315–331

[155] Pietrzak, K.: Indistringuishability and Composition of Random Systems. Ph.D. thesis, ETH

Zurich (2005)

180

http://csrc.nist.gov/archive/aes/pre-round1/aes_9701.txt
http://csrc.nist.gov/archive/aes/pre-round1/aes_9701.txt
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

Bibliography

[156] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U. (ed.) Advances

in Cryptography—Eurocrypt’96. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)

[157] Pollard, J.: Monte Carlo methods for factorization 15, 331–334 (1975)

[158] Pollard, J.: Monte Carlo methods for index computation (mod p). Mathematics of Computation

32(143), 918–924 (1978)

[159] Preneel, B.: Analysis and design of cryptographic hash functions. Ph.D. thesis, Katholieke

Universiteit Leuven (1993)

[160] Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic

approach. In: Stinson [196], pp. 368–378

[161] Preneel, B., Takagi, T. (eds.): Cryptographic Hardware and Embedded Systems (CHES’11),

LNCS, vol. 6917. Springer, Heidelberg (2011)

[162] Rabin, M.: Digitalized signatures. Foundations of Secure Computation (Academic Press, New

York) (1978)

[163] Ramanujan, S.: On question 294. J. Indian Math. Soc. 4, 151–152 (1912)

[164] Reyhanitabar, M.R., Susilo, W., Mu, Y.: Enhanced security notions for dedicated-key hash

functions: Definitions and relationships. In: Hong and Iwata [79], pp. 192–211

[165] Rivest, R.: The MD2 message-digest algorithm, request for comments (RFC) 1319. Tech. rep.,

Internet Activities Board, Internet Privacy Task Force (1992)

[166] Rivest, R.: The MD5 message-digest algorithm, request for comments (RFC) 1320. Tech. rep.,

Internet Activities Board, Internet Privacy Task Force (1992)

[167] Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key

cryptosystems. Comm. of the ACM 21(2), 120–126 (1978)

[168] Rivest, R.: Abelian square-free dithering for iterated hash functions (2005), presented at

ECRYPT Workshop on Hash Functions, June 23-24 2005, Krakow, Poland

[169] Rivest, R.L.: The MD6 hash function – a proposal to nist for SHA-3. Submission

to NIST (2008), http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting_

Documentation/md6_report.pdf

[170] Robshaw, M.J. (ed.): Fast Software Encryption (FSE’06), LNCS, vol. 4047. Springer, Heidelberg

(2006)

[171] Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications and

separations for preimage resistance, second-preimage resistance, and collision resistance. In:

Roy, B.K., Meier, W. (eds.) FSE. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

[172] Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based hashing, full

version of [174], available through authors’ website.

[173] Rogaway, P., Steinberger, J.: Constructing cryptographic hash functions from fixed-key blockci-

phers. In: Wagner [201], pp. 433–450

[174] Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based hashing. In:

Smart [189], pp. 220–236

[175] Rogaway, P.: Formalizing human ignorance. In: Nguyen, P.Q. (ed.) VIETCRYPT’06. LNCS, vol.

4341, pp. 211–228. Springer, Heidelberg (2006)

181

http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting_Documentation/md6_report.pdf
http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting_Documentation/md6_report.pdf

Bibliography

[176] Rogaway, P. (ed.): Advances in Cryptography—Crypto’10, LNCS, vol. 6841. Springer, Heidelberg

(2011)

[177] S. Matyas, C. Meyer, J.O.: Generating strong one-way functions with cryptographic algorithms.

IBM Tech. Dis. Bull. 27 (10a) (1985)

[178] Satoh, T., Haga, M., Kurosawa, K.: Towards secure and fast hash functions. IEICE Transactions,

Special Section on Cryptography and Information Security E82–A(1) (1999)

[179] Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete

problems. SIAM Journal on Computing 10, 456–464 (1981)

[180] Seurin, Y., Peyrin, T.: Security analysis of constructions combining FIL random oracles. In:

Biryukov, A. (ed.) FSE’07. LNCS, vol. 4593, pp. 119–136. Springer, Heidelberg (2007)

[181] Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27,

379–423; 623–656 (1948), also appears in [183].

[182] Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical Journal 28,

656–715 (1949), also appears in [183]. The material originally appeared in a confidential report

‘A Mathematical Theory of Cryptography’, dated Sept. 1, 1945.

[183] Shannon, C.E.: Claude Elwood Shannon. IEEE Press, New York (1993), collected papers, Edited

by N. J. A. Sloane and Aaron D. Wyner

[184] Shoup, V.: A composition theorem for universal one-way hash functions. In: Preneel, B. (ed.)

Advances in Cryptography—Eurocrypt’00. LNCS, vol. 1807, pp. 445–452. Springer, Heidelberg

(2000)

[185] Shoup, V. (ed.): Advances in Cryptography—Crypto’05, LNCS, vol. 3621. Springer, Heidelberg

(2005)

[186] Shrimpton, T., Stam, M.: Building a collision-resistant compression function from non-

compressing primitives. In: ICALP 2008, Part II. vol. 5126, pp. 643–654. Springer, Heidelberg

(2008)

[187] Simon, D.R.: Finding collisions on a one-way street: Can secure hash functions be based on

general assumptions? In: Nyberg, K. (ed.) Advances in Cryptography—Eurocrypt’98. LNCS, vol.

1403, pp. 334–345. Springer, Heidelberg (1998)

[188] Singh, S.: The Code Book. Fourth Estate, New York (1999)

[189] Smart, N.P. (ed.): Advances in Cryptography—Eurocrypt’08, LNCS, vol. 4965. Springer, Heidel-

berg (2008)

[190] Stam, M.: Beyond uniformity: Better security/efficiency tradeoffs for compression functions.

In: Wagner [201], pp. 397–412

[191] Stam, M.: Blockcipher-based hashing revisited. In: Dunkelman [57], pp. 67–83

[192] Steinberger, J.: The collision intractability of MDC-2 in the ideal-cipher model. In: Naor [132],

pp. 34–51

[193] Steinberger, J.P.: Stam’s collision resistance conjecture. In: Gilbert [69], pp. 597–615

[194] Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-prefix collisions for MD5 and colliding X.509

certificates for different identities. In: Naor [132], pp. 1–22

[195] Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A.K., Molnar, D., Osvik, D.A., de Weger, B.: Short

chosen-prefix collisions for MD5 and the creation of a rogue ca certificate. In: Halevi, S. (ed.)

Advances in Cryptography—Crypto’09. LNCS, vol. 5677, pp. 55–69. Springer, Heidelberg (2009)

182

Bibliography

[196] Stinson, D. (ed.): Advances in Cryptography—Crypto’93, LNCS, vol. 773. Springer, Heidelberg

(1993)

[197] Szemerédi, E., Trotter, W.: Extremal problems in discrete geometry. Combinatorica 3(3)

[198] Tao, T.: The Szemerédi-Trotter theorem and the cell decomposition (2009), http://terrytao.

wordpress.com/2009/06/12/the-szemeredi-trotter-theorem-and-the-cell-decomposition/

[199] Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and countermeasures.

Journal of Cryptology 23(1), 37–71 (2010)

[200] Wagner, D.: A generalized birthday problem. In: Yung [207], pp. 288–303

[201] Wagner, D. (ed.): Advances in Cryptography—Crypto’08, LNCS, vol. 5157. Springer, Heidelberg

(2008)

[202] Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup [185], pp. 17–36

[203] Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer [50], pp. 19–35

[204] Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup [185], pp. 1–16

[205] Watanabe, D.: A note on the security proof of Knudsen-Preneel construction of a hash

function (2006), unpublished manuscript, available at http://csrc.nist.gov/groups/ST/hash/

documents/WATANABE_kp_attack.pdf

[206] Wu, H.: The hash function JH. Submission to NIST (round 3) (2011), http://www3.ntu.edu.sg/

home/wuhj/research/jh/jh_round3.pdf

[207] Yung, M. (ed.): Advances in Cryptography—Crypto’02, LNCS, vol. 2442. Springer, Heidelberg

(2002)

[208] Yuval, G.: How to swindle Rabin. Cryptologia 3, 187–189 (1979)

183

http://terrytao.wordpress.com/2009/06/12/the-szemeredi-trotter-theorem-and-the-cell-decomposition/
http://terrytao.wordpress.com/2009/06/12/the-szemeredi-trotter-theorem-and-the-cell-decomposition/
http://csrc.nist.gov/groups/ST/hash/documents/WATANABE_kp_attack.pdf
http://csrc.nist.gov/groups/ST/hash/documents/WATANABE_kp_attack.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

A The Birthday Paradox

The birthday paradox states that, if 23 or more people are present in a room, there is a high probability

that two of them share the same birthday. The origin of birthday paradox is obscure as also noted

by Knuth; yet there exist several early references listed in his book [97] pointing out some informal

discussions of it among mathematicians (see e.g., [61,127]). Here we illustrate a more general problem

for which the birthday paradox is a particular example. Suppose that there exists an urn of N balls,

each of which is colored in one of N distinct colors. We draw a random ball from the urn, record

its color and put it back into the urn; this process is repeated several times. By drawing randomly,

we mean that each ball is equally likely to be picked, and the probabilities (for all the balls to be

picked) are independent. We determine the expected number of draws needed to record the same

color twice. Note that, for N = 365, we derive the well-known birthday problem.

Let X be the random variable denoting the minimal number of draws needed for a collision to occur.

Then we have

Pr[X ≥ k] = 1×
(
1− 1

N

)
× . . .×

(
1− 1

N −k +1

)
= N !

(N −k +1)!N k−1
.

Now note that the expected valueE(X) of X can be written as

E(X) =
∞∑

k=1
Pr[X ≥ k] =

∞∑
k=1

N !

(N −k +1)!N k−1
=

N+1∑
k=1

N !

(N −k +1)!N k−1
.

Changing the variable t = k −1, we obtain

E(X) =
N∑

t=0

N !

(N − t)!N t = 1+
N∑

t=1

N !

(N − t)!N t = 1+Q(N) ≈ 1+
√
πN

2
− 1

3
+ 1

12

√
π

2N
− 4

135N
+

The approximation for Q(N) is due to Ramanujan [95, 163]. Hence, asymptotically in N , we obtain

E(X) =
√
πN

2
+O

(
1p
N

)
.

For N = 365 we obtain slightly more than what we initially claimed for the birthday paradox. The

birthday paradox has various applications; the most evident of which being in the context of this

thesis, i.e., collision-finding for hash functions. For more on the birthday paradox, we refer to [122].

185

B Compression Functions Based on Fixed-
key Blockciphers

Conventional blockciphers require two auxiliary algorithms to encrypt a plaintext: (i) a key-scheduling

algorithm for processing and expanding the secret-key to create the so-called sub-keys and (ii) a

data-processing algorithm for processing the plaintext by using the sub-keys derived from the key-

scheduling algorithm. For any fixed key (and hence sub-keys) the data-processing algorithm creates

a fixed permutation over the domain of plaintexts (as previously discussed).

In spite of satisfactory security properties, hash functions created via blockcipher-based compres-

sion functions in an iterated manner face a major efficiency problem: For each invocation of the

compression function, we need to perform both data-processing and key-scheduling (the latter

usually requires as much time as data-processing). Avoiding the former is impossible as one needs

the permutation anyway; so what about avoiding key-scheduling entirely by simply considering

fixed-key blockciphers (i.e., permutations)?

The idea of creating compression functions based on fixed-key blockciphers stems from this effi-

ciency issue. Defining permutation-based compression functions and related security properties

is analogous and follows directly from Section 2.3. The obvious caveat is that this time our ideal-

ized primitives are permutations π : {0,1}n → {0,1}n drawn uniformly from the set Perm(n) of all

permutations over {0,1}n . Below we briefly look at the advances in permutation-based hashing;

in Section B.1, we recapitulate the results on single-call single-block-length permutation-based

compression functions. In Sections B.2 and B.3, we study the multi-call setting and some other

extensions.

B.1 Single-Call Single-Block-Length Compression Functions

Single-call single-block-length permutation-based compression functions can be defined via Defi-

nition 2.3.6 with κ= 0 and π as the underlying permutation (see Figure B.1). For simplicity, let us

also assume that m = s = n. These type of compression functions and corresponding iterated hash

functions (via sMD) were studied by Black, Cochran and Shrimpton [25] who consider, in a more

general setting, a small non-empty set of blockcipher keys and the single-call single-block-length

blockcipher-based compression functions with blockcipher using only keys from the pre-selected

set of keys.

They show (in the ideal cipher model), contrary to the results of Black, Cochran and Shrimpton

187

Appendix B. Compression Functions Based on Fixed-key Blockciphers

on the blockcipher-based setting, that any compression function constructed as just described

cannot result in a provably collision-resistant hash function when iterated. More precisely, they

present highly efficient information-theoretic collision attacks, efficient in the sense that they work

with a very small number of queries. Therefore, the result of Black, Cochran and Shrimpton can

be interpreted as an impossibility result against the provability of single-call single-block-length

permutation-based compression functions (in the information-theoretic sense).

Note however that Black, Cochran and Shrimpton’s work does not say anything in the computational

setting. Indeed their attacks do not mean that there exist practical (with respect to computational

complexity) attacks on these hash functions: Finding sub-exponential time attacks is still an open

problem although the query-complexity is really low. Extending the work of Black, Cochran and

Shrimpton was done in the subsequent years, by considering multi-call permutation-based com-

pression functions where, contrary to the single-call setting, we can achieve several optimality

results.

M

V Cpre π Cpost Zs

m
m

sn

s

n

Figure B.1 – General form of single-call permutation-based compression functions. The case m = s =
n corresponds to the constructions studied by Black, Cochran and Shrimpton.

B.2 Multi-Call Compression Functions

As a follow-up work of Black, Cochran and Shrimpton, Rogaway and Steinberger [174] study the

security-efficiency trade-offs for permutation-based hash functions by investigating how much

security we would gain if the number of permutation calls is increased. As a result, they conclude

(under an assumption) that any 2n → n bits permutation-based compression function needs at least

three permutation calls to have an optimal collision resistance, while a DBL construction has to make

at least five calls (cf. Conjecture 2.3.5) to beat the bound 2n/2 (which is still suboptimal). In [172, 173],

Rogaway and Steinberger also provide concrete proposals matching their stated (lower) bounds and

number of permutation calls (see Figure B.2 for an example that employs three permutation calls).

The main ingredient of the Rogaway–Steinberger framework is the use of a matrix overF2n satisfying

an independence criterion [173, 174]. This matrix is used to determine, for all i , the input xi of the

permutation πi (as well as the digest) given the compression function input and the previous input-

output pairs (x j ,π j (x j)) (for j < i). It should be noted, however, that the independence criterion is

just a sufficient condition to get the stated lower bounds. Indeed, the three-call permutation-based

compression function suggested by Shrimpton and Stam [186] (see Figure B.3) falls also under this

general framework although their matrix does not satisfy the independence criterion.

188

B.3. Extensions

M

V

π1

π2

¿ 1

π3

¿ 1

¿ 2

¿ 2 Z

Figure B.2 – The Rogaway–Steinberger compres-
sion function is illustrated. Here ¿ 1 and ¿ 2 de-
note polynomial multiplication with x and x2, re-
spectively.

M

V

π1

π2 π3 Z

Figure B.3 – The Shrimpton–Stam com-
pression function is illustrated.

B.3 Extensions

Several (current and old) SHA-3 candidates instantiate their compression functions using permu-

tations. Some of the examples are CubeHash [17], Hamsi [100], JH [206], Keccak [19], Lane [80],

Grøstl [67] and Luffa [45]. The common characteristic of these hash functions, besides being

permutation-based, is that their compression functions do no behave ideally no matter how ideal

the underlying permutations are. Hence, the only way to improve security is to properly iterate the

compression function and use an output transformation, if necessary (some of these designs are

constructed via close variants of sMD mentioned in Section 2.2.3). We refer to [20, 172, 190] for more

on permutation-based hashing.

189

C Our Results on Extended KP-Parameters

The attacks presented in Sections 6.3 and 6.4 focus on the KP-suggested compression functions that

can potentially be instantiated with single- or double-key blockciphers running in the Davies–Meyer

mode. However, Knudsen and Preneel [93] also propose other parameters using 5n → n PuRFs as the

underlying primitives using MDS codes overF25 . Although conventional blockciphers support at

most double-key scenarios, some of the well-known compression functions, such as MD4 and MD5,

can be regarded as 5n → n blockcipher-based compression functions having n-bit block and 4n-bit

key. Fortunately, our techniques can be used to analyze this class of compression functions as well;

we summarize the ramifications of our results in Table C.1.

Preimage Resistance Collision Resistance
Code Complexity Complexity

Query Time Memory Query Time Memory
[r,k,d]2e 2r n/k Thm. 6.3.5 Thm. 6.3.12 2kn/(3k−r) Thm. 6.4.17 Thm. 6.4.17
[5,3,3]32 25n/3 25n/3 22n/3 23n/4 23n/4 23n/4

[10,8,3]32 25n/4 25n/4 2n/2 24n/7 24n/7 24n/7

[20,18,3]32 210n/9 210n/9 25n/9 29n/17 29n/17 29n/17

[5,2,4]32 25n/2 23n 23n/2 × × ×
[10,7,4]32 210n/7 22n 26n/7 27n/11 29n/11 27n/11

[20,17,4]32 220n/17 22n 212n/17 217n/31 228n/31 221n/31

Table C.1 – Our results on 5n-to-n bit primitive (PuRF or blockcipher) Knudsen–Preneel Compression
Functions.

191

Curriculum Vitae � Onur Özen

Personal

Information

Born on October 5th, 1983
Turkish Citizen

Contact École Polytechnique Fédérale de Lausanne
Faculté Informatique et Communications
Laboratory for Cryptologic Algorithms
INJ 332, Station 14, CH-1015 Switzerland
onur.ozen@ep�.ch

Education Ph.D. [February 2008 → Present]
École Polytechnique Fédérale de Lausanne
Faculty of Computer and Communication Sciences
Laboratory for Cryptologic Algorithms, Lausanne, Switzerland
Supervisor: Prof. Arjen K. Lenstra
Thesis Title: Design and Analysis of Multi-Block-Length Hash Functions
Expected Graduation: 2012

M.Sc. [September 2006 → January 2008]
Middle East Technical University
Institute of Applied Mathematics,
Department of Cryptography, Ankara, Turkey
Supervisor: Assoc. Prof. Dr. Ali Do�ganaksoy
Thesis Title: On the Security of Tiger Hash Function
GPA: 4.00/4.00

B.Sc. [September 2001 → June 2006]
Middle East Technical University
Department of Mathematics, Ankara, Turkey
GPA: 3.47/4.00 (Honor's Graduate)

Refereed Papers Dimitar Jetchev, Onur Özen, Martijn Stam: Foundations of E�cient Hashing:
Collisions are not Incidental: To appear in the Proceedings of the 9th Theory of
Cryptography Conference, TCC 2012.

Joppe W. Bos, Onur Özen, Martijn Stam: E�cient Hashing Using the AES In-
struction Set. In: Preneel,B., Takagi,T. (eds.) Cryptographic Hardware and Em-
bedded Systems, CHES 2011, 13th International Workshop, Nara, Japan, Septem-
ber 28-October 1, 2011. Lecture Notes in Computer Science, vol. 6917, pp. 507-
522. Springer, Heidelberg (2011).

Onur Özen, Martijn Stam: Collision Attacks against the Knudsen-Preneel Com-
pression Functions: In: Abe, M. (ed.) Advances in Cryptology, ASIACRYPT
2010, 16th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Singapore, December 5-9, 2010. Lecture Notes in
Computer Science, vol. 6477, pp. 76-93. Springer, Heidelberg (2010).

193

Onur Özen, Thomas Shrimpton, Martijn Stam: Attacking the Knudsen-Preneel
Compression Functions: In: Hong, S., Iwata, T. (eds.) Fast Software Encryp-
tion, 17th International Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010.
Lecture Notes in Computer Science, vol. 6147, pp. 94-115. Springer, Heidelberg
(2010).

Onur Özen, Martijn Stam: Another Glance at Double-Length Hashing: In: Parker,
M.G. (ed.) Cryptography and Coding, 12th IMA International Conference, Cryp-
tography and Coding 2009, Cirencester, UK, December 15-17, 2009. Lecture Notes
in Computer Science, vol. 5921, pp. 176-201. Springer, Heidelberg (2009).

Jean-Philippe Aumasson, Ça§da³ Çal�k, Willi Meier, Onur Özen, Raphael C.-
W. Phan, Kerem Var�c�: Improved Cryptanalysis of Skein. In: Matsui, M. (ed.)
Advances in Cryptology, ASIACRYPT 2009, 15th International Conference on the
Theory and Application of Cryptology and Information Security, Tokyo, Japan,
December 6-10, 2009. Lecture Notes in Computer Science, vol. 5912, pp. 542-559.
Springer, Heidelberg (2009).

Joppe W. Bos, Onur Özen, Jean-Pierre Hubaux: Analysis and Optimization of
Cryptographically Generated Addresses. In: Samarati, P., Yung, M., Martinelli,
F., Ardagna, C.A. (eds.) Information Security, 12th International Conference, ISC
2009, Pisa, Italy, September 7-9, 2009. Lecture Notes in Computer Science, vol.
5735, pp. 17-32. Springer, Heidelberg (2009).

Onur Özen, Kerem Var�c�, Cihangir Tezcan, Çelebi Kocair: Lightweight Block Ci-
phers Revisited: Cryptanalysis of Reduced Round PRESENT and HIGHT. In:
Boyd, C., Nieto, J.M.G. (eds.) Information Security and Privacy, 14th Aus-
tralasian Conference, ACISP 2009, Brisbane, Australia, July 1-3, 2009, Lecture
Notes in Computer Science, vol. 5594, pp. 90-107. Springer, Heidelberg (2009).

Onur Özen, Kerem Var�c�: On the Security of the Encryption Mode of Tiger.
3rd Information Security and Cryptology Conference (ISC Turkey), 2007. (Also
Presented in Ecrypt Tools for Cryptanalysis Workshop, 2007)

Paper Reviews 2008: Asiacrypt'08, Indocrypt'08, SAC'08

2009: Asiacrypt'09, ISC'09, SHARCS'09

2010: Asiacrypt'10, Eurocrypt'10, Financial Cryptography'10, Latincrypt'10, SAC'10,
SCN'10, Ecrypt Tools for Cryptanalysis'10

2011: Asiacrypt'11, Crypto'11, Eurocrypt'11, FSE'11, Financial Cryptography'11

194

	Title
	Acknowledgements
	Abstract (English/Français)
	Contents
	List of figures
	List of tables
	Introduction
	Cryptology
	A Brief Historical Tour
	Modern Cryptology
	Cryptography Today

	The Role of Cryptographic Hash Functions
	Applications
	A Quick Glance at Cryptographic Hash Function Research

	About This Dissertation
	Publications
	Organization

	Cryptographic Hash Functions
	Preliminaries
	Basic Notions
	Security Notions
	Generic Cryptanalytic Methods

	Iterated Hash Functions
	Merkle–Damgård Domain Extension
	Generic Cryptanalytic Methods Against Strengthened Merkle–Damgård
	Other Iterated Domain Extenders

	Compression Functions Based on Blockciphers
	The Model
	Generalization to Other Primitives and Stam's Conjecture
	Single-Call Compression Functions
	Double-Block-Length Compression Functions
	Extensions: Knudsen–Preneel Compression Functions

	Contributions

	Setting the Stage
	Some Mathematical Basics
	Multi-Call Multi-Block-Length Compression Functions
	On the Probabilistic Analysis of Adaptive Adversaries
	Preliminaries
	Known Techniques
	Considering More General Games

	Another Look at Double-Block-Length Hash Functions
	Compression Functions with Distinct and Independent Blockciphers
	Using a Single Blockcipher: Implicit Domain Separation
	Towards Close-to-Optimal Collision Resistance in the Iteration
	Implications for Linear Schemes
	Secure Compression Functions with Distinct and Independent Blockciphers
	Using a Single Blockcipher
	Collision Resistant Constructions in the Iteration

	A Compression Function Exploiting Discrete Geometry
	Our Construction and the Security Claims
	The Design
	Challenges to Overcome
	Design Rationale for Pre and Postprocessing Functions
	Security Claims

	Proof of Collision Resistance (Theorem 5.1.6)
	Overall Strategy
	Building Tools for the Proof: Partitions, Bunches and Some Auxiliary Events
	Bounding Collisions: Focusing on Pr[E1] and Pr[E3]
	Bounding Overall Collinearity: Bounding Pr[E2]
	Finishing the Proof

	Proof of Everywhere Preimage Resistance (Theorem 5.1.8)
	Blockcipher-Based Instantiation
	Straightforward Adaptation
	``DM''plified Version

	Practical Considerations and Comparison

	On the Security of Knudsen–Preneel Compression Functions
	The Knudsen–Preneel Hash Functions
	Yield-based Information-Theoretic Attacks
	Revisiting the Preimage Resistance
	Practical Preimage Attack Against [1][5,3,3]4 in O(25n/3) Time
	Generic Attack Against MDS Schemes
	Generic Attack Against Non-MDS Schemes
	Proof of Theorems 6.3.5 and 6.3.7
	A Space-Efficient Preimage Attack
	Information-Theoretic Security Proof

	Another Look at Collision Resistance
	Decoding the Knudsen–Preneel Preprocessing
	Watanabe's Collision-Finding Attack Revisited
	A Parametrized Collision-Finding Attack
	Practical Collision Attack Against [1][5,3,3]4 in O(23n/4) Time
	Generic Collision Attack Against MDS Constructions
	Extending the Collision Attack Against Non-MDS Constructions
	Proof of Theorems 6.4.17 and 6.4.19

	Conclusions
	Bibliography
	Appendices
	The Birthday Paradox
	Compression Functions Based on Fixed-key Blockciphers
	Single-Call Single-Block-Length Compression Functions
	Multi-Call Compression Functions
	Extensions

	Our Results on Extended KP-Parameters

	Curriculum Vitae

