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Résumé

Ce travail de thèse traite du problème des instabilités transverses de paquets couplés dues à l’impédance
du Grand Collisionneur de Hadrons (LHC), qui sont susceptibles de limiter l’opération de la machine.
Ce type d’instabilités est traité ici à l’aide de nouvelles théories et de nouveaux outils algorithmiques.
Une approche relativement complète est proposée ici, depuis le calcul des impédances et fonctions de
sillage de certains éléments de la machine, jusqu’à l’étude de la dynamique du faisceau. En premier
lieu, de nouveaux résultats théoriques sont obtenus concernant l’impédance de couplage au faisceau
des structures axisymmétriques de dimension deux, généralisant les théories de Zotter, ainsi qu’une
nouvelle théorie pour les structures plates de dimension deux. En outre, une nouvelle approche est
trouvée pour calculer les fonctions de sillage à partir des expressions analytiques des impédances ainsi
obtenues, surmontant de fait les limites rencontrées lorsqu’une transformée de Fourier discrète standard
est utilisée. Ces résultats sont ensuite utilisés pour obtenir le modèle d’impédance et de fonction de
sillage du LHC, basé sur l’impédance résistive de différents éléments (collimateurs, écrans de faisceau et
tube à vide) ainsi que sur l’estimation de certaines contributions additionnelles de type géométrique.
Finalement, un programme de simulation de la dynamique de macroparticules sous l’effet de champs
de sillage, dénommé HEADTAIL et préexistant à cette étude, est amélioré afin de rendre possible la
simulation de trains multipaquets, et une technique d’analyse spectrale est trouvée afin de faciliter
l’analyse des données de sorties du programme, permettant ainsi l’obtention des décalages complexes
du nombre d’onde des modes instables présents dans la simulation. Ces théories et outils sont utilisées
pour obtenir de nouveaux résultats concernant les instabilités transverses de paquets couplés du LHC,
permettant de démontrer l’impact relativement faible sur ce type d’instabilités, du nombre de paquets
dans un train lorsque l’espace entre les paquets est fixé, ainsi que l’existence de telles instabilités exhi-
bant également un mouvement à l’intérieur des paquets, ces instabilités étant plus critiques que leur
équivalent à paquet unique. Une vérification complète de la procédure dans sa totalité (en particulier les
théories des impédances, le modèle d’impédance du LHC et le code de simulation) est aussi conduite en
comparant les résultats de simulations avec des mesures dans le LHC, donnant un très bon accord à
l’énergie d’injection et un ordre de magnitude correct à 3.5 TeV/c. Pour finir, plusieurs prédictions sont
obtenues concernant la stabilité à une énergie de 7 TeV/c qui sera atteinte lors de l’opération future de
la machine, dans le cas d’un faisceau contenant 1404 paquets espacés de 50 ns, révélant que le seuil
d’instabilité couplée transverse de paquets couplés est bien au-dessus de l’intensité ultime prévue, mais
environ 20% plus petite que son équivalent en paquet unique. Les études de stabilité avec les octupoles
Landau à leur courant maximum montrent que le faisceau reste stable à intensité nominale lorsque
Q ′ = 2 dans les deux plans, à condition que les distributions transverses soient Gaussiennes. En revanche,
pour une intensité ultime, le faisceau est instable aussi bien pour Q ′ = 0 que pour Q ′ = 2, ainsi qu’à
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Résumé

intensité nominale pour Q ′ = 0, même lorsque les octupoles sont à leur courant maximum.

Mots-clés : Accélérateur, faisceaux à haute intensité, effets collectifs, impédance, champ de sillage,
collimateur, dynamique du faisceau, instabilités de paquets couplés, modes intrapaquets, instabilité
couplée transverse de paquets couplés.
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Abstract

In this thesis, the problem of the transverse coupled-bunch instabilities created by the Large Hadron
Collider (LHC) beam-coupling impedance, that can possibly limit the machine operation, is addressed
thanks to several new theories and tools. A rather complete vision of the problem is proposed here, going
from the calculation of the impedances and wake functions of individual machine elements, to the beam
dynamics study. Firstly, new results are obtained in the theory of the beam-coupling impedance for an
axisymmetric two-dimensional structure, generalizing Zotter’s theories, and a new general theory is
derived for the impedance of an infinite flat two-dimensional structure. Then, a new approach has been
found to compute the wake functions from such analytically obtained beam-coupling impedances, over-
coming limitations that could be met with standard discrete Fourier transform procedures. Those results
are then used to obtain an impedance and wake function model of the LHC, based on the (resistive-)
wall impedances of various contributors (collimators, beam screens and vacuum pipe) and additional
estimations of the geometrical impedance contributions. Finally, the existing code HEADTAIL, which
is a macroparticle simulation code for beam dynamics studies with wake fields, is improved to make
possible the simulation of multibunch trains, and a spectral analysis technique is found to facilitate the
analysis of the output given by this code, giving the complex tune shifts of the unstable modes present in
a simulation. All those theories and tools are used to obtain new results concerning the LHC transverse
coupled-bunch instabilities, demonstrating the rather small impact on coupled-bunch instabilities of
the number of bunches in a train when the bunch spacing is fixed, and the existence of coupled-bunch
modes with intrabunch motion which are more critical than their single-bunch counterparts. A full
verification of the complete procedure (impedance theories, impedance model and simulation code)
is also performed by comparing the simulation results with actual measurements in the LHC, giving
a very good agreement at injection energy and a correct order of magnitude at 3.5 TeV/c. In the end,
several predictions concerning the beam stability at the future 7 TeV/c operation of the machine are
performed in the case of 50 ns spacing (1404 bunches), revealing that the coupled-bunch transverse
mode coupling instability threshold is far above the ultimate bunch intensity but about 20% smaller
than its single-bunch counterpart. Stability studies with Landau octupoles at their maximum currents
reveal that the beam remains stable at nominal intensity with Q ′ = 2 in both planes, provided the particle
transverse distributions are Gaussian. At ultimate intensity with either Q ′ = 0 or Q ′ = 2, or at nominal
intensity when the chromaticity is zero, the beam happens to be unstable, even with the octupoles at
their maximum currents.

Keywords: Accelerator, high-intensity beam, collective effects, impedance, wake fields, collimator, beam
dynamics, coupled-bunch instabilities, headtail modes, coupled-bunch transverse mode coupling.
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r , Ĥ m,s

θ
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Introduction

Particle accelerators, together with storage rings and colliders, are nowadays a widely used class of tools
in various research fields, for instance in high-energy physics, materials characterization or molecular
biology. They are also present in our everyday life, the most obvious example being the cathode ray tube
in televisions, but also in medicine for cancer therapy, or in industry for ion implantation and welding.
While most everyday accelerators are of quite low intensity in terms of number of particles accelerated,
some have very intense beams, in particular in high-energy physics experiments where one usually
wants to produce collisions with the largest possible amount of particles involved in order to discover
and/or investigate very rare events.
For such high intensity or high density accelerators (or storage rings), one of the main limitations arise
from collective effects, that is, the class of phenomena in which the evolution of the particle beam
cannot be studied as if the beam was a collection of single particles behaving independently, but rather
as an ensemble of interacting particles. In these collective (or multi-particle) effects, one can identify
several subjects of study, among which we can mention collisions between beam particles, interactions
with trapped ions or electron cloud, interactions with particles of another counter-rotating beam in
a circular collider, and the effect of the beam’s own self-generated electromagnetic fields. All these
phenomena usually increase in magnitude with higher beam intensity, and are in general responsible
for a degradation of the beam quality or even particle losses, both of which one wants to avoid.
The Large Hadron Collider (LHC) at CERN is to date the largest and most powerful accelerator in the
world, with very high intensity beam (at the time of writing, up to 2 · 1014 protons per beam were
accelerated and brought into collision) circulating in a ring of around 27 km circumference. For such
high intenstity beams, studying collective effects is of primary importance. Among those, self-generated
fields, and more specifically wake fields created by the interaction of the beam with its surroundings
(vacuum pipe, collimators, kicker magnets, and many others), could lead to severe beam instabilities. In
the case of the LHC the beams are actually made of many well separated bunches of particles constituting
a “bunch train”; coupled-bunch instabilities can then in principle arise when self-generated instability
modes grow along the bunch train during subsequent revolutions. In the LHC this type of instability is a
crucial topic of study due to the almost complete filling scheme around the ring in nominal conditions
(2808 bunches out of the 3564 possible locations in total). This kind of instability can be cured in several
ways, typically transverse feedback and Landau damping, which both have their limitations. A good
knowledge of such instabilities is therefore especially important, both to optimize the performance of
the LHC in its current configuration, and for the design of the forthcoming upgrade of this collider into a
version with higher collision rate, which will probably require even higher intensity.
In this thesis we study the LHC coupled-bunch transverse instabilities in details, from the theoretical
computation of the self-generated fields responsible for them, until the simulations of their effect for
various configurations of the machine, comparing the final results to beam-based measurements in the
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LHC.
The first ingredient to any instability model are the wake fields (i.e. the self-generated electromagnetic
fields created by the beam along the ring) or their frequency domain counterpart, namely the beam-
coupling impedances. It turns out that in the LHC, the so-called collimators contribute significantly to
the machine impedance. Those are devices made of two parallel and flat collimator jaws, intented to
take out the beam halo to prevent it from damaging sensitive parts of the machine. The collimators jaws
are often very close to the beam which make them be one of the main impedance contributors, and
many jaws are in graphite with a poor conductivity, which, combined to the low revolution frequency of
the LHC (giving in particular a very low frequency for the most unstable coupled-bunch mode – around 8
kHz [1, 2]), entails that the classic thick wall theory used usually for the impedance computation, breaks
down. A more general theory was therefore reinvestigated and improved for infinitely long axisymmetric
chambers, and a new one derived for infinitely long flat chambers. This first step is done in Chapter 1,
along with the presentation of a new algorithm enabling fast and accurate computation of the Fourier
transforms of the impedances, called the wake functions.
Then, using these theories and algorithm the transverse impedance and wake function model of the
entire machine is computed in Chapter 2, taking into account only the elements that are thought to be
the main contributors.
Investigation of coupled-bunch instabilities require to study beam dynamics, which is done thanks to a
new multibunch code to simulate the effect of wake fields on a beam made of macroparticles, based on
a previously existing single-bunch code “HEADTAIL” [3, 4]. This code has been parallelized to make it
possible to simulate cases with a high number of bunches, as it is customary done in real LHC runs. The
algorithm, as well as postprocessing tools and benchmarks with respect to theories in simplified cases,
are presented in Chapter 3.
Results of the whole process (theory and simulations) in the case of the LHC are shown in Chapter 4,
including some predictions at the yet unreached momentum of 7 TeV/c . Comparisons with experimental
results from beam-based measurements are there also made, in order to validate the full process.
Finally, our concluding remarks are presented in Chapter 5.
Note that the whole thesis is expressed in SI (or MKSA) units.
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1 Beam-coupling impedances and wake
functions

Each charged particle in a beam creates in its surroundings an electromagnetic field that will affect
other particles. When the beam evolves in a given structure or machine element (vacuum pipe, col-
limator, magnet, RF cavity, etc.), those self-generated fields couple with the structure and give rise to
the so-called beam-coupling impedances, which can be seen as the response function, in frequency
domain, of the machine element to a travelling point-like particle. Beam-coupling impedances are used
in several synchrotron instability theories [5, 6]. In time domain one rather speaks about wake functions
(or wake potentials [7, p. 57] when considering a full distribution of particles instead of a point-like
particle); the term “wake” is related to the fact that in the particular case of ultrarelativistic beams those
electromagnetic fields stay behind the travelling particle, since any location ahead of a particle travelling
at the speed of light cannot receive any field from this particle.
Beam-coupling impedances and wake fields are a subject of interest for synchrotrons since many
years [8]. Ideally the best approach to compute the impedance in a given synchrotron is to solve the
tridimensional electromagnetic problem for all the elements around the beam. This task would require
the extensive and time-consuming use of electromagnetic codes. Fortunately, in certain cases one can
avoid such a huge work and still get a reliable impedance model.
A first simplification comes from the fact that one can usually distinguish two parts in the beam-coupling
impedances, that can be computed independently most of the time. One part is due to the geometric
features around the beam, such as edges, tapering, or cavities, and can be at least approximately com-
puted assuming a perfect conductivity of the walls. They create a contribution of two different kinds
depending on the type of geometric feature: smooth geometric features (such as taperings) typically
create a broad-band impedance, i.e. inductive and constant up to the beam pipe cutoff (the frequency
above which electromagnetic waves can propagate down the vacuum pipe) so short-ranged in time
domain; on the contrary cavity-like geometries can create some resonant peaks due to “trapped modes”
which are typically waves reflected back and forth, giving rise to long-ranged wake fields in time domain.
Both contributions can be cured or at least attenuated (small angle tapering in the first case, lossy
materials adequately placed in a cavity for the second case).
The second part of the beam-coupling impedances is due to the resistivity (or more generally the com-
plex permitivity and permeability) of the materials surrounding the beam. This part, when omitting
its perfectly conducting part, is usually called resistive-wall impedance; we will call it here simply wall
impedance, following Ref. [9], because we do not take away the part of the impedance that would be
there if the surroundings were perfectly conducting (see Section 1.4.6). Since the wall impedance is
mostly dependent on the materials properties, a very common approximation to compute it for a given

3



Chapter 1. Beam-coupling impedances and wake functions

element is to assume a two-dimensional geometry, i.e. with an infinite length along the beam pipe axis,
and to compute the fields created by a beam near the center of the element. This contribution to the
total beam-coupling impedance is more difficult to reduce than the geometric contribution: the only
possibility is to increase the aperture (therefore increasing the costs) or to choose materials that give rise
to the smallest possible impedance. Also, the wall impedance turns to long-ranged wake fields in time
domain, typically decaying as the square root of the distance behind the particle creating the fields [10,
p. 59].
Since we want to evaluate multibunch effects, we are more interested in long-ranged wake fields. Assum-
ing we can neglect trapped modes (the validity of this assumption will be checked against beam-based
measurement in Chapter 4), an efficient approach to evaluate the impedance of the LHC is to identify
the main impedance contributors (basically, those contributors that are the nearest to the beam) and to
calculate their wall impedance and associated wake fields assuming two dimensional (infinitely long)
geometries. This is possible because one can actually analytically compute beam-coupling impedances
for simple geometries, which has the asset to be much quicker than the use of a tridimensional code, and
can also have less limitations, for instance with respect to the frequency range, the beam velocity or the
material properties. Such two-dimensional analytical computations of the beam-coupling impedances
have been developped for more than forty years [8]. Simple formulae exist and can be applied in many
cases; one can mention for instance the widely used classic thick wall formula [10, p. 71]. In the LHC, the
beam-coupling impedance coming from graphite collimators deviates significantly [9] from the classic
thick wall formula at low frequency, due to the large skin depth [11, p. 220] in graphite that becomes
comparable or even much larger than the half gap. Besides, other machine elements (among which
certain collimators) have a thin coating and/or have a certain thickness that cannot be assumed to be in-
finite in particular when considering very long-ranged wake fields. For these reasons a general multilayer
theory has to be considered. For an axisymmetric two dimensional geometry, analytical calculations
have been existing since a long time: one can mention the general formalism of B. Zotter [1, 12–16], the
one of A. Burov and V. Lebedev [17] which is simpler but slightly less general, and more recently some
matrix formalisms using potentials [18–21].
For other simple but non-axisymmetric two-dimensional geometries (elliptic, rectangular, or flat and in-
finitely large), the usual approach is to deduce the impedance from the axisymmetric case multiplied by
some constant form factors [22] depending on the geometry, often called Yokoya [23] or Laslett [24] fac-
tors. However, recently it has been shown that this approach to compute the beam coupling impedances
of a flat chamber fails in the case of non metallic materials such as ferrite [25]. Indeed, the hypotheses
on which the form factors theories rely break down for general non conductive materials and/or over
certain frequency range: in Ref. [24] one is concerned only about perfectly conductive materials in the
static case, whereas in Refs. [22, 23] one assumes that the beam is ultrarelativistic and that the chamber
material is conductive with a skin depth much smaller than both the chamber thickness and its half gap.
Since the skin depth is a monotically decreasing function of frequency, the latter assumption implies
a lower bound in frequency. This approximation is known to break down in the case of the graphite
collimators [9], in particular around 8 kHz which is the frequency of the first unstable betatron line in
the LHC [1, 2]. While other more general aproaches exist, in single-layer [26–29], two-layer [30] or even
multilayer [31] cases, none is completely general and valid from low to high frequencies and for any
linear materials.
We note in passing that the assumption made in Refs. [17, 31], namely that in the frequency domain of
interest the wave number ω

c (with ω the angular frequency and c the speed of light in vacuum) is much
less than the inverse of the minimum transverse dimension of the pipe or flat chamber surrounding
the beam, is most probably valid in the case of the LHC. There are nevertheless at least two reasons to
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develop a more general formalism than Burov-Lebedev’s one [17, 31]. The first one is that not only the
beam-coupling impedances but also the electromagnetic fields components are of interest, including
the longitudinal magnetic field which is assumed to be zero in Refs. [17, 31]. Knowledge of the elec-
tromagnetic fields is particularly useful when one wants to check the validity of some approximation
made during measurement where the electric field is neglected with respect to the magnetic field [9].
The other reason to develop a more general theory is that in future linear colliders one might well need
to go beyond this low frequency approximation since the bunches will be very short [32, 33], while
the knowledge of the low frequency behaviour will also be needed, in particular if several bunches are
circulating in a damping ring.
In order to provide tools to compute the LHC impedance and wake fields model, we present here com-
plete general multilayer formalisms in frequency domain, in longitudinal and transverse, in both the
axisymmetric and flat two-dimensional infinitely long cases. Both theories presented are valid with any
number of layers, any beam velocity and any frequency, and give all nonlinear terms. Each layer can be
made of any resistive, dielectric or magnetic materials, assuming only their linearity, isotropy, homo-
geneity and the validity of Ohm’s law when they are conductive (thus neglecting the magnetoresistance
and the anomalous skin effect).
We will begin by introducing in Section 1.1 the source of the electromagnetic fields, before writing
Maxwell equations in Section 1.2 and the wave equations in Section 1.3. For the axisymmetric case, we
will revisit and fully detail in Section 1.4 the analytical computation of B. Zotter [14], with improvements
for better accuracy and computational time performance, and extension to any azimuthal mode instead
of only m = 0 and m = 1. In the flat case, i.e. a chamber infinitely large horizontally, we provide in
Section 1.5 a new analytical and general theory on the impedance of a multilayer chamber. Then in
Section 1.6 we present a way to obtain the wake functions in time domain from these theories thanks to
a Fourier transform technique involving an uneven sampling, to be able to deal with a large number of
decades in the frequency domain.

1.1 Source charges and currents

We consider as the source of the electromagnetic fields a point-like particle of charge Q travelling at
a speed υ along the synchrotron beam line (Os), using the cartesian coordinates (O, x, y, s). Note that
s is also assumed to be the azimuthal coordinate along the beam reference orbit in the accelerator,
thus neglecting all curvature effects, which is a good approximation for accelerators of long radius of
curvature like the LHC (we refer the reader to Refs. [34–39] for details about such effects). The origin
O of the coordinates (and reference orbit) is supposed to be at the center of symmetry of the infinitely
long structure (flat or axisymmetric) surrounding the beam line, except in the case of an asymmetric
structure (see later in Section 1.5).
In time domain, the source particle is supposed to be slightly offset from the origin by x1 in the horizontal
direction and y1 in the vertical one, so that its transverse coordinates are x = x1 and y = y1. Along the
beam line, since the particle is travelling at the velocity υ, and assuming that at t = 0 it is at s = 0, its
coordinate is s = υt . In time domain, the corresponding charge density is then1

ρ(x, y, s; t ) =Qδ(x −x1)δ(y − y1)δ(s −υt ). (1.1)

1This charge density (and the corresponding current density) is valid for a single passage through the flat chamber. To take
into account multiturn effects in circular rings, we have to replace δ(s −υt) by

∑∞
l=−∞δ(s −υ(t − l Tr ev )), or, since Maxwell

equations are linear, we can perform such a multiturn sum later on, on the resulting fields we compute in this chapter. We
choose the latter way in this work.
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Chapter 1. Beam-coupling impedances and wake functions

Here δ is the Dirac distribution, i.e. such that for any function f ,
∫ ∞
−∞ f (x)δ(x)dx = f (0). As expected we

get
Ð

Ωρ(x, y, s; t )dxdyds =Q for any volumeΩ around x = x1, y = y1 and s = υt .
It is convenient to solve Maxwell equations in frequency domain. We can do this without loss of generality
except that any transient effect is then neglected2. To do so we write the factor δ(s −υt ) in terms of its
Fourier spectrum [41, 42]

δ(s −υt ) = 1

2π

∫ ∞

−∞
e− j k(s−υt )dk

= 1

2πυ

∫ ∞

−∞
e jω

(
t− s

υ

)
dω

= 1

2π

∫ ∞

−∞
dωe jωt e− j ks

υ
, (1.2)

where j is the imaginary constant, and

k ≡ ω

υ
, (1.3)

is the wave number. We drop the factor 1
2π

∫ ∞
−∞ dωe jωt to proceed to the frequency domain, obtaining

ρ(x, y, s;ω) = Q

υ
δ(x −x1)δ(y − y1)e− j ks . (1.4)

To get back to the time domain we will have to put back the 1
2π

∫ ∞
−∞ dωe jωt factor and integrate our

frequency domain solutions (see Section 1.6).
In cylindrical coordinates (r,θ, s), defining a1 and θ1 such that x1 = a1 cosθ1 and y1 = a1 sinθ1, it is clear
that the product δ(x−x1)δ(y−y1) is non zero if and only if r = a1 and θ = θ1+2pπ for any p integer, such
that it must be proportional to δ(r −a1)δp (θ−θ1) with δp the 2π−periodic Dirac distribution, i.e. δp (θ) =∑∞

l=−∞δ(θ−2lπ). Now since
∫ ∞

r=0

∫ 2π
θ=0δ(r −a1)δp (θ−θ1)r dr dθ = a1 = a1

Î
δ(x −x1)δ(y − y1)dxdy , the

proportionality constant must be 1
a1

, such that

δ(x −x1)δ(y − y1) = 1

a1
δ(r −a1)δp (θ−θ1).

Therefore the charge density in time domain can be written in cylindrical coordinates as

ρ(r,θ, s; t ) = Q

a1
δ(r −a1)δp (θ−θ1)δ(s − v t ), (1.5)

2Actually, at least two kinds of transients could appear. The first one concerns dielectric media, in which the time to reach a
polarization parallel to an applied ~E field is in principle not instantaneous, being related to the binding energy of electrons
in atoms, which is around visible light energies, so a time constant in the order of 10−14 - 10−15 s [11, p. 163]. The second
one concerns conductive media: a transient occurs due to the migration of charge carriers toward the surface of the layer
considered, with a time constant of the order of ε0

σ where ε0 is the permittivity of vacuum and σ the conductivity (this can be
obtained by injecting Ohm’s law and Gauss’ law into the continuity equation of the charge carriers density). Even for poor
conductors, this time constant remains negligible, while for highly resistive materials the contribution from conductivity will be
negligible with respect to that of the dielectric constant (see Eq. (1.14)). Problematic cases arise when the material is somewhat
resistive, such that at certain frequencies, a transition between a resistive behaviour and a dielectric one appears. At such
frequencies the transient time due to the migration of conduction electrons cannot be neglected anymore [40].

6



1.2. Maxwell equations

and in frequency domain as

ρ(r,θ, s;ω) = Q

a1
δ(r −a1)δp (θ−θ1)e− j ks . (1.6)

Finally, since the particle is supposed to travel at the velocity υ along the s axis, the current density is
obtained in general by [43]

~J = ρυ~es , (1.7)

~es being the unit vector along the s axis.

1.2 Maxwell equations

The macroscopic Maxwell equations in frequency domain for the electric and magnetic fields ~E and ~H
in a general linear, homogeneous and isotropic medium are [14]

div~D = ρ, (1.8)
~curl~H − jω~D = ~J , (1.9)
~curl~E + jω~B = 0, (1.10)

div~B = 0, (1.11)

where ρ and~J = J~es are given in the whole space by Eqs. (1.4) and (1.7). The electric displacement ~D and
the magnetic induction ~B are defined using complex permittivities and permeabilities εc and µ

~D = εc (ω)~E = ε0ε1(ω)~E , (1.12)

~B = µ(ω)~H =µ0µ1(ω)~H , (1.13)

where εc and µ are general frequency dependent complex permittivity and permeability. We will also
often use the quantities ε1 and µ1 which are the relative complex permittivity and permeability of the
medium. ε0 and µ0 are the permittivity and permeability of vacuum. We do not have to assume any
particular frequency dependence of these properties, but the following expressions [9] can be considered
as a relevant example, since they have a fairly general range of validity:

εc (ω) = ε0ε1(ω) = ε0εb
[
1− j sign(ω) tanϑE

]+ σDC

jω
(
1+ jωτAC

) , (1.14)

µ(ω) = µ0µ1(ω) =µ0µr
[
1− j sign(ω) tanϑM

]
. (1.15)

In these expressions, µr is the real part of the relative complex permeability, tanϑM is the magnetic loss
tangent, εb is the dielectric constant and tanϑE is the dielectric loss tangent. We also consider in this
model a simple AC conductivity following the Drude model (see Refs. [11, p. 312] and [44, p. 16], with an
opposite sign convention for ω in both references) where σDC is the DC conductivity of the material and
τAC its relaxation time. It is here important to note that we assume that Ohm’s law (in its local sense,
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Chapter 1. Beam-coupling impedances and wake functions

i.e. the proportionality between the induced conductive current density and the electric field, at any
point) holds for the media involved. Doing so we neglect magnetoresistance effects (see Refs. [44, pp.
11-15 and 234-239] and [45]) and the so-called “anomalous skin effect” [45–52]. Both might appear at
low temperature, and very high magnetic fields for the former (several Teslas), or very high frequencies
for the latter (see Ref. [53] for some examples of relevant limits).
Note that Eqs. (1.12) and (1.13) can be derived from the general microsopic Maxwell equations, as
shown in Appendix A. Sometimes in the literature the conductivity part of the complex permittivity
is not included into the expression of ~D, which was found to lead to an inconsistency when writing
the boundary conditions for the electric displacement component perpendicular to a surface between
different media, unless some surface charges are taken into account (see Appendix E.1.2 and footnote 1).
Therefore here we prefer to include the conductivity part in the complex permittivity to avoid this
problem.
Note that the signs in front of tanϑE and tanϑM are a convention (see e.g. Ref. [54]) to ensure that
the energy dissipation is positive in the medium if εb tan(ϑE ) ≥ 0 and µr tan(ϑM ) ≥ 0. This is shown in
Ref. [55, p. 274] (where actually the opposite convention holds since the inverse Fourier transform is in
e− jωt instead of e jωt here).
Finally, when needed we will assume a positive angular frequency ω. The fields in frequency domain for
ω< 0 can be obtained by noticing that all the time domain field components should be real, which means
that for any field component ϕ and any t we have (with ℑ the imaginary part of a complex number):

0 =ℑ
[∫ ∞

−∞
dωe jωtϕ(ω)

]
=

∫ ∞

−∞
dωℑ

[
e jωtϕ(ω)

]
= 1

2

∫ ∞

−∞
dω

[
e jωtϕ(ω)−e− jωtϕ(ω)∗

]
= 1

2

∫ ∞

−∞
dωe jωt [

ϕ(ω)−ϕ(−ω)∗
]

, (1.16)

where ∗ denotes the complex conjugate. This is true for any t if and only if

ϕ(−ω) =ϕ(ω)∗. (1.17)

We can use Eq. (1.17) to compute the field components for negative frequencies.

1.3 Wave equations

Applying the ~curl operator to Maxwell equation (1.10) in a homogeneous and isotropic medium, and
using Eq. (1.13), we obtain

~curl
(
~curl~E

)
+ jωµ ~curl~H = 0.

Using the “ ~curl ~curl” relation (Eq. (B.11) of Appendix B.3), injecting Maxwell equations (1.8) and (1.9)
together with Eqs. (1.7) and (1.12), we then get

∇2~E +ω2εcµ~E = 1

εc

~gradρ+ jωµρυ~es . (1.18)
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1.4. Case of an axisymmetric multilayer chamber

Similarly, we can apply the ~curl operator to Maxwell equation (1.9) knowing Eqs. (1.7) and (1.12),to
obtain

~curl
(
~curl~H

)
− jωεc ~curl~E = ~curl

(
ρυ~es

)
,

which gives, with Eqs. (1.10) and (1.11), using also the expression of the ~curl operator in cartesian
coordinates from Eq. (B.8) for the right-hand side

∇2~H +ω2εcµ~H = υ∂ρ
∂x
~ey −υ∂ρ

∂y
~ex . (1.19)

Equations (1.18) and (1.19) are the so-called wave equations, derived in a homogeneous medium. Up to
now no assumptions have been made on the particular boundary conditions and geometric structure
the beam is evolving in.

1.4 Case of an axisymmetric multilayer chamber

We study now the particular case of a cylindrical multilayer tube (typically a vacuum pipe) of interior
radius b, as shown in Fig. 1.1. The wall of the tube is made of N −1 (with N ≥ 2) cylindrical layers of
outer radii b(p), and in each of them properties such as εc and µ take uniform values. The superscript (p)
is now added to all the quantities (material properties, electromagnetic fields, etc.) related to a certain

layer (as in e.g. ε(p)
c and µ(p)), unless it is perfectly clear from the context which layer is being studied. To

simplify the problem we can set the particle postion to r = a1 and θ = θ1 = 0 without loss of generality
since the geometry is axisymmetric.
The approach followed here is equivalent but slightly different from that of Ref. [16]. To solve Maxwell
equations we will decompose the electromagnetic fields in the following way (omitting for now the
superscript (p)):

~E (r,θ, s;ω) =
∫ ∞

−∞
dk ′e− j k ′s ~̂E

(
r,θ;k ′,ω

)
=

∫ ∞

−∞
dk ′e− j k ′s

( ∞∑
m=0

~̂E m,c
(
r ;k ′,ω

)
1+δm0

cosmθ+
∞∑

m=1

~̂E m,s (
r ;k ′,ω

)
sinmθ

)
, (1.20)

where ~̂E is the Fourier transform along the s axis of ~E , ~̂E m,c and ~̂E m,s the coefficients of the Fourier series

decomposition on azimuthal modes of ~̂E , and δm0 = 1 if m = 0, 0 otherwise. We can decompose in the

same way ~H , introducing the quantities ~̂H , ~̂H m,c and ~̂H m,s :

~H (r,θ, s;ω) =
∫ ∞

−∞
dk ′e− j k ′s ~̂H

(
r,θ;k ′,ω

)
=

∫ ∞

−∞
dk ′e− j k ′s

( ∞∑
m=0

~̂H m,c
(
r ;k ′,ω

)
1+δm0

cosmθ+
∞∑

m=1

~̂H m,s (
r ;k ′,ω

)
sinmθ

)
. (1.21)
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b(0)=a
1

b(1)=b

b(2)

b(p)

Cylinder r=a
1

(inside: c
(0) , (0) )

Pipe wall 
inner surface

Cylindrical layers of 
different materials

c
(p) , (p)

c
(2) , (2)

c
(1) , (1)

Vacuum

Source

Figure 1.1: Cross section of the axisymmetric chamber. The region denoted by the superscript (0) is
the vacuum inside a fictitious cylinder of radius a1, and the region denoted by the superscript (1) is the
vacuum between r = a1 and the pipe wall at r = b. Subsequent layers can be made of any linear medium.
The last layer (denoted by the superscript (N )) has an infinite radius b(N ) =∞. In red is sketched the
source particle at r = a1 and θ = 0.

We also define as ~E m,c , ~E m,s , ~H m,c and ~H m,s the Fourier series coefficients of ~E and ~H , i.e.

~E (r,θ, s;ω) =
∞∑

m=0

~E m,c (r, s;ω)

1+δm0
cosmθ+

∞∑
m=1

~E m,s (r, s;ω)sinmθ, (1.22)

~H (r,θ, s;ω) =
∞∑

m=0

~H m,c (r, s;ω)

1+δm0
cosmθ+

∞∑
m=1

~H m,s (r, s;ω)sinmθ, (1.23)

such that

~E m,c (r, s;ω) =
∫ ∞

−∞
dk ′e− j k ′s ~̂E m,c (

r ;k ′,ω
)

, ~E m,s (r, s;ω) =
∫ ∞

−∞
dk ′e− j k ′s ~̂E m,s (

r ;k ′,ω
)

, (1.24)

~H m,c (r, s;ω) =
∫ ∞

−∞
dk ′e− j k ′s ~̂H m,c (

r ;k ′,ω
)

, ~H m,s (r, s;ω) =
∫ ∞

−∞
dk ′e− j k ′s ~̂H m,s (

r ;k ′,ω
)

. (1.25)

Finally we can rewrite the charge density from Eq. (1.6) by using the Fourier series expansion on az-
imuthal modes of the periodic Dirac distribution δp (θ) [41, 43]

δp (θ) = 1

2π
+

∞∑
m=1

cos(mθ)

π
. (1.26)
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We then obtain for the charge density in frequency domain, recalling that here θ1 = 0:

ρ(r,θ, s;ω) =
∞∑

m=0

Q cos(mθ)

πυa1(1+δm0)
δ(r −a1)e− j ks (1.27)

=
∫ ∞

−∞
dk ′e− j k ′sδ(k ′−k)

∞∑
m=0

Q cos(mθ)

πυa1(1+δm0)
δ(r −a1). (1.28)

1.4.1 Longitudinal components of the electromagnetic fields

In a given layer, the wave equations (1.18) and (1.19) turn out to be relatively simple for the longitudinal
field components. Using the expressions of the gradient and the laplacian in cylindrical coordinates
(see Eqs. (B.1), (B.4) and (B.5) of Appendix B.1), we get the following scalar Helmholtz equations (still
omitting the superscript (p)):[

1

r

∂

∂r

(
r
∂

∂r

)
+ 1

r 2

∂2

∂θ2 + ∂2

∂s2 +ω2εcµ

]
Es = 1

εc

∂ρ

∂s
+ jωµρυ, (1.29)[

1

r

∂

∂r

(
r
∂

∂r

)
+ 1

r 2

∂2

∂θ2 + ∂2

∂s2 +ω2εcµ

]
Hs = 0. (1.30)

Now we can rewrite those equations by introducing the decompositions from Eqs. (1.20), (1.21) and (1.28)
of respectively ~E , ~H and ρ. After identification of each term we get for the azimuthal coefficients of the
fields longitudinal components:

d 2Ê m,c
s

dr 2 + 1

r

dÊ m,c
s

dr
−

(
m2

r 2 +k ′2 −ω2εcµ

)
Ê m,c

s = jQδ(r −a1)δ(k ′−k)

πa1(1+δm0)

(−k ′

εcυ
+ωµ

)
, (1.31)

d 2Ê m,s
s

dr 2 + 1

r

dÊ m,s
s

dr
−

(
m2

r 2 +k ′2 −ω2εcµ

)
Ê m,s

s = 0, (1.32)

d 2Ĥ m,c
s

dr 2 + 1

r

d Ĥ m,c
s

dr
−

(
m2

r 2 +k ′2 −ω2εcµ

)
Ĥ m,c

s = 0, (1.33)

d 2Ĥ m,s
s

dr 2 + 1

r

d Ĥ m,s
s

dr
−

(
m2

r 2 +k ′2 −ω2εcµ

)
Ĥ m,s

s = 0, (1.34)

which is valid for any m, ω and k ′. From the above system and the fact that the geometry studied does
not allow any coupling between different wave numbers k ′ (from its translational invariance along the s

axis), we can deduce that when k ′ 6= k, all the functions ~̂E m,c , ~̂E m,s , ~̂H m,c and ~̂H m,s are identically zero:
they are solution of a system of differential equations with no right hand side, or, put in other words,
without excitation of any external charge or current density. The only possibility for them not be zero is if
some electromagnetic waves are present in the structure independently of the travelling beam, but this
kind of solutions is not related to the beam-coupling impedance, therefore we will not consider them
here. This means in particular that those functions have to be proportional to the only non zero right
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hand side term in the above system, so to δ(k ′−k). We get then, from Eqs. (1.24) and (1.25):

E m,c
s (r, s;ω) = e− j ksRm,c

E (r ;ω) ,

E m,s
s (r, s;ω) = e− j ksRm,s

E (r ;ω) ,

H m,c
s (r, s;ω) = e− j ksRm,c

H (r ;ω) ,

H m,s
s (r, s;ω) = e− j ksRm,s

H (r ;ω) ,

where Rm,c
E , Rm,s

E ,Rm,c
H and Rm,s

H are independent of k ′. After multiplication by e− j k ′s and integration
over k ′, we get from Eqs. (1.31) to (1.34) the following differential equations for those functions of r :

r 2 d 2Rm,c
E

dr 2 + r
dRm,c

E

dr
− [

m2 + r 2 (
k2 −ω2εcµ

)]
Rm,c

E = jQr 2δ(r −a1)

πa1(1+δm0)

(−k

εcυ
+ωµ

)
, (1.35)

r 2 d 2Rm,s
E

dr 2 + r
dRm,s

E

dr
− [

m2 + r 2 (
k2 −ω2εcµ

)]
Rm,s

E = 0, (1.36)

r 2 d 2Rm,c
H

dr 2 + r
dRm,c

H

dr
− [

m2 + r 2 (
k2 −ω2εcµ

)]
Rm,c

H = 0, (1.37)

r 2 d 2Rm,s
H

dr 2 + r
dRm,s

H

dr
− [

m2 + r 2 (
k2 −ω2εcµ

)]
Rm,s

H = 0, (1.38)

Now we define the radial propagation constant as in Ref. [1] (using the definitions of Eqs. (1.12) and
(1.13), and the identity ε0µ0 = 1

c2 where c is the speed of light in vacuum)

ν2 = k2 −ω2εcµ= k2 (
1−β2ε1µ1

)
, (1.39)

so that

ν= |k|
√

1−β2ε1µ1, (1.40)

where β≡ υ
c is the relativistic velocity factor of the particle, and the square root of a complex number is

defined by√
αe jϕ =p

αe j ϕ2 with −π<ϕ≤π. (1.41)

With the change of variable z = νr and assuming from now on ν 6= 03 we get for r 6= a1 the differential
equation (C.1), whose solutions are the modified Bessel functions Im(νr ) and Km(νr )4. Putting the inte-
gration constants into Rm,c

E , Rm,s
E , Rm,c

H and Rm,s
H , the Fourier coefficients of the longitudinal components

3ν 6= 0 requires ω 6= 0 – the zero frequency can be recovered as the limiting case of this study. Even for ω 6= 0, ν= 0 is still
possible at the onset of Cherenkov radiation in the layer considered (see e.g. Refs. [11, p. 637] or [55, p. 406]), under very
particular conditions: for instance, when Eqs. (1.14) and (1.15) apply, to get ν= 0 there must be no losses in the layer, zero
conductivity and β= 1p

εbµr
.

4Im (−νr ) and Km (−νr ) are also solutions of Eqs. (1.35) to (1.38), which depend on ν through its square, but these solutions
are linearly bound to Im (νr ) and Km (νr ) from Eqs. 9.6.30 and 9.6.31 of Ref. [56], which give in our case

Im (−νr ) = (−1)m Im (νr ),

Km (−νr ) = (−1)m Km (νr )− jπIm (νr ).
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1.4. Case of an axisymmetric multilayer chamber

of the electromagnetic fields in frequency domain can be written

E m,c
s (r, s;ω) = e− j ks [

C m,c
Ie Im (νr )+C m,c

K e Km (νr )
]

, (1.42)

E m,s
s (r, s;ω) = e− j ks [

C m,s
Ie Im (νr )+C m,s

K e Km (νr )
]

, (1.43)

H m,c
s (r, s;ω) = e− j ks [

C m,c
I h Im (νr )+C m,c

K h Km (νr )
]

, (1.44)

H m,s
s (r, s;ω) = e− j ks [

C m,s
I h Im (νr )+C m,s

K h Km (νr )
]

, (1.45)

where the subscripts (Ie, K e, I h and K h) of the integration constants are self-explanatory.

1.4.2 Transverse components of the electromagnetic fields

When applying Maxwell equations in a region where εc and µ are constant, we can obtain relations
for the electromagnetic fields transverse components in each region (p). These relations, derived in
Appendix E.1.1, couple together Ê m,c

s and Ĥ m,s
s , as well as Ê m,s

s and Ĥ m,c
s , through the field matching

between adjacent layers that will relate together only the same component of the fields ~E and ~H (i.e.
it will relate radial components between them, azimuthal ones between them and longitudinal ones
between them). It appears then that Ê m,c

s is never coupled to Ê m,s
s or Ĥ m,c

s , and since no external
excitation appears in Eqs. (1.32) and (1.33) we can use the same argument as in Section 1.4.1 to get

Ê m,s
s = Ĥ m,c

s = 0, (1.46)

meaning obviously that E m,s
s and H m,c

s are zero as well. Finally, from the calculations done in Ap-
pendix E.1.1 we obtain for the transverse components

E m,s
r = E m,c

θ
= H m,c

r = H m,s
θ

= 0, (1.47)

E m,c
r = j k

ν2

(
dE m,c

s

dr
+ mυµ

r
H m,s

s

)
, (1.48)

E m,s
θ

= j k

ν2

(
−m

r
E m,c

s −υµd H m,s
s

dr

)
, (1.49)

H m,s
r = j k

ν2

(
mυεc

r
E m,c

s + d H m,s
s

dr

)
, (1.50)

H m,c
θ

= j k

ν2

(
υεc

dE m,c
s

dr
+ m

r
H m,s

s

)
. (1.51)

Those formulae were also obtained in Refs. [1, 14]. We can then sum all the azimuthal modes thanks to
Eqs. (1.22) and (1.23), obtaining (reintroducing the superscript (p) for more generality):

E (p)
r = j k(

ν(p)
)2

(
∂E (p)

s

∂r
+ υµ(p)

r

∂H (p)
s

∂θ

)
, (1.52)

E (p)
θ

= j k(
ν(p)

)2

(
1

r

∂E (p)
s

∂θ
−υµ(p) ∂H (p)

s

∂r

)
, (1.53)
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Chapter 1. Beam-coupling impedances and wake functions

H (p)
r = j k(

ν(p)
)2

(
−υε

(p)
c

r

∂E (p)
s

∂θ
+ ∂H (p)

s

∂r

)
, (1.54)

H (p)
θ

= j k(
ν(p)

)2

(
υε

(p)
c
∂E (p)

s

∂r
+ 1

r

∂H (p)
s

∂θ

)
. (1.55)

1.4.3 Field matching

To specify the field components we need to express the boundary conditions between all the cylindrical
layers. For simplicity, we will assume from this section onward that the angular frequency ω is positive5.
Since for Es only the cosine Fourier coefficients are non zero while for Hs only the sine ones are non
zero, we can avoid using the superscript c or s in the integration constants C m,c

Ie , C m,c
K e , C m,s

I h and C m,s
K h .

Reintroducing then the superscript (p) for the quantites related to a certain layer p, we can rewrite
Eqs. (1.42) and (1.45) in the following way:

E m,c
s

(p) (r, s;ω) = e− j ks
[
C m

Ie
(p)Im

(
ν(p)r

)+C m
K e

(p)Km
(
ν(p)r

)]
, (1.56)

H m,s
s

(p) (r, s;ω) = e− j ks
[
C m

I h
(p)Im

(
ν(p)r

)+C m
K h

(p)Km
(
ν(p)r

)]
. (1.57)

Matching at r = a1

Firstly, from Ref. [56] we know that for any m ≥ 0, Im(0) is finite while Km(z) goes to infinity when |z|→ 0.
Therefore, for the first layer we have necessarily, for any m:

C m
K e

(0) =C m
K h

(0) = 0. (1.58)

We also know (from e.g. Ref. [11, p. 18]) that the electric field component tangential to a boundary
between media is always continuous, giving in particular at r = a1

E (0)
s (r = a1,θ, s;ω) = E (1)

s (r = a1,θ, s;ω),

for any θ, s and ω. Thanks to the Fourier series decomposition from Eq. (1.22) together with Eq. (1.56),
identifying each term, dropping the e− j ks factor and plugging the value of the radial propagation constant
of vacuum ν(0) = ν(1) = k

γ from Eq. (1.40) where γ= 1p
1−β2

is the relativistic mass factor, we get for any m

C m
Ie

(0)Im

(
ka1

γ

)
=C m

Ie
(1)Im

(
ka1

γ

)
+C m

K e
(1)Km

(
ka1

γ

)
. (1.59)

Equation (1.35) is valid across r = a1, and following what is done in Ref. [42], we can divide each side by

r , use the identity r d 2

dr 2 + d
dr = d

dr

(
r d

dr

)
, replace Rm,c

E by E m,c
s e j ks and integrate over r between a1 −δa1

5To recover the results at any frequency we would simply need to replace k
γ by |k|

γ in the expression of the radial propagation
constant of vacuum. See also the end of Section 1.2.
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1.4. Case of an axisymmetric multilayer chamber

and a1 +δa1, obtaining for any m

(a1 +δa1)
∂
(
E m,c

s e j ks
)

∂r

∣∣∣∣∣
a1+δa1

− (a1 −δa1)
∂
(
E m,c

s e j ks
)

∂r

∣∣∣∣∣
a1−δa1

+
∫ a1+δa1

a1−δa1

dr

(
−m2

r
− r k2 + rω2ε0µ0

)
E m,c

s e j ks = jQ

πa1(1+δm0)

( −k

ε0υ
+ωµ0

)∫ a1+δa1

a1−δa1

drδ(r −a1)r

= − jQωµ0

πβ2γ2(1+δm0)
,

where we have replaced εc and µ by their values in vacuum ε0 and µ0. When δa1 goes to zero, the integral
term in the left-hand side vanishes since E m,c

s is not infinite at r = a1. Using again Eq. (1.56), we get then

ka1

γ

[
C m

Ie
(1)I ′m

(
ka1

γ

)
+C m

K e
(1)K ′

m

(
ka1

γ

)
−C m

Ie
(0)I ′m

(
ka1

γ

)]
= − jQωµ0

πβ2γ2(1+δm0)
. (1.60)

By virtue of Eq. (1.59) we obtain

ka1

γ
C m

K e
(1)

[
K ′

m

(
ka1

γ

)
Im

(
ka1

γ

)
− I ′m

(
ka1

γ

)
Km

(
ka1

γ

)]
= − jQωµ0

πβ2γ2(1+δm0)
Im

(
ka1

γ

)
.

The term between square brackets is equal to − γ
ka1

from Eq. (C.6). Finally we get

C m
K e

(1) = jQωµ0

πβ2γ2(1+δm0)
Im

(
ka1

γ

)
= 2C

1+δm0
Im

(
ka1

γ

)
, (1.61)

with the definition

C ≡ jQωµ0

2πβ2γ2 . (1.62)

Finally, in Eq. (1.34) there is no source of discontinuity at r = a1, so no reason for H m,s
s to have different

integration constants from one side to the other of r = a1, such that

C m
K h

(1) =C m
K h

(0) = 0 and C m
I h

(1) =C m
I h

(0). (1.63)

Boundary conditions at the pipe wall inner surface and between each of its layers

We will now consider the boundary conditions for the subsequent layers, i.e. at each r = b(p) for 1 ≤
p ≤ N −1. There are no externally imposed surface charges or currents between each cylindrical layer,
which means (see Ref. [11, p. 18]) that the tangential components of ~E and ~H are continuous. After
decomposition according to Eqs. (1.22) and (1.23) and identification of each term, the constants in front
of the modified Bessel functions in the expression of Es and Hs in Eqs. (1.56) and (1.57) (four integration
constants per layer) appear to be the solutions of a linear system. Instead of solving this system by “brute
force” which turns out to be very time consuming even for a computer, we can actually find a recurrent
matrix relation between the integration constants of a given layer and those of the adjacent one, which
allows us to solve analytically the full system. The complete derivation is detailed in Appendix E.1.2, and
we will show here only the resulting expressions.
Introducing the free space impedance Z0, the field ~G that has the same dimension as the electric field ~E ,
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Chapter 1. Beam-coupling impedances and wake functions

and the corresponding integration coefficients for ~G

Z0 = 1

ε0c
=µ0c =

√
µ0

ε0
,

~G = Z0~H ,

C m
I g

(p) = Z0C m
I h

(p),

C m
K g

(p) = Z0C m
K h

(p), (1.64)

and letting

xp,p = ν(p)b(p) and xp+1,p = ν(p+1)b(p), (1.65)

the relation between the constants of adjacent layers can be written as

C m
Ie

(p+1)

C m
K e

(p+1)

C m
I g

(p+1)

C m
K g

(p+1)


= M p+1,p ·



C m
Ie

(p)

C m
K e

(p)

C m
I g

(p)

C m
K g

(p)


=

[
P p+1,p Qp+1,p

Sp+1,p Rp+1,p

]
·



C m
Ie

(p)

C m
K e

(p)

C m
I g

(p)

C m
K g

(p)


, (1.66)

where P p+1,p , Qp+1,p , Rp+1,p and Sp+1,p are four 2×2 matrices given by

P p+1,p =−
(
ν(p+1)

)2
b(p)

ε
(p+1)
1


ζI K

{
ε

(p+1)
1

ν(p+1)κ
p+1
p − ε

(p)
1

ν(p)λ
p
p

}
ζK K

{
ε

(p+1)
1

ν(p+1)κ
p+1
p − ε

(p)
1

ν(p)κ
p
p

}

ζI I

{
− ε

(p+1)
1

ν(p+1)λ
p+1
p + ε

(p)
1

ν(p)λ
p
p

}
ζK I

{
− ε

(p+1)
1

ν(p+1)λ
p+1
p + ε

(p)
1

ν(p)κ
p
p

}
 , (1.67)

Qp+1,p =−
((
ν(p+1)

)2(
ν(p)

)2 −1

)
m

βε
(p+1)
1

−ζI K −ζK K

ζI I ζK I

 , (1.68)

Rp+1,p =−
(
ν(p+1)

)2
b(p)

µ
(p+1)
1


ζI K

{
µ

(p+1)
1

ν(p+1) κ
p+1
p − µ

(p)
1

ν(p)λ
p
p

}
ζK K

{
µ

(p+1)
1

ν(p+1) κ
p+1
p − µ

(p)
1

ν(p) κ
p
p

}

ζI I

{
−µ

(p+1)
1

ν(p+1)λ
p+1
p + µ

(p)
1

ν(p)λ
p
p

}
ζK I

{
−µ

(p+1)
1

ν(p+1)λ
p+1
p + µ

(p)
1

ν(p) κ
p
p

}
 , (1.69)

Sp+1,p = ε
(p+1)
1

µ
(p+1)
1

Qp+1,p , (1.70)
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1.4. Case of an axisymmetric multilayer chamber

with

λ
p
p = I ′m(xp,p )

Im(xp,p )
, λ

p+1
p = I ′m(xp+1,p )

Im(xp+1,p )
, κ

p
p = K ′

m(xp,p )

Km(xp,p )
, κ

p+1
p = K ′

m(xp+1,p )

Km(xp+1,p )
, (1.71)

and

ζI I = Im(xp,p )Im(xp+1,p ), ζK K = Km(xp,p )Km(xp+1,p ),

ζI K = Im(xp,p )Km(xp+1,p ), ζK I = Km(xp,p )Im(xp+1,p ). (1.72)

The quotients involving modified Bessel functions and their derivatives can be computed accurately
thanks to Eqs. (C.7) and (C.8):

I ′m(z)

Im(z)
= Im−1(z)

Im(z)
− m

z
and

K ′
m(z)

Km(z)
=−Km−1(z)

Km(z)
− m

z
, (1.73)

and we can normalize the Bessel functions in the first quotient of these expressions with ez for Im and
e−z for Km , which does not change the quotient value.
When successively applying the relation (1.66), we get

C m
Ie

(N )

C m
K e

(N )

C m
I g

(N )

C m
K g

(N )


= M N ,N−1 ·M N−1,N−2 · · ·M 2,1 ·



C m
Ie

(1)

C m
K e

(1)

C m
I g

(1)

C m
K g

(1)


=M ·



C m
Ie

(1)

C m
K e

(1)

C m
I g

(1)

C m
K g

(1)


,

with the definition

M = M N ,N−1 ·M N−1,N−2 · · ·M 2,1. (1.74)

Field matching for the outer layer and final solution for the integration constants

The outer layer goes to infinity, which can have two different implications in terms of the electromagnetic
fields. If ν(N ) has a non zero real part, it must be strictly positive according to the definition of ν(N ) in
Eq. (1.40) and that of the square root in Eq. (1.41). Then according to Eqs. (C.20) and (C.21), Im

(
ν(N )r

)
goes to infinity with r , while Km

(
ν(N )r

)
goes to zero. Since the electromagnetic fields cannot go to

infinity, we must have C m
Ie

(N ) =C m
I g

(N ) = 0.

The condition will be the same (but for a different reason) if ν(N ) is purely imaginary in the layer

considered, which will happen if
(
ν(N )

)2
is real and strictly negative in that layer. In that situation

Cherenkov radiation [11, p. 637] occurs in the outer layer, and since there is (in our geometrical model)
no other material beyond the outer layer, we cannot have any incoming wave: there should be only
outcoming radiation whose wave vector is directed toward the outside of the chamber. Due to our
choice of convention for the Fourier transform – see e.g. Eq. (1.2) – an outcoming wave is represented
by an exponential factor of the form e− j kr ad

r r in the field components, with kr ad
r ≥ 0, because in time

domain the factor e j
(
ωt−kr ad

r r
)

represents outcoming propagation in these conditions only (this can also
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Chapter 1. Beam-coupling impedances and wake functions

be seen in Eq. (1.6) for the propagation along s). Since the imaginary part of the square root of a negative
number is always positive according to Eq. (1.41), from Eq. (C.21) the term in Km

(
ν(N )r

)
asymptotically

represents outcoming radiation, while from Eq. (C.22) we see that the term Im
(
ν(N )r

)
is asymptotically a

superposition of incoming and outcoming waves, which is not physical here.
Therefore we have in any case:

C m
Ie

(N ) =C m
I g

(N ) = 0. (1.75)

Note that Cherenkov radiation can occur in the air due to its small dielectric susceptibility, for γ suffi-
ciently high. The effect on the beam-coupling impedance was discussed for instance in Ref. [57].
Recalling, from Eqs. (1.61) and (1.63) that

C m
K e

(1) = 2C

1+δm0
Im

(
ka1

γ

)
,

C m
K g

(1) = 0, (1.76)

we can write

0

C m
K e

(N )

0

C m
K g

(N )


=M ·



C m
Ie

(1)

2C
1+δm0

Im

(
ka1
γ

)
C m

I g
(1)

0


, (1.77)

leading finally to the linear equations

M11C m
Ie

(1) +M13C m
I g

(1) = −M12C m
K e

(1),

M31C m
Ie

(1) +M33C m
I g

(1) = −M32C m
K e

(1),

and

C m
K e

(N ) = M21C m
Ie

(1) +M22C m
K e

(1) +M23C m
I g

(1),

C m
K g

(N ) = M41C m
Ie

(1) +M42C m
K e

(1) +M43C m
I g

(1), (1.78)

where Mr s is the component in row r and column s of the matrix M . The first two equations above can
be inverted easily using the inversion formula of a 2×2 matrix (see Appendix D.1), giving

C m
Ie

(1) = −C m
K e

(1) M12M33 −M32M13

M11M33 −M13M31
,

C m
I g

(1) = C m
K e

(1) M12M31 −M32M11

M11M33 −M13M31
. (1.79)
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1.4. Case of an axisymmetric multilayer chamber

As in Ref. [1] we define αm
TM and αm

TE as the proportionality constants respectively between C m
Ie

(1) and

−C m
K e

(1), and between C m
I g

(1) and C m
K e

(1):

αm
TM = M12M33 −M32M13

M11M33 −M13M31
,

αm
TE = M12M31 −M32M11

M11M33 −M13M31
. (1.80)

Note that these two quantities do not depend on the offset of the source a1 since the matrices M p+1,p do
not depend on a1. On the other hand, αm

TM and αm
TE depend on the angular frequency ω.

Finally, knowing from Eqs. (1.58), (1.59) and (1.63) that

C m
K e

(0) = C m
K g

(0) = 0,

C m
I g

(0) = C m
I g

(1),

C m
Ie

(0) = C m
Ie

(1) +C m
K e

(1)
Km

(
ka1
γ

)
Im

(
ka1
γ

) , (1.81)

we can compute the constants for all the layers p, and therefore we completely solve the electromagnetic
problem.
As an example, we plotted in Fig. 1.2 the electromagnetic fields components corresponding to a single
azimuthal mode m = 1, in a graphite tube, with respect to the radial position in the tube.
It is worth mentioning that the general multilayer analysis was performed long ago for m = 0 and m = 1
in Refs. [12, 13], using a different algorithm that was implemented in a computer program called LAWAT,
later [15] converted to Mathematica®[58]. According to Ref. [14], the results seemed to lack accuracy
due to numerical errors, so the code was modified to compute the solutions in a symbolic way before
performing the numerical evaluation. Still, some problems remained as it was very long to perform the
computation (for the m = 1 mode) for 3 layers of different materials in the pipe wall, and impossible
to perform it for a larger number of layers. Our method, which involves only multiplications of 4×4
matrices and a final simple formula to compute αTM and αTE, overcomes this difficulty. Similar matrix
methods have also been developped independently in Refs. [18–21].

1.4.4 Electromagnetic force inside the chamber

One of the quantity of interest is the Lorentz electromagnetic force ~F on a given test particle inside
the vacuum pipe. We assume such a particle has a charge of q and the same velocity υ as the source,
neglecting any transverse velocity. Dropping the superscript (p) for conciseness, the longitudinal
component of the force is written

Fs = qEs , (1.82)
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Figure 1.2: Electromagnetic fields along the direction θ = π
4 for the m = 1 mode at a frequency of

1 MHz, in a graphite tube (actually made of CFC - see Chapter 2) of radius b = 1.5 mm and thickness
25 mm, surrounded by stainless steel (see materials parameters in Table F.4). The other parameters are
γ= 3730.26, Q = 1 C and a1 = 10µm.

while the transverse components are (using Eqs. (1.52) to (1.55) and recalling that ν= k
γ in vacuum)

Fr = q
(
Er −υµ0Hθ

)= j qγ2

k

(
1−β2) ∂Es

∂r
= j q

k

∂Es

∂r
, (1.83)

Fθ = q
(
Eθ+υµ0Hr

)= j qγ2

k

1−β2

r

∂Es

∂θ
= j q

kr

∂Es

∂θ
. (1.84)

It appears here that the force does not depend on the longitudinal component of the magnetic field.

1.4.5 Total electric field longitudinal component in the vacuum region

Equations (1.46), (1.56) and (1.57) give, when reintroducing the Fourier series decomposition from
Eqs (1.22) and (1.23) (recalling that ~G = Z0~H):

E (p)
s = e− j ks

∞∑
m=0

cos(mθ)
[
C m

Ie
(p)Im

(
ν(p)r

)+C m
K e

(p)Km
(
ν(p)r

)]
, (1.85)
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and

G (p)
s = e− j ks

∞∑
m=0

sin(mθ)
[
C m

I g
(p)Im

(
ν(p)r

)+C m
K g

(p)Km
(
ν(p)r

)]
, (1.86)

where the constants C m
Ie

(p), C m
K e

(p), C m
I g

(p) and C m
K g

(p) (that depend on the angular frequencyω) are calcu-
lated thanks to the matrices defined in Eqs. (1.67) to (1.74), and the relations (1.66), (1.75), (1.76), (1.79)
and (1.81).
Now we focus on Es in the vacuum region inside the chamber, since only this component is needed to
calculate the electromagnetic force that would affect a test particle. In the two vacuum regions indicated
by the superscripts (0) and (1) (respectively for r < a1 and r ≥ a1) we have, recalling that ν(0) = ν(1) = k

γ

and using Eqs. (1.76), (1.79), (1.81) and definitions (1.80):

E (0)
s = 2C e− j ks

∞∑
m=0

cos(mθ)

1+δm0

[
Km

(
ka1

γ

)
−αm

TMIm

(
ka1

γ

)]
Im

(
kr

γ

)
,

E (1)
s = 2C e− j ks

∞∑
m=0

cos(mθ)

1+δm0

[
Km

(
kr

γ

)
−αm

TMIm

(
kr

γ

)]
Im

(
ka1

γ

)
. (1.87)

We will essentially identify two terms in Es : one is the direct space charge term, that would be the only
one present in the absence of any chamber (i.e. if the whole space were considered to be vacuum)
and the other one will be called the wall term, entirely due to the cylindrical chamber’s presence and
properties.

Direct space charge term of the longitudinal electric field

If there is no pipe wall we must have αm
TM = 0 since there can be no Bessel function Im in the radial

dependence of the field, this function going to infinity with r . We obtain exactly the first term of
Eqs. (1.87):

E (0),SC
s = 2C e− j ks

∞∑
m=0

cos(mθ)

1+δm0
Km

(
ka1

γ

)
Im

(
kr

γ

)
,

E (1),SC
s = 2C e− j ks

∞∑
m=0

cos(mθ)

1+δm0
Km

(
kr

γ

)
Im

(
ka1

γ

)
, (1.88)

where the superscript “SC ” stands for “direct space-charge”. We can compute those two sums exactly
using Eq. (C.27), giving the same result for both r < a1 and r ≥ a1, so an expression valid in the whole
vacuum region (we therefore drop the superscript (0) or (1)):

E vac,SC
s =C e− j ksK0

(
k

γ

√
a2

1 + r 2 −2a1r cosθ

)
, (1.89)

where the superscript “vac” stands for the fields in the vacuum region. Note that
√

a2
1 + r 2 −2a1r cosθ

is, from the law of cosines, the distance (in the transverse plane) between the source and the point (r,θ)6.

6This expression of the longitudinal electric field could have been derived in a simpler way: since we are in free space, it is
the field created by a source particle at the origin of coordinates on a test particle at a distance r . The longitudinal electric
field can be computed easily when knowing E m,c

s for m = 0 from Eq. (1.56), which is the electric field created by a cylindrically

shaped source with charge density uniformly distributed on its surface r = a1. By taking the limit a1 → 0 of E 0,c
s , removing the
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Chapter 1. Beam-coupling impedances and wake functions

We can generalize this formula for a source at θ = θ1 instead of θ = 0, which is straightforward from the
continuous rotation invariance of the electromagnetic configuration about the s axis: we simply need to
replace θ by θ−θ1:

E vac,SC
s =C e− j ksK0

(
k

γ

√
a2

1 + r 2 −2a1r cos(θ−θ1)

)
. (1.90)

Wall term of the longitudinal electric field

The wall term of the fields is the part of the fields due to the chamber, or in other words the total
fields minus the direct space-charge term we have considered in the previous section. From Eqs. (1.87)
and (1.88) the wall part of the field has the same expression in both regions 0 and 1, and we can write:

E vac,W
s =−2C e− j ks

∞∑
m=0

cos(mθ)

1+δm0
αm

TMIm

(
ka1

γ

)
Im

(
kr

γ

)
, (1.91)

where the superscript “W ” stands for the wall part of the field component. In the same way as above for
the space-charge term, we can generalize to a source in r = a1 and θ = θ1 simply by replacing θ by θ−θ1:

E vac,W
s =−2C e− j ks

∞∑
m=0

cos(m(θ−θ1))

1+δm0
αm

TMIm

(
ka1

γ

)
Im

(
kr

γ

)
. (1.92)

The sum of Eqs. (1.90) and (1.92) gives the total general longitudinal electric field in the vacuum region
due to the source in Eqs. (1.6) and (1.7), from which the total force and impedances can be derived.

1.4.6 Beam-coupling impedances

From now on we generalize our study to a source at r = a1 and θ = θ1 (instead of θ = 0). We recall that in
cartesian coordinates x1 = a1 cosθ1 and y1 = a1 sinθ1.

Definitions

We consider a test particle of charge q located at position (r = a2,θ = θ2) in the transverse plane. Several
definitions of the impedances exist in e.g. Refs. [42, 59, 60] and [7, p. 74]. We will here write the total
longitudinal impedance in a general way, inspired by Ref. [60]:

Z‖ =− 1

Qq

∫
dV Es J∗t (a2,θ2), (1.93)

where the integration is performed over the volume of the structure considered, usually on a finite length
L7, and where Es is given by the sum of Eqs. (1.90) and (1.92). The ∗ stands for the complex conjugate

term in I0 that goes to infinity with r , we obtain in that way

Es =C e− j ks K0

(
kr

γ

)
.

After a change of coordinates to put the source in (r = a1,θ = 0), we get exactly the same as Eq. (1.89).
7This seems somehow in contradiction with our initial assumption on the infinite length of the chamber considered. First of

all, if we were to integrate over an infinite length we would obtain an infinite result, as nothing depend on the position in the
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1.4. Case of an axisymmetric multilayer chamber

and ~Jt = Jt~es is the density of the current flowing at the test particle position in frequency domain, whose
expression is therefore (see Eq. (1.7))

Jt (a2,θ2) = q

a2
e− j ksδ(r −a2)δp (θ−θ2). (1.94)

With the same notations we define the total transverse impedances as [60]

Zx = j

Qq

∫
dV

[
~E +β~es × ~G

] · ~ex J∗t (a2,θ2) = j

Qq

∫
dV

Fx

q
J∗t (a2,θ2), (1.95)

Zy = j

Qq

∫
dV

[
~E +β~es × ~G

] · ~ey J∗t (a2,θ2) = j

Qq

∫
dV

Fy

q
J∗t (a2,θ2). (1.96)

These three definitions can be cast into a form involving only an integral over the length L, by plugging
in Eqs. (1.83), (1.84), (1.94), and using ~ex = cosθ~er − sinθ~eθ and ~ey = sinθ~er +cosθ~eθ:

Z‖ =− 1

Q

∫ L
dsEs(a2,θ2, s;ω)e j ks , (1.97)

Zx =− 1

kQ

∫ L
ds

[
cosθ2

∂Es

∂r
(a2,θ2, s;ω)− sinθ2

a2

∂Es

∂θ
(a2,θ2, s;ω)

]
e j ks , (1.98)

Zy =− 1

kQ

∫ L
ds

[
sinθ2

∂Es

∂r
(a2,θ2, s;ω)+ cosθ2

a2

∂Es

∂θ
(a2,θ2, s;ω)

]
e j ks . (1.99)

Direct space-charge impedances

We find the direct space-charge impedances by injecting the longitudinal electric field due to the direct
space charge from Eq. (1.90) in the impedance definitions from Eqs. (1.97) to (1.99). This requires some
side calculations that are done in Appendix E.1.3. After conversion to cartesian coordinates, using the
notations x2 = a2 cosθ2 and y2 = a2 sinθ2, we obtain

Z SC ,di r ect
‖ =− jωµ0L

2πβ2γ2 K0

(
k
√

(x2 −x1)2 + (y2 − y1)2

γ

)
, (1.100)

Z SC ,di r ect
x = jωµ0L

2πβ2γ3 K1

(
k
√

(x2 −x1)2 + (y2 − y1)2

γ

)
x2 −x1√

(x2 −x1)2 + (y2 − y1)2
, (1.101)

Z SC ,di r ect
y = jωµ0L

2πβ2γ3 K1

(
k
√

(x2 −x1)2 + (y2 − y1)2

γ

)
y2 − y1√

(x2 −x1)2 + (y2 − y1)2
. (1.102)

These expressions differ substantially from what can be found in Ref. [42] for instance, because we have
summed all the azimuthal mode contributions in an exact way, which is required for that part of the
impedance: even if both ka1

γ and ka2
γ are much smaller than unity, each mode contributes significantly

to the sums in Eqs. (1.88). Indeed, it contains the product Im

(
ka2
γ

)
Km

(
ka1
γ

)
(for e.g. a2 < a1) which is of

order 1
2m

(
a2
a1

)m
(i.e. of order unity) as can be seen from Eqs. (C.17) and (C.19).

integral. Besides, in practice one wants to compute the effect of the self-fields for a beam passing in a structure of finite length,
which is the length L used here. Our initial assumption then simply states that we neglect all side effects due to the fact that the
actual structure has some edges.
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Chapter 1. Beam-coupling impedances and wake functions

From Eqs. (C.18) and (C.19), it appears that when γ→∞, the direct space-charge impedances go to

zero as ln(γ)
γ2 in longitudinal and as 1

γ2 in transverse. Therefore for ultrarelativistic beams the direct
space-charge is often neglected, although it can still play a role in Landau damping even in the case of
the LHC [61]. In any case direct space-charge effects constitute a field of study in itself, that can be well
separated from the wall impedances defined below.

Wall impedances

The term of the impedance coming from the part of the fields due to the chamber presence is the
so-called wall impedance, which is not exactly the same as the resistive-wall impedance and has been
introduced in Ref. [9]. It contains both the impedance that we would have with a cylindrical chamber
made of a perfect conductor (this part is usually called the indirect space-charge impedance) and the
part of the impedance coming from the resistivity (or more generally the electromagnetic properties) of
the layer(s).
The total wall impedances are therefore obtained when plugging the wall part of the longitudinal electric
field from Eq. (1.92) into the definitions from Eqs. (1.97) to (1.99). After some additional algebra for the
transverse wall impedances, which is detailed in Appendix E.1.4, we obtain

Z W all
‖ = 2

C L

Q

∞∑
m=0

αm
TM cos(m (θ2 −θ1))

1+δm0
Im

(
ka1

γ

)
Im

(
ka2

γ

)
, (1.103)

Z W all
x = 2

C L

kQ

∞∑
m=0

αm
TM

1+δm0
Im

(
ka1

γ

)[
k cosθ2 cos(m (θ2 −θ1))

γ
Im−1

(
ka2

γ

)
−m cos(θ2 +m (θ2 −θ1))

a2
Im

(
ka2

γ

)]
, (1.104)

Z W all
y = 2

C L

kQ

∞∑
m=0

αm
TM

1+δm0
Im

(
ka1

γ

)[
k sinθ2 cos(m (θ2 −θ1))

γ
Im−1

(
ka2

γ

)
−m sin(θ2 +m (θ2 −θ1))

a2
Im

(
ka2

γ

)]
. (1.105)

These expressions give the general nonlinear wall impedances, but usually one is interested only in
the first order terms in the source and test positions, so for small ka1

γ and ka2
γ . These can be obtained

by plugging the Taylor series of the modified Bessel functions in the above expressions. After some
mathematical manipulations (also detailed in Appendix E.1.4), the wall impedances can be approximated
up to second order by

Z W all
‖ ≈ C L

Q

[
α0

TM + k2α0
TM

4γ2 x2
1 +

k2α0
TM

4γ2 y2
1 +

k2α0
TM

4γ2 x2
2 +

k2α0
TM

4γ2 y2
2 +

k2α1
TM

2γ2 x1x2 +
k2α1

TM

2γ2 y1 y2

]
,

(1.106)

Z W all
x ≈ C Lk

2γ2Q

(
α1

TMx1 +α0
TMx2

)
, (1.107)

Z W all
y ≈ C Lk

2γ2Q

(
α1

TM y1 +α0
TM y2

)
. (1.108)
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1.5. Case of a flat multilayer chamber

The longitudinal wall impedance is often reduced to its zeroth order (constant) term, which is given by
(with the definition of C in Eq. (1.62) ):

Z W all ,0
‖ = jωµ0L

2πβ2γ2α
0
TM. (1.109)

The terms usually considered for the transverse impedances are the linear ones, i.e. (since Z W all
x and

Z W all
y have no constant term) proportional to x1, y1, x2 or y2, the coefficient of proportionality being

called dipolar impedance (when considering a term proportional to the source particle coordinates) or
quadrupolar impedance (when considering a term proportional to the test particle coordinates). We
write therefore:

Z W all ,di p
x = Z W all ,di p

y = j k2Z0L

4πβγ4 α
1
TM, (1.110)

Z W all ,quad
x = Z W all ,quad

y = j k2Z0L

4πβγ4 α
0
TM. (1.111)

We notice here that, contrary to usual ultrarelativistic results (see e.g. Ref. [62]), we obtained a non zero
quadrupolar impedance. It comes from the m = 0 mode, so from the fact that we considered together
all azimuthal modes instead of treating separately the m = 0 and m = 1 modes and identifying the
transverse impedances to those exclusively coming from the m = 1 mode, as is usually done.

Panofsky-Wenzel theorem on the derived impedances

In Appendix E.1.5, we check that the impedances derived above are in agreement with the Panofsky-
Wenzel theorem as stated in Ref. [7, p. 90], namely

k Z W all
x =

∂Z W all
‖
∂x2

and k Z W all
y =

∂Z W all
‖
∂y2

. (1.112)

1.5 Case of a flat multilayer chamber

We study now the particular case of a flat multilayer chamber (typically a collimator), as shown in Fig. 1.3.
The chamber is made of two infinitely thick (in the y direction) and large (in the x direction) plates with
vertical separation of 2b between them, located at y =±b, where b is called the half gap. The space is
thus divided into N +M flat parallel layers, the outer boundary of each of them being located at y = b(p).
N layers are located in the upper part of the chamber (including the vacuum layer between y = y1 and
y = b = b(1)), and M layers are located in the lower part of the chamber (including the vacuum layer
between y = −b = b(−1) and y = y1). The superscript (p) is now added to all the quantities (material

properties, electromagnetic fields, etc.) related to a particular layer (as in e.g. ε(p)
c and µ(p)), unless it is

perfectly clear from the context which layer is being studied. In these, p is between −M and N and is
different from zero, and has a plus sign for the upper layers and a minus sign for the lower ones. Either
M or N can be equal to one (case of a structure with no top or bottom plate).
To simplify the problem we can set the particle postion to x = 0 and y = y1 without loss of generality
since the geometry exhibits a continuous translational invariance along the x axis.
The approach followed here is equivalent but slightly different from that of Ref. [63]. To solve Maxwell
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Chapter 1. Beam-coupling impedances and wake functions

equations we will use cartesian coordinates and decompose the electromagnetic fields in the following
way (omitting for now the superscript (p)):

y=y
1

y=b(1)

Source

Chamber 
materials

Vacuum

y

x

Plane y=0

y=b(-1)

y=b(-2)

c
(-2), (-2)

y=b(2)

c
(-1)=, (-1)

c
(1)=, (1)

c
(2), (2)

c
(p), (p)

c
(-p'), (-p')

y=b(-p')

y=b(p)

b

b

Figure 1.3: Cross section of the flat chamber. The regions denoted by the superscript (±1) are the vacuum
regions inside the structure, with the fictitious plane y = y1 as a separation between them. Subsequent
layers can be made of any medium. The last layers, denoted at the top by the superscript (N ) and at the
bottom by the superscript (−M), go to infinity (b(N ) =−b(−M) =∞). We have also sketched in red the
source particle at x = 0 and y = y1.

~E
(
x, y, s;ω

)= ∫ ∞

−∞
dk ′e− j k ′s ~̂E

(
x, y ;k ′,ω

)
=

∫ ∞

−∞
dk ′e− j k ′s

∫ ∞

0
dkx

[
cos(kx x) ~̃E c (

y ;kx ,k ′,ω
)+ sin(kx x) ~̃E s (

y ;kx ,k ′,ω
)]

, (1.113)

where ~̂E is the Fourier transform along the s axis of ~E , while ~̃E c and ~̃E s are the Fourier cosine and sine

transforms of ~̂E along the x axis (actually, the sine transform should have an additional − j factor in front

of sin(kx x), but we prefer to include it in ~̃E s). We can decompose in the same way ~H , introducing the

quantities ~̂H , ~̃H c and ~̃H s :

~H
(
x, y, s;ω

)= ∫ ∞

−∞
dk ′e− j k ′s ~̂H

(
r,θ;k ′,ω

)
=

∫ ∞

−∞
dk ′e− j k ′s

∫ ∞

0
dkx

[
cos(kx x) ~̃H c (

y ;kx ,k ′,ω
)+ sin(kx x) ~̃H s (

y ;kx ,k ′,ω
)]

.

(1.114)
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1.5. Case of a flat multilayer chamber

We also define as ~E c , ~E s , ~H c and ~H s the horizontal cosine and sine Fourier transforms of ~E and ~H , i.e.

~E
(
x, y, s;ω

)= ∫ ∞

0
dkx

[
cos(kx x)~E c (

y, s;kx ,ω
)+ sin(kx x)~E s (

y, s;kx ,ω
)]

, (1.115)

~H
(
x, y, s;ω

)= ∫ ∞

0
dkx

[
cos(kx x) ~H c (

y, s;kx ,ω
)+ sin(kx x) ~H s (

y, s;kx ,ω
)]

, (1.116)

such that

~E c (
y, s;kx ,ω

)= ∫ ∞

−∞
dk ′e− j k ′s ~̃E c (

y ;kx ,k ′,ω
)

, ~E s (
y, s;kx ,ω

)= ∫ ∞

−∞
dk ′e− j k ′s ~̃E s (

y ;kx ,k ′,ω
)

,

(1.117)

~H c (
y, s;kx ,ω

)= ∫ ∞

−∞
dk ′e− j k ′s ~̃H c (

y ;kx ,k ′,ω
)

, ~H s (
y, s;kx ,ω

)= ∫ ∞

−∞
dk ′e− j k ′s ~̃H s (

y ;kx ,k ′,ω
)

.

(1.118)

Finally, in a similar way as when we derived Eq. (1.2) we can rewrite the charge density from Eq. (1.4)
thanks to the horizontal cosine Fourier transform of the δ(x) factor [30]:

δ(x) = 1

2π

∫ ∞

−∞
e− j kx x dkx

= 1

2π

∫ ∞

0

(
e− j kx x +e j kx x

)
dkx

= 1

π

∫ ∞

0
cos(kx x)dkx . (1.119)

We then obtain for the charge density in frequency domain, recalling that here x1 = 0:

ρ(x, y, s;ω) = Q

πυ

∫ ∞

0
dkx cos(kx x)δ(y − y1)e− j ks , (1.120)

=
∫ ∞

−∞
dk ′e− j k ′sδ(k ′−k)

Q

πυ

∫ ∞

0
dkx cos(kx x)δ(y − y1). (1.121)

1.5.1 Longitudinal components of the electromagnetic fields

In a given layer, using the expressions of the gradient and the laplacian in cartesian coordinates (see
Eqs. (B.6), (B.9) and (B.10) of Appendix B.2), we can turn the wave equations (1.18) and (1.19) for the lon-
gitudinal field components into the following scalar Helmholtz equations (still omitting the superscript
(p)): [

∂2

∂x2 + ∂2

∂y2 + ∂2

∂s2 +ω2εcµ

]
Es = 1

εc

∂ρ

∂s
+ jωµρυ, (1.122)[

∂2

∂x2 + ∂2

∂y2 + ∂2

∂s2 +ω2εcµ

]
Hs = 0. (1.123)

Similarly to what was done in the axisymmetric case, we can now rewrite those equations by introducing
the decompositions from Eqs. (1.113), (1.114) and (1.121) of respectively ~E , ~H and ρ. After identification
of each cosine and sine term in the integrands, we get for the Fourier transforms of the fields longitudinal
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Chapter 1. Beam-coupling impedances and wake functions

components:

d 2Ẽ c
s

d y2 − (
k2

x +k ′2 −ω2εcµ
)

Ẽ c
s =

jQe− j k ′sδ(y − y1)δ(k ′−k)

π

(−k ′

εcυ
+ωµ

)
, (1.124)

d 2Ẽ s
s

d y2 − (
k2

x +k ′2 −ω2εcµ
)

Ẽ s
s = 0, (1.125)

d 2Ĥ c
s

d y2 − (
k2

x +k ′2 −ω2εcµ
)

Ĥ c
s = 0, (1.126)

d 2Ĥ s
s

d y2 − (
k2

x +k ′2 −ω2εcµ
)

Ĥ s
s = 0, (1.127)

which is valid for any kx , ω and k ′. From the above system and the fact that the geometry studied does
not allow any coupling between different wave numbers k ′ (from its translational invariance along the s

axis), we can deduce that when k ′ 6= k, all the functions ~̃E c , ~̃E s , ~̃H c and ~̃H s are identically zero: they are
solution of a system of differential equations with no right hand side, or, put in other words, without
excitation of any external charge or current density. The only possibility for them not be zero is if some
electromagnetic waves are present in the structure independently of the travelling beam, but this kind of
solutions is not related to the beam-coupling impedance, therefore we will not consider them here. This
means in particular that those functions have to be proportional to the only non zero right hand side
term in the above system, so to δ(k ′−k). We get then, from Eqs. (1.117) and (1.118):

E c
s

(
y, s;kx ,ω

)= e− j ksY c
E

(
y ;kx ,ω

)
,

E s
s

(
y, s;kx ,ω

)= e− j ksY s
E

(
y ;kx ,ω

)
,

H c
s

(
y, s;kx ,ω

)= e− j ksY c
H

(
y ;kx ,ω

)
,

H s
s

(
y, s;kx ,ω

)= e− j ksY s
H

(
y ;kx ,ω

)
,

where Y c
E , Y s

E , Y c
H and Y s

H are independent of k ′. After multiplication by e− j k ′s and integration over k ′,
we get from Eqs. (1.124) to (1.127) the following differential equations for those functions of y :

d 2Y c
E

d y2 − [
k2

x +k2 −ω2εcµ
]

Y c
E = jQδ(y − y1)

π

(−k

εcυ
+ωµ

)
, (1.128)

d 2Y s
E

d y2 − [
k2

x +k2 −ω2εcµ
]

Y s
E = 0, (1.129)

d 2Y c
H

d y2 − [
k2

x +k2 −ω2εcµ
]

Y c
H = 0, (1.130)

d 2Y s
H

d y2 − [
k2

x +k2 −ω2εcµ
]

Y s
H = 0. (1.131)

Now we define the radial propagation constant as in the cylindrical case – see Eqs. (1.39) and (1.40) (with
the same convention for the square root):

ν= |k|
√

1−β2ε1µ1,
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1.5. Case of a flat multilayer chamber

and the vertical wave number

ky =
√

k2
x +ν2. (1.132)

Equations (1.128) to (1.131) are harmonic differential equations, whose solutions are the exponentials
eky y and e−ky y . Putting the integration constants into Y c

E , Y s
E , Y c

H and Y s
H , the horizontal cosine and sine

Fourier transforms of the longitudinal components of the electromagnetic fields in frequency domain
can be finally written

E c
s

(
y, s;kx ,ω

)= e− j ks
[
C c

e+(kx )eky y +C c
e−(kx )e−ky y

]
, (1.133)

E s
s

(
y, s;kx ,ω

)= e− j ks
[
C s

e+(kx )eky y +C s
e−(kx )e−ky y

]
, (1.134)

H c
s

(
y, s;kx ,ω

)= e− j ks
[
C c

h+(kx )eky y +C c
h−(kx )e−ky y

]
, (1.135)

H s
s

(
y, s;kx ,ω

)= e− j ks
[
C s

h+(kx )eky y +C s
h−(kx )e−ky y

]
, (1.136)

where the subscripts in the integration constants C c
e+, C c

e−, C c
h+, C c

h−, C s
e+, C s

e−, C s
h+ and C s

h− have the
following meaning: the letter (e or h) stands respectively for the electric or magnetic field, and the + or −
sign stands for the sign in front of ky y in the exponential corresponding to the constant. Note that those
integration constants are also functions of the horizontal wave number kx .

1.5.2 Transverse components of the electromagnetic fields

When applying Maxwell equations in a region where εc and µ are constant, we can obtain relations
for the electromagnetic fields transverse components in each region (p). These relations, derived in
Appendix E.2.1, couple together Ẽ c

s and H̃ s
s , as well as Ẽ s

s and H̃ c
s , through the field matching between

adjacent layers that will relate together only the same component of the fields ~E and ~H (i.e. it will relate
horizontal components between them, vertical ones between them and longitudinal ones between
them). It appears then that Ẽ c

s is never coupled to Ẽ s
s or H̃ c

s , and since no external excitation appears in
Eqs. (1.125) and (1.126) we can use the same argument as in Section 1.5.1 to get

Ẽ s
s = H̃ c

s = 0, (1.137)

meaning obviously that E s
s and H c

s are zero as well. Finally, from the calculations done in Appendix E.2.1
we obtain for the transverse components

E c
x = E s

y = H s
x = H c

y = 0, (1.138)

E s
x = j k

ν2

(
−kx E c

s +υµ
d H s

s

d y

)
, (1.139)

E c
y =

j k

ν2

(
dE c

s

d y
−kxυµH s

s

)
, (1.140)

H c
x = j k

ν2

(
−υεc

dE c
s

d y
+kx H s

s

)
, (1.141)

H s
y =

j k

ν2

(
−kxυεc E c

s +
d H s

s

d y

)
. (1.142)
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Chapter 1. Beam-coupling impedances and wake functions

We can also integrate over kx thanks to Eqs. (1.115) and (1.116), obtaining for the total transverse
components (reintroducing the superscript (p) for more generality):

E (p)
x = j k(

ν(p)
)2

(
∂E (p)

s

∂x
+υµ(p) ∂H (p)

s

∂y

)
, (1.143)

E (p)
y = j k(

ν(p)
)2

(
∂E (p)

s

∂y
−υµ(p) ∂H (p)

s

∂x

)
, (1.144)

H (p)
x = j k(

ν(p)
)2

(
−υε(p)

c
∂E (p)

s

∂y
+ ∂H (p)

s

∂x

)
, (1.145)

H (p)
y = j k(

ν(p)
)2

(
υε

(p)
c
∂E (p)

s

∂x
+ ∂H (p)

s

∂y

)
. (1.146)

Note that we have implicitely assumed that ν(p) 6= 0 and will continue to make this assumption in all the
following sections. This means we assume not to be at the onset of Cherenkov radiation (see footnote 3
at the end of Section 1.4.1).

1.5.3 Field matching

To specify the field components we need to express the boundary conditions between all the layers. For
conciseness of the notations, we will assume from this section onward that the angular frequency ω
is positive8. Since for Es only the cosine Fourier transform is non zero while for Hs only the sine one
is non zero, we can avoid using the superscript c or s in the integration constants C c

e+, C c
e−, C s

h+ and
C s

h−. Reintroducing then the superscript (p) for the quantities related to a certain layer p, we can rewrite
Eqs. (1.133) and (1.136) in the following way:

E c
s

(p) (y, s;kx ,ω
) = e− j ks

[
C (p)

e+ (kx )ek(p)
y y +C (p)

e− (kx )e−k(p)
y y

]
, (1.147)

H s
s

(p) (y, s;kx ,ω
) = e− j ks

[
C (p)

h+ (kx )ek(p)
y y +C (p)

h− (kx )e−k(p)
y y

]
, (1.148)

with k(p)
y given by Eq. (1.132), i.e. with the (p) superscript added:

k(p)
y =

√
k2

x +
(
ν(p)

)2. (1.149)

Boundary conditions at y = y1

We know (from e.g. Ref. [11, p. 18]) that the electric field components tangential to a boundary between
media is always continuous, giving in particular at y = y1

E (−1)
s (x, y = y1, s;ω) = E (1)

s (x, y = y1, s;ω),

8To recover the results at any frequency we would simply need to replace k
γ by |k|

γ in the expression of the propagation
constant of vacuum. See also the end of Section 1.2.
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1.5. Case of a flat multilayer chamber

for any x, s andω. Thanks to the Fourier transform in Eq. (1.115), we get then from Eq. (1.147), identifying
each term, dropping the e− j ks factor and noticing that k(1)

y = k(−1)
y from ν(1) = ν(−1) and Eq. (1.149):

C (−1)
e+ ek(1)

y y1 +C (−1)
e− e−k(1)

y y1 =C (1)
e+ek(1)

y y1 +C (1)
e−e−k(1)

y y1 ⇐⇒ C (−1)
e− −C (1)

e− =
(
C (1)

e+ −C (−1)
e+

)
e2k(1)

y y1 , (1.150)

for any kx . Besides, Eq. (1.128) is valid across y = y1, and following what is done in Ref. [42], we can
replace Y c

E by E c
s e j ks and integrate over y between y1 −δy1 and y1 +δy1, obtaining for any kx

∂E c
s

∂y

∣∣∣∣
y1+δy1

− ∂E c
s

∂y

∣∣∣∣
y1−δy1

+
∫ y1+δy1

y1−δy1

dy
(−k2

x −k2 +ω2ε0µ0
)

E c
s =

jQ

π

( −k

ε0υ
+ωµ0

)∫ y1+δy1

y1−δy1

dyδ(y − y1)

= − jQωµ0

πβ2γ2 ,

where we have replaced εc and µ by their values in vacuum ε0 and µ0. When δy1 goes to zero, the integral
term in the left-hand side vanishes since E c

s is not infinite at y = y1. Replacing E c
s by its expression from

Eq. (1.147) on each side of the boundary, we can rewrite the above equation as

k(1)
y C (1)

e+ek(1)
y y1 −k(1)

y C (1)
e−e−k(1)

y y1 −k(1)
y C (−1)

e+ ek(1)
y y1 +k(1)

y C (−1)
e− e−k(1)

y y1 =−2C , (1.151)

with the definition C ≡ jQωµ0

2πβ2γ2 already used in the axisymmetric case – see Eq. (1.62). Injecting then
Eq. (1.150) into Eq. (1.151), we get

C (1)
e+ −C (−1)

e+ =−C
e−k(1)

y y1

k(1)
y

and C (1)
e− −C (−1)

e− =C
ek(1)

y y1

k(1)
y

. (1.152)

Finally, in Eq. (1.127) there is no source of discontinuity at y = y1, so no reason for Hs to have different
integration constants from one side to the other of the plane y = y1. We obtain then

C (1)
h+ =C (−1)

h+ and C (1)
h− =C (−1)

h− . (1.153)

Boundary conditions at the flat chamber inner surfaces and between each of its layers

We will now consider the boundary conditions for the subsequent layers, i.e. at each y = b(p) for 1 ≤ p ≤
N −1 and −M +1 ≤ p ≤−1. There are no externally imposed surface charges or currents between each
layer , which means (see Ref. [11, p. 18]) that the tangential components of ~E and ~H are continuous.
When decomposing the continuity equations according to Eqs. (1.115) and (1.116) and identifying each
term, the constants in front of the exponentials in the expression of Es and Hs of Eqs. (1.147) and (1.148)
appear to be the solutions of a linear system. Instead of solving this system by “brute force” we can, as
in the axisymmetric case, find a recurrent matrix relation between the integration constants of a given
layer and those of the adjacent one, which allows us to solve analytically the full system. The complete
derivation is detailed in Appendix E.2.2, and we will show here only the resulting expressions.
With the free space impedance Z0, the field ~G and the corresponding integration coefficients given as in
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Chapter 1. Beam-coupling impedances and wake functions

the cylindrical case by

Z0 = 1

ε0c
=µ0c =

√
µ0

ε0
, ~G = Z0~H ,

C (p)
g+ = Z0C (p)

h+ , C (p)
g− = Z0C (p)

h− ,

we obtain for the upper part of the chamber (i.e. for 1 ≤ p ≤ N −1)

C (p+1)
e+

C (p+1)
e−

C (p+1)
g+

C (p+1)
g−


= M p+1,p ·



C (p)
e+

C (p)
e−

C (p)
g+

C (p)
g−


=

[
P p+1,p Qp+1,p

Sp+1,p Rp+1,p

]
·



C (p)
e+

C (p)
e−

C (p)
g+

C (p)
g−


, (1.154)

with the four 2×2 matrices P p+1,p , Qp+1,p , Rp+1,p and Sp+1,p defined by

P p+1,p = 1

2


(
1+ψp+1

p

)
e

(
k(p)

y −k(p+1)
y

)
b(p) (

1−ψp+1
p

)
e

(
−k(p)

y −k(p+1)
y

)
b(p)(

1−ψp+1
p

)
e

(
k(p)

y +k(p+1)
y

)
b(p) (

1+ψp+1
p

)
e

(
k(p+1)

y −k(p)
y

)
b(p)

 , (1.155)

Qp+1,p =
kx

(
(ν(p+1))2

(ν(p))2 −1

)
2βk(p+1)

y ε
(p+1)
1

−e

(
k(p)

y −k(p+1)
y

)
b(p) −e

(
−k(p)

y −k(p+1)
y

)
b(p)

e

(
k(p)

y +k(p+1)
y

)
b(p)

e

(
k(p+1)

y −k(p)
y

)
b(p)

 , (1.156)

Rp+1,p = 1

2


(
1+φp+1

p

)
e

(
k(p)

y −k(p+1)
y

)
b(p) (

1−φp+1
p

)
e

(
−k(p)

y −k(p+1)
y

)
b(p)(

1−φp+1
p

)
e

(
k(p)

y +k(p+1)
y

)
b(p) (

1+φp+1
p

)
e

(
k(p+1)

y −k(p)
y

)
b(p)

 , (1.157)

Sp+1,p = ε
(p+1)
1

µ
(p+1)
1

Qp+1,p . (1.158)

where

ψ
p+1
p =

(
ν(p+1)

)2
k(p)

y ε
(p)
1(

ν(p)
)2 k(p+1)

y ε
(p+1)
1

and φ
p+1
p =

(
ν(p+1)

)2
k(p)

y µ
(p)
1(

ν(p)
)2 k(p+1)

y µ
(p+1)
1

. (1.159)
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When successively applying the relation (1.154) for all the layers in the upper part of the chamber, we get

C (N )
e+

C (N )
e−

C (N )
g+

C (N )
g−


= M N ,N−1 ·M N−1,N−2 · · ·M 2,1 ·



C (1)
e+

C (1)
e+

C (1)
g−

C (1)
g−


=M ·



C (1)
e+

C (1)
e−

C (1)
g+

C (1)
g−


, (1.160)

with the definition

M = M N ,N−1 ·M N−1,N−2 · · ·M 2,1. (1.161)

Very similarly we obtain for the lower part of the chamber (i.e. for −M +1 ≤ p ≤−1)

C (p−1)
e+

C (p−1)
e−

C (p−1)
g+

C (p−1)
g−


= M p−1,p ·



C (p)
e+

C (p)
e−

C (p)
g+

C (p)
g−


=

[
P p−1,p Qp−1,p

Sp−1,p Rp−1,p

]
·



C (p)
e+

C (p)
e−

C (p)
g+

C (p)
g−


, (1.162)

with

P p−1,p = 1

2


(
1+ψp−1

p

)
e

(
k(p)

y −k(p−1)
y

)
b(p) (

1−ψp−1
p

)
e

(
−k(p)

y −k(p−1)
y

)
b(p)(

1−ψp−1
p

)
e

(
k(p)

y +k(p−1)
y

)
b(p) (

1+ψp−1
p

)
e

(
k(p−1)

y −k(p)
y

)
b(p)

 , (1.163)

Qp−1,p =
kx

(
(ν(p−1))2

(ν(p))2 −1

)
2βk(p−1)

y ε
(p−1)
1

−e

(
k(p)

y −k(p−1)
y

)
b(p) −e

(
−k(p)

y −k(p−1)
y

)
b(p)

e

(
k(p)

y +k(p−1)
y

)
b(p)

e

(
k(p−1)

y −k(p)
y

)
b(p)

 , (1.164)

Rp−1,p = 1

2


(
1+φp−1

p

)
e

(
k(p)

y −k(p−1)
y

)
b(p) (

1−φp−1
p

)
e

(
−k(p)

y −k(p−1)
y

)
b(p)(

1−φp−1
p

)
e

(
k(p)

y +k(p−1)
y

)
b(p) (

1+φp−1
p

)
e

(
k(p−1)

y −k(p)
y

)
b(p)

 , (1.165)

Sp−1,p = ε
(p−1)
1

µ
(p−1)
1

Qp−1,p , (1.166)
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where

ψ
p−1
p =

(
ν(p−1)

)2
k(p)

y ε
(p)
1(

ν(p)
)2 k(p−1)

y ε
(p−1)
1

and φ
p−1
p =

(
ν(p−1)

)2
k(p)

y µ
(p)
1(

ν(p)
)2 k(p−1)

y µ
(p−1)
1

. (1.167)

In the end, after successive application of Eq. (1.162) we get for the lower part of the chamber

C (−M)
e+

C (−M)
e−

C (−M)
g+

C (−M)
g−


=M ′ ·



C (−1)
e+

C (−1)
e−

C (−1)
g+

C (−1)
g−


, (1.168)

with

M ′ = M−M ,−M+1 ·M−M+1,−M+2 · · ·M−2,−1. (1.169)

Finally, for reasons that will appear later in Section 1.5.5, it is better to rewrite Eqs. (1.160) and (1.168) in
a form involving three constants of layer 1 (C (1)

e+ , C (1)
g+ and C (1)

g−) and one of layer −1 (C (−1)
e− ). We can do so

using Eqs. (1.152) and (1.153):



C (N )
e+

C (N )
e−

C (N )
g+

C (N )
g−


=M ·



C (1)
e+

C (−1)
e− +C ek(1)

y y1

k(1)
y

C (1)
g+

C (1)
g−


and



C (−M)
e+

C (−M)
e−

C (−M)
g+

C (−M)
g−


=M ′ ·



C (1)
e+ +C e−k(1)

y y1

k(1)
y

C (−1)
e−

C (1)
g+

C (1)
g−


. (1.170)

Field matching for the outer layers and final solution for the integration constants

The outer layers go to infinity in the y direction, which can have two different implications in terms of

the electromagnetic fields at infinity. If in an outer layer k(p)
y has a non zero real part, this must be strictly

positive according to the definition of k(p)
y in Eq. (1.149) and that of the square root in Eq. (1.41). Then in

the layer considered the only possible exponential solution in y is the one with a sign in front of k(p)
y

opposite to that of y in the layer (otherwise it would grow to infinity). In other words for the layer N we
necessarily have C (N )

e+ =C (N )
g+ = 0 while for the layer −M we get C (−M)

e− =C (−M)
g− = 0.

The condition will be the same (but for a different reason) if k(p)
y is purely imaginary in the layer consid-

ered, which can happen for sufficiently low kx if
(
ν(p)

)2
is real and strictly negative in that layer. In that

situation Cherenkov radiation [11, p. 637] occurs in the outer layer, and since there is (in our geometrical
model) no other material beyond the outer layer, we cannot have any incoming wave: there should be
only outcoming radiation whose wave vector is directed toward the outside of the chamber. Due to our
choice of convention for the Fourier transform – see e.g. Eq. (1.2) – we must have an exponential term of

34



1.5. Case of a flat multilayer chamber

the form e− j kr ad
y y in the field components, with kr ad

y ≥ 0 in the top layer N and kr ad
y ≤ 0 in the bottom

layer −M , because in time domain the factor e
j
(
ωt−kr ad

y y
)

represents outcoming propagation in these
conditions only (this can also be seen in Eq. (1.4) for the propagation along s). Then, since the imaginary
part of the square root of a negative number is always positive according to Eq. (1.41), we have in any
case

C (N )
e+ =C (N )

g+ = 0 for the top layer,

C (−M)
e− =C (−M)

g− = 0 for the bottom one. (1.171)

From these conditions and Eqs. (1.170) we get the following system



M11 M12 M13 M14

M31 M32 M33 M34

M ′
21 M ′

22 M ′
23 M ′

24

M ′
41 M ′

42 M ′
43 M ′

44


·



C (1)
e+

C (−1)
e−

C (1)
g+

C (1)
g−


=− C

k(1)
y



M12ek(1)
y y1

M32ek(1)
y y1

M ′
21e−k(1)

y y1

M ′
41e−k(1)

y y1


, (1.172)

where e.g. Mr s is the component in row r and column s of the matrix M . If we now call P the 4×4
matrix on the left hand side, we get the constants we look for as

C (1)
e+

C (−1)
e−

C (1)
g+

C (1)
g−


=− C

k(1)
y

P −1 ·



M12ek(1)
y y1

M32ek(1)
y y1

M ′
21e−k(1)

y y1

M ′
41e−k(1)

y y1


, (1.173)

or more explicitely:

C (1)
e+ =− C

k(1)
y

[{(
P −1)

11 M12 +
(
P −1)

12 M32
}

ek(1)
y y1

{(
P −1)

13 M ′
21 +

(
P −1)

14 M ′
41

}
e−k(1)

y y1

]
,

C (−1)
e− =− C

k(1)
y

[{(
P −1)

21 M12 +
(
P −1)

22 M32
}

ek(1)
y y1 +{(

P −1)
23 M ′

21 +
(
P −1)

24 M ′
41

}
e−k(1)

y y1

]
,

C (1)
g+ =− C

k(1)
y

[{(
P −1)

31 M12 +
(
P −1)

32 M32
}

ek(1)
y y1 +{(

P −1)
33 M ′

21 +
(
P −1)

34 M ′
41

}
e−k(1)

y y1

]
,

C (1)
g− =− C

k(1)
y

[{(
P −1)

41 M12 +
(
P −1)

42 M32
}

ek(1)
y y1 +{(

P −1)
43 M ′

21 +
(
P −1)

44 M ′
41

}
e−k(1)

y y1

]
.

(1.174)

From this all the constants for all the layers p can be computed thanks to Eqs. (1.152), (1.153), (1.154)
and (1.162).
Note that the matrices P , M and M ′ do not depend on y1, the offset of the source, since the matrices

35



Chapter 1. Beam-coupling impedances and wake functions

M p+1,p and M p−1,p do not depend on y1. We can therefore define the following functions of kx (that are
also functions of ω, β and the materials properties, but independent of y1):

χ1(kx ) = (
P −1)

11 M12 +
(
P −1)

12 M32, χ2(kx ) = (
P −1)

21 M12 +
(
P −1)

22 M32,

η1(kx ) = (
P −1)

13 M ′
21 +

(
P −1)

14 M ′
41, η2(kx ) = (

P −1)
23 M ′

21 +
(
P −1)

24 M ′
41, (1.175)

such that we can write the constants for the electric fields in the following compact way

C (1)
e+ =− C

k(1)
y

[
χ1(kx )ek(1)

y y1 +η1(kx )e−k(1)
y y1

]
,

C (−1)
e− =− C

k(1)
y

[
χ2(kx )ek(1)

y y1 +η2(kx )e−k(1)
y y1

]
. (1.176)

Therefore, to compute the constants of the electric field longitudinal component (which is the one
needed to calculate the electromagnetic force and impedances as we will see below), we only need to
perform multiplications of 4×4 matrices and one inversion of a 4×4 matrix. The final inversion can even
be limited to the computation of only 8 coefficients of the inverted matrix, with the cofactor method for
instance.

1.5.4 Electromagnetic force inside the chamber

To study the dynamics of a passing beam inside the chamber, we need to calculate the Lorentz electro-
magnetic force ~F on a given test particle. We assume such a particle has a charge of q and the same
velocity as the source, namely~υ= υ~es . The longitudinal component of the force acting on this particle in
the vacuum region is written (dropping the superscript (−1) or (1) for conciseness)

Fs = qEs , (1.177)

while the transverse components are (using Eqs. (1.143) to (1.146) and recalling that ν= k
γ in vacuum)

Fx = q
(
Ex −υµ0Hy

)= j qγ2

k

(
1−β2) ∂Es

∂x
= j q

k

∂Es

∂x
, (1.178)

Fy = q
(
Ey +υµ0Hx

)= j qγ2

k

(
1−β2) ∂Es

∂y
= j q

k

∂Es

∂y
. (1.179)

It appears here that the force components can be computed with the knowledge of the longitudinal
component of the electric field only, as in the axisymmetric case.

1.5.5 Total electric field longitudinal component in the vacuum region

Equations (1.137), (1.147) and (1.148) give, when reintroducing the horizontal Fourier transform from
Eqs. (1.115) and (1.116) (recalling that ~G = Z0~H):

E (p)
s = e− j ks

∫ ∞

0
dkx cos(kx x)

[
C (p)

e+ (kx )ek(p)
y y +C (p)

e− (kx )e−k(p)
y y

]
, (1.180)
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and

G (p)
s = e− j ks

∫ ∞

0
dkx sin(kx x)

[
C (p)

g+ (kx )ek(p)
y y +C (p)

g− (kx )e−k(p)
y y

]
, (1.181)

where the integration contants C (p)
e+ , C (p)

e− , C (p)
g+ and C (p)

g− (functions of kx and ω) are calculated thanks to
the matrices defined in Eqs. (1.155) to (1.161), Eqs. (1.163) to (1.169), and the relations (1.152), (1.153),
(1.154), (1.162) and (1.174),.
Now we focus on Es in the vacuum region inside the chamber, since only this component is needed to
calculate the electromagnetic force that would affect a test particle. In the two vacuum regions indicated
by the superscripts (−1) and (1) (respectively for y < y1 and y ≥ y1) we have, recalling that ν(−1) = ν(1) = k

γ

and using Eqs. (1.152):

E (1)
s = e− j ks

∫ ∞

0
dkx cos(kx x)

[
C (1)

e+ek(1)
y y +C (−1)

e− e−k(1)
y y + C

k(1)
y

ek(1)
y (y1−y)

]
,

E (−1)
s = e− j ks

∫ ∞

0
dkx cos(kx x)

[
C (1)

e+ek(1)
y y +C (−1)

e− e−k(1)
y y + C

k(1)
y

ek(1)
y (y−y1)

]
. (1.182)

As in the axisymmetric case, we will identify two terms in Es : one is the direct space charge term, that
would be the only one present in the absence of any chamber (i.e. if the whole space were considered to
be vacuum) and the other one will be called the wall term, entirely due to the flat chamber’s presence.

Direct space charge term of the longitudinal electric field

If there were no chamber around the beam, the finiteness of the fields for y →±∞ prevents any growing

exponential in y in the expression of Es . Therefore, since k(1)
y =

√
k2

x + k2

γ2 is real and strictly positive, we

must have C (1)
e+ =C (−1)

e− = 0. From the above Eqs. (1.182) we clearly have

E (1),SC
s = e− j ks

∫ ∞

0
dkx

C

k(1)
y

cos(kx x)ek(1)
y (y1−y),

E (−1),SC
s = e− j ks

∫ ∞

0
dkx

C

k(1)
y

cos(kx x)ek(1)
y (y−y1), (1.183)

where the superscript “SC ” stands for “direct space-charge”. Recalling that k(1)
y =

√
k2

x + k2

γ2 from

Eq. (1.149) and noticing that in the layer 1 we have y1 − y < 0 while in the layer −1, y − y1 < 0, we
can integrate those formulae using Eq. (C.29). This gives the same result for both regions:

E vac,SC
s =C e− j ksK0

(
k

γ

√
x2 + (

y − y1
)2

)
, (1.184)

where K0 is the modified Bessel function of the second kind of order 0, and the superscript “vac” stands
for the fields in the vacuum region.
We can generalize this formula for a source at x = x1 instead of x = 0, which is straightforward from
the continuous translation invariance of the electromagnetic configuration along the x axis, or in other
words the fact that the place of the source along the horizontal axis does not change the problem: only
the difference between the test and the source x coordinates matters, which means that we simply need
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Chapter 1. Beam-coupling impedances and wake functions

to replace x by x −x1:

E vac,SC
s =C e− j ksK0

(
k

γ

√
(x −x1)2 + (

y − y1
)2

)
. (1.185)

Note that this is the same result, written in cartesian coordinates, as what was found earlier in Sec-
tion 1.4.5, Eq. (1.90), as it should be.

Wall term of the longitudinal electric field

The wall term of the fields is the part of the fields due to the chamber, or in other words the total fields
minus the direct space-charge term we have considered in the previous section. From Eqs. (1.182)
and (1.183) the wall part of the field has the same expression in both regions 1 and −1, and we can write:

E vac,W
s = e− j ks

∫ ∞

0
dkx cos(kx x)

[
C (1)

e+ek(1)
y y +C (−1)

e− e−k(1)
y y

]
, (1.186)

where the superscript “W ” stands for the wall part of the field component. A direct analytical integration
of this equation in the general case (given the very complicated expression of C (1)

e+(kx ) and C (−1)
e− (kx ),

see Section 1.5.3) looks like an impossible task, or at least very difficult. Nevertheless, it turns out that
several algebraic manipulations detailed in Appendix E.2.3 allow us to identify the dependences in the
test particle coordinates as well as in the source particle offset y1. The final formula obtained is thus
written

E vac,W
s =−4C e− j ks

∞∑
m,n=0

αmn cos
[
n

(
θ− π

2

)]
(1+δm0) (1+δn0)

Im

(
k y1

γ

)
In

(
kr

γ

)
, (1.187)

where αmn are constants defined by the integral

αmn =
∫ ∞

0
du cosh(mu)cosh(nu)

[
χ1

(
k

γ
sinhu

)
+ (−1)mη1

(
k

γ
sinhu

)
+(−1)nχ2

(
k

γ
sinhu

)
+ (−1)m+nη2

(
k

γ
sinhu

)]
. (1.188)

The coefficients αmn depend only on the functions η1, η2, χ1 and χ2 so only on the chamber properties
and on ω and β (see Section 1.5.3). The infinite integrals involved are fastly converging in most cases, so
even though it does not seem to be possible to compute them analytically in the general case, they can
be calculated numerically.
The decomposition into azimuthal modes of E vac,W

s in Eq. (1.187) has a similar form as the one that
arises in the case of the axisymmetric structure – see Eq. (1.92). The clear advantage of this formula is

that Im

(
k y1

γ

)
and In

(
kr
γ

)
are fastly decaying with m or n when the argument is small (see Eq. (C.17)).

Therefore only the first few terms of the series will be sufficient in most applications.
In cartesian coordinates, E vac,W

s can be written (see Appendix E.2.3)

E vac,W
s =−2C e− j ks

∞∑
m,n=0

αmn
[(

y − j x
)n + (

y + j x
)n]

(
x2 + y2

) n
2 (1+δm0) (1+δn0)

Im

(
k y1

γ

)
In

(
k
√

x2 + y2

γ

)
. (1.189)
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1.5. Case of a flat multilayer chamber

As we did for the direct space charge in the previous section, we can generalize this formula for a source
at x = x1 instead of x = 0, by replacing x with x −x1:

E vac,W
s =−2C e− j ks

∞∑
m,n=0

αmn
[{

y − j (x −x1)
}n +{

y + j (x −x1)
}n]

{
(x −x1)2 + y2

} n
2 (1+δm0) (1+δn0)

Im

(
k y1

γ

)
In

{
k
√

(x −x1)2 + y2

γ

}
.

(1.190)

The sum of Eqs. (1.185) and (1.190) gives the total general longitudinal electric field in the vacuum region
due to the source in Eqs. (1.4) and (1.7), from which the total force and impedances can be derived.

1.5.6 Beam-coupling impedances

Definitions

We consider a test particle of charge q located at position (x2, y2) in the transverse plane, while the
source is at (x1, y1) as stated in the Section 1.1. We define the impedances in exactly the same way as
in Section 1.4.6, but replace the cylindrical coordinates by the cartesian coordinates. This gives for the
current density flowing at the position of the test particle in Eq. (1.94) (in frequency domain)

Jt (x2, y2) = qe− j ksδ(x −x2)δ(y − y2), (1.191)

which can be injected into the impedances definitions from Eqs. (1.93), (1.95) and (1.96), giving, thanks
to Eqs. (1.178) and (1.179):

Z‖ =− 1

Q

∫ L
dsEs(x2, y2, s;ω)e j ks , (1.192)

Zx =− 1

kQ

∫ L
ds
∂Es

∂x
(x2, y2, s;ω)e j ks , (1.193)

Zy =− 1

kQ

∫ L
ds
∂Es

∂y
(x2, y2, s;ω)e j ks , (1.194)

L being the length of the element considered (see also footnote 7).

Direct space-charge impedances

When plugging in the above definitions the longitudinal electric field due to the direct space charge from
Eq. (1.185) together with the value of C in Eq. (1.62), one gets exactly the space-charge impedances of the
axisymmetric case, i.e. Eqs. (1.100), (1.101) and (1.102). This was expected since the direct space-charge
is the part of the impedance due to the direct interaction between the source and test particles without
the mediation of the surrounding structure, so must be independent of it.

Wall impedances

The term of the impedance coming from the part of the fields due to the flat chamber’s presence is the
wall impedance (see Section 1.4.6). It contains both the impedance that we would have with a flat cham-
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Chapter 1. Beam-coupling impedances and wake functions

ber made of a perfect conductor (this part is usually called the indirect space-charge impedance) and
the part of the impedance coming from the resistivity (or more generally the electromagnetic properties)
of the layer(s). We will discuss more the indirect space-charge impedance taken alone in Section 1.5.7.
The general nonlinear impedances are found by injecting the electric field of Eq. (1.187) into the defi-
nitions from Eqs. (1.192) to (1.194). Then, usually one is interested only in the first order terms in the

source and test positions, so for small k y1

γ and kr2
γ . They can be obtained through Taylor expansion of

the modified Bessel functions, knowing that the first few terms of the sum in Eq. (1.187) are sufficient.
The corresponding derivations are performed in Appendix E.2.4. We obtain for the general nonlinear
impedances in the particular case when x1 = 0

Z W all
‖ = 4

C L

Q

∞∑
m,n=0

αmn cos
(
nφ2

)
(1+δm0) (1+δn0)

Im

(
k y1

γ

)
In

(
kr2

γ

)
, (1.195)

Z W all
x = 4

C L

kQ

∞∑
m,n=0

αmn

(1+δm0) (1+δn0)
Im

(
k y1

γ

)
1

r2

[
ny2 sin

(
nφ2

)
r2

In

(
kr2

γ

)

+kx2 cos
(
nφ2

)
γ

I ′n
(

kr2

γ

)]
, (1.196)

Z W all
y = 4

C L

kQ

∞∑
m,n=0

αmn

(1+δm0) (1+δn0)
Im

(
k y1

γ

)
1

r2

[
−nx2 sin

(
nφ2

)
r2

In

(
kr2

γ

)

+k y2 cos
(
nφ2

)
γ

I ′n
(

kr2

γ

)]
, (1.197)

where r2 =
√

x2
2 + y2

2 and φ2 is such that x2 = −r2 sinφ2 and y2 = r2 cosφ2 (see Appendix E.2.3). In
Appendix E.2.4 the approximations of the above expressions up to second order are obtained, and from
the continuous translation invariance of the problem along the x axis, we can generalize these results to
the general case x1 6= 0, simply by replacing x2 with the difference between the test and source horizontal
coordinates x2 −x1. This gives, when plugging the value of the constant C from Eq. (1.62):

Z W all
‖ ≈ j k Z0L

2πβγ2

[
α00 + kα10

γ
y1 + kα01

γ
y2 +k2

(
α00 −α02

4γ2

)
x2

1 +k2
(
α00 +α20

4γ2

)
y2

1

+k2
(
α00 −α02

4γ2

)
x2

2 +k2
(
α00 +α02

4γ2

)
y2

2 −k2
(
α00 −α02

2γ2

)
x1x2 + k2α11

γ2 y1 y2

]
, (1.198)

Z W all
x ≈ j k2Z0L

4πβγ4

[
− (α00 −α02) x1 + (α00 −α02) x2 −k

α10 −α12

γ
x1 y1 −k

α01 −α03

2γ
x1 y2

+k
α10 −α12

γ
y1x2 +k

α01 −α03

2γ
x2 y2

]
, (1.199)

Z W all
y ≈ j k Z0L

2πβγ3

[
α01 + α11k

γ
y1 +k

α00 +α02

2γ
y2 +k2α01 −α03

8γ2 x2
1 +k2α01 +α21

4γ2 y2
1 +k2α01 −α03

8γ2 x2
2

+k2 3α01 +α03

8γ2 y2
2 −k2α01 −α03

4γ2 x1x2 +k2α10 +α12

2γ2 y1 y2

]
. (1.200)
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1.5. Case of a flat multilayer chamber

Finally, the longitudinal wall impedance is often reduced to its zeroth order (constant) term, and the
transverse impedances to the linear terms. All those terms are given by

Z W all ,0
‖ = j k Z0L

2πβγ2α00, (1.201)

Z W all ,0
y = j k Z0L

2πβγ3α01, (1.202)

Z W all ,di p
x =− j k2Z0L

4πβγ4 (α00 −α02) , (1.203)

Z W all ,di p
y = j k2Z0L

2πβγ4 α11, (1.204)

Z W all ,quad
x = j k2Z0L

4πβγ4 (α00 −α02) , (1.205)

Z W all ,quad
y = j k2Z0L

4πβγ4 (α00 +α02) . (1.206)

Z W all
x has no constant term due to the left-right symmetry (see Fig. 1.3) but we can notice that Z W all

y

has a non-zero constant term due to the absence of top-bottom symmetry: the layers at the bottom
can be different from those at the top so the electromagnetic vertical force has no reason to be zero for
y1 = y2 = 0. Concerning the dipolar and quadrupolar terms (defined as in Section 1.4.6), we note here

that Z W all ,di p
x =−Z W all ,quad

x which is a direct consequence of the continuous translation invariance
along the x axis of the configuration. On the other hand, contrary to ultrarelativistic results (see e.g.

Ref. [62]), we see that Z W all ,quad
x 6= −Z W all ,quad

y , which is due to the term proportional to α00 (it is
actually similar to the quadrupolar term found for the impedance in an axisymmetric structure, see
Section 1.4.6).
Finally, one can check without much difficulty that Eq. (1.198) and the linear terms of Z W all

x and Z W all
y

in Eq. (1.199) and (1.200) are in agreement with the Panofsky-Wenzel theorem given in Eqs. (1.112).

1.5.7 Some particular cases

We apply here our formalism to several particular configurations.

General simplifications in case of top-bottom symmetry

Typically flat chamber have a symmetry between the top and bottom parts, which simplifies the analysis.
The top-bottom symmetry means in particular that if we replace y1 by −y1, we should obtain the same
results provided we switch the roles of C (1)

e+ and C (−1)
e− . Therefore in Eqs. (1.176) we should have

χ2 = η1 and η2 =χ1. (1.207)

So we only need to compute the functions η1 and χ1. Note that the matrices M and M ′ defined
in Eqs. (1.161) and (1.169) are not identical, since M p+1,p 6= M−p−1,−p because b(p) changes sign in
Eqs. (1.163) to (1.166) with respect to Eqs. (1.155) to (1.158). So one still needs to compute both M and
M ′ to get χ1 and η1.
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Chapter 1. Beam-coupling impedances and wake functions

We can write now a simpler formula for the αmn from Eq. (1.188):

αmn = [
(−1)m+n +1

]∫ ∞

0
du cosh(mu)cosh(nu)

[
χ1

(
k

γ
sinhu

)
+ (−1)mη1

(
k

γ
sinhu

)]
. (1.208)

This means in particular that αmn = 0 whenever m +n is odd, so in particular α01 =α03 =α10 =α12 =
α21 = 0. For the wall linear terms in the beam-coupling impedances, this has for consequence to cancel
out the constant term in Z W all

y , as expected:

Z W all ,0
y = 0. (1.209)

On the other hand the impedances used most often, namely Z W all ,0
‖ from Eq. (1.201) and the dipolar

and quadrupolar transverse impedances from Eqs. (1.203) to (1.206) remain with the same expressions.
More generally the second order approximation of the longitudinal and transverse total wall impedance
become:

Z W all
‖ ≈ j k Z0L

2πβγ2

[
α00 +k2

(
α00 −α02

4γ2

)
x2

1 +k2
(
α00 +α20

4γ2

)
y2

1 +k2
(
α00 −α02

4γ2

)
x2

2

+k2
(
α00 +α02

4γ2

)
y2

2 −k2
(
α00 −α02

2γ2

)
x1x2 + k2α11

γ2 y1 y2

]
, (1.210)

Z W all
x ≈ j k2Z0L

4πβγ4 [− (α00 −α02) x1 + (α00 −α02) x2] , (1.211)

Z W all
y ≈ j k2Z0L

4πβγ4

[
2α11 y1 + (α00 +α02) y2

]
, (1.212)

where we see that the nonlinear terms in the transverse impedances are at least of third order.

Case of two perfectly conducting plates

Now we consider that at y =±b we have plates of infinite conductivity, assuming for simplicity x1 = 0
(without loss of generality thanks to the horizontal translation invariance). In this case (where the results
above on top-bottom symmetry apply), we must have ~E =~0 all along the plates so in particular, from
Eqs. (1.182):

C (1)
e+ek(1)

y b +C (−1)
e− e−k(1)

y b + C

k(1)
y

ek(1)
y (y1−b) = 0,

C (1)
e+e−k(1)

y b +C (−1)
e− ek(1)

y b + C

k(1)
y

ek(1)
y (−b−y1) = 0,

or, in matrix form:[
ek(1)

y b e−k(1)
y b

e−k(1)
y b ek(1)

y b

]
·
[

C (1)
e+

C (−1)
e−

]
=− C

k(1)
y

[
ek(1)

y (y1−b)

e−k(1)
y (y1+b)

]
.
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1.6. Wake functions

Using the inversion formula of a 2×2 matrix (see Appendix D.1) we obtain for C (1)
e+ :

C (1)
e+ =− C

2sinh
(
2k(1)

y b
)

k(1)
y

[
ek(1)

y y1 −e−k(1)
y (y1+2b)

]
,

which gives for χ1 and η1, from Eqs. (1.149) and (1.176)

χ1 = 1

2sinh
(
2b

√
k2

x + k2

γ2

) and η1 = −e
−2b

√
k2

x+ k2

γ2

2sinh
(
2b

√
k2

x + k2

γ2

) , (1.213)

which can be plugged into Eq. (1.208):

αPC
mn = [

(−1)m+n +1
]∫ ∞

0
du

cosh(mu)cosh(nu)

2sinh
(
2 kb
γ coshu

) [
1− (−1)me−2 kb

γ
coshu

]
, (1.214)

where the superscript PC stands for “perfect conductor”. Then, the linear part of the wall impedances
for such perfectly conducting plates (also called indirect space-charge) are given by Eq. (1.201) and
Eqs. (1.203) to (1.206).
As a verification of the theory, we can check that the longitudinal electric field (and therefore the
electromagnetic force and impedances) given by our approach would have been identical if we had
used instead the method of images [64, chap. 4] to impose the boundary conditions. This is done in
Appendix E.2.5.

A note on the case of a single plate

The case of a single plate is included in our formalism and can be treated with the same equations
as those for a flat chamber with two plates. If for instance there is a plate only on the top part, we
simply notice that M = 1 (number of layers in the lower part of the chamber) and that the matrix M ′ in
Eq. (1.169) is the identity matrix, as can be readily seen in Eq. (1.168).

1.6 Wake functions

1.6.1 Definitions

In the previous sections, all the computations were done in frequency domain, which enabled us to
obtain analytical expressions for the electromagnetic fields and impedances. Generally speaking, to
get the elctromagnetic fields in time domain, we need to put back the factor 1

2π

∫ ∞
−∞ dωe jωt that has

been dropped in Section 1.1. More specifically, the time domain counterparts of the beam-coupling
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Chapter 1. Beam-coupling impedances and wake functions

impedances defined in Sections 1.4.6 and 1.5.6 are called the wake functions and defined by [10, p. 70]

W‖(τ) = 1

2π

∫ ∞

−∞
dωe jωτZ‖(ω), (1.215)

Wx (τ) =− j

2π

∫ ∞

−∞
dωe jωτZx (ω), (1.216)

Wy (τ) =− j

2π

∫ ∞

−∞
dωe jωτZy (ω). (1.217)

To give a physical meaning to the time τ at which the wake functions are computed, we inject in those
expressions the impedances definitions from Eqs. (1.93), (1.95) and (1.96), together with the expressions
of Jt from Eq. (1.191) and of the wave number k ≡ ω

υ :

W‖(τ) =− 1

2πQq

∫ ∞

−∞
dω

∫ L
dse jω

(
τ+ s

υ

)
Fs(x2, y2, s;ω) =− 1

Qq

∫ L
dsFs

(
x2, y2, s;τ+ s

υ

)
, (1.218)

Wx (τ) = 1

2πQq

∫ ∞

−∞
dω

∫ L
dse jω

(
τ+ s

υ

)
Fx (x2, y2, s;ω) = 1

Qq

∫ L
dsFx

(
x2, y2, s;τ+ s

υ

)
, (1.219)

Wy (τ) = 1

2πQq

∫ ∞

−∞
dω

∫ L
dse jω

(
τ+ s

υ

)
Fy (x2, y2, s;ω) = 1

Qq

∫ L
dsFy

(
x2, y2, s;τ+ s

υ

)
. (1.220)

It appears that to a multiplicative sign, the wake functions are actually the components of the electro-
magnetic force in time domain created by a point-like particle on a test particle, normalized by the
charges of both particles and integrated over a certain distance L (typically the length of the structure
surrounding the beam and inducing the electromagnetic force – see also Section 1.4.6 and footnote 7).
The force is taken at the position around the ring s and at the time τ+ s

υ , which is τ seconds after the
time at which the source particle passes at the same point s, from Eq. (1.1). In other words, the time τ
at which the wake functions are computed is the time interval between the source and test particles,
counted positively if the test is behind the source. Equivalently, we will also often consider the wakes as
functions of z ≡βcτ, i.e. the distance between the source and test particles.
Note that the concept of wake functions is slightly different from the one of wake potentials, which are
created by a distribution of particles of finite size, instead of point-like.

Using the parity properties of the impedances, one can make a first simplification of the definitions of
the wake functions. From Eqs. (1.192) to (1.194), using the parity property of Es and therefore of ∂Es

∂x and
∂Es
∂y from Eq. (1.17), we have for any ω

Z‖(−ω) = Z‖(ω)∗, (1.221)

Zx (−ω) =−Zx (ω)∗, (1.222)

Zy (−ω) =−Zy (ω)∗, (1.223)
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1.6. Wake functions

and therefore

W‖(τ) = 1

π
ℜ

[∫ ∞

0
dωe jωt Z‖(ω)

]
, (1.224)

Wx (τ) = 1

π
ℑ

[∫ ∞

0
dωe jωt Zx (ω)

]
, (1.225)

Wy (τ) = 1

π
ℑ

[∫ ∞

0
dωe jωt Zy (ω)

]
, (1.226)

where ℜ denotes the real part and ℑ the imaginary part of a complex number. Note that impedances
and wake functions are actually also functions of (x1, y1) (transverse position of the source particle) and
of (x2, y2) (transverse position of the test particle).
The beam-coupling impedances computed in Sections 1.4 and 1.5 and used in the above definitions are
in general very complicated functions of the angular frequency ω, such that an analytical computation
of the wake functions does not seem to be feasible, and we have to resort to a numerical computation.
Probably the most intuitive way to compute numerically Fourier integrals such as in Eqs. (1.224) to (1.226)
is to use a discretized Fast Fourier transform (FFT). However, as we will see below, this method has severe
shortcomings, both in terms of accuracy and computation time. Therefore we will develop here another
approach based on a idea of Filon [65], using an uneven frequency sampling.
To describe both methods, the problem being similar for all three wake functions W‖, Wx and Wy , we will
consider in the following sections the general problem of computing the Fourier integral of a continuous,
infinitely derivable and integrable complex function f of the real variable ω:

Iωmi n (t ) =
∫ ∞

ωmi n

dωe jωt f (ω), (1.227)

where ωmi n can be any real number (for wake functions integration, ωmi n will be zero or close enough
to zero).

1.6.2 Overview of the usual discrete Fourier transform method

To compute Iωmi n (t ), one can perform a discretization on N evenly separated pointsωk =ωmi n+∆ω(k−1)
in frequency domain, up to a frequency cutoff ωmax =ωN that needs to be chosen large enough to span
most of the frequency spectrum of the function f . Then we can compute the Fourier integral Iωmi n (ti )
on certain times ti = t1+∆t (i −1) (with ∆t depending on ∆ω and N as we will see below) thanks to a fast
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(discrete) Fourier transform (FFT):

Iωmi n (ti ) ≈ Iωmax
ωmi n

(ti ) ≡
∫ ωmax

ωmi n

dωe jωti f (ω)

=
N−1∑
k=1

∫ ωk+1

ωk

dωe jωti f (ω)

≈
N−1∑
k=1

∆ω f (ωk )e j (ωmi n+∆ω(k−1))(t1+∆t (i−1))

≈ ∆ωe jωmi n (t1+∆t (i−1))
N−1∑
k=1

f (ωk )e j∆ω(k−1)t1 e j∆ω∆t (k−1)(i−1)

≈ ∆ωe jωmi n ti (N −1)IFFT[g ](i ), (1.228)

where g (k) = f (ωk )e j∆ω(k−1)t1 is an array of N −1 values, and IFFT[g ] is the inverse fast Fourier transform
of this array using Matlab® [66] convention, i.e.

IFFT[g ](i ) = 1

N −1

N−1∑
k=1

g (k)e2π j (i−1)(k−1)
N−1 . (1.229)

It is seen here that ∆t needs then to be set to

∆t = 2π

(N −1)∆ω
. (1.230)

We will not discuss here details on the implementation of the fast Fourier transform. Abondant litterature
can be found on the subject, among which we can indicate Refs. [67, 68] and Ref. [69, p. 504].
The above derivation is similar to that of Ref. [69, pp. 584-585], where it is clearly stated that this
procedure is not recommended for use to compute Fourier integrals, especially when the function f (ω)
is smooth. As explained in this reference, the problem comes from the oscillatory nature of the integrand
in Iωmax

ωmi n
(t ), i.e. e jωti f (ω), for which the period in ω of the factor e jωti is given by

2π

ti
= 2π

t1 +∆t (i −1)
≤ 2π

∆t (i −1)
= N −1

i −1
∆ω,

from Eq. (1.230), assuming t1 ≥ 0. This means that for large ti (i close to N ) the integrand oscillates
significantly in ω between ωk and ωk+1. For instance if i ≥ N

2 + 1
2 we have at least half a period in

ω between ωk and ωk+1. This effect is even stronger if the offset t1 is well above 0. Therefore the
approximation made above in the derivation of Eq. (1.228), namely

∫ ωk+1
ωk

dωe jωti f (ω) ≈∆ω f (ωk )e jωk ti

which means that we assume the oscillating factor to be flat betweenωk andωk+1, might be quite wrong.
As a practical example we take the function f (ω) = 1p

ω
which is proportional to the classic thick wall

formula (see next chapter, in particular Eq. (2.1)) and therefore a typical wall impedance. In this case we
know that the integral from 0 to ∞ defined in Eq. (1.227) can be analytically computed: from Ref. [70] we

have ℜ [I0(t )] =
√

π
2t for t > 0. In Fig. 1.4 we show the real part of I0(t ) from the method described above

and from the analytical formula. The usual FFT method can give accurate results on a certain scale but
not up to arbitrary large times, even with ten millions frequencies in the sampling. This example also
highlights another practical limitation related to the FFT method described above, namely the number
of evenly spaced frequencies required. This kind of frequency sampling is indeed not appropriate to
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1.6. Wake functions

wall impedances spanning a large frequency range. This is also why we cannot use the more accurate
method proposed in Ref. [69, pp. 585-587] where an even frequency sampling is also used.

  

LHC bunch 
length

LHC intra-bunch 
spacing (50ns)

LHC circumference

Figure 1.4: Real part of the Fourier integral from 0 to ∞ of f (ω) = 1p
ω

, obtained using the usual FFT

method with two different frequency samplings, and from the analytical formula.

1.6.3 A general approach to compute Fourier integrals

We indicate in the following a general method to compute accurately Fourier integrals of the form
given in Eq. (1.227) using an uneven sampling and a piecewise polynomial interpolation scheme, by
taking advantage of the smoothness of the function we want to transform. The original idea of this
method dates back from 1928 [65] and was extended later until recently [71–74]. We introduce here a
few novelties with respect to those works, combining several methods and the use of a piecewise cubic
interpolation, the aim being to render the method more practical and to avoid the use of complicated
derivatives. The objective here is to present a single algorithm that proved to work in many different
cases.
The first step is to decompose the integral Iωmi n (t ) into two parts:

Iωmi n (t ) =
∫ ωmax

ωmi n

dωe jωt f (ω)+
∫ ∞

ωmax

dωe jωt f (ω), (1.231)

where ωmax > ωmi n is a real number chosen sufficiently high such that f (ω) becomes small enough

for ω≥ωmax . For instance, in the case when f is an impedance we can choose ωmax = 10βcγ
b , b being
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the half gap or radius of the chamber (see previous sections). Indeed at such high frequencies the
space-charge electric field from Eq. (1.185) – which is the source of the induced currents so of the wall
impedance – begins to decrease exponentially with frequency at the position of the chamber walls, as
can be seen in Eq. (C.21). In other words the walls do not feel anymore the beam’s electromagnetic fields,
so the impedances vanish.
The second and semi-infinite part of the integral in Eq. (1.231) can then be treated thanks to a Taylor’s
expansion of the function f around ωmax . After some algebra described in Appendix E.3.1 and taking
only the first term of the expansion, one obtains an asymptotic approximation for Iωmax (t ) as

Iωmax (t ) ≡
∫ ∞

ωmax

dωe jωt f (ω) ≈ e jωmax t j f (ωmax )

t
. (1.232)

This approximation has the advantage that no derivatives of f are needed.
The first part of the integral Iωmi n (t ) as written in Eq. (1.231) can be treated with a Filon’s type method. To
do so we cut the interval [ωmi n ,ωmax ] into several subintervals, not necessarily equidistant, delimited
by the angular frequencies ωi with i from 0 to N , ω0 =ωmi n and ωN =ωmax . Then, for any i between 0
and N −1

f (ω) ≈ pi (ω) for ωi ≤ω≤ωi+1, (1.233)

where pi (0 ≤ i ≤ N −1) is an interpolating polynomial on the interval [ωi ,ωi+1]. The main idea of Filon’s
method is in principle quite simple: on each subinterval we replace f by its interpolating polynomial

Iωmax
ωmi n

(t ) ≡
∫ ωmax

ωmi n

dωe jωt f (ω) ≈
N−1∑
i=0

∫ ωi+1

ωi

dωe jωt pi (ω). (1.234)

The key aspect of this approach is that each term in the above sum can be computed analytically when
pi is a polynomial. In the case of the linear interpolation, we have

pi (ω) = fi +
(

fi+1 − fi
) ω−ωi

∆i
= fi

ωi+1 −ω
∆i

+ fi+1
ω−ωi

∆i
, (1.235)

with fi = f (ωi ) and ∆i = ωi+1 −ωi . The integral on each subinterval is computed in Appendix E.3.2,
obtaining

Ii (t ) ≡
∫ ωi+1

ωi

dωe jωt pi (ω) =∆i

[
fi e jωi+1tΛ (−∆i t )+ fi+1e jωi tΛ (∆i t )

]
, (1.236)

withΛ a function defined in Eq. (E.136). In Appendix E.3.2 we also provide its Taylor’s expansion for the
case when the argument ofΛ is very small compared to unity, as well as a way to bound the error when
truncating this expansion.
Rather than a linear interpolation, we can also choose a cubic Hermite interpolation, in which case the
polynomial can be written [75]

pi (ω) = fiφ

(
ωi+1 −ω
∆i

)
+ fi+1φ

(
ω−ωi

∆i

)
−di∆iψ

(
ωi+1 −ω
∆i

)
+di+1∆iψ

(
ω−ωi

∆i

)
, (1.237)

for i between 0 and N −1, with

di = p ′
i (ωi ), φ(h) = 3h2 −2h3 and ψ(h) = h3 −h2. (1.238)
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The slopes of the interpolating polynomial di are found by the interpolation algorithm; in the case of
spline interpolation [69, p. 113-114], they are found by imposing conditions of continuity atωi of the first
and second derivatives of the final interpolating function. We prefer to use here a monotone piecewise
cubic Hermite interpolation [75], where the slopes di are determined by a continuity condition of the
first derivative only, and by forcing monotonicity between two adjacent points. This can give different
results from the spline cubic Hermite interpolation [69, p. 113], in particular in preventing unphysical
wiggles to appear in the interpolation polynomial, since monotonicity on each subinterval is forced. We
anyway assume here that the slopes di are given by a certain algorithm which can be anything, such that
we can choose e.g. the spline or monotonic interpolation without affecting the remainder of the section.
For such a cubic interpolation, as with the linear interpolation one can compute analytically the Fourier
integral on each subinterval. This is done in Appendix E.3.3, obtaining

Ii (t ) =
∫ ωi+1

ωi

dωe jωt pi (ω)

=∆i

[
fi e jωi+1tΦ (−∆i t )+ fi+1e jωi tΦ (∆i t )−di∆i e jωi+1tΨ (−∆i t )+di+1∆i e jωi tΨ (∆i t )

]
,

(1.239)

where the functionsΦ andΨ are defined in Eqs. (E.142) and (E.143). In Appendix E.3.3 we also provide
their Taylor’s expansions for the case when the argument ofΦ orΨ is very small compared to unity, as
well as a way to bound the error when truncating these expansions.
The final approximation of Iωmax

ωmi n
(t ) is then

Iωmax
ωmi n

(t ) ≈
N−1∑
i=0

Ii (t ), (1.240)

where on each subinterval either Eq. (1.236) or Eq. (1.239) is chosen to compute Ii (t), depending on
which interpolation (linear or cubic) has been used. We can even vary the interpolation on each
subinterval, choosing the one giving the best approximation of f at the mid-point of the interval, for
instance.
One crucial aspect of the method is the choice of the sampling points used for the interpolation. For
the integral Iωmax

ωmi n
(t ), the approximation lies in the replacement of f (ω) by the interpolating piecewise

polynomial p(ω) equal to pi (ω) on each subinterval [ωi ,ωi+1]. Control of the accuracy can then be made
thanks to the following inequality:∣∣∣∣∫ ωmax

ωmi n

dωe jωt f (ω)−
∫ ωmax

ωmi n

dωe jωt p(ω)

∣∣∣∣≤ ∫ ωmax

ωmi n

dω
∣∣ f (ω)−p(ω)

∣∣ . (1.241)

Therefore, we can refine in an automatic manner the uneven sampling until the integral on the right hand
side is smaller than a certain required tolerance: at each step we compute the integral of

∣∣ f (ω)−p(ω)
∣∣

on the whole interval [ωmi n ,ωmax ] and we bisect the subinterval with the highest portion of the total
integral. Note that the bisection of an interval [ωi ,ωi+1] can be either in terms of the absolute frequencies
(i.e. we add the point ωi+1+ωi

2 to get two smaller intervals) or in terms of their logarithms (i.e. we add

the point e
ln(ωi+1)+ln(ωi )

2 ). In the case when f is an impedance, it exhibits a power-law behaviour at low
frequencies, and we can choose the logarithmic bisection, while at high frequency the “normal” bisection
is usually better.
Finally, only the choices of ωmi n and ωmax remain arbitrary. A practical way to make sure than those
two values are respectively close enough to zero and high enough, is to make several trials: typically the
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Chapter 1. Beam-coupling impedances and wake functions

procedure would be to chooseωmi n andωmax and then to try to choose a lowerωmi n and a higherωmax

and see if the resulting wake gets very different.
As a practical example of the method, we go back to the case of Fig. 1.4, i.e. with the function f (ω) = 1p

ω
.

In Fig. 1.5 we show the real part of I0(t ) from Eq. (1.227) obtained using the usual method described in
Section 1.6.2, our new approach and the analytical formula. Our method can give accurate results on
various time scales with as low as 61 frequencies in the sampling.
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Figure 1.5: Real part of the Fourier integral from 0 to ∞ of f (ω) = 1p
ω

, obtained using the usual FFT

method, the new general method proposed in this work, and the analytical formula.

Advantages of the method described here, with respect to the usual Fourier transform performed on
evenly separated frequencies, are its accuracy and the ability to compute Fourier integrals at any point
(no limitation to a given sampling depending on the frequency domain function sampling). This method
is particularly useful for functions such as the analytical impedances computed in the previous sections,
which are spanning a large number of decades. If the function f is smooth enough, the method proved
to use much less memory and to be much less computationally intensive than the usual discretized fast
Fourier transform scheme where a huge number of points have to be used to get accurate results.

1.7 Conclusion

In this chapter we described a general method to compute beam-coupling impedances and wake func-
tions for infinitely long multilayer structures, either axisymmetric (see Fig. 1.1) or made of two infinitely
large parallel plates (see Fig. 1.3). We gave the detailed analytical derivation of the electromagnetic fields
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in frequency domain and impedances created by an offset point charge travelling at any velocity in those
two kinds of structures, assuming only the linearity, isotropy and homogenity of the layers’ materials
together with the validity of local Ohm’s law (thus neglecting magnetoresitance and the anomalous
skin effect). New results obtained from this general approach in the axisymmetric case are the matrix
method applied for the first time to Zotter’s formalism, thus allowing much faster computation than was
previously the case [76], and the general nonlinear (or “multimode”, in the sense that all the azimuthal
modes have been considered) beam-coupling impedances in Eqs. (1.103), (1.104) and (1.105). In the
flat chamber case, such a general multilayer formalism applying to any linear materials and both in
longitudinal and transverse has been derived, to the best of our knowledge, for the first time here; we
also give the impedances in their full nonlinear expansion in Eqs. (1.195), (1.196) and (1.197).
The way to use this formalism in the cylindrical case is to first use the matrix formulae in Section 1.4.3,
namely Eqs. (1.66) to (1.74), with the definitions from Eqs. (1.12), (1.13) and (1.40). This gives a 4×4
matrix M that we finally used in Eqs. (1.80) to compute the αm

TM constant. The latter is then plugged
into the beam-coupling impedances from Eqs. (1.103) to (1.108), or (1.109) to (1.111) for the first linear
terms.
For the case of a flat chamber, the way to proceed is to first use the matrix formulae in Section 1.5.3,
namely Eqs. (1.154) to (1.169), with the definitions from Eqs. (1.12), (1.13), (1.40) and (1.149). This gives
two 4×4 matrices M and M ′, each depending on the horizontal wave number kx , from which we can
construct the matrix P on the left hand side of Eq. (1.172), that we finally used in Eqs. (1.175) to compute
the η1,2 and χ1,2 functions. The latter are then plugged into Eq. (1.188) to get the αmn constants, before
computing the beam-coupling impedances from Eqs. (1.195) to (1.200), or (1.201) to (1.206) for the first
linear terms. In the case of a structure with top-bottom symmetry one can use the results of Section 1.5.7
to reduce the number of computations to be performed.
Note that the implementation of both the axisymmetric and flat formalisms required the use of high
precision floating point numbers, as was already needed in the previous implementation of Zotter’s
formalism [76].
Finally, we described an original method to obtain numerically and accurately the wake functions from
these analytically computed impedances, based on a set of known techniques and on a uneven frequency
sampling.
These theories and numerical implementations are now available in several codes [77]. We will use them
extensively in the next chapter for the LHC impedance model computation. Other applications of the
flat chamber beam-coupling formalism shown above can be found in Refs. [78–80], with comparisons
with other approaches. In particular, form factors between the impedances in an axisymmetric structure
and the impedances in a flat chamber have been computed in Refs. [78, 79] and compared with the
limiting case of the Yokoya factors [23].
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2 The LHC impedance and wake function
model

To compute transverse instability rise times and tune shifts in the LHC, one has first to estimate its
impedance through a model that should take into account the most important impedance contributors.
In the case of transverse coupled-bunch instabilities, long-ranged contributions are looked for in priority,
and among those the (resistive-)wall impedance of the machine elements is assumed to be the dominant
contributor. In principle, parasitic trapped modes and higher order modes from the RF cavities should
have been considered as well. The former are difficult to evaluate (it requires extensive three dimensional
electromagnetic simulations of each machine element) and should be in most cases damped thanks
to appropriate impedance reduction techniques; even if this were not the case, their effect is thought
to be small, as was seen for instance for the trapped modes in the CMS chamber that were evaluated
and proved to have little impact at least on the longitudinal instabilities [2]. Concerning the higher
order modes of the RF cavities, a previous study [81] has shown their very small effect on the transverse
coupled-bunch instabilities with respect to the other impedance contributors described in this chapter.
To identify some basic criteria to select a priori the elements contributing the most to the wall impedance,
we can use the classic thick wall formula for the transverse dipolar impedance of an axisymmetric and
infinitely long structure in the ultrarelativistic case [10, p. 71], even if we know this formula is approximate
and does not hold in the general case (see the beginning of the previous chapter and Refs. [9, 82]):

Z W,di p
x ≈ (

1+ j
) LZ0δs

2πb3 , (2.1)

where δs =
√

2
µ0µrσDCω

[11, p. 354] is the skin-depth of the material the closest to the beam (with the

notations of Section 1.2). It appears that the three main parameters affecting the impedance are, by
order of significance, the proximity to the beam (the radius b in the above formula), the length L and the
resistivity ρDC = 1

σDC
of the first material of the wall.

In the LHC, the elements the nearest to the beam are the 44 collimators, which are devices put in several
places around the ring to cut the beam halo that could otherwise quench [83] or even damage the
superconducting magnets (see Refs. [84, chap. 18] and [85, 86] for more details on the design and layout
of the collimation system). Their rather small length (usually around one meter for each collimator)
is compensated by a very narrow half gap (down to the millimeter range). Among them, the graphite
collimators1 have in addition a relatively high resistivity; actually, as already mentioned, for them the

1The expression “graphite collimator” is slightly inappropriate since the jaws of most of the collimators are actually made of
a so called “carbon-carbon” material (also called CFC or carbon fiber-reinforced carbon), which is not the same as graphite (see
Table F.4). Still, for the sake of conciseness we will use all along the thesis the expression “graphite collimators” as a general
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formula above does not hold.
The next wall impedance contributor we will consider are the cold beam screens that are inside the vac-
uum pipe on all the cold sections of the ring, and that are used to protect the superconducting magnets
against the synchrotron radiation. Even if their resistivity is very low thanks to their low temperature
(less than 20K), their total length (86% of the total circumference) compensates.
Finally, the vacuum pipe outside of the cold sections is also quite long (14% of the total LHC circumfer-
ence), and since its resistivity is at least twenty times higher than that of the beam screens, one has to
consider them as well.
We will not totally neglect the short-ranged wake fields, because we are also interested in coupled-bunch
instabilities with intrabunch motion. The wall impedance contributors considered above also exhibit
short-ranged wake fields and we will naturally include them in the model. In addition, a broad-band
impedance coming from previous estimates [84, chap. 5] will also be taken into account.
In this chapter we will describe from the impedance point of view those four kinds of impedance contri-
bution: collimators, beam screens, warm vacuum pipe and broad-band model. We will then explain how
to assemble together the wake functions and impedances computed for each of them, in order to get a
single-kick impedance and wake-function model.

2.1 Wall impedances and wake functions of individual machine elements

2.1.1 Collimators

Generally speaking, collimators are devices consisting of two parallel jaws which are arranged at each
side of the beam orbit (except for the TCDQs which have only one jaw) in order to cut particles that are
far from the orbit. Primary collimators (TCP) are scattering particles directly from the beam halo, i.e.
from the tail of the distribution profile (longitudinal and/or transverse), secondary collimators (TCSG)
are deflecing particles scattered at the primaries, and absorbers (TCLA, TCT, TCL) are catching particles
previously scattered by collimators, or debris from the collisions at the interaction points [86]. There are
also dump protection collimators (TCSG and TCDQ in point 6), and injection protection collimators (TDI
and TCLI) to protect the superconducting magnets against mis-kicked beams. Each of the two beams
in the LHC have their own collimators, and all the collimators have only one of the two beams passing
through them, except for the TDI, TCLIA and TCTVB (8 collimators in total) which are “two-beams”
collimators, i.e. both beams get through the vacuum tank of the collimator, but actually only one of the
two beams is travelling between the jaws, meaning that the other beam does not “see” the jaws from the
electromagnetic point of view.
We show in Fig. 2.1a a graphite collimator during construction, where one jaw only had been installed yet.
The flat jaw itself can be seen in Fig. 2.1b, and the two jaws seen from the beam orbit at the entrance of the
collimator in Fig. 2.1c. The width of the jaws is 80 mm [88] so much larger than the beam size2, and one
can reasonably assume that the jaws can be considered, from the beam point of view, as infinitely large.
Moreover, the non-flatness of the jaws is estimated not to exceed ∼ 40µm [86]. Therefore, neglecting
also the anisotropy of certain carbon materials (see footnote b in Appendix F, Table F.4), the theory
developped in Section 1.5 applies.

name for all collimators whose jaws are made of a carbon material.
2With a normalized RMS emittance of 3.75 mm.mrad, the beam RMS size is at the highest 2 mm at injection energy, at the

collimator with the highest beta function, i.e. the TCSG in point 6 (see Table F.1).
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(a) Assembly (only one jaw installed). (b) A graphite collimator jaw. (c) Jaws as seen from their entrance.

Figure 2.1: Parts of a graphite collimator, during construction. Courtesy of the LHC collimation
project [87].

We define the cartesian coordinates (Ox y s) as in Chapter 1, with (Os) the axis tangent to the beam orbit
and in the direction of movement of the beam, (Oxs) the orbit plane, (O y) toward the top and (Ox y s)
chosen direct3. The jaws are not necessarily parallel to the horizontal plane as in Fig. 1.3, they can be
oriented with a certain skew angle α, defined as the angle between the jaw and the (O y) axis, counted
positively counter-clockwise [91], as shown in Fig. 2.2 (see also Ref. [89, p. 51]). We have α= 0 for an
horizontal collimator (i.e. with jaws parallel to (O y), so intercepting the halo in the horizontal direction),
α= π

2 for a vertical collimator (with jaws parallel to (Ox)), and any other values of α for skew collimators.
In Fig. 2.2, b is the half gap between the two parallel jaws, as in Section 1.5. The collimator is in our
model made of several flat layers of materials, which are, from the inside to the outside:

• a coating (i.e. a very thin surface layer), only in the case of the hBN block of the TDI (see Table F.3),

• the jaw material (several possibilities), of thickness (or depth) d = 25 mm, except for the TDI
(d = 54 mm) and the TCLIA (d = 33 mm),

• stainless steel (type 304L), of infinite thickness. In reality, beyond the jaw the collimator is made
of many different pieces (mainly metallic) that are very different from a multilayer flat chamber
as shown in Fig. 1.3. Still, since those pieces are far from the beam, we can model them with a
infinitely large and thick layer of stainless steel (we chose arbitrarily the stainless steel 304L, which
is one of the most used). The alternative would have been to choose vacuum as the last layer, but
this is slightly less realistic than choosing a conductive layer since there is probably not a complete
electrical insulation between the jaws and the vacuum tank. Also, choosing vacuum proved to
lower the low frequency impedance, and we preferred to take the most pessimistic approach.

The jaws of each collimator have a certain length L (neglecting the tapering at each end, whose wall
impedance cannot be calculated with the theory of Section 1.5).
Note that the half gaps b of the collimators vary between injection, flat top and (for some collimators)
after squeezing the beams at the interaction points, because, roughly speaking, they need to follow the
beam size. The jaws are indeed able to move thanks to motors that are precise within ∼ 20µm [86]. The

3Note that since the two colliding beams move in opposite directions, their respective set of coordinates are different.
According to Ref. [89, p. 16], in the optics program MAD-X [90] the x axis is toward the outside of the LHC ring for beam 1, and
the inside for beam 2, and we choose the same convention here.
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Figure 2.2: Representation of the cross section of a collimator for the impedances and wake functions
calculation. b is the half gap.

half gaps of all the collimators are set up by the collimation team during specific campaigns.
The parameters defined above (jaw material, length L, half gap b, skew angle α) are summarized in
Appendix F, Tables F.1 for the beam 1 collimators and F.2 for the beam 2 ones, plus some additional param-
eters for the TDI collimator in Table F.3. The half gaps indicated at injection and collision (3.5 TeV/c) are
those measured during normal operation of the machine in 2011, the beta functions (see Section 2.3.1)
at the CMS and ATLAS interaction points being β∗ = 1.5 m, i.e. before the decrease of β∗ to 1 m that took
place in September 2011.
The TCDQ collimators are particular in the sense that they have only one jaw, parallel to (O y), and
located toward the outside of the ring for beam 1 and the inside for beam 2 [84, 92, chap. 17], i.e. at
positive x in each case [89, p. 16]. The definitions above still hold, b being defined as the position
between the reference orbit and the jaw, and the theory of Section 1.5 is also valid in this particular case.
The impedances and wake functions of a general skew collimator as shown in Fig. 2.2 can be obtained
from the ones of a flat chamber with walls parallel to the (Oxs) plane as in Fig. 1.3, thanks to a simple
change in coordinates. If we call (x ′, y ′, s) the coordinate system associated to the jaws of a particular
skew collimator of angle α, with (Ox ′) parallel to the jaws and (O y ′) perpendicular to them as shown in
Fig. 2.2, we see that the collimator geometry corresponds to the one analysed in Section 1.5 (in particular
Fig. 1.3) in the new coordinates (x ′, y ′, s). Using the same definitions as in Section 1.5.6 but replacing
x by x ′ and y by y ′, we have, when taking into account only the constant and linear terms of the total
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transverse wall impedances (see Eqs. (1.199) and (1.200)):

Z W all
x ′ ≈ Z W all ,di p

x ′ x ′
1 + Z W all ,quad

x ′ x ′
2,

Z W all
y ′ ≈ Z W all ,0

y ′ + Z W all ,di p
y ′ y ′

1 + Z W all ,quad
y ′ y ′

2. (2.2)

The change of coordinates corresponds to a rotation of angle π
2 −α. After some algebra detailed in

Appendix E.4, the constant, dipolar and quadrupolar impedances as defined in Section 1.4.6 and 1.5.6
are finally given, in the initial coordinate system (x, y, s), by

Z W all ,0
x =−cosαZ W all ,0

y ′ , (2.3)

Z W all ,0
y = sinαZ W all ,0

y ′ , (2.4)

Z W all ,di p
x = Z W all ,di p

x ′ sin2α+Z W all ,di p
y ′ cos2α, (2.5)

Z W all ,di p
y = Z W all ,di p

x ′ cos2α+Z W all ,di p
y ′ sin2α, (2.6)

Z W all ,quad
x = Z W all ,quad

x ′ sin2α+Z W all ,quad
y ′ cos2α, (2.7)

Z W all ,quad
y = Z W all ,quad

x ′ cos2α+Z W all ,quad
y ′ sin2α, (2.8)

and we need to add two additional “coupled terms”, which are giving impedance terms in the x direction
proportional to y1 (dipolar) or y2 (quadrupolar) as well as terms in the y direction proportional to x1

(dipolar) or x2 (quadrupolar):

Z W all ,di p
x y = cosαsinα

(
Z W all ,di p

x ′ −Z W all ,di p
y ′

)
, (2.9)

Z W all ,quad
x y = cosαsinα

(
Z W all ,quad

x ′ −Z W all ,quad
y ′

)
. (2.10)

Note that there is no need to define Z W all ,di p
y x and Z W all ,quad

y x because here their values would be

identical to respectively Z W all ,di p
x y and Z W all ,quad

x y . Also, the constant term of the longitudinal impedance

Z W all ,0
‖ (from Eq. (1.201)) remains unaffected by the change of coordinates, so is independent of the

skew angle.
Similar relations hold for the wake functions associated to the above impedances, respectively W W all ,0

‖ ,

W W all ,0
x , W W all ,0

y , W W all ,di p
x , W W all ,di p

y , W W all ,quad
x , W W all ,quad

y , W W all ,di p
x y and W W all ,quad

x y , defined
from the impedances thanks to Eqs. (1.215) to (1.217).

To compute the impedances in the coordinate system associated to the jaws, i.e. Z W all ,di p
x ′ , Z W all ,di p

y ′ ,
etc., different theories can be used:

1. the multilayer flat chamber theory of Section 1.5, which is, to the best of our knowledge, the most
general two-dimensional theory for a multilayer flat chamber,

2. the multilayer flat chamber theory from Ref. [31],

3. the multilayer axisymmetric chamber theory from B. Zotter, rederived in Section 1.4, with constant
form factors that enable the computation of the impedances and wake functions of the flat
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geometry in the following way:

Z W all ,di p
x ′ (flat) =F

di p
x ′ Z W all ,di p

x ′ (cyl.), Z W all ,di p
y ′ (flat) =F

di p
y ′ Z W all ,di p

y ′ (cyl.),

Z W all ,quad
x ′ (flat) =F

quad
x ′ Z W all ,di p

x ′ (cyl.), Z W all ,quad
y ′ (flat) =F

quad
y ′ Z W all ,di p

y ′ (cyl.),

Z W all ,0
‖ (flat) =F‖Z W all ,0

‖ (cyl.). (2.11)

Here we apply Yokoya’s (or Laslett’s) form factors for a flat geometry, obtained assuming a single
metallic layer in the two parallel horizontal walls, and a certain frequency range [22, 23]:

F‖(Yok.) = 1, F
di p
x ′ (Yok.) = π2

24
, F

di p
y ′ (Yok.) = π2

12
, F

quad
x ′ (Yok.) =−π

2

24
, F

quad
y ′ (Yok.) = π2

24
. (2.12)

For the single-jaw TCDQs, form factors are different and we use Burov-Danilov ones [62], obtained
for a single resistive layer in the ultrarelativistic case under certain frequency conditions:

F
di p
x ′ (BD) = 1

4
, F

di p
y ′ (BD) = 1

4
, F

quad
x ′ (BD) =−1

4
, F

quad
y ′ (BD) = 1

4
, (2.13)

4. the multilayer axisymmetric chamber theory from Ref. [17] with Yokoya (or Burov-Danilov) form
factors,

5. the single-layer axisymmetric classic thick wall formula of Eq. (2.1) with Yokoya (or Burov-Danilov)
form factors.

In all those variants except for the last one where an analytical formula exists [10, p. 59], the wake
functions have to be computed numerically, which we do using the method described in Section 1.6.3.
In Figs. 2.3a, 2.3b and 2.4, we applied all these different theories, except for the second one whose imple-

mentation is unfortunately not available, to get the vertical dipolar impedance Z W all ,di p
y ′ of respectively

a graphite (CFC) collimator, a tungsten one and the titanium-coated hBN block of the TDI (see Table F.3).
We used the smallest half gaps occuring during normal operation (see Tables F.1 and F.2) and the material
parameters of Table F.4.
These plots show that the first and third methods enumerated above give very similar vertical dipolar
impedances except at very high frequencies (above at least ∼ 20 GHz for the CFC collimator, ∼ 100 GHz
for the tungsten one and ∼ 1 GHz for the TDI), meaning that Yokoya factors seem to give the correct
impedances of the flat geometry at low and intermediate frequencies. The fourth method (Burov-
Lebedev round chamber’s theory with Yokoya factors) is also very similar4 except again at very high
frequencies, which is expected from the fact that this theory explicitely assumes that ω¿ c

b [17]. Around
THz frequencies, with Zotter’s theory a peak appears in all three cases, due to a resonance caused by the
interaction between the relativistic particle and waveguide modes propagating down the chamber [32].
This resonance is also visible with the new flat chamber theory but is much weaker and has a slightly dif-
ferent frequency. For the TDI with Zotter’s round chamber theory, other resonances appear around GHz
frequencies, due to a coupling with waveguide modes inside the hBN layer which is a dielectric material
(see Table F.4). The frequency of such resonances can be approximately computed by assuming that the
TDI is a circular waveguide completely filled with the hBN of dielectric constant εb = 4 (see Table F.4),
neglecting its resistivity, with a perfect conductor on its outer surface of radius b(2) = b +d = 58 mm

4Note that the double-layer formula in Ref. [17] is valid only at intermediate frequencies, and one has to use the more
general method described in this reference to get an accurate result at low frequencies.
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(a) CFC collimator with 1.5 mm half gap.
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(b) Tungsten collimator with 4 mm half gap.

Figure 2.3: Vertical dipolar impedance of 1m-long CFC and tungsten collimators (see parameters in
Table F.4) at 3.5 TeV/c (γ= 3730.26). We compare the theories 1, 3, 4 and 5 enumerated in Section 2.1.1.
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Figure 2.4: Vertical dipolar impedance of the titanium-coated hBN block of the TDI (see parameters in
Tables F.3 and F.4), with a half gap of 4 mm, at injection energy (γ= 479.6). We compare the methods 1,
3, 4 and 5 enumerated in Section 2.1.1. Note that for Burov-Lebedev round chamber theory, only two
layers have been taken into account and the hBN replaced by vacuum.

(with the notations of Chapter 1). The dispersion relation of such a dielectric waveguide is then given by

k = ω
p
εb

c

√
1− ω2

λ

ω2 from Ref. [11, p. 364], with ωλ the lowest possible angular frequency achievable by the

mode λ (“cut-off” angular frequency). We choose the mode with the lowest possible cut-off frequency,

namely the first TE mode for which ωλ = j ′11cp
εb b(2) [93] where j ′11 ≈ 1.84 is the first zero of J ′1 (derivative of

the Bessel function J1). Resonances in the impedances appear when the source particle wave number
k = ω

υ = ω
βc crosses the dispersion relation of the waveguide mode. The resulting equation in ω can be

solved, obtaining for the first resonance

fr esonance = ωr esonance

2π
= j ′11c

2πb(2)
√
εb − 1

β2

. (2.14)

One obtains fr esonance ≈ 874 MHz, which is very close to the frequency of the lowest peak visible in
Fig. 2.4, found at 866 MHz. Note that these resonances are not visible in the case of the calculation using
Burov-Lebedev’s approach because the dielectric constant of hBN has been neglected. This, together
with the absence of the third layer in stainless steel when using Burov-Lebedev’s approach (up to now
only the case of two layers has been implemented), explans also the discrepancy between this approach
and Zotter’s one at low frequencies.
Finally, the classic thick wall formula almost does not apply at all for the hBN block of the TDI, while it
applies only between ∼ 10 MHz and ∼ 10 GHz for the CFC collimator, and on most of the range of interest
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for the tungsten collimator. In the case of CFC collimators (or more generally, graphite collimators), the
fact that the transverse dipolar impedance is well below the classic thick wall formula (in particular for
the real part of the impedance) at the first unstable betatron line (8 kHz) was historically a very important
discovery during the LHC design, since the predicted instabilities growth rates were then reduced by
several order of magnitudes.
Using the approaches shown in Chapter 1, i.e. the first and third methods enumerated above, we can
also compute generalized frequency dependent form factors between the flat and cylindrical geometries,
obtained using the same definitions as above in Eqs. (2.11). Thanks to Eqs. (1.109) to (1.111) and
Eqs. (1.201) to (1.206), those generalized form factors are obtained by

F
di p
x ′ ≡ Z W all ,di p

x ′ (flat)

Z W all ,di p
x ′ (cyl.)

= α02 −α00

α1
TM

, F
di p
y ′ ≡

Z W all ,di p
y ′ (flat)

Z W all ,di p
y ′ (cyl.)

= 2α11

α1
TM

, (2.15)

F
quad
x ′ ≡ Z W all ,quad

x ′ (flat)

Z W all ,di p
x ′ (cyl.)

= α00 −α02

α1
TM

, F
quad
y ′ ≡

Z W all ,quad
y ′ (flat)

Z W all ,di p
y ′ (cyl.)

= α00 +α02

α1
TM

, (2.16)

F‖ ≡
Z W all ,0
‖ (flat)

Z W all ,0
‖ (cyl.)

= α00

α0
TM

, (2.17)

with αm
TM and αmn given respectively by Eqs. (1.80) and (1.188). To check the validity of the third

method enumerated above (i.e. Zotter’s axisymmetric theory with Yokoya factors), we can compare
these form factors to Yokoya’s ones [23], or for the TCDQs to Burov-Danilov ones [62]. This is shown is
Figs. 2.5a, 2.5b, 2.6a and 2.6b for respectively TCDQ, graphite (CFC), tungsten and hBN collimators.
For the TCDQs, Burov-Danilov form factors are in good agreement with our generalized factors, from
very low to quite high frequencies. For the tungsten and CFC collimators, our form factors are very
similar to Yokoya’s ones, except again at very high frequencies. For the titanium-coated ceramic block
of the TDI, some differences in the transverse form factors appear around MHz frequencies and for
frequencies above ∼ 1 GHz (in particular for the resonant peaks between ∼ 1 GHz and ∼ 100 GHz),
while in longitudinal the form factor calculated from our theories is on most of the frequency range
significantly different from the Yokoya factor.
Similar form factors can be computed for the wake functions, and compared to the same Yokoya factors.
This is shown in Figs. 2.7a, 2.7b and 2.8, for the transverse wake functions. Very short-ranged wakes (up to
4 cm for the CFC collimator, and up to 0.1 mm for the tungsten collimator and the hBN block) significantly
deviate from Yokoya factors, with a limiting value for zero distance behind the source, that seems to

reach ∼ 0.4 in all these cases and for all transverse impedances (except of course for W W all ,quad
x ′ which

is always the opposite of W W all ,di p
x ′ , see Section 1.5.6). For tungsten, no other significant discrepancy

appears, whereas CFC and hBN long-ranged wake functions also exhibit a behaviour different from
Yokoya’s factors, between 1 km and 100 km for CFC and above 10 m for the TDI. Short-ranged wakes
even up to 4 cm are of little relevance for the LHC where the total bunch length should be at the shortest
around 30 cm at 7 TeV/c [84, chap. 1, p. 3]. On the contrary, long-ranged wakes, from 7.5 m (bunch
spacing for bunches separated by 25 ns) up to several turns, are obviously much more important in the
case of coupled-bunch instabilities.
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(a) TCDQ collimator with 6.5 mm half gap. The vertical quadrupolar form factor has not been plotted because
it turns out to be the same as the vertical dipolar one.
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Figure 2.5: Form factors between the flat and cylindrical geometries, for the impedances of a single-
jaw TCDQ collimator and a 1m-long CFC collimator (see parameters in Appendix F.3) at 3.5 TeV/c
(γ= 3730.26).
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(b) TDI with 4 mm half gap, at injection energy (γ= 479.6).

Figure 2.6: Form factors between the flat and cylindrical geometries, for the impedances of a 1m-long
tungsten collimator and the titanium-coated hBN block of the TDI (see parameters in Appendix F.3).
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(b) Tungsten collimator with 4 mm half gap.

Figure 2.7: Form factors between the flat and cylindrical geometries, for the wake functions of 1m-long
CFC and tungsten collimators (see parameters in Table F.4) at 3.5 TeV/c (γ= 3730.26).
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Figure 2.8: Form factors between the flat and cylindrical geometries, for the wake functions of the
titanium-coated hBN block of the TDI (see parameters in Tables F.3 and F.4), with a half gap of 4 mm, at
injection energy (γ= 479.6). Form factors are taken in absolute value.

The large difference between the Yokoya factors and the generalized ones for the CFC collimator wake
functions below 4 cm is due the quite different high frequency peak at the THz level in the two flat and
cylindrical theories, that was already visible in Fig. 2.3a. In particular, in the flat chamber theory the peak
is much less sharp, translating into a faster damping of the time domain oscillations, visible in Fig. 2.9a

where we have plotted W W all ,di p
x ′ obtained from the flat chamber theory, the cylindrical chamber’s one

with Yokoya factors and the classic thick wall formula with Yokoya factors. This then turns into strong
oscillations in the form factors below 4 cm in Fig. 2.7a, because the wake oscillations in the flat and
cylindrical cases are very different. The discrepancy between 1 km and 100 km is also clearly visible in
Fig. 2.9a. The long-ranged discrepancy between the flat chamber theory and Zotter’s one with Yokoya

factors, for the TDI, is shown on W W all ,di p
x ′ in Fig. 2.9b. Note that the erratic behaviour above 10 m

of the wake function in Zotter’s theory does not seem to be due to numerical errors (the wake seems
well converged – with the algorithm of Section 1.6.3 – at least up to 1 km) but looks like a long-ranged
oscillation. This also explains the strong oscillations above 10 m in the form factors of Fig. 2.8.
In conclusion, Zotter’s theory with Yokoya factors seems to be sufficient to calculate the impedances
and wake functions of all collimators, except for the long-ranged behaviour of the CFC and TDI collima-
tors. Since those kinds of collimators are high impedance contributors (see e.g. the magnitude of the
impedances in Figs. 2.3a and 2.4 with respect to that of the tungsten collimator in Fig. 2.3b), we chose
the apply the new flat chamber theory to maximize accuracy.
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(a) CFC collimator with 1.5 mm half gap, at 3.5 TeV/c (γ= 3730.26).
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(b) Titanium-coated hBN block of the TDI, with 4 mm half gap, at injection energy (γ= 479.6).

Figure 2.9: Horizontal dipolar wake function of a 1m-long CFC collimator and the titanium-coated hBN
block of the TDI (see parameters in Tables F.3 and F.4). We compare the theories 1, 3 and 5 enumerated
in Section 2.1.1.
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2.1.2 Beam screens

Beam screens are perforated tubes inside the superconducing magnets, protecting the cold bore against
synchrotron radiation and ion bombardment [84, p. 7 & 343]. They are made of copper-coated stainless
steel [84, chap. 5, p. 98] maintained at a temperature between 5 and 20 K [94], and exhibit several
geometrical particularities making their impedance a priori difficult to compute:

• a cross section partly round and partly flat (the sides perpendicular to the plane of the bending –
usually the horizontal plane – are round while the others are flat),

• pumping slots, i.e. holes on the flat sides that permit vacuum pumping inside the beam screens,

• an uncoated stainless-steel weld on one of the round sides of the wall (the one toward the inside of
the LHC ring),

• saw teeth on the other round side of the wall: these are a series of 30µm-high steps spaced
by 500µm in the longitudinal direction, that reduce the forward reflectivity of photons from
synchrotron radiation and therefore the build up of electron clouds [84, chap. 5, p. 116].

Those geometrical features are visible in Figs. 2.10a and 2.10b. Beam-coupling impedances for such par-
ticular cross-sections cannot be computed with two-dimensional analytical models, at least up to now.
Consequently we have approximated this geometry by an elliptical one, the axes of which correspond to
the actual beam screen dimensions, as shown in Fig. 2.11. The pumping slots are geometrical features
assumed to give essentially an additive broad-band impedance contribution (see the discussion at the
beginning of Chapter 1). Therefore we neglect them when computing the wall impedance of the beam
screens, and will consider them instead later in Section 2.2.
The uncoated weld, of about 2 mm width [95, 96], creates an azimuthal inhomogeneity that in principle

should be taken into account for the wall-impedance computation. The impact of the weld proved
indeed to be significant in the resistive power loss related to the longitudinal impedance, as shown in
Refs. [95, 97]. In the transverse plane, to date no complete evaluation of its effect was performed on the
correct geometry, which require the use of electromagnetic codes that, up to now, cannot easily provide
the wake functions on a long enough range as needed by our multibunch and multiturn computations
(see Chapter 3). Moreover, strong difficulties arise when one wants to take into account properly the
coating and the round part of the cross-section. Reference [98] give results for a rectangular geometry
and shows that at 8 kHz (first unstable betatron line [2]) the weld induces in the studied geometry an
increase of the real part of the dipolar impedance by a factor 1.2, and of the imaginary part by a factor
1.5, whereas at 40 MHz the factor becomes 2 for both real and imaginary parts. But in this reference
calculations do not take into account the coating thickness outside the weld (i.e. assume that the wall
is only made of copper apart from the weld), which is probably a too strong approximation for long-
ranged wakes since image currents will go beyond the copper, inside the stainless steel, below a certain
frequency (around 28 kHz at injection energy and 78 kHz at 7 TeV/c, from the parameters of Table F.7,
the skin depth formula and taking 50µm as the copper coating thickness, see below). Therefore, at very
low frequencies the impact of the weld might be overestimated there. Since the impedance of the beam
screens is significant with respect to the other contributions only at low frequencies (see Section 2.3.3),
we have therefore chosen not to use the results from this reference and not to take the weld into account
at all in our study.
Finally, the effect of the saw teeth on the wall impedance have been neglected as well, as measure-
ments [99] show that at low temperature the surface resistance of copper is not affected by such ribbed
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(a) The beam screen and its surroundings. Source:
CERN.

Weld

Pumping slots

Saw teeth

(b) Some details of the beam screen itself. Courtesy of N. Kos.

Figure 2.10: An LHC beam screen.

structures (contrary to the room temperature surface resistance [99]). Their contribution to the broad-
band impedance has also been neglected (see Section 2.2): only the longitudinal broad-band contribu-
tion was evaluated, in Ref. [97], giving

∣∣Z‖/n
∣∣≈ 2 mΩ (with n =ω/ωr ev ,ωr ev being the angular revolution

frequency) which is about fourty times less than the total broad-band budget.
Beam screens are made of stainless steel of grade P506 and thickness 0.6 mm (except for the beam screen
of type 50A which are 1 mm thick), co-laminated with a surface layer of copper of thickness 75µm [100].
Due to the fabrication process, copper gets contaminated with elements from the stainless steel [101],
creating an heterogeneous layer. This is approximately taken into account in the model by reducing
artificially the copper layer to 50µm, as done in Ref. [84, chap. 5, p. 98].
An important remark is that in the presence of such high fields and low temperatures, copper is magneto-
resistant and suffers from the anomalous skin effect [52]. While those effects do not fit in the theories
of Chapter 1, one can still take them into account approximately by choosing the resistivity values in
an appropriate manner. In particular, copper resistivity strongly depends on the B field in the magnets
around the beam screen, so on the beam energy, as shown in Table F.7.

As a consequence of all the above considerations, the beam screens impedances are computed thanks to
Zotter’s theory as presented in Section 1.4, taking the radius equal to the semi-axis b in Table F.5, and
assuming the structure is made of two layers, both at 20 K: one layer of copper of thickness 50µm and
an infinite layer of stainless steel (we chose it infinite for the same reason as we did for collimators, see
previous section). Then, Yokoya factors for an elliptical shape [23] are applied, to get the impedances of
an elliptic structure approximating the beam screen cross-section, as shown in Fig. 2.11. Those factors
are assumed to be reasonably valid in most of the frequency regime of interest, since the skin depth
in the copper layer is below 50µm for any frequency above 78 kHz. Still, for very low frequencies (i.e.
very long-ranged wakes) Yokoya factors might not apply anymore. Experience on the collimators (see
previous section) seems to indicate that at low frequencies they are still valid for conductive walls, but
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y

x

2b

Beam 
screen

Beam

2w

Model

Figure 2.11: Representation of the cross section of a vertical beam screen for the impedances and wake
functions calculation. In blue is sketched the elliptical shape used to get the impedance model, b being
the vertical semi-axis and w the horizontal one.

this remains unverified for the beam screens.
Details of the transverse dimensions, lengths and Yokoya factors of each kind of beam screen are shown
in Appendix F, Table F.5. The materials parameters used in the impedance calculations can be found in
Table F.7. We show in Fig. 2.12 the vertical dipolar impedance per unit length of the beam screen that
is by far the most present (type 50A, of almost 22 km of cumulated length), together with the classic
thick wall approximation of Eq. (2.1) for a single layer of copper, applying also the Yokoya factors of
Table F.5 in both cases. In the same figure we also show the vertical dipolar impedance of the warm
vacuum pipe (see next section). These plots show that from ∼ 100 kHz up to ∼ 100 GHz (which is well
beyond the frequency spectrum of LHC bunches that are on the order of 1 ns length), the classic thick
wall approximation is valid for the LHC beam screens. However, at low frequencies, induced currents
penetrate the stainless steel and the impedances become much larger. This is also clearly visible in the
long-ranged behaviour of the dipolar vertical wake function per unit length (computed thanks to the
approach of Section 1.6.3) which is shown in Fig. 2.13.

2.1.3 Vacuum pipe in the warm sections

The vacuum pipe goes obviously around the whole LHC ring circumference, but its impedance has to be
considered only in the parts of the ring where there are neither collimators nor beam screens, since in
those parts the vacuum pipe is farther away from the beam than elements already taken into account.
Therefore, we focus here only on the warm sections of the vacuum pipe, where beam screens are absent.
In those sections there are essentially four types of vacuum pipes, with different cross-sections, which
are summarized in Appendix F, Table F.8. Those are inside the MBW magnets (twin aperture warm
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Figure 2.12: Vertical dipolar impedance, per unit length, of the beam screen of type 50A and the main
part of the warm pipe (see Section 2.1.3). We used the parameters in Tables F.4, F.5, F.7 and F.8 at 7 TeV/c
(γ= 7460.52). We compare the theory exposed in Section 1.4 and the classic thick wall formula, both
with Yokoya factors in the case of the beam screen.

dipole module in the cleaning insertions IR3 and IR7), inside the MQW magnets (twin aperture warm
quadrupole module in IR3 and IR7, with two different shapes – horizontal or vertical), and in the rest of
the warm sections, taking out the part that is around the collimators which accounts for a cumulated
length of 49.5 m per beam (see Tables F.1 and F.2). The pipe wall thickness is 2 mm [84, chap. 5, p. 98],
and we assumed in the model that it is surrounded by infinite vacuum. Indeed, contrary to the collimator
jaws and the beam screens (see previous sections), taking stainless steel behind the copper would give
a slightly lower impedance at low frequencies, so we prefer to choose the most pessimistic approach.
From Ref. [84, chap. 5, p. 98], the pipe’s cross-section is circular except in the MQWs, where an elliptical
shape is assumed (either vertical or horizontal).
Therefore, to compute the impedances we used the theory presented in Section 1.4 with two layers
(copper and vacuum), using the copper material properties from Table F.4 and the Yokoya factors [23]
of an elliptic shape for the MQWs (see Table F.8). Those factors are assumed to be reasonably valid in
most of the frequency regime of interest, since the skin depth in the copper layer is below 2 mm for any
frequency above 1 kHz.
We showed in Fig. 2.12 the vertical dipolar impedances per unit length of the warm vacuum pipe of
radius 40 mm (by far the most present kind of pipe, see Table F.8), together with the classic thick wall
approximation of Eq. (2.1) for a single layer of copper. This figure shows that from ∼ 1 kHz up to hundreds
of GHz (well beyond the frequency spectrum of LHC bunches), the classic thick wall approximation is
valid for this kind of pipe. Per unit length and at intermediate frequencies, the impedance is about half
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Figure 2.13: Vertical dipolar wake function, per unit length, of the beam screen of type 50A and the main
part of the warm pipe (see Section 2.1.3). We used the parameters in Tables F.4, F.5, F.7 and F.8 at 7 TeV/c
(γ= 7460.52). We compare the theory exposed in Section 1.4 and the classic thick wall formula, both
with Yokoya factors in the case of the beam screen.

that of the beam scren of type 50A: the much higher resistivity of the warm copper with respect to the
cold one of the beam screens, is compensated by a much larger radius. For the same kind of pipe, the
dipolar vertical wake function (computed thanks to the approach of Section 1.6.3) is shown in Fig. 2.13,
where one can see that the beam screen multiturn wake function per unit length (i.e. for a distance
behind the bunch equal to the ring circumference of ∼ 27 km) is much higher than the warm pipe one by
about one order of magnitude .

2.2 Broad-band impedance model

Reference [84, chap. 5, p. 101] gives a first estimate of the broad-band impedance in the LHC. In
the transverse plane, it is assumed to be an axisymmetric, dipolar and purely imaginary impedance,
constant up to around the cut-off frequency fr of the vacuum chamber (i.e. the frequency above which
electromagnetic waves can propagate down the beam pipe). In longitudinal, the broad-band impedance

is also purely imaginary and
Z‖
n is also constant up to around fr , with n =ω/ωr ev .

The cut-off frequency is obtained in principle from [93, slide 111]

fr ≈ 0.3
c

b
, (2.18)
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with b the half gap of the beam screens type 50A, covering most of the LHC circumference (see Table F.5).
We get as in Ref. [84, chap. 5, p. 100], namely

fr ≈ 5 GHz.

Then, the broad-band impedances and wakes functions are obtained thanks to a resonator model [93,
slides 95-96], assuming a very low quality factor Q = 1

Z BB ,di p
x (ω) = Z BB ,di p

y (ω) = Z BB ,di p
⊥ (ω) = ωr

ω

R⊥
1− jQ

(
ωr
ω − ω

ωr

) , (2.19)

W BB ,di p
x (τ) =W BB ,di p

y (τ) =W BB ,di p
⊥ (τ) = ω2

r R⊥
Qωr

e−ατ sin
(
ωrτ

)
for τ> 0,

(W BB ,di p
⊥ (τ) = 0 if τ< 0), (2.20)

Z BB
‖ (ω) = R‖

1− jQ
(
ωr
ω − ω

ωr

) , (2.21)

W BB
‖ (τ) = ωr R‖

Q
e−ατ

[
cos

(
ωrτ

)− α

ωr
sin

(
ωrτ

)]
for τ> 0 (W BB

‖ (τ) = 0 if τ< 0), (2.22)

where the superscript “BB” stands for “broad-band”, and with R‖ the longitudinal shunt impedance

(inΩ), R⊥ the transverse one (inΩ/m), ωr = 2π fr the cut-off angular frequency, ωr =ωr

√
1− 1

4Q2 and

α= ωr
2Q .

With Q = 1, taking the limiting case ω
ωr

<< 1 in Eq (2.19), it is clear that the value chosen for the transverse
shunt impedance R⊥ has to be the constant value of the imaginary part of the transverse impedance
one wants to obtain below the cut-off frequency. In longitudinal, since the broad-band model gives a

constant
Z‖
n , we see from Eq. (2.21) taken at the limit ω

ωr
<< 1 that the value chosen for the longitudinal

shunt impedance has to be R‖ =ℑ
[

Z‖
n

]
ωr
ωr ev

(for Q = 1).

Using (as a first estimate) the broad-band model of Ref. [84, chap. 5, p. 101], which takes into account
beam screens pumping slots, beam position monitors (BPM), shielded and unshielded bellows, vacuum
valves, experimental chambers, RF cavities, Y-chambers, beam instrumentation other than BPM, space-
charge and broad-band contributions from the collimators, giving

ℑ
[

Z‖
n

]
= 0.07Ω and ℑ [Z⊥] = 1.34 MΩ/m for injection optics, (2.23)

ℑ
[

Z‖
n

]
= 0.076Ω and ℑ [Z⊥] = 2.67 MΩ/m for squeezed optics, (2.24)

we get the shunt impedances as

R‖ = 31.1 kΩ and R⊥ = 1.34 MΩ/m for injection optics, (2.25)

R‖ = 33.8 kΩ and R⊥ = 2.67 MΩ/m for squeezed optics. (2.26)

Note that in the transverse plane those values have already been weighted (see Section 2.3.2) by the
beta functions over the average beta functions from the smooth approximation (taken approximately
as <βsmooth >∼ 70 m both in horizontal and vertical, see Appendix F.1). In the case of squeeze optics
(i.e. optics with a lower beta at the interaction points), β∗ = 0.55 m is assumed in both ATLAS and CMS
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interaction points, which is not consistent with what is done for all the other elements for which we have
chosen the case β∗ = 1.5 m, corresponding to normal operation in 2011, at least until September (see
Appendix F). Since lower β∗ means higher beta functions on average, our broad-band impedance model
for squeezed optics is probably slightly pessimistic for the 2011 situation.
In Fig. 2.14 we show the longitudinal (over n) and transverse broad-band impedances and wake functions
obtained from Eqs. (2.19) to (2.22), when injecting the above values for the squeezed optics. We can

see in Figs. 2.14a and 2.14c that
Z‖
n and Z⊥ are indeed constant and purely imaginary up to the cut-off

frequency. In Figs. 2.14b and 2.14d the short-ranged nature of the broad-band wake functions appears
clearly: it is significant only for a distance less than the bunch length (which is of the order of 0.36 m at
3.5 TeV/c).
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Figure 2.14: Broad-band impedances and wake functions at squeezed optics (β∗ = 0.55m at CMS and
ATLAS interaction points).
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2.3 Summing the element contributions into a single-kick model

The previous sections showed how we obtained the impedances and wake functions of each machine
element considered in the impedance model. Those individual impedances and wakes need now to
be assembled into a single model for the full machine. We will here first make a few reminders about
linear dynamics of individual particles in an accelerator, before explaining how we weight and sum all
impedance contributions into a single-kick model, i.e. impedances or wake functions applied only once
per turn in a certain point of the ring.

2.3.1 Some reminders on 2D linear beam dynamics in the transverse plane

For a given particle of cartesian coordinates
(
x(t ), y(t ), s(t )

)
, the equation of motion in the particle

accelerator is governed by Newton’s second law of motion, namely:

d~p

d t
= ~F (2.27)

where ~p is the momentum and ~F the total force acting on the particle. In the framework of special
relativity, one gets in the horizontal plane, with m0 the rest mass of the particle:

Fx = m0γ
d vx

d t
= m0γ

dυx

d s

d s

d t
≈ m0γυ

d

d s

(
d x

d t

)
≈ m0γυ

2x ′′, (2.28)

with x ′′ = d 2x
d s2 , and γ and υ defined as in Chapter 1 (respectively relativistic mass factor and velocity along

the orbit). Note that we assumed that there is no energy deviation from the design energy, and that
d s
d t ≈ υ, which is strictly speaking the case only if the orbit on which the particle is travelling is exactly the
design (or reference) orbit along which the longitudinal coordinate s is constructed. More rigourous
calculations [102] show that the above equation can be obtained as a linearization of the exact equation
of motion of a particle following an orbit a priori different from the design one.
We neglect then the weak focusing from the dipoles [102], and we assume that ~F comes only from
the linear (transverse) magnetic field in the quadrupoles around the ring and that there is no skew

quadrupoles so no coupling (∂Bx
∂x = ∂By

∂y = 0 [102]), so we write ~F as (neglecting transverse velocities with
respect to the longidutinal one υ)

~F = qυ
(−By ~ex +Bx~ey

)=−qυ

(
∂By

∂x
x~ex − ∂Bx

∂y
y~ey

)
=−qυ

∂By

∂x

(
x~ex − y~ey

)
,

with q the particle charge, and where the last equality was obtained from Maxwell equation ~curl~B = 0

(the field is static in the magnets). In the above,
∂By

∂x is the constant gradient in the quadrupoles. We can
then obtain the well-known equation of motion [102]

x ′′+K (s)x = 0, (2.29)

with

K (s) ≡ −Fx

m0γυ2x
= q

p0

∂By

∂x
,
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where p0 ≡ m0γυ is the momentum of the particles.
Equation (2.29) is a Floquet differential equation since K (s) is periodic of period the ring circumference.
In Ref. [102] one proves that the general solution is an oscillation around the design orbit x(s) = 0, called
betatron oscillation, which can be written

x(s) =
√
εxβx (s)cos

(
µx (s)−µx0

)
, (2.30)

where βx (s) is a positive and periodic function called the horizontal beta function (of periodicity the ring
circumference), µx (s) = ∫ s

s0

dσ
βx (σ) is the phase function, and εx the constant single-particle horizontal

emittance. A very similar equation can be written for the vertical coordinate of the particle:

y(s) =
√
εyβy (s)cos

(
µy (s)−µy0

)
, (2.31)

with similar definitions of βy (s), µy (s) and εy .
We can note here that an additional external force ~F ext (such as the wake fields from other particles) can
be added to Eq. (2.29) quite easily thanks to Eq. (2.28):

x ′′+K (s)x = F ext
x

m0γυ2 . (2.32)

The tune is defined as the total phase over a full circumference divided by 2π, and represents the number
of betatron oscillations done by the particle, per turn:

Qx = 1

2π

∫ s0+C

s0

ds

βx (s)
and Qy = 1

2π

∫ s0+C

s0

ds

βy (s)
, (2.33)

where C is the machine circumference. Note that the tunes are independent on the location s0 at which
the integral is computed (from the periodicity of the beta functions).
Two important properties need to be emphasized concerning the beta functions:

• from Eqs. (2.30) and (2.31), the particles transverse coordinates around the ring are proportional
to the square root of the beta functions,

• if a kick (i.e. an instantaneous transverse momentum change) is given to all particles every turn at
the same location s0 around the ring (due for instance to a dipole field error), the new closed orbit
around which particles will perform betation oscillations will be different from x(s) = 0 and will be
proportional to the square root of the beta functions at the position of the kick [103, slide 7]. This
means that the square root of the beta function at a certain location around the ring measures
the “sensitivity” of the beam to a kick at this location, or in other words the amplitude of the effect
of any transverse kick around the ring is likely to be proportional to the square root of the beta
function at the kick position.

2.3.2 Weighting by the beta functions

The most intuitive way to use in a tracking program all the wake functions computed for individual
machine elements would be to track a particle around the ring in such a way that at each location where
one of those elements is present, the wake fields coming from particles ahead of the particle tracked
should be applied through a kick. However, depending on the number of elements to be taken into
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account, this could be very time consuming as the ring would have to be subdivided into as many
parts as there are locations with elements creating impedances. Also, such an accurate tracking seems
somehow irrelevant because the effects of wake fields begin to appear usually on a slow basis (after
several hundreds or thousands of turns), meaning that an “averaged” tracking at each turn should be
sufficient. One widespread way to simplify the tracking is therefore to consider that all the wake functions
are concentrated at a single location around the ring, and we only need to apply one kick there and track
the particle for the full turn, which decreases a lot the number of operations to be performed each turn.
To assemble all the wake functions and apply them at a single location, an heuristic approach is to
consider that as far as the wake functions and their effects are concerned, the only significant parameters
that depend on the location of a machine element, are the beta functions. Indeed, according to what
was said in the previous section, the particles transverse coordinates are proportional to the square root
of the beta functions, and the total transverse wake functions as well since they are proportional to those
coordinates when we neglect constant and nonlinear terms (see e.g. Sections 1.4.6 and 1.5.6). Moreover,
the effect of a kick being also proportional to the square root of the beta function in the direction of the
kick (see previous section), the square root of the beta function appears twice.
In other words, to get the effect at a given location around the ring, of a certain transverse wake function
due an element located elsewhere, we have to weight it by the square root of the beta function at its real
location, in the same direction as the source (or test) particle coordinate it is multiplied by, times the
square root of the beta function at its real location in the direction of the wake component considered,
all of this being divided by the same beta functions taken at the point where the kick is applied. In doing
so we totally neglect the effect of the phase advance between different locations. Note that we can take
any point around the ring as the final kick location, so any value for the beta functions there. Therefore,
without loss of generality we can consider that at the point chosen the beta functions have the values
coming from the smooth approximation (see Appendix F.1). The final weighting formulae are then

W W all ,di p
x =∑

j

βx (s j )W W all ,di p
j ,x

<βsmooth
x > , W W all ,di p

y =∑
j

βy (s j )W W all ,di p
j ,y

<βsmooth
y > , (2.34)

W W all ,quad
x =∑

j

βx (s j )W W all ,quad
j ,x

<βsmooth
x > , W W all ,quad

y =∑
j

βy (s j )W W all ,quad
j ,y

<βsmooth
y > , (2.35)

W W all ,di p
x y =∑

j

√
βx (s j )βy (s j )W W all ,di p

j ,x y√
<βsmooth

x ><βsmooth
y >

, W W all ,quad
x y =∑

j

√
βx (s j )βy (s j )W W all ,quad

j ,x y√
<βsmooth

x ><βsmooth
y >

,

(2.36)

where < βsmooth
x > (resp. < βsmooth

y >) is the average beta function in x (resp. y) from the smooth
approximation, and where the sums run over all the impedance contributors j located at s j , for which

the individual wake functions are W W all ,di p
j ,x , W W all ,quad

j ,x , etc. Note that for the coupling terms one has
to weight by the square root of the beta functions in both directions: one for the component of the wake
considered, and the other for the transverse coordinate this term is multiplied by. Also, for the transverse
constant terms (not considered here), only one beta function square root would have to be applied as the
weighting factor. No weighting has to be done in longitudinal, and simply summing all the longitudinal
wake functions provides the total longitudinal model.
An important remark is that in doing this weighting we assumed a purely 2D motion, i.e. no linear
coupling between x and y . Different formulae should be used in the case of linear coupling [104].
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Finally, the same weighting procedure can be applied to impedances, to get the total impedance model
that can be used in instability theories such as Sacherer’s [5] or Laclare’s [6] ones, that are also essentially
applying impedances of the full ring at a single location. We obtain:

Z W all ,di p
x =∑

j

βx (s j ) Z W all ,di p
j ,x

<βsmooth
x > , Z W all ,di p

y =∑
j

βy (s j ) Z W all ,di p
j ,y

<βsmooth
y > , (2.37)

Z W all ,quad
x =∑

j

βx (s j ) Z W all ,quad
j ,x

<βsmooth
x > , Z W all ,quad

y =∑
j

βy (s j ) Z W all ,quad
j ,y

<βsmooth
y > , (2.38)

Z W all ,di p
x y =∑

j

√
βx (s j )βy (s j )Z W all ,di p

j ,x y√
<βsmooth

x ><βsmooth
y >

, Z W all ,quad
x y =∑

j

√
βx (s j )βy (s j )Z W all ,quad

j ,x y√
<βsmooth

x ><βsmooth
y >

, (2.39)

This way of weighting the impedances, used originally in Refs. [105, 106], has been rigorously proven by
Scott Berg [107].

2.3.3 Total impedances and wake functions in the LHC

In the final model, we took into account all the collimators calculated in Section 2.1.1, all the beam
screens from Section 2.1.2 and all the warm sections of the vacuum pipe from Section 2.1.3, summing all
these contributions thanks to the formulae of Section 2.3.2 and the beta functions that can be found
in Appendix F, Tables F.1, F.2, F.6 and F.9, taking the values from Eqs. (F.3) (at injection energy) or (F.4)
(at collision energies) as the beta functions at the location of the final kick. We neglect the rather small
constant term in the transverse impedances of the asymmetric TCDQs. The broad-band model of
Section 2.2 (already weighted by the beta functions) is then added to the full model.
The full transverse impedance model obtained this way is plotted at injection energy in Fig. 2.15a, and
at 3.5 TeV/c in Fig. 2.15b. The corresponding wake functions are respectively in Figs. 2.15c and 2.15d.
In these plots are showns all the components of the transverse impedances or wake functions (dipolar,
quadrupolar and coupled terms), excluding only the constant transverse impedances from the TCDQs.
It appears that both for the impedances and the wake functions, the dipolar terms are dominant with
respect to the quadrupolar terms and even more with respect to the coupled terms.
The longitudinal impedance has been calculated as well and is shown in Figs. 2.16a and 2.16b, but it will
be neglected in the simulations performed in the following chapters.
It is of interest to know the respective contributions of each element around the LHC, in terms of
percentage of the total impedance or wake functions versus frequency or distance behind the source,
taking into account the weighting by the beta functions when calculating each contribution. This is
shown for the vertical dipolar impedance in Fig. 2.17, for the vertical dipolar wake in Fig. 2.18, and for
the longitudinal impedance in Fig. 2.19.
These plots show that the beam screen contribution is the dominant one at low frequencies and for the
long-ranged wake functions. This is particularly true for the real part of the impedances, up to more than
10 kHz. At intermediate frequencies and distances, the collimators are dominant in the transverse plane,
and this is more the case at 3.5 TeV/c than at injection. In longitudinal, the different contributions of the
warm vacuum pipe, the beam screens and the collimators are almost equal at intermediate frequencies.
Finally, at high frequencies the broad-band impedance dominate, above a few GHz for the real part of
the impedances, above ∼ 100 MHz for the imaginary part of the vertical dipolar impedances, and above
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∼ 10 MHz for the imaginary part of the longitudinal impedance.
Note finally that the repartition of the contributions to the horizontal dipolar impedance and wake
function (not represented here) is very similar to the vertical case.
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(a) Transverse impedances at injection.
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(b) Transverse impedances at 3.5 TeV/c.

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

Distance behind the source [m]

W
a

k
e

 [
V

 /
 (

C
m

)]

 

 

|W
x

dip
|

|W
y

dip
|

|W
xy

dip
|

|W
x

quad
|

|W
y

quad
|

|W
xy

quad
|

(c) Transverse wake functions at injection.
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(d) Transverse wake functions at 3.5 TeV/c.

Figure 2.15: The LHC impedance and wake function model in the transverse plane (beam 1).
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(b) Longitudinal impedance at 3.5 TeV/c.

Figure 2.16: The LHC impedance model in longitudinal (beam 1).
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(a) At injection, real part.

101 102 103 104 105 106 107 108 109

Frequency [Hz]

0

20

40

60

80

100

Pe
rc

en
t o

f t
he

 to
ta

l

Warm vacuum pipe
Beam screens
Collimators
Broad-band model

(b) At injection, imaginary part.
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(c) At 3.5 TeV/c, real part.
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(d) At 3.5 TeV/c, imaginary part.

Figure 2.17: Repartition of the various contributions to the LHC total vertical dipolar impedance.

79



Chapter 2. The LHC impedance and wake function model

100 101 102 103 104 105 106

Distance behind the source [m]

0

20

40

60

80

100

Pe
rc

en
t o

f t
he

 to
ta

l

Warm vacuum pipe
Beam screens
Collimators
Broad-band model

(a) At injection.
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(b) At 3.5 TeV/c.

Figure 2.18: Repartition of the various contributions to the LHC total vertical dipolar wake function.
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(a) At injection, real part.
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(b) At injection, imaginary part.
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(c) At 3.5 TeV/c, real part.
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(d) At 3.5 TeV/c, imaginary part.

Figure 2.19: Repartition of the various contributions to the LHC total longitudinal impedance.

80



2.4. Conclusion

2.4 Conclusion

In this chapter we have fully described the impedance and wake functions model we use for the LHC.
We took into account the wall impedances of all the collimators, of the beam screens and of the warm
part of the vacuum pipe. For the collimators, to compute the impedances we used extensively the new
flat chamber theory presented in Section 1.5, benchmarking it with the usual approach consisting in
applying constant form factors to the results of an axisymmetric theory. For the beam screens and
warm part of the pipe we got the impedances thanks to Zotter’s theory with Yokoya factors, using the
approach of Section 1.4, in particular the matrix formalism that speeds up the computations by at least
two orders of magnitude, with respect to previous implementations of Zotter’s formalism [76]. The wake
functions of all these impedances were computed thanks to the technique of Section 1.6.3 that proved to
be efficient and accurate.
Finally, to these wall impedances was added a broad-band impedance model from the LHC design
report [84], as a first estimate of geometrical and short-ranged wake fields.
The full LHC wake function and impedance model can be computed in a few hours time for any
collimator settings, any of the two beams, and at injection, intermediate (3.5 TeV/c) or top (7 TeV/c)
energy. With settings used during the physics runs in 2011, the long-ranged wake functions (and low
frequency impedances) are dominated by the ones of the beam screens, the intermediate range by the
collimators, while the high frequency impedances are dominated by the broad-band contributions.
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3 A new simulation tool for coupled-bunch
impedance-related instabilities

Transverse coupled-bunch instabilities occur in general when several bunches interact with the machine
impedance, creating some wake fields that act back on the bunch train in such a way as to give rise to
an exponentially growing oscillation. The ability to compute the complex tune shift associated to such
instabilities is critical for the machine operation, as one wants to make sure that the means installed in
the machine to prevent such instabilities – typically the transverse feedback and/or octupoles providing
Landau damping – are sufficient to suppress them.
To evaluate the rise times of such instabilities, several theories exist, such as those from Sacherer [5, 59],
Laclare [6] and Scott Berg [107], as well as a macroparticle simulation code, MTRISM [81]. The latter
has several limitations, in particular the absence of quadrupolar impedance, the impossibility to load
wake functions tables which can reflect the complexity of the machine impedance, and the rigid bunch
approximation for the wake fields computation. All the theories cited rely on strong assumptions:
Sacherer’s formula assumes certain predefined eigenvectors, i.e. predefined intrabunch oscillation
modes; both Sacherer’s and Laclare’s formalisms assume a machine entirely filled with equidistant
bunches, which is not the case in the LHC; Sacherer’s formalism also assumes no transverse mode
coupling. On the other hand Scott Berg’s theory is much more general and includes in principle lattice
non-linearities, chromaticity, mode coupling, and any kind of bunch filling scheme. Still, wake fields
from a cylindrical structure are assumed there, which is a strong asumption in many machines with non
axisymmetric elements, in particular in the case of the LHC (see Chapter 2); also in practical cases this
very general theory has been simplified to study only equidistant bunches, which is again too restrictive.
Implementation of the full theory seems a quite challenging task.
Therefore, to be able to study multibunch instabilities due to wake fields, the most straightforward and
general way was to extend the single-bunch code HEADTAIL [3, 4]. A first simplified version, accounting
only for rigid bunch oscillations with no longitudinal motion, was already developped in Ref. [108]. We
present here a new extension that can in principle handle multibunch behaviour without neglecting
intrabunch motion.

3.1 Algorithm

HEADTAIL is a macroparticle simulation code where each individual macroparticle i is tracked through
a ring subdivided into several kick sections. The macroparticles’ transverse positions (xi , yi ) and their
derivatives (x ′

i , y ′
i ) with respect to s (the curvilinar coordinate along the ring) are initialized according to

Gaussian distributions, while their longitudinal position in the bunch zi and their relative momentum
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deviation δi = pi−p0

p0
(with p0 the reference momentum and pi the momentum of the macroparticle i )

can have either Gaussian or uniform distribution, confined to a certain bunch length in the latter case.
The longitudinal components can also be confined to a linear or nonlinear bucket – all those different
possible options are set in input. Then, one simulates the collective behaviour of the macroparticles
around the ring in the following way:

1. At each kick section, every bunch (which all contain the same number of elementary particles) is
sliced longitudinally according to a predefined number of slices nsl , all of them having the same
thickness. The average offsets (xS , yS) from the beam orbit and the number of elementary particles
(protons or electrons) nS in each slice S are computed. The slicing goes up to a given number of
σz (RMS standard deviation) of the longitudinal distribution (typically from −2σz to +2σz , which
is what we will always choose here), i.e. all macroparticles out of this extension are not part of the
slices so do not give or receive any wake fields kicks, but are still transported through the lattice.

2. Then, at the same kick section, each macroparticle receives a kick in all three directions, i.e. ∆x ′
i is

added to x ′
i , ∆y ′

i to y ′
i and ∆δi to δi , with1

∆x ′
i =

e2

m0γυ2

∑
zS>zSi

nSWx
(
zS − zSi , xS , yS , xSi , ySi

)
,

∆y ′
i =

e2

m0γυ2

∑
zS>zSi

nSWy
(
zS − zSi , xS , yS , xSi , ySi

)
,

∆δi =− e2

m0γυ2

∑
zS≥zSi

nSW||
(
zS − zSi

)
, (3.1)

with the same conventions as in the previous chapters (υ is the beam velocity, γ its relativistic mass
factor, m0 the rest mass of the elementary particles), and with e the elementary charge, Si the
slice containing the macroparticle i , and zS the longitudinal position of each slice (the reference
being the first slice of the first bunch, at the head of the bunch train, with decreasing z when going
toward the tail of the bunches). In the above expressions the sums run over all slices and bunches
before the slice of the macroparticle considered, neglecting thus any possible wake in front of any
given slice (which is an ultrarelativistic approximation). The sum continues up to a certain number
of turns, nw ake (specified in input), i.e. the wakes of preceding turns are taken into account. W||(z)
is the longitudinal wake function, while Wx (z) and Wy (z) are the total transverse wake functions
given by (see previous chapters)

Wx (z, xS , yS , xSi , ySi ) =W di p
x (z)xS +W di p

x y (z)yS +W quad
x (z)xSi +W quad

x y (z)ySi , (3.2)

Wy (z, xS , yS , xSi , ySi ) =W di p
y (z)yS +W di p

x y (z)xS +W quad
y (z)ySi +W quad

x y (z)xSi , (3.3)

where the superscript di p stands for “dipolar wake” and quad for “quadrupolar wake”. Note that
the coupled terms (linear wakes in the x direction but proportional to the y position, and vice

versa) are taken into account. The wake functions above (W di p
x (z), W quad

x (z), etc.) are provided

1In transverse, these expressions can be found by integrating Eq. (2.32), without the focusing term, over the length of
an element creating the wake function, with the force expressed thanks to Eqs. (1.219) and (1.220) summed over the slices
that are before the particle considered (taking q = e and Q = enS ), and replacing

∫ L dsx′′(s) by ∆x′
i and

∫ L ds y ′′(s) by ∆y ′i .
In longitudinal, one can obtain the result directly from Eq. (2.27), with the same procedure (note the sign change, due to
Eq. (1.218)).
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in a table given in input, and should contain the single-kick model of the machine, so weighted
by the actual beta functions around the ring if several machine elements are considered (see
Section 2.3.2). When there are several kick sections per turn, the single-kick wake functions are
simply divided by the number of kick sections.
The sums in Eqs. (3.1) are quite time consuming for large number of slices, of bunches and/or
of preceding turns taken into account, so we actually replace them by sums where contiguous
slices (or even bunches) are grouped together when the wake functions do not change by more
than 0.1% inside one group, which is usually the case for large distances from the macroparticle
i . The groups of slices (or bunches) such defined are considered as single slices for the sums in
Eqs. (3.1), meaning that the wake functions are computed only for one distance zS − zSi (taken
as the average of the zS − zSi of all the slices of the group). To know how to form such groups of
slices (or bunches) where the wake do not changes by more than 0.1%, once at the beginning of
the simulation we scan the full wake functions and identify distances such that in-between them
the wakes do not change by more than this value.

3. The transverse components of each macroparticle are transported to the next kick section with a
4D linear map (including coupling), assuming that at each kick section the beta functions βx and
βy (see Section 2.3.1) are at an extremum and all equal, therefore taking into account only the phase
advance between the kick sections and the beta functions. The chromaticity and the transverse
amplitude detuning due to the octupoles are included by modifying for each macroparticle the
phase advancesµx andµy from this kick section to the next, according to the momentum deviation
and transverse components of the macroparticle:

µx = 2π

nki ck

(
Qx +Q ′

xδi +ax Jx,i +ax y Jy,i
)

, µy = 2π

nki ck

(
Qy +Q ′

yδi +ax y Jx,i +ay Jy,i

)
(3.4)

with nki ck the number of kick sections per turn, and Q ′
x (resp. Q ′

y ) the derivative of the horizontal
(resp. vertical) tune with respect to the momentum deviation δ. The action variables are defined as

Jx,i ≡ εx,i

2 = x2
i +β2

x x ′2
i

2βx
and Jy,i ≡ εy,i

2 = y2
i +β2

y y ′2
i

2βy
[109], with εx,i and εy,i the single particle emittances

from Eqs. (2.30) and (2.31) and assuming again a zero derivative with respect to s of the beta
functions. The coefficients ax , ax y and ay represent the detuning due to the octupoles and are
obtained through [109]

ax = 3

8π

∫ s0+C

s0

dsβ2
x (s)

O3(s)
p0

e

, ay = 3

8π

∫ s0+C

s0

dsβ2
y (s)

O3(s)
p0

e

,

ax y =− 3

4π

∫ s0+C

s0

dsβx (s)βy (s)
O3(s)

p0

e

, (3.5)

where C is the machine circumference and O3 ≡ 1
6
∂3By

∂x3 the octupolar strength. In the specific case
of the LHC, they are two kinds of octupoles, focusing and defocusing, with different beta functions
and polarities, such that [110]

ax = 3e

8πp0

(
N F

octβ
F
x

2
OF

3 l +N D
octβ

D
x

2
OD

3 l
)

, ay = 3e

8πp0

(
N F

octβ
F
y

2
OF

3 l +N D
octβ

D
y

2
OD

3 l
)

,

ax y =− 3e

4πp0

(
N F

octβ
F
xβ

F
y OF

3 l +N D
octβ

D
x β

D
y OD

3 l
)

,
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with l = 0.32 m [111] the length of the octupole magnets, βF
x = 175.5 m, βF

y = 33.6 m, βD
x = 30.1 m,

βD
y = 178.8 m (from MAD-X with the LHC optics – see Appendix F.1; those values are independent

on the beam or the squeeze), N F
oct = N D

oct = 84 [111, p. 84] the number of focusing and defocusing

octupoles2, and with the octupolar strength given in T.m-3 by [110] OF
3 = 63100

I F
oct

550 and OD
3 =

−63100
I D

oct
550 where I F

oct and I D
oct are the currents (in A) in the focusing and defocusing octupoles

(the maximum being 550 A in the LHC). In the end, one obtains for the LHC (in m-1)

ax ≈ 7000

p0[GeV/c]

(
267065

I F
oct [A]

550
−7856

I D
oct [A]

550

)
, ay ≈ 7000

p0[GeV/c]

(
9789

I F
oct [A]

550
−277203

I D
oct [A]

550

)
,

ax y ≈ 7000

p0[GeV/c]

(
−102261

I F
oct [A]

550
+93331

I D
oct [A]

550

)
, (3.6)

with I F
oct and I D

oct set in input.

4. For the first kick section of the ring and after it has been dealt with as explained previously, the
synchrotron motion is treated (separately for each bunch) solving the 2D longitudinal equations
of motions (linearized or not) thanks to a Runge-Kutta algorithm or a kick approximation. Various
options are possible for this longitudinal behaviour.

5. Depending on the input options, lost macroparticles (out of the vacuum pipe transversely, or out
of the bucket longitudinally) are taken away at each kick section.

In all the practical applications of the code presented in the following sections, only one kick section per
turn was used.
The code has been parallelized over the number of bunches, i.e. in a multiprocessor architecture each
processor will be assigned a certain number of bunches. Such a parallelization is quite efficient since all
the bunches can be treated almost independently, the only requirement being that after each slicing (see
above) the processors exchange for all the bunches the positions and number of particles of each slice,
such that the wakes can be computed in all bunches. This represents a quite limited amount of data,
since the number of slices is usually restricted to a few hundreds at most. Indeed, Fig. 3.1 shows that the
computational time is inversely proportional to the number of processors used, i.e. the parallelization is
linear with the number of processors.

3.2 Postprocessing tools to analyse coupled-bunch instabilities

3.2.1 Single-bunch analysis

In the case of multibunch simulations or measurements, each bunch can always be considered individu-
ally, or the average of the centroids of all bunches can be computed in order to get the average beam
motion. In that case, one can apply single-bunch techniques to analyse data, such as frequency domain
analysis thanks to a one dimensional Fast Fourier Transform (FFT) or to the program SUSSIX [112]
which gives the same kind of output as the FFT except that the frequency domain spectrum obtained is

2Actually, in 2010-2011 two octupoles per LHC ring were not present (both defocusing for beam 1, and both focusing for
beam 2) [110]. This represents a change of the detuning coefficients of about 1%, which we neglect.
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Figure 3.1: Inverse of the computational time vs. number of processors used, in the case of a HEADTAIL
simulation on 72 bunches with 10 slices per bunch.

usually much finer. In particular, intrabunch headtail modes are often much more visible with a SUSSIX
analysis than with a standard FFT analysis [76, p. 147]. Also, SUSSIX gives much higher precision on
the tunes obtained, in particular one can get accurate tune shifts between the unperturbed tune (or the
unperturbed spectrum line of a synchrotron sideband) and the growing peak due to the impedances.
Another important quantity that one wants to get both from simulation and measurements data is
the rise time (or, equivalently, the growth rate, or imaginary tune shift) of a certain instability. One
straightforward and intuitive way to obtain it is simply to fit the maxima of the turn by turn centroid
positions data of the bunch (or of the full beam) by an exponential (which is a linear fit of the logarithm
of the data). However, this can be relatively inaccurate, in particular for measurements, where artificial
peaks may pollute the data and make it difficult to extract the maxima. Another way to obtain such rise
time is to compute the SUSSIX spectra over a “sliding window” along the simulation, i.e. over a fixed
number of turns that we move from the beginning toward the end of the data. This way one obtains
spectrum amplitudes varying with turn number, which we can fit with an exponential in order to get the
rise time. This technique is very reliable and gives quite accurate results provided the size of the window
is set appropriately (not too small to get enough resolution on the peaks, but not too long to get enough
spectra to do the final fit). One shortcoming is that one can get this way only one rise time (the lowest
one of all present modes), because it happens to be the same for all the peaks of the spectrum, i.e. all the
peaks grow according to the most critical mode. This is probably due to the fact that frequency domain
analysis (FFT or SUSSIX) is not really good at analysing data with growing exponentials in it.
If one wants to get the rise time of modes that are not the most critical one, we need to perform an-
other kind of spectral analysis that takes into account not only oscillating exponentials (i.e. with an
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imaginary argument) but also growing (or damped) exponentials (i.e. with a real argument). In other
words, one would need to get a spectral decomposition over complex frequencies. A promising and still
experimental way to do such a spectral decomposition is to adopt the following procedure, inspired
from Ref. [113]:

1. Given the signal x(n) between n = 0 to n = N −1, we can compute for any real number σ

x̃σ(k) = FFT[e−σn x(n)], εσ = 1

N

N−1∑
n=0

e−2σn |x(n)|2 , and Pσ[x](k) = |x̃σ(k)|2
εσ

, (3.7)

where FFT[ f ] denotes the FFT of a certain function f . The key result of Ref. [113] is that Pσ[x]
turns out to be maximum for the growth rate σ0 and the frequency k0 of the most growing mode.
One can take the maximum line of Pσ[x], namely maxk (Pσ[x](k)), and maximize it versus σ with
a standard optimization algorithm, getting a first estimate σ0 of the highest growth rate.

2. To get a more accurate frequency of the line with the highest growth rate, we can multiply x(n) by
an exponential factor in the following way:

xα(n) = e2π jαn x(n).

A first estimate of the highest peak is then obtained from the maximization versus α of the highest
peak in the FFT of xα(n), thus obtaining α0. Then

x(n) = e−2π jα0n xα0 (n) = 1

N
e−2π jα0n

N−1∑
k=0

FFT[xα0 ](k)e2π j kn
N = 1

N

N−1∑
k=0

FFT[xα0 ](k)e2π j
(

k
N −α0

)
n

such that the corresponding frequency (or tune) of the highest peak is given by Q0 = k0
N −α0 with

k0 the maximum line of the spectrum (i.e. such that maxk
∣∣FFT[xα0 ](k)

∣∣= ∣∣FFT[xα0 ](k0)
∣∣).

3. From the two previous steps we can initialize with σ0 and α0 a two dimensional maximisation of
maxk (Pσ[xα](k)) over both α and σ, where the power spectrum Pσ[xα] is defined as above but
with x replaced by xα. One then gets σ1 (growth rate) and α1, from which the tune Q1 is obtained
by the same procedure as in the previous step.

4. Finally, the amplitude of the exponential of complex angular frequency σ1 + j 2πQ1 is obtained
from the amplitude (divided by N ) of the zeroth line of the FFT of x(n)e−(σ1+ j 2πQ1)n :

A(σ1 +2π jQ1) = FFT[x(n)e−(σ1+ j 2πQ1)n](0)

N
.

5. We can then take out the exponential term obtained from the full signal, i.e. replace the initial x(n)
by x(n)− A(σ1 + j 2πQ1)e(σ1+ j 2πQ1)n , and reiterate the full procedure several times.

In such a way a set of harmonics with complex frequencies can be obtained. Note that for the initial
signal x(n) we can take the bunch (or beam) centroid horizontal (resp. vertical) position, or the quantity
x(n)− jβx x ′(n) (resp. y(n)− jβy y ′(n)) as is done in SUSSIX [112], provided that the data of x ′ is available
as well as the beta functions and that the derivative of the beta functions is zero at the location where x
and x ′ (resp. y and y ′) are observed. These conditions are true in the case of HEADTAIL simulations.
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This technique is quite simple and straightforward to implement, and gives a quite accurate complex
tune shift of the most critical mode observed in a given set of data (see later in Section 3.3). With respect
to the SUSSIX method with the sliding window, this method has the asset that no window width has to
be chosen, the turn by turn data being processed in its entirety. For the other modes possibly present in
the data, less critical than the main mode, results of this procedure are up to now subject to caution and
improvements are probably possible.

3.2.2 Coupled-bunch analysis

Simulations data as well as measurements will often give us the centroid position of each bunch versus
number of turns, i.e. x(n,b) with n the turn number (from 1 to ntur n) and b the bunch number (from 1
to nbunch). This two-dimensional data can be analysed thanks to one dimensional FFT, either along a
bunch train at a given turn, or along the number of turns for a given bunch. Also, two dimensional FFT
can be used to analyse at the same time the coupled-bunch mode number (the mode along the bunch
train) and the tune.
Another two-dimensional technique that we will sometimes use is the Singular Value Decomposition
(SVD), useful in particular when bunch trains are not composed of equidistant bunches, such that the
mode number that the standard FFT could provide would have little meaning. We do here SVD in time
domain and base our analysis on the technique described in Refs. [114, 115].
The idea is that the set of data x(n,b) can be put into a matrix X of size (ntur n ×nbunch), and of elements
xnb ≡ x(n,b). X can in turn be decomposed thanks to the SVD as

X =U T ·W ·V , (3.8)

where U and V are two orthonormal matrices of size respectively (nbunch ×ntur n) and (nbunch ×nbunch),
T denotes the transposition, and W is a diagonal matrix of size (nbunch ×nbunch). This decomposition
can be rewritten

x(n,b) =
nbunch∑

k=1
λk uk (n)vk (b), (3.9)

with λk = Wkk , uk (n) =Ukn and vk (b) = Vkb . The orthonormality conditions are that for any k and l
between 1 and nbunch we have

ntur n∑
n=1

uk (n)ul (n) = δkl and
nbunch∑

b=1
vk (b)vl (b) = δkl ,

with δkl = 1 if k = l , 0 otherwise. In the form given by Eq. (3.9), the SVD gives for each k a “time pattern”
uk (n) and a “spatial pattern” vk (b). Selecting the k with the highest λk will give the patterns of the
dominant oscillations both in time domain and along the bunch train. In turn, both uk (n) and vk (b) can
be analysed thanks to one-dimensional techniques such as the FFT, or for the time pattern the SUSSIX
analysis [112] or the decomposition over complex frequencies (see previous section).
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3.3 Benchmarking the code with Laclare’s theory for dipolar impedance
and a fully filled machine

3.3.1 Short description of Laclare’s results on transverse instabilities

Laclare’s formalism is fully described in Ref. [6]. References [116, 117] also give a synthetic description of
the theory. Here we will summarize the main aspects and results of the theory.
This theory is two-dimensional (i.e. no coupling with the other transverse plane or with the longitudinal
coordinates is considered), and studies the dynamics of one or several equidistant and equipopulated
bunches in a ring. Each bunch has initially a stationary distribution. In longitudinal, this translates into
a phase space density g0(τ̂), normalized by the total number of bunch particles (τ̂ being the amplitude of
the longitudinal motion). With τb the total bunch length in seconds (or four times the standard deviation
for Gaussian bunches), we have

for a Gaussian distribution: g0(τ̂) = 8

πτ2
b

e
−8 τ̂2

τ2
b for 0 ≤ τ̂<∞,

for a parabolic distribution: g0(τ̂) = 8

πτ2
b

(
1−4

τ̂2

τ2
b

)
for 0 ≤ τ̂< τb

2
,

for an elliptical distribution: g0(τ̂) = 6

πτ2
b

√√√√1−4
τ̂2

τ2
b

for 0 ≤ τ̂< τb

2
,

for a “water-bag” distribution: g0(τ̂) = 4

πτ2
b

for 0 ≤ τ̂< τb

2
.

To make comparisons with the HEADTAIL code we will also use a Gaussian distribution cut at the bunch
length, i.e. non-zero for 0 ≤ τ̂< τb

2 only.
The theory (here written for the horizontal plane) consists in solving the linearized Vlasov equation for a

given dipolar impedance Z di p
x , assuming the distribution of particles is perturbed by a term of angular

frequency close to a synchrotron satellite, i.e. close to (Qx +mQs)ωr ev with ωr ev the angular frequency
of revolution, Qs the synchrotron tune and m an integer (headtail – or azimuthal – mode number). In
the low intensity version of the theory (the only one we will use in this chapter), each headtail mode m is
considered independently and cannot couple to another mode. Note that the headtail mode is assumed
to be the same in all bunches.
The final solution of the Vlasov equation appears in terms of the solution of an eigenvalue problem:

∆ωm
c σ

m(l ) =
∞∑

p=−∞
K m

l pσ
m(p), (3.10)

with ∆ωm
c the angular frequency shift with respect to (Qx +mQs)ωr ev for the coherent mode looked for,

σm the eigenvalue associated with this mode, and K m a matrix of components

K m
l p = j e2M Nbωr ev

4πγm0cQx
Z di p

x
[(

n +pM + [Qx ]+mQs
)
ωr ev

] ·∫ τb
2

0
Jm

{[
(n + l M + [Qx ])ωr ev −ωξx

]
τ̂
}

Jm
{[(

n +pM + [Qx ]
)
ωr ev −ωξx

]
τ̂
}

g0(τ̂)τ̂dτ̂, (3.11)
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where Nb is the number of elementary particles per bunch, M the number of bunches, n the coupled-
bunch mode number (which here includes the integer part of the tune), Jm the Bessel function of order m,
[Qx ] the fractional part of the tune, and where the chromaticity is taken into account approximately [107,
p. 92] by an angular frequency shift of valueωξx = ξxQxωr ev

η with η=αp − 1
γ2 the slip factor, ξx =Q ′

x /Qx the
chromaticity and αp the momentum compaction factor. Note that for an infinite Gaussian longitudinal
distribution, the integral in the matrix term above goes up to ∞ instead of τb

2 .
The eigensystem has to be solved for each coupled-bunch mode number n and each headtail mode
number m. The main results are the angular frequency shifts ∆ωm

c from which one can deduce the
complex tune shifts (dividing by ωr ev ), or, equivalently, the real tune shifts and the rise (or damping)
times of the modes. The most critical instability is then the one whose∆ωm

c has the lowest (and negative)
imaginary part.
We recall finally the assumptions under which this theory is valid:

• low intensity (well below the transverse mode coupling regime [106, 118]). Note that in Ref. [6], a
more complicated high-intensity formalism is also developped,

• absence of non-linearities,

• absence of transverse linear coupling or coupling with the longitudinal plane,

• purely dipolar impedance,

• equidistant and equipopulated bunches in the ring,

• same intrabunch motion in all bunches,

• the effect of the chromaticity can be approximated through the chromatic frequency shift.

The formalism has been implemented in a code that automatically checks that the necessary matrix
truncation to solve the system still gives accurate eigenvalues (within 0.1%) by testing convergence with
respect to the matrix size.

3.3.2 Case of 924 equidistant and equipopulated bunches in the SPS

We study first the SPS filled with a 25 ns beam, i.e. containing 924 equidistant bunches. We consider here
the vacuum pipe of the SPS as the only impedance contributor, assuming it has the same cross section all
around the ring. To compute its impedance we use Zotter’s theory as presented in Section 1.4, assuming
the pipe has 2 cm radius and is made of stainless steel (resistivity ρ = 7.2 ·10−7Ωm, dielectric constant
εr = 1.5, permeability µr = 1.01, thickness 2 mm [76]) surrounded by vacuum. The wake function is
then obtained thanks to the technique seen in Section 1.6.3. Since the beam pipe is actually of elliptical
cross section with the horizontal demi-axis significantly larger than the vertical one (2 cm), to get the
dipolar impedances and wake functions for this geometry we multiply by the Yokoya factors [23] for a
flat chamber, namely π2

24 in x and π2

12 in y .
The theory assumes a purely transverse dipolar impedance and a linear longitudinal bucket; we used
then the same conditions in HEADTAIL. Also, in the simulations the longitudinal parameters were
initially matched. The beam parameters used in both the simulation and the theory can be found in
Table 3.1. Note that the normalized RMS emittances are different from the single-particle emittances εx
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and εy considered up to know: they are defined as the average εx or εy of all the particles of the beam
multiplied by βγ, and can be written [84, p. 13]

εn
x =βγ

√
< x2 >< x ′2 >−< xx ′ >2, εn

y =βγ
√
< y2 >< y ′2 >−< y y ′ >2, (3.12)

where < . > indicates the average value.
We show first in Fig. 3.2a the average horizontal beam position versus turn number for various chro-

Table 3.1: SPS with 924 bunches: parameters. Perfect longitudinal matching was assumed.

Number of protons per bunch Nb 5 ·1010

Total bunch length= 4σz 0.76 m
Longitudinal momentum spread σδ 0.002
RF voltage Vr f 3 MV
Harmonic number h 4620
Synchrotron tune Qs 7.25 ·10−3

Bunch spacing 25 ns
Number of equidistant bunches 924
Circumference 6911 m
Horizontal / vertical tune Qx / Qy 26.129 / 26.164
Horizontal / vertical beta function βx / βy 42 / 42 m
Horizontal / vertical normalized RMS emittance εn

x / εn
y 4 / 4 mm.mrad

Relativistic γ 27.7
Momentum compaction factor αp 1.92 ·10−3

Number of slices per bunch nsl 50
Number of macroparticles per bunch nMP 250000
Number of turns of memory for the wakes nw ake 19

maticities, together with the fit of the maxima of the curves. The beam clearly becomes unstable, with a
rise time of a few ms.
The bunch centroid vertical coordinates versus turns are also analysed thanks to the two-dimensional
FFT in Fig. 3.2b, in the case of zero chromaticity. The most critical multibunch mode appears to be
n = 923 (which is equivalent to n =−1), both in horizontal and vertical and for any of the chromaticities
studied. The same mode was found when using Laclare’s theory, provided one adds the integral part of
the tune to the mode number as was done in the previous section.
To benchmark our code, we show in Fig. 3.3 a comparison, in terms of the complex tune shifts, between
Laclare and HEADTAIL for various chromaticities. For HEADTAIL simulations, the complex tune shift has
been computed thanks to the decomposition over complex frequencies of the average beam positions
(method given in Section 3.2.1). We chose the headtail mode m = 0, and the most critical coupled-bunch
mode for Laclare’s theory. The agreement between HEADTAIL and Laclare’s theory is quite good, in
particular for the imaginary part of the tune shift. For the real part, there seems to be a constant offset
for all the chromaticities studied, which might be due to the fact that the wake fields from a given slice
do not affect the slice itself (see Eq. (3.1)).
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(a) Horizontal beam position vs. turn number, for various chromaticities.

(b) 2D-FFT of the bunch centroid position vs. turns, zoomed around high mode numbers (vertical plane, zero
chromaticity). The color represents the amplitude of the FFT (red for high amplitudes).

Figure 3.2: HEADTAIL simulations of 924 bunches in the SPS.
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Figure 3.3: Case of 924 bunches in the SPS: comparison between Laclare’s theory and HEADTAIL
multibunch for the complex tune shift vs. Q ′ (headtail mode m = 0).
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For the highest vertical chromaticity simulated (Q ′
y = 5.23), in the simulation the most unstable mode is

actually a headtail mode with m =−1, rather than the m = 0 mode plotted in Fig. 3.3. Indeed, Fig. 3.4a
shows the vertical profile (i.e. the number of particles of each slice multiplied by their offset) of one of
the bunch of the train, on 100 successive turns, where one can clearly see a node which is the signature
of a headtail mode with |m| = 1. The spectral decomposition over complex frequencies shows that the
highest amplitude is obtained for the m =−1 mode, with a rise time of 3.2 ms and a real tune shift (with
respect to Qy −Qs) of −6.7 ·10−4. In comparison, Laclare’s theory gives the headtail mode m = 1 as the
most critical (actually it has very little difference with respect to the m =−1 one, in terms of both rise
time and real tune shift), with a rise time of 4.5 ms and a real tune shift of −9.6 ·10−4. The discrepancy
remains therefore reasonable (around 30%). Note that even though intrabunch activity appears in this
case, a coupled-bunch motion is also clearly visible, as can be seen from the SVD of the bunch positions
(see Section 3.2.2) in Fig. 3.4b.
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(a) Vertical bunch profile for the 500th bunch of the train.
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Figure 3.4: HEADTAIL simulation of 924 bunches in the SPS, with Q ′
y = 5.23: intrabunch and coupled-

bunch motion.

3.3.3 Case of 1782 equidistant and equipopulated bunches in the LHC

We study now the LHC with a 50 ns beam, i.e. 1782 equidistant bunches. The impedance model used is
the one presented in Chapter 2. As for the SPS case, we used only the transverse dipolar impedances and
a linear longitudinal bucket (initially matched in HEADTAIL).The beam parameters used in both the
simulation and the theory are shown in Table 3.2.
We show first in Fig. 3.5 the average horizontal beam position versus turn number for various chromatic-
ities, together with the fit of the maxima of the curves. The beam is clearly unstable, with rise times
between 0.2 and 0.4 s. We apply also the two-dimensional FFT to the bunch vertical positions versus
turns in Fig. 3.6, in the case of Q ′

y = 2. The most critical multibunch mode appears to be n = 1781 (which
is equivalent to n =−1), both in horizontal and vertical and for any of the chromaticities studied. The
same mode was found when using Laclare’s theory.
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Table 3.2: LHC with 1782 bunches: parameters. Perfect longitudinal matching was assumed.

Number of protons per bunch Nb 1.2 ·1011

Total bunch length= 4σz 0.36 m
Longitudinal momentum spread σδ 1.9 ·10−4

RF voltage Vr f 16 MV
Harmonic number h 35640
Synchrotron tune Qs 2.891 ·10−3

Bunch spacing 50 ns
Number of bunches 1782
Circumference 26658.883 m
Horizontal / vertical tune Qx / Qy 64.31 / 59.32
Horizontal / vertical beta function βx / βy 65.976 / 71.538 m
Horizontal / vertical normalized RMS emittance εn

x / εn
y 3.75 / 3.75 mm.mrad

Relativistic γ 3730.26
Momentum compaction factor αp 3.225 ·10−4

Number of slices per bunch nsl 20
Number of macroparticles per bunch nMP 80000
Number of turns of memory for the wakes nw ake 19

Figure 3.5: HEADTAIL simulations of 1782 bunches in the LHC: vertical beam position vs. turn number,
for various chromaticities.
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3.4. Conclusion

Figure 3.6: HEADTAIL simulation of 1782 bunches in the LHC: 2D-FFT of the bunch centroid position vs.
turns, zoomed around high mode numbers (vertical plane, Q ′

y = 2). The color represents the amplitude
of the FFT (red for high amplitudes).

In Fig. 3.7 is shown a comparison between HEADTAIL simulations and Laclare’s most critical coupled-
bunch mode, in terms of the complex tune shift of the headtail mode m = 0 vs. Q ′. For HEADTAIL the
complex tune shifts were obtained through spectral decomposition of the beam average position over
complex frequencies (see Section 3.2.1). The agreement is very good, in particular for the imaginary tune
shift.

3.4 Conclusion

The wake fields simulation code HEADTAIL is now fully multibunch and includes all the features present
in the previous version of the code (intrabunch motion, amplitude detuning from the octupoles and
chromaticity), at the notable exception of the possibility to simulate the effect of electron cloud. It proved
to be effective in simulating large number of bunches, and reliable since in simple cases agreement with
Laclare’s theory is rather good, for both “rigid-bunch” modes (i.e. headtail mode m = 0) and modes with
intrabunch motion.
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Figure 3.7: Case of 1782 bunches in the LHC: comparison between Laclare’s theory and HEADTAIL
multibunch for the complex tune shift vs. Q ′ (headtail mode m = 0).
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4 Simulation results and comparison with
experiments

In this chapter, simulations results for the transverse coupled-bunch instabilities of the LHC are pre-
sented. We use the code HEADTAIL in its new multibunch version as shown and benchmarked in
Chapter 3, and the LHC transverse impedance model of Chapter 2.
We study first the case of small bunch trains, comparing them to a fully filled machine. Then we present
a case of coupled-bunch instability with intrabunch (headtail) activity, comparing it to a single-bunch
headtail instability. We then make a comparison between simulation results and actual beam-based
measurements in the LHC. Finally, we give predictions for the future operation of the machine at 7 TeV/c .

4.1 Comparison between small trains and a completely filled machine

In the LHC, the beams are made of several bunches, separated by a distance not lower than 7.5 m
(corresponding to 25 ns, or 10 RF buckets). When all the bunches have the same separation between
them, they are said to be equidistant; this was the situation studied in Section 3.3. In reality, more
complex situations arise where all the bunches are not equidistant. In the LHC, one has at maximum
3564 possible slots of 25 ns, some of them being empty while others contain one bunch. A filling pattern
is then a particular way to fill the machine, i.e. to assign slots to the bunches.
To maximize the machine collision rate, it would be best to have all the slots occupied by one bunch,
i.e. a completely filled machine. This is not possible because of several constraints, among which one
can mention the limited capacity of the injectors, which forces the bunches to be grouped into batches
containing 72 bunches separated by 25 ns, or 36 with 50 ns spacing. Another constraint is the injection
kicker magnets rise time, which is the time needed by the injection kicker magnets to reach the magnetic
field required to bend the particles trajectory when they are transfered from one ring or line to another
one (rise time of 225 ns [119] for the injection into the SPS, and 900 ns – although more than this value is
used most often – for the injection into the LHC [84, chap. 16, p. 422]). The LHC dump system – which
protects the machine in case of unwanted events such as beam losses by deviating the beam away from
the main ring – additionally requires an interval of 3µs with empty slots [84, chap. 17, p. 460], for the
rise time of its kicker magnet. All those constraints (plus several others) end up into the following filling
scheme (written in standard form), which contains the maximum possible number of bunches one can
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inject and collide into the LHC [119]:

{[(72(b)+8(e))×2+30(e)]+ [(72(b)+8(e))×3+30(e)]+ [(72(b)+8(e))×4+31(e)]}

+ {[(72(b)+8(e))×3+30(e)]+ [(72(b)+8(e))×3+30(e)]+ [(72(b)+8(e))×4+31(e)]}×3

+ {80(e)} (4.1)

where (b) indicates a 25 ns slot occupied by a bunch and (e) an empty slot. One obtains this way a total
of 2808 bunches (out of 3564 slots). In this filling scheme, the elementary batches contain 72 equidistant
bunches spaced by 25 ns. One can do a very similar filling scheme with instead 50 ns bunch spacing in
those batches, obtaining 36 bunches per batch and a total of 1404 bunches. In the present configuration
of the LHC, up to 1380 bunches with 50 ns spacing were injected and brought into collision at 3.5 TeV/c ;
this is sligthly lower than 1404 because of an additional constraint on the injection system, requiring a
low intensity pilot bunch plus a batch of 12 bunches to be injected before the batches of 36 bunches.
The multibunch HEADTAIL code presented in Chapter 3 now allows to study any filling pattern. This is
particularly interesting for small trains which are in principle far from the situation of a completely filled
machine accessible to theories such as the ones from Sacherer [5, 59] or Laclare [6] (see also Section 3.3).
We study here the case of a train of 36 bunches spaced between them by 50 ns, filling on the whole
only 2% of the total circumference, and compare it to the case of 1782 equidistant bunches with the
same 50 ns spacing, which completely fill the machine. We show in Table 4.1 the parameters used in
the simulations, which are close to those of normal operation at 3.5 TeV/c, the only difference being in
the tunes (64.28 instead of 64.31 and 59.31 instead of 59.32 – this is of little importance in the case of
multibunch instabilities). In Fig. 4.1 the average x and y positions of the full beam are shown. Clearly,

Table 4.1: LHC parameters for the comparison between 36 and 1782 bunches. Perfect longitudinal
matching was assumed.

Number of protons per bunch Nb 1.2 ·1011

Total bunch length= 4σz 0.36 m
Longitudinal momentum spread σδ 1.6 ·10−4

RF voltage Vr f 12 MV (non linear bucket)
Harmonic number h 35640
Synchrotron tune Qs 2.504 ·10−3

Bunch spacing 50 ns
Circumference 26658.883 m
Horizontal / vertical tune Qx / Qy 64.28 / 59.31
Horizontal / vertical beta function βx / βy 66.006 / 71.538 m
Horizontal / vertical normalized RMS emittance εn

x / εn
y 2 / 2 mm.mrad

Horizontal / vertical Q ′
x / Q ′

y 0 / 0
Relativistic γ 3730.26
Momentum compaction factor αp 3.225 ·10−4

Number of slices per bunch nsl 20
Number of macroparticles per bunch nMP 200000
Number of turns of memory for the wakes nw ake 19

the beam with 1782 bunches gets unstable more quickly than the other one, but the rise time is only
about a factor 2.5 higher in horizontal and 4 in vertical. The spatial pattern of the instability, obtained
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4.1. Comparison between small trains and a completely filled machine

(a) Average horizontal position of the beam. (b) Average vertical position of the beam.

Figure 4.1: Beam position vs. turns for 36 bunches and 1782 bunches with 50 ns spacing.

thanks to the SVD technique [114] described in Section 3.2.2, is shown for both cases in Fig. 4.2. It
appears that the spatial pattern of the instability with 1782 bunches has a larger wavelength than the
one with 36 bunches. In Fig. 4.3 we also compare the rise times (computed thanks to an exponential
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(b) Case with 1782 bunches.

Figure 4.2: SVD spatial pattern along the bunches for 36 bunches and 1782 bunches with 50 ns spacing.

fit of the maxima of the average bunch positions) of the first bunches of the train (in the case of 1782
bunches, all the bunches after the 100th one have almost the same rise time). The first bunch is unstable
as well because of the multiturn wake functions (i.e. wakes coming from the previous turns), which
makes the difference between beam break-up (present in linear accelerators) and instabilities that can
be found in circular rings. Indeed, if in the simulation we suppress the multiturn wakes, the first bunch
of the 36-bunches train recovers stability, as can be seen in Fig. 4.4. Another interesting feature visible in
Fig. 4.3 is the fact that the first bunches of the train seems to exhibit a much higher rise time than the

101



Chapter 4. Simulation results and comparison with experiments

0 50 100 150
Bunch number

0.2

0.4

0.6

0.8

1.0

1.2

Ri
se

 ti
m

e 
[s

]
τx , 36 bunches
τy , 36 bunches
τx , 1782 bunches
τy , 1782 bunches

Figure 4.3: Rise times vs. bunch number (low numbers correspond to the head of the train) for 36
bunches and 1782 bunches with 50 ns spacing.

(a) Horizontal position. (b) Vertical position.

Figure 4.4: Case of 36 bunches with 50 ns spacing: effect of the multiturn wake on the first bunch position
vs. turns.
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4.2. Coupled-bunch instabilities with intrabunch activity

others, in particular in vertical for the 36-bunches train. As can be seen in the case of the 7th bunch in
Fig. 4.5, this behaviour is actually due to a kind of decoherence happening after a high number of turns,
which prevents an accurate fitting of the rise time when the number of turns is too low. This effect seems
related to the presence of quadrupolar wake functions as it disappears when only the dipolar terms are
used in the simulations (note that the coupled-terms are less likely to be responsible for this effect, as
they are much smaller than the quadrupolar terms – see Fig. 2.15 in Section 2.3.3). Indeed, as can be seen
in Fig. 2.15d, the vertical quadrupolar wake function is higher than the horizontal one for intermediate
distances behind the source (in particular for the bunch spacing which is of 15 m), which would explain
why this effect is higher in the vertical plane. A tentative explanation of this effect could be the fact that
the detuning due the quadrupolar impedance is dependent on the z position of the macroparticle in
the bunch, so on the longitudinal motion, and therefore entails the same kind of decoherence as the
chromaticity. Then, after several bunches the z-independent detuning due to the previous bunches
becomes dominant with respect to the z-dependent intrabunch detuning, which could explain why this
effect disappears after several bunches.

Figure 4.5: Case of 36 bunches with 50 ns spacing: position of the seventh bunch vs. turns, with the full
impedance model and with dipolar impedances only.

4.2 Coupled-bunch instabilities with intrabunch activity

Intrabunch coherent modes (called headtail modes) cause instabilities even with a single-bunch in the
machine, in particular if the chromaticity is positive. In May 2010 [110], such modes were found to be
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Chapter 4. Simulation results and comparison with experiments

responsible for instabilities developping during the first ramp performed with a high intensity bunch
(i.e. Nb ≈ 1 ·1011), and were suppressed thanks to the octupole magnets, which create some artificial
non-linearity that damp instabilities through the mechanism of Landau damping. Basically, Landau
damping (often considered schematically as the “immune system” of a beam) damp any instability that
is not too strong, or more precisely that is such that the complex tune shift associated with the instability
is not outside of a certain region in the complex plane called the stability diagram [120]. In the present
state of the LHC, headtail modes can be suppressed only through Landau damping, as their intrabunch
motion cannot be detected and damped by the current transverse feedback system.
When many bunches are in the machine, one needs to know if the coupled-bunch counterparts of those
headtail modes (in other words coupled-bunch modes with intrabunch motion) could be stronger than
the single-bunch headtail modes. Using the parameters of Table 4.1 except for Q ′, set to 6 in both planes,
the intensity Nb , set to 3 ·1011 protons per bunch (to artificially enhance the instability and be able to
observe it in much less number of turns than at nominal intensity), and the number of slices and of
macroparticles set to nsl = 50 and nMP = 250000 (taking higher values because intrabunch motion needs
to be more accurately simulated), we compare for the horizontal plane a train of 36 bunches with a
single-bunch in Fig. 4.6. The rise time of the train is slightly lower than the single-bunch one, in this case.

Figure 4.6: Horizontal beam average position vs. turns for a single bunch and for 36 bunches with 50 ns
spacing at 3.5 TeV/c, with Q ′

x = 6 and Nb = 3 ·1011.
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4.2. Coupled-bunch instabilities with intrabunch activity

An intrabunch mode with one node (i.e. a headtail mode with |m| = 1) is clearly visible in Fig. 4.7a, and
the coupled-bunch nature of the spatial pattern from the SVD in Fig. 4.7b. It is interesting to note that
the coupled-bunch spatial pattern has a much smaller wave-length in vertical than in horizontal. Finally,
the spectrum, computed with SUSSIX, of the horizontal and vertical time pattern from the SVD is shown
in Fig. 4.8, and it clearly appears that the main peaks are located at −Qs from the tune, indicating a
m =−1 headtail mode.
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(b) SVD spatial pattern of the highest λk .

Figure 4.7: Case of 36 bunches with 50 ns spacing at 3.5 TeV/c, with Q ′
x = Q ′

y = 6 and Nb = 3 · 1011:
intrabunch and coupled-bunch motion.
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(b) Vertical plane.

Figure 4.8: Tune spectrum, computed with SUSSIX [112], of the SVD time pattern of the highest λk , for
36 bunches with 50 ns spacing at 3.5 TeV/c, with Q ′

x =Q ′
y = 6 and Nb = 3 ·1011.

In Table 4.2 we compare the tune shifts (with respect to Q −Qs) and the rise times for the single-
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bunch and 36-bunches cases. The values were obtained thanks to the spectral analysis on complex
frequencies described in Section 3.2.1, performed on the time pattern from the SVD decomposition seen
in Section 3.2.2 for the 36-bunches case. Clearly, the rise times are lower and the tune shifts significantly
higher in the 36-bunches case with respect to the single-bunch one. Therefore, enhancement of the
headtail modes with many bunches has to be expected, and higher current in the octupoles needed to
damp them.

Table 4.2: Rise times and tune shifts for the single-bunch and 36 bunches cases (50 ns spacing) at
3.5 TeV/c, with Q ′ = 6 and Nb = 3 ·1011.

τx [s] τy [s] ∆Qx ∆Qy

1 bunch 2.25 2.45 4.1 ·10−6 4.1 ·10−5

36 bunches 1.74 1.95 2.9 ·10−5 5.7 ·10−5

4.3 Experimental results vs. simulations

To validate the full process (theory, LHC impedance model and wake fields multibunch simulation
code), a beam-based experiment was performed in the LHC on May 8th, 2011. The idea was to trigger
coupled-bunch instabilities and measure their rise times, at both injection energy and 3.5 TeV/c, with
nominal bunch intensities and 50 ns spaced bunches. As it was seen in the previous section, small trains
give rise to instabilities only a few times weaker than those of a fully filled machine, so the measurements
were performed on a quite small number of bunches: a single batch of 36 bunches spaced by 50 ns,
preceded by 12 bunches (also 50 ns spaced), as required by the injection system.
The advantage of using such small number of bunches is first to minimize the potential danger for the
machine when triggering instabilities with a high intensity beam (although in principle the dump system
of the LHC [84, chap. 17] is able in any case to prevent any incident by deviating the beam out of the ring,
when too high losses around the machine are seen, in particular in the case of such slow instabilities).
Moreover, if we had been using many more bunches, an electron cloud could appear (i.e. electrons
created through secondary emission of the beam pipe surface receiving some primary electrons from
e.g. photoemission), which also gives rise to instabilities. Actually, at the time when the experiment was
performed, the LHC had been “scrubbed” [121], i.e. the beam pipe surface had been treated in such a
way as to emit much less secondary electrons, thanks to long periods of operation with many bunches
at injection energy. This means that a relatively small amount of electron cloud is created even when
many batches of 36 bunches are circulating in the machine, without detrimental effects on the beam. In
the case of our experiment, the fact that the machine had been scrubbed added to the small number of
bunches clearly minimized the chance to get effects from the electron cloud, which have therefore been
totally neglected in our analysis.
As already demonstrated in the previous sections and chapter, coupled-bunch instabilities are in prin-
ciple always developping, whatever the chromaticity, if there are no or too weak non-linearities in the
machine. During normal operation, they are prevented by a transverse feedback system which gives
kicks conteracting any detected oscillation of the bunch centroids. The way to observe instabilities is
therefore simply to switch off the feedback system during a certain amount of time. In addition, to allow
instabilities to develop at top energy (3.5 TeV/c), Landau damping had to be reduced by decreasing the
current in the octupoles.
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4.3. Experimental results vs. simulations

4.3.1 Description of the experiment

Three measurements sequences took place during the experiment: two at injection energy (450 GeV/c),
and one at top energy (3.5 TeV/c). At injection energy, the main manipulations done during each
measurement sequence were the following:

• for each beam (except for the first measurement sequence where only beam 2 could be injected),
injection of 48 bunches from the SPS: a first batch a 12 bunches separated by 50 ns, followed 925 ns
later by a second batch of 36 bunches, also separated by 50 ns1,

• adjustment of the chromaticities to values close to zero, or to slightly negative values,

• switching off the transverse feedback (both beams and both planes) during a time window long
enough to allow an instability to develop, but not too long to avoid high beam losses.

The last two steps were repeated several times in order to get measurements of the instability rise times
for several values of the chromaticities.
For the measurement at top energy, after injection (first step above), the ramp to 3.5 TeV/c was done,
followed by the measurement and adjustment of the chromaticity. The octupole currents were then put
to a high value before reducing them by steps until some instability develops during the time window
when the feedback is switched off (see last step above). Note that the defocusing octupoles are set to a
positive current and the focusing ones to its opposite.
Several data acquisitions processes were triggered during the time window when the feedback was
off, acquiring in particular the beam position monitors (BPM) data, the headtail monitor signal and
the transverse feedback pickups (called ADT in the following) data. The BPMs acquire the positions
of the individual bunch centroids for the last 36 bunches of the train during 1000 successive turns (i.e.
89 ms), the headtail monitor acquire the individual horizontal or vertical profile of all the bunches for
100 successive turns (i.e. 8.9 ms), and the ADT acquire individual bunch centroid positions of the 8 last
bunches of the train for 32768 turns (i.e 2.9 s). The most reliable of those instruments were the ADT
pickups, because of their better resolution as well as their ability to record a high number of turns, which
was required for coupled-bunch instabilities developping with rise times of the order of the second.
Note that in the data analyses that will follow, the position data from the ADT have been pretreated,
eliminating some isolated and artificial peaks and subtracting the sliding average over 20 turns to avoid
high amplitude low frequency noise that caused the observation to be much less clear.
In addition to these three kinds of measurements specifically set up for the experiment, other data were
continuously logged in the measurement database as during any LHC run. In particular, we will use in
the following the FBCT (fast beam current transformer) which gives the individual bunch intensity (i.e.
number of particles), and the BQM (beam quality monitor) for the individual bunch lengths. Collimator
half gaps were also continuously monitored; at injection and flat top their measured values are those
of Tables F.1 and F.2. A few wirescans measurements were also done, to get the beams normalized
emittances along the experiment.
All the parameters used in the HEADTAIL simulations to calculate the rise times corresponding to the
measurements are based on actual data and can be found in Table 4.3.

1A so-called “pilot bunch” was also injected before those 48 bunches, but its number of particles is ten times lower than
each of the other bunches so it has been neglected in the simulations.
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Table 4.3: LHC parameters during the measurements and in HEADTAIL simulations, for all the cases
studied. For the simulations, perfect longitudinal matching was assumed as well as a non-linear RF
bucket.

Beam 2 2 1 2 1 2 1 2
Q ′

x / Q ′
y 2 / 2 1 / −0.5 0.4 / 0.3 0.1 / −0.6 −0.6 / −0.7 −0.9 / −1.6 0 / 2 0 / 1

Nb 1.2 ·1011 1.2 ·1011 1.21 ·1011 1.21 ·1011 1.18 ·1011 1.2 ·1011 1.22 ·1011 1.18 ·1011

σz [m] 0.105 0.105 0.097 0.097 0.103 0.103 0.085 0.091
σδ 3.8 ·10−4 3.8 ·10−4 3.4 ·10−4 3.5 ·10−4 3.7 ·10−4 3.7 ·10−4 1.6 ·10−4 1.7 ·10−4

εn
x / εn

y 2.5 / 2.7 2.5 / 2.7 2.5 / 2.3 2.9 / 3 2.5 / 2.3 2.9 / 3 2 / 1.9 2.3 / 2.8
[mm.mrad]
γ 479.6 3730.26
Vr f [MV] 6 12

Qs 4.905 ·10−3 2.504 ·10−3

h 35640
Circ. [m] 26658.883
Qx / Qy 64.28 / 59.31
βx / βy [m] 66.006 / 71.538
αp 3.225 ·10−4

nsl 50
nMP 250000
nw ake 19

4.3.2 Results at injection

Several instabilities were observed with the ADT during the time windows when the transverse feedback
was off, for both beams and both planes. We show in Fig. 4.9 exemples of such instabilites, in terms of
the turn by turn position of the last bunch of the train measured with the ADT.
From the spectral analysis of the individual bunches, no particular tune shift trend was observed along
the 8 bunches. For a given chromaticity, and neglecting the small differences in bunch length and
bunch intensities (of at most 8%) between different measurements, we put together all the available
ADT measurements showing clear instabilities, fitting them with two different methods (fit of the curve
maxima and of the amplitude of the largest spectrum line obtained with SUSSIX [112]), obtaining then
the average rise times for each of the 8 last bunches of the train, and the standard deviation due to
both the fitting and the data repetition. We show the results in Fig. 4.10, together with the results of
HEADTAIL simulations with the same parameters as in the measurements (in particular bunch length,
bunch intensities, tunes and chromaticities – see Table 4.3). In those cases, the agreement between
simulations and experimental data is very good. For those 8 bunches, a small trend on the rise times is
visible in the simulation data, the rise times decreasing slightly toward the tail of the bunch train, but
this is not visible in the measurements for which the accuracy is clearly not good enough to see such a
small trend.
Averaging then the rise times of the 8 bunches obtained from the ADT data, we can give for each
chromaticity an average measured rise time, together with its standard deviation coming from the fact
that many different measurements and even ways of fitting the data were taken into account. We compare
in Figs. 4.11 and 4.12 those to the rise times obtained at the same chromaticities thanks to HEADTAIL
simulations, where the instability comes from rigid-bunch (headtail mode m = 0) coupled-bunch
motion. Note that in the case of HEADTAIL simulations, the three different methods to obtain the rise
time presented in Section 3.2.1 give very similar rise times. The agreement between the measurements
and HEADTAIL simulations with 48 bunches is remarkable for negative chromaticities and chromaticities
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4.3. Experimental results vs. simulations

(a) Beam 1 horizontal, Q ′
x = 0.4. (b) Beam 1 vertical, Q ′

y = 0.3.

(c) Beam 2 horizontal, Q ′
x = 0.1. (d) Beam 2 vertical, Q ′

y =−0.6.

Figure 4.9: Signal from the ADT pickups during an instability measured at 14h46 (local time), for the last
bunch of the train. In the legend are indicated the name of the pickup measuring this signal, and the slot
occupied by the last bunch (in terms of 25 ns slots).

close to zero, for both beams and both planes. The only significant discrepancy appears for beam 2 in
vertical when Q ′

y = 2. Note that in this case the error bar on the measurement does not reflect the real
error, as only one set of data and one fitting method could be used to get the measured rise time.
Comparison between the single-bunch and coupled-bunch rise times from the simulations seems to
rule out the possibility that the instabilities observed are actually single-bunch. For beam 1, only the
cases with negative chromaticities reveals some instabilities (at least with simulations of 200000 turns,
i.e. 17.8 s), with rise times far above the coupled-bunch rise times as can be seen in Fig. 4.11. For beam 2,
the single-bunch rise times of the cases where an instability is detectable in 200000 turns, are shown in
Fig. 4.12, and again are much higher than the coupled-bunch ones.
Also, in certain cases the spatial pattern of the most critical λk from the singular value decomposition
of the BPM data (see Section 3.2.2) clearly exhibit a coupled-bunch motion along the batch containing
36 bunches. This is shown in Fig. 4.13 in the particular case of the vertical plane of beam 1 for Q ′

y = 0.3.
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(a) Beam 1 horizontal, Q ′
x =−0.6.
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(b) Beam 1 vertical, Q ′
y = 0.3.
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(c) Beam 2 horizontal, Q ′
x = 0.1.
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(d) Beam 2 vertical, Q ′
y =−0.5.

Figure 4.10: Rise times of the last 8 bunches of the train at injection energy, for various chromaticities,
and comparison with HEADTAIL simulations.

Unfortunately, not all the BPM data exhibit such a clear coupled-bunch behaviour, probably because of
the rather poor precision of the measurement as well as the lack of turns (only 1000 turns are recorded).
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Figure 4.11: Rise times vs. Q ′ for beam 1 at injection: measurements and HEADTAIL simulations.
Simulation results in the single-bunch case are also shown.
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Figure 4.12: Rise times vs. Q ′ for beam 2 at injection: measurements and HEADTAIL simulations.
Simulation results in the single-bunch case are also shown.
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Figure 4.13: Spatial pattern of the highest λk in the singular value decomposition of the LHC-BPMs data,
for the vertical plane of beam 1 with Q ′

y = 0.3, at injection.

4.3.3 Results at flat top

After the ramp to 3.5 TeV/c, decreasing the octupole currents enabled us to observe instabilities on
the ADT during the time window when the feedback was off, as shown in Fig. 4.14. All the instabilities
observed occurred in the vertical plane.
HEADTAIL simulations were performed in the same conditions as the measurements (see parameters in
Table 4.3). For octupole currents close to the stabilization value, the average beam position versus turns
is shown in Fig. 4.15, for the horizontal plane as only this plane got unstable when the octupole currents
were different from zero. This can be explained by the fact that Q ′

x = 0 while Q ′
y ≥ 1 for both beams, such

that instabilities in the horizontal plane are more critical than in the vertical plane (given the fact that the
dipolar wake functions are quite similar for both planes at this energy, see Fig. 2.15). Then, as soon as the
horizontal plane gets unstable, the beam average positions grow and the vertical plane gets stabilized by
the action of the octupoles which couple both planes, thus preventing any unstable mode to grow in
vertical except for I D

oct = I F
oct = 0. The fact that in the measurement it is on the contrary the vertical plane

which is the most unstable means either that the impedance model in the vertical plane should contain
additional contributions, or that the chromaticity measured during the experiment (which is the critical
factor here) is incorrect, which could be the case as it is quite difficult to measure the chromaticity at
3.5 TeV/c.
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(a) Beam 1 vertical, I D
oct =−I F

oct = 20 A. (b) Beam 2 vertical, I D
oct = I F

oct = 0 A.

Figure 4.14: Average bunch position vs. turns in the ADT at 3.5 TeV/c.

(a) Beam 1 horizontal. (b) Beam 2 horizontal.

Figure 4.15: Average beam position vs. turns according to HEADTAIL, with octupoles and at 3.5 TeV/c.

Results concerning the stabilization currents, both in the measurements and with HEADTAIL simula-
tions, are summarized in Table 4.4. HEADTAIL simulations require more currents in the octupoles to
stabilize the beams than in the ADT measurements, meaning either that the impedance model is too
pessimistic, or that Landau damping is more efficient than foreseen. The latter case could be explained
by the fact that we neglected in the simulations some sources of non-linearity providing damping such
as Q ′′ (second derivative of the tune with respect to the momentum deviation) or the direct space-charge,
or that the transverse bunch profile is quite different from a Gaussian profile.
For the cases when the octupoles were completely switched off, comparison between HEADTAIL simula-
tions (where the instability comes from rigid-bunch coupled-bunch motion) and the rise times on the 8
last bunches of the train obtained with the ADT, is shown in Fig. 4.16. The HEADTAIL simulations bunch
positions were fitted with each of the three methods described in Section 3.2.1, except for the beam 1
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case where only two methods could be used, because the one consisting in fitting the amplitude of the
main spectrum line failed. Note the quite large error bars on the simulation data, indicating probably
that a higher number of turns would be better to fit the data with a better accuracy. The measurements
and simulations have a significant discrepancy of a factor between 2 and 3, which might well be due to
the uncertainty on the chromaticity value in the vertical plane. On the other hand, a similar trend along
the bunch train is visible in both the measurements and the simulations data, the rise time decreasing
when going toward the tail of the train.
Finally, all the vertical rise times that could be obtained from the ADT data were collected and are shown
in Figs. 4.17 and 4.18, together with HEADTAIL simulations results when the octupoles are switched off.
The discrepancy already mentioned appears clearly. If instead a chromaticity of zero is assumed in the
vertical plane, this discrepancy is much reduced. Its seems that for both beams the measured rise times
increase with higher octupole currents, although this trend stays within the error bars.

Table 4.4: Currents in the defocusing octupoles required to stabilize the beam at 3.5 TeV/c, according to
the ADT data and HEADTAIL simulations. The focusing octupoles are set to the opposite of this current.

Beam 1 Beam 2
ADT 60 A 70 A
HEADTAIL 120 A 100 A
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(a) Beam 1 vertical, I D
oct = I F

oct = 0 A.
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(b) Beam 2 vertical, I D
oct = I F

oct = 0 A.

Figure 4.16: Rise times of the last 8 bunches of the train when octupoles are off at 3.5 TeV/c, and
comparison with HEADTAIL simulations.

4.4 Several predictions at 7 TeV/c

For the future operation of the LHC at a higher energy (which will take place after the long shutdown in
2013 and 2014), it is useful to make predictions concerning the beam stability under foreseen conditions.
We study here particularly the case of 1404 bunches with a 50 ns spacing, which is an important chal-
lenger of the initially foreseen 2808 bunches scheme with 25 ns spacing, because the 50 ns spacing allow
much lower normalized RMS emittances than the nominal ones (2 mm.mrad instead of 3.75 mm.mrad)
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Figure 4.17: Measured vertical rise times vs. octupole current for beam 1 at 3.5 TeV/c, compared to
HEADTAIL simulations at zero octupole currents. Results of the simulation with Q ′

y = 0 are also shown.

and higher bunch intensities than 1.15 ·1011 protons per bunch. Then, smaller emittances means less
Landau damping, which is not necessarily a problem in the case of coupled-bunch rigid modes as those
observed in the previous section, because they should be damped by the transverse feedback system.
On the other hand this could become a problem for higher order modes, i.e. coupled-bunch modes with
intrabunch motion as seen in Section 4.2, because those cannot be damped by the current transverse
feedback system.
Another potential limitation comes with higher bunch intensities, as the transverse mode coupling
instability [106, 118] (TMCI), also called “strong headtail” instability, appears above a certain intensity
threshold when different headtail modes couple to each other. This kind of instability, involving in-
trabunch motion, cannot be damped by the current transverse feedback system of the LHC, and can
already be a limitation with one single bunch in the accelerator. It becomes even more critical when
many bunches are in the machine. The intensity threshold of such a coupled-bunch transverse mode
coupling instability has been seen to be as low as half the single-bunch one in the case of the PEP-II
ring [122].
Here we study the beam stability at 7 TeV/c using the parameters of Table 4.5 (extracted from [84]
except for the transverse emittances and the bunch spacing) and the bunch scheme of Eq. (4.1) with
the batches of 72 bunches replaced by batches of 36 bunches. The impedance model was computed
with the parameters of the 3.5 TeV/c one (see Chapter 2 and Appendix F) except for the relativistic mass
factor γ (taken as in Table 4.5), the resistivity of copper in the beam screens (see Table F.7) and the half
gaps of the collimators which were all divided by

p
2 with respect to those of beam 1 at 3.5 TeV/c (see

Table F.1), to follow the transverse beam size that goes down with energy.
The coupled-bunch transverse mode coupling threshold can be identified as the number of particles
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Figure 4.18: Measured vertical rise times vs. octupole current for beam 2 at 3.5 TeV/c, compared to
HEADTAIL simulations at zero octupole currents. Results of the simulation with Q ′

y = 0 are also shown.

per bunch above which the imaginary part of the tune shift (obtained thanks to a fit of the main peak
amplitude from SUSSIX) deviates from a linear law with respect to the intensity Nb [107, p. 106]. Ac-
cording to Fig. 4.19, this threshold seems to be around 5 ·1011 particles per bunch in the horizontal
plane, and slightly higher in the vertical plane, at zero chromaticity. Further simulations are required to
get a higher precision on this number. This is lower than the single-bunch transverse mode coupling
instability threshold, which is at 6.4 ·1011 particles per bunch with the same parameters, as can be seen
in Fig. 4.20. Note that this threshold appears to be much higher than previous predictions [110], because
the impedance model (and particularly the graphite resistivity) has been updated. It is here important to
note that this threshold depends on the number of slices chosen in the simulation: in the single-bunch
case, taking nsl = 500 and nMP = 106 gives a lower threshold, around 5.7 ·1011. Unfortunately, simula-
tions with 1404 bunches and significantly more slices than 20 take a much longer time and were not yet
performed.
With the Gaussian transverse distributions used in the simulations, the beam is stable at nominal inten-
sity (Nb = 1.15 ·1011) with Q ′ = 2 in both planes and when the octupole current is set to its maximum and
negative in the focusing octupoles, i.e. I D

oct =−I F
oct = 550 A. With zero chromaticities at nominal intensity,

and either Q ′ = 0 or Q ′ = 2 with ultimate intensity (Nb = 1.7 ·1011), the beam is unstable even when
I D

oct =−I F
oct = 550 A. This can be seen clearly in Fig. 4.21, where the average beam position is plotted vs.

turn numbers. This means that under nominal conditions both the rigid-bunch coupled-bunch modes
and the coupled-bunch modes with intrabunch activity are harmless in the LHC, provided the transverse
distributions are Gaussian, Q ′ is equal to 2 and the octupoles are set to their maximum currents.
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Table 4.5: LHC parameters at 7 TeV/c with 50 ns spacing. Perfect longitudinal matching was assumed.

Number of bunches 1404
Total bunch length= 4σz 0.302 m
Longitudinal momentum spread σδ 1.13 ·10−4

RF voltage Vr f 16 MV (non linear bucket)
Harmonic number h 35640
Synchrotron tune Qs 2.045 ·10−3

Bunch spacing 50 ns
Circumference 26658.883 m
Horizontal / vertical tune Qx / Qy 64.31 / 59.32
Horizontal / vertical beta function βx / βy 65.976 / 71.526 m
Horizontal / vertical normalized RMS emittance εn

x / εn
y 2 / 2 mm.mrad

Relativistic γ 7460.52
Momentum compaction factor αp 3.225 ·10−4

Number of slices per bunch nsl 20
Number of macroparticles per bunch nMP 100000
Number of turns of memory for the wakes nw ake 19
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Figure 4.19: Imaginary part of the tune shifts vs. bunch intensity Nb , for 1404 bunches at 7 TeV/c, with
zero chromaticites and no octupoles.

4.5 Conclusion

Thanks to the code presented in Chapter 3 and the impedance model of Chapter 2, several aspects
of the transverse coupled-bunch instabilities in the LHC were described. In particular, the influence
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Figure 4.20: Imaginary part of the tune shifts vs. bunch intensity Nb , for a single bunch at 7 TeV/c, with
zero chromaticites and no octupoles.

(a) Horizontal plane. (b) Vertical plane.

Figure 4.21: Average beam transverse position vs. turns, for 1404 bunches at 7 TeV/c.

of the bunch train length with a given spacing has been seen to be rather small on the growth rate of
rigid-bunch instabilities. The existence of coupled-bunch instabilities with intrabunch motion has
been demonstrated thanks to simulations, and the impact of the number of bunches seems indeed not
negligible on the complex tune shift of headtail modes of order higher than zero.
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The accuracy of the full approach (impedance model and multibunch simulation code) was checked
thanks to beam-based measurements in the LHC, revealing a remarkable agreement at injection energy,
while at flat top some significant discrepancies of factor 2-3 were observed. In Appendix G, other
comparisons between measurements and simulations using the LHC impedance model are presented,
in the single-bunch regime, and also show a discrepancy of factor 2-3.
Finally some predictions concerning the future operation of the LHC at a momentum of 7 TeV/c were
obtained, showing in particular that with 1404 bunches (50 n spacing) the coupled-bunch transverse
mode coupling instability threshold is around 5 ·1011 protons per bunch, about 20% lower than the
single-bunch TMCI obtained with the same parameters. Also, with Gaussian distributions, the bunches
are stable at nominal intensity and when Q ′ = 2 in both planes, with 550 A in the defocusing octupoles
(and the opposite current in the focusing ones). At ultimate intensity with Q ′ = 0 or Q ′ = 2, and at
nominal intensity with Q ′ = 0, such a current in the octupoles is not enough to stabilize the beam. Note
that the transverse feedback system has not been included in the simulations.
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5 Conclusion

This thesis aimed at studying several aspects of the LHC transverse coupled-bunch instabilities. To do
so, new theories and algorithms were developped, that can be used in many other cases.
The first new results concern the theories of the beam-coupling impedance developped in Chapter 1.
For an axisymmetric two-dimensional structure, we generalized Zotter’s theories in the sense that all the
azimuthal mode numbers (instead of only m = 0 and m = 1) have been considered, therefore giving the
full nonlinear expression of the electromagnetic fields and forces even far from the beam orbit. For an
infinite flat two-dimensional structure, we derived a completely new theory, generalizing what has been
done by many other authors, and also giving the full nonlinear expression of the electromagnetic fields
and forces.
Then, a new approach has been found to compute the wake functions from such analytically obtained
beam-coupling impedances, overcoming limitations that could be met with a standard discrete Fourier
transform procedure.
The theories and algorithms of the first chapter were extensively used in Chapter 2 to obtain an
impedance and wake function model of the LHC, based on the (resistive-)wall impedances of various
contributors (collimators, beam screens and vacuum pipe) and additional estimations of the geometrical
impedance contributions. This model, giving longitudinal and transverse impedances as well as wake
functions, can be used to study other beam dynamics issues than the coupled-bunch instabilities and,
obviously, can serve as a basis for an improved model that would be more precise or take into account
other impedance contributions.
To obtain results in terms of beam dynamics from any kind of wake function model, the existing code
HEADTAIL was improved to allow the simulation of multibunch trains, as shown in Chapter 3. All the
features present in the previous version of the code (intrabunch motion, amplitude detuning from the
octupoles and chromaticity), at the notable exception of the possibility to simulate the effect of electron
cloud, were adapted in this new version, and additional algorithmic improvements including a paral-
lelization over the bunches were included. This code can simulate the beam dynamics of macroparticles
under the action of any kind of wake functions, for any bunch filling pattern in any circular machine. To
analyse the output given by this code (in particular the bunch average positions), a new technique (based
on existing algorithms) was also developped to obtain easily the complex tune shifts of the unstable
modes present in the simulations. Both the code and the spectral analysis technique were benchmarked
against theory in simplifed cases.
The three first chapters of the thesis just summarized are the independent and necessary stages to obtain
results on the specific case of the LHC transverse coupled-bunch instability. Such results are shown in
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Chapter 4. They demonstrate the rather small impact on coupled-bunch instabilities of the number of
bunches in a train when the bunch spacing is fixed, and the existence of coupled-bunch modes with
intrabunch motion which are more critical than their single-bunch counterparts. A full verification of the
complete procedure (impedance theories, impedance model and simulation code) was also performed
by comparing the simulation results with actual measurements in the LHC, giving a very good agreement
at injection energy and a correct order of magnitude at 3.5 TeV/c, where nevertheless the measurement
parameters are known more approximately than at injection. Finally, predictions concerning the beam
stability at the future 7 TeV/c operation of the machine were performed in the case of 50 ns spacing
(1404 bunches), revealing that the coupled-bunch transverse mode coupling instability threshold is
around 5 ·1011 protons per bunch, 20% lower than the single-bunch TMCI. Note that the TMCI threshold
has been increased compared to former predictions [110], mainly because the impedance model was
updated in the meanwhile (in particular, the resistivity of the graphite collimators was updated and
decreased with respect to previous estimations). Stability studies in the transverse plane with Landau
octupoles at their maximum currents (but without feedback system) reveal that the beam remains stable
at nominal intensity when Q ′ = 2 in both planes, provided the particles transverse distributions are
Gaussian. On the other hand the beam is unstable at ultimate intensity either with Q ′ = 0 or Q ′ = 2, or at
nominal intensity with Q ′ = 0, even with maximum currents in the octupoles.

Concerning the beam-coupling impedances theories, future possible studies include the same kind
of theories for elliptical geometries, or more generally, for any two-dimensional geometry. The LHC
impedance model could be improved by adding other impedance contributions, or better models (typi-
cally, including the details of the complete 3D geometry) for the machine elements already taken into
account. The HEADTAIL beam dynamics simulation code could be also improved by adding other
sources of nonlinearities such as space-charge or the beam-beam force at the collision point. Simu-
lation of the transverse feedback system would be also a very useful improvement. Finally, the LHC
transverse coupled-bunch instability can be studied in further details, for example the impact of the
second derivative of the tune could be evaluated, and many other comparisons between measurements
and simulations performed.
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A Macroscopic Maxwell equations in fre-
quency domain for a linear medium

In a medium, time domain macroscopic Maxwell equations are derived from the exact microscopic ones
that hold for the electromagnetic fields~e and~b in vacuum, given the total microscopic charge density ρ
and current density ~j [11, p. 248], [55, p. 1-2], [55, p. 105]

div~e = ρ

ε0
,

~curl~b − ∂~e

c2∂t
= µ0~j ,

~curl~e + ∂~b

∂t
= 0,

div~b = 0,

where c is the speed of light in vacuum, ε0 the permittivity of vacuum and µ0 its permeability. When
averaging these equations over elements of volume "physically infinitesimal", we get similar equations

for the macroscopic averaged quantites ~E =~e, ~B =~b, ρ and~J =~j [11, p. 250-251]

div~E = ρ

ε0
, (A.1)

~curl~B − ∂~E

c2∂t
= µ0~J , (A.2)

~curl~E + ∂~B

∂t
= 0, (A.3)

div~B = 0. (A.4)

The total mean charge ρ and current~J are the sum of several terms:

• “External” charges and currents, i.e. independent of the electromagnetic fields and imposed by an
external source. For instance, in our study the external charge density comes from the travelling
source macroparticle and is given in Eq. (1.1), while the external current density is related to it by
~Jext = ρextυ~es ,
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• “Induced” charges and currents, i.e. that come from the action of the fields themselves on the
medium. The induced charges and currents obviously vanish in vacuum (neglecting quantum
effects).

We will now express the induced charges and currents, first in the case of a linear medium without
dielectric or magnetic losses, and then in a general linear medium that can exhibit such losses.

A.1 Linear medium without dielectric or magnetic losses

In such a medium, which can be either a dielectric or a conductor and has a certain magnetic permeabil-
ity, we can identify three terms in the induced charges and currents, as we will see below. From the linear
superposition principle we can consider separately the induced charges and currents coming from the
dielectric aspect of the material to those coming from its conductive aspect1:

• For the dielectric aspect of the material we have [11, p. 153-156], [55, p. 34]

ρdi el
i nduced =−div~P ,

~P being the polarization, that is, in a linear medium without loss:

~P = ε0χe~E , (A.5)

with χe the electric susceptibility, which is also equal to εb − 1 by definition of the dielectric
constant εb (using the notations of Section 1.2). So we obtain for the dielectric induced charge
density

ρdi el
i nduced =−ε0div

(
χe~E

)
. (A.6)

The current density is then obtained from the continuity equation [11, p. 3]2

∂ρdi el
i nduced

∂t
+div~Ji nduced = 0, (A.7)

1At a given frequency only one of these two aspects will be relevant, the material being either a conductor or a dielectric.
Putting both aspects (dielectric and conductor) in the same material can be thought of being somehow artificial, but it enables
to write a general formalism that will be suited for both cases (see also Ref. [44, p. 777]).

2The continuity equation is not an additional equation to the problem but a consequence of Maxwell equations: taking the
divergence of Eq. (A.2), and using Eqs. (B.12) and (A.1) we get

µ0div~J =−∂div~E

c2∂t
=− 1

ε0c2

∂ρ

∂t
,

such that

div~J + ∂ρ

∂t
= 0,

from ε0µ0c2 = 1. This continuity equation can be applied separately to each part of the induced charges and currents since it
should be true for a dielectric that has no conductivity, or a conductor that has no dielectric susceptibility, or more generally
assuming that we can always consider seperately the dielectric charges and currents from the conductive ones.
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such that

div~Ji nduced = div
∂~P

∂t
,

which from Eq. (B.12) gives a current density as the sum of two terms

~Ji nduced = ε0
∂
(
χe~E

)
∂t

+ ~curl~M . (A.8)

~M is a vector field called magnetization, which has nothing to do with the dielectric or conductive
aspect of the medium but is related to ~B thanks to the magnetic susceptibility χm =µr −1 (using
the notations of Section 1.2) [11, p. 192], [55, p. 105]

~M = χm

µ0(1+χm)
~B . (A.9)

Therefore we have for the dielectric part of the induced current density

~J di el
i nduced = ε0

∂
(
χe~E

)
∂t

, (A.10)

and for the induced magnetic part

~J mag
i nduced = ~curl

(
χm

µ0(1+χm)
~B

)
. (A.11)

• For the conductive aspect of the medium, we have from Ohm’s law

~J cond
i nduced =σ~E , (A.12)

where σ is the conductivity (see Section 1.2) of the material. From the continuity equation we then
get

∂ρcond
i nduced

∂t
=−div

(
σ~E

)
,

such that

ρcond
i nduced =−

∫ t
dt ′div

(
σ~E

)
. (A.13)

Finally, substituting the induced charges and currents from Eqs. (A.6), (A.10), (A.11), (A.12) and (A.13)
into the right hand side of Maxwell’s inhomogeneous equations (A.1) and (A.2) and adding the external
charges and currents ρext and~Jext , we get

ε0div~E = ρext −ε0div
(
χe~E

)−∫ t
dt ′div

(
σ~E

)
,

1

µ0

~curl~B −ε0
∂~E

∂t
= ~Jext +ε0

∂
(
χe~E

)
∂t

+ ~curl

(
χm

µ0(1+χm)
~B

)
+σ~E ,
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which leads to

div

(
ε0εb~E +

∫ t
dt ′σ~E

)
= ρext , (A.14)

~curl

(
1

µ0µr

~B

)
− ∂

∂t

(
ε0εb~E +

∫ t
dt ′σ~E

)
= ~Jext . (A.15)

A.2 Linear medium with dielectric and magnetic losses

In a general linear medium, there can be losses (i.e. dissipation of energy) that are due to some delay
between the cause (an electromagnetic field) and its effect on the medium (polarization and/or mag-
netization). We can introduce them by replacing Eqs. (A.5) and (A.9) by the following integrals over all
previous instants [55, p. 266]:

~P = ε0

∫ ∞

0
dτ f (τ)~E(t −τ), (A.16)

~M = 1

µ0

∫ ∞

0
dτg (τ)~B(t −τ), (A.17)

where f and g are two functions (usually decaying with time). When substituting these equations into
the induced charge and current densities (dielectric and magnetic part, as the conductive part remains
the same), we get instead of Eqs. (A.14) and (A.15)

div

(
ε0ε̂b~E +

∫ t
dt ′σ~E

)
= ρext , (A.18)

~curl

(
1

µ0

1̂

µr

~B

)
− ∂

∂t

(
ε0ε̂b~E +

∫ t
dt ′σ~E

)
= ~Jext , (A.19)

where the linear operators ε̂b and 1̂
µr

are defined by

ε̂b~E = ~E(t )+
∫ ∞

0
dτ f (τ)~E(t −τ),

1̂

µr

~B = ~B(t )−
∫ ∞

0
dτg (τ)~B(t −τ).

In frequency domain (that is, after applying a Fourier transform as explained in Section 1.1), we can
substitute all occurences of ∂

∂t by the multiplicative factor jω and all occurences of
∫ t dt ′ by 1

jω . Also,

we can replace the convolution product in the linear operator ε̂b (respectively, 1̂
µr

) by a multiplication

between the Fourier transform f̃ of f (resp. g̃ for g ) and that of ~E (resp. ~B). Now we can always write f̃
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and g̃ in the form

1+ f̃ = εb(ω)
[
1− j sign(ω) tanϑE (ω)

]
,

1− g̃ = 1

µr (ω)
[
1− j sign(ω) tanϑM (ω)

] ,

where εb , ϑE , µr and ϑM (defined in Section 1.2) are real and can depend on frequency. Finally, we get
for the two first (inhomogeneous) Maxwell equations in frequency domain3

div

[(
ε0εb(1− j sign(ω) tanϑE )+ σ

jω

)
~E

]
= ρext , (A.20)

~curl

[
1

µ0µr (1− j sign(ω) tanϑM )
~B

]
− jω

[(
ε0εb(1− j sign(ω) tanϑE )+ σ

jω

)
~E

]
= ~Jext . (A.21)

Since the two homogeneous Maxwell’s equation (A.3) and (A.4) do not depend on induced charges and
currents, we get the equations of Section 1.2 by defining the electric displacement ~D and magnetic field
~H (while ~B is called the magnetic induction) in the following way4

~D =
[
ε0εb(1− j sign(ω) tanϑE )+ σ

jω

]
~E , (A.22)

~H = 1

µ0µr (1− j sign(ω) tanϑM )
~B , (A.23)

therefore obtaining the four general frequency domain macroscopic Maxwell equations in a linear
medium with losses

div~D = ρext , (A.24)
~curl~H − jω~D = ~Jext , (A.25)
~curl~E + jω~B = 0, (A.26)

div~B = 0. (A.27)

We should stress again that these equations suppose linearity of the medium. This is in particular not
true for ferromagnetic materials (where the relation between the magnetization and the magnetic field is
hysteretic and strongly non-linear), except for small fields in an untreated material (that is, not previously
magnetized). Also, isotropy, homogeneity and the validity of Ohm’s law have been assumed.

3Alternatively, we could have introduced the complex permittivity and permeability directly in the frequency domain
equations, as in Ref. [11, p. 262], by assuming the lineary between the electric displacement and the electric field, as well as
between the magnetic field and the magnetic induction.

4Note that the dielectric loss tangent cannot be easily separated from the conductive part, which also generates an imaginary
part in the total permittivity εb (ω)

[
1− j sign(ω) tanϑE (ω)

]+ σ
jω . So we must be careful when applying numerical values from

tables in these formulas: for instance, the loss tangent could already “contain” the conductivity.
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B Vector operations

B.1 Vector operations in cylindrical coordinates

The following formulas can be found in many textbooks of mechanics or electrodynamics, and in
particular in Ref. [55, p. 452-453].

B.1.1 Gradient

For any scalar field f , the gradient in cylindrical coordinates (r,θ, s) (the basis unit vector being ~er , ~eθ
and ~es) is given by

~grad f = ∂ f

∂r
~er + 1

r

∂ f

∂θ
~eθ+

∂ f

∂s
~es . (B.1)

B.1.2 Divergence

For any vector field ~A, the divergence in cylindrical coordinates (r,θ, s) is given by

div~A = ∂Ar

∂r
+ Ar

r
+ 1

r

∂Aθ

∂θ
+ ∂As

∂s
,

= 1

r

∂(r Ar )

∂r
+ 1

r

∂Aθ

∂θ
+ ∂As

∂s
. (B.2)
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B.1.3 Curl

For any vector field ~A, the curl in cylindrical coordinates (r,θ, s) is given by

(
~curl~A

)
r

= 1

r

∂As

∂θ
− ∂Aθ

∂s
,(

~curl~A
)
θ

= ∂Ar

∂s
− ∂As

∂r
,(

~curl~A
)

s
= ∂Aθ

∂r
+ Aθ

r
− 1

r

∂Ar

∂θ
,

= 1

r

[
∂(r Aθ)

∂r
− ∂Ar

∂θ

]
. (B.3)

B.1.4 Scalar laplacian

For any scalar field f , the laplacian in cylindrical coordinates (r,θ, s) is given by

∇2 f = 1

r

∂

∂r

(
r
∂ f

∂r

)
+ 1

r 2

∂2 f

∂θ2 + ∂2 f

∂s2 . (B.4)

B.1.5 Vector laplacian

For any vector field ~A, the vector laplacian in cylindrical coordinates (r,θ, s) is given by

(∇2~A
)

r = ∇2 Ar − Ar

r 2 − 2

r 2

∂Aθ

∂θ
,(∇2~A

)
θ = ∇2 Aθ−

Aθ

r 2 + 2

r 2

∂Ar

∂θ
,(∇2~A

)
s = ∇2 As . (B.5)

B.2 Vector operations in cartesian coordinates

The following formulas can be found in many textbooks of mechanics or electrodynamics, and in
particular in Refs. [11, cover page] and [55, p. 452] as well as in Ref. [123].

B.2.1 Gradient

For any scalar field f , the gradient in cartesian coordinates (x, y, s) (the basis unit vectors being ~ex , ~ey

and ~es) is given by

~grad f = ∂ f

∂x
~ex + ∂ f

∂y
~ey + ∂ f

∂s
~es . (B.6)
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B.2.2 Divergence

For any vector field ~A, the divergence in cartesian coordinates (x, y, s) is given by

div~A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂As

∂s
. (B.7)

B.2.3 Curl

For any vector field ~A, the curl in cartesian coordinates (x, y, s) is given by

(
~curl~A

)
x

= ∂As

∂y
− ∂Ay

∂s
,(

~curl~A
)

y
= ∂Ax

∂s
− ∂As

∂x
,(

~curl~A
)

s
= ∂Ay

∂x
− ∂Ax

∂y
. (B.8)

B.2.4 Scalar laplacian

For any scalar field f , the laplacian in cartesian coordinates (x, y, s) is given by

∇2 f = ∂2 f

∂x2 + ∂2 f

∂y2 + ∂2 f

∂s2 . (B.9)

B.2.5 Vector laplacian

For any vector field ~A, the vector laplacian in cartesian coordinates (x, y, s) is given by

(∇2~A
)

x = ∇2 Ax ,(∇2~A
)

y = ∇2 Ay ,(∇2~A
)

s = ∇2 As . (B.10)

B.3 Some relations between vector operations

From for instance Ref. [11, cover page], we know that

~curl
(
~curl

)
= ~grad(div)−∇2, (B.11)

div
(
~curl

)
= 0. (B.12)
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C Various properties of Bessel functions

Unless stated otherwise, in all the following ν and z are complex numbers while m is an integer.

C.1 Differential equations

Modified Bessel functions Iν(z) (first kind) and Kν(z) (second kind) are independent solutions of the
differential equation [124, p. 374]

z2 d 2 y

d z2 + z
d y

d z
− (

z2 +ν2) y = 0. (C.1)

The Bessel function of the first kind Jν(z) is a solution of [124, p. 358]

z2 d 2 y

d z2 + z
d y

d z
+ (

z2 −ν2) y = 0. (C.2)

C.2 General properties

From Ref. [124, p. 375-376], we have the following relations between the modified Bessel functions (z∗

stands for the complex conjugate of z, and f ′ is the derivative of a function f )

I−m(z) = Im(z), (C.3)

K−m(z) = Km(z), (C.4)

Iν
(
ze j mπ

)
= e jνmπIν (z) , (C.5)

I ′ν(z)Kν(z)−K ′
ν(z)Iν(z) = 1

z
, (C.6)

I ′ν(z) = Iν−1(z)− ν

z
Iν(z), (C.7)

K ′
ν(z) = −Kν−1(z)− ν

z
Kν(z), (C.8)

K ′
ν(z) = −Kν+1(z)+ ν

z
Kν(z), (C.9)
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Im(z∗) = Im(z)∗, (C.10)

Km(z∗) = Km(z)∗, (C.11)

I ′0(z) = I1(z), (C.12)

K ′
0(z) = −K1(z), (C.13)

Jm( j z) = j m Im(z) for −π< arg(z) ≤ π

2
. (C.14)

From Ref. [124, p. 361] we have the additional relation

Jν
(
ze j mπ

)
= e jνmπ Jν (z) . (C.15)

C.3 Expansion for small arguments

Reference [124, p. 375] gives expansions for small arguments. Assuming m ≥ 0, we have

Im(z) =
( z

2

)m ∞∑
k=0

( z
2

)2k

k !(m +k)!
(also valid form =−1with the convention(−1)! =∞), (C.16)

Im(z) ∼
(1

2 z
)m

m!
when |z|→ 0, (C.17)

K0(z) ∼− ln(z) when |z|→ 0, (C.18)

Km(z) ∼ 1

2
(m −1)!

(
1

2
z

)−m

when |z|→ 0 (m strictly positive integer), (C.19)

where m! is the factorial of the integer m.

C.4 Expansion for large arguments

From Ref. [124, p. 377-378] we have:

Im(z) ∼ ezp
2πz

when |z|→+∞ , for |arg(z)| < π

2
, (C.20)

Km(z) ∼
√

π
2z e−z when |z|→+∞ , for |arg(z)| < 3π

2
. (C.21)

In the case when arg(z) = π
2 i.e. z = jρ with ρ > 0, we have from Eqs. (C.14) and (C.15)

Im(z) = Jm( j z) j−m = Jm(−ρ) j−m = j m Jm(ρ) = j m Jm(− j z),

such that, thanks to Ref. [124, p. 364]:

Im(z) ∼ j m cos
(
− j z − mπ

2
− π

4

)√
2

− jπz
when |z|→+∞ , for arg(z) = π

2
. (C.22)
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C.5 Summation formulae

From Ref. [124, p. 378] we have

e
z
2

(
t+ 1

t

)
=

∞∑
m=−∞

t m Im(z) with t non zero. (C.23)

We can use it to derive two other summation formulae: using Eq. (C.3)

ez coshu = e
z
2

(
eu+ 1

eu
)
=

∞∑
m=−∞

emu Im(z) = I0(z)+2
∞∑

m=1
cosh(mu)Im(z), (C.24)

and, thanks to (C.5)

e−z coshu = I0(z)+2
∞∑

m=1
(−1)m cosh(mu)Im(z). (C.25)

Another useful relation is obtained from Ref. [125, p. 102]: for any complex numbers φ, ν, z1 and z2 such
that |z1e± jφ| < |z2| we have

∞∑
m=−∞

Im(z1)Kν+m(z2)e j mφ = Kν

(√
z2

1 + z2
2 −2z1z2 cosφ

) z2 − z1e− jφ√
z2

1 + z2
2 −2z1z2 cosφ


ν

. (C.26)

This in particular gives for ν= 0, 0 < z1 < z2 and φ real numbers, taking only the real part of the formula,
and recalling Eqs. (C.3) and (C.4)

∞∑
m=0

1

1+δm0
Im(z1)Km(z2)cos(mφ) = 1

2
K0

(√
z2

1 + z2
2 −2z1z2 cosφ

)
, (C.27)

where δm0 = 1 if m = 0, 0 otherwise. We can also write Eq. (C.26) in the case when ν= n, |z1| < z2 and
φ= pπ where n and p are integers, obtaining

∞∑
m=−∞

Im(z1)Km+n(z2)(−1)mp = Kn
(
z2 + (−1)p+1z1

)
. (C.28)

C.6 Integral formulae

The following integral formula can be found in Ref. [126, p. 17]

∫ ∞

0
dkx cos(kx x)

e−b
p

k2
x+a2√

k2
x +a2

= K0

(
a
√

b2 +x2
)

with ℜ(a) > 0 and ℜ(b) > 0. (C.29)

Another useful integral representation is [124, p. 376]

Kν(z) =
∫ ∞

0
dt e−z cosh t cosh(νt ) with

∣∣arg(z)
∣∣< π

2
. (C.30)
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C.7 A generalization of Schläfli’s integrals

References [125, p. 82] and [70, p. 903] give an analytical expression for the following sum of integrals
given for x, y complex numbers and ν real1:∫ π

0
e y cos t cos(x sin t −νt )dt − sinνπ

∫ ∞

0
e−νt−y cosh t−x sinh t dt with ℜ(x + y) > 0. (C.31)

The expressions given in both references are different: according to Ref. [125, p. 82] the result should be

π

(
x + y

x − y

) ν
2

Jν
[(

x2 − y2) 1
2

]
.

In Ref. [70, p. 903] we find on the contrary that this sum of integrals should be

π
(
x + y

)ν Jν
[(

x2 + y2
) 1

2

]
(
x2 − y2

) ν
2

.

When comparing those formulae with numerical computations of the integrals (where the one on an
infinite range converges very fast so is not computationally intensive), it turns out that both the above
formulae seem incorrect. In particular, the first analytical expression above is not even continuous
with x when going from x < y to x > y for certain values of ν. Therefore we rederive here the formula,
following step by step the derivation given in Ref. [127].
The starting point is the following generalization of Bessel’s integral due to Schläfli, which can be found
in equivalent forms in Refs. [124, p. 360], [70, p. 903], [127] and [128, p. 176]:

For ℜ(a) > 0 , Jν(a) = 1

π

∫ π

0
cos(νt −a sin t )dt − sinνπ

π

∫ ∞

0
e−νt−a sinh t dt . (C.32)

Then, for any y complex and t real, we have the general formula

∞∑
n=0

yn

n!
e j nt =

∞∑
n=0

(
ye j t

)n

n!
= e ye j t = e y cos t [

cos
(
y sin t

)+ j sin
(
y sin t

)]
.

Using this relation for both t and −t and adding (respectively subtracting) the results, we get

∞∑
n=0

yn

n!
cos(nt ) = e y cos t cos

(
y sin t

)
,

∞∑
n=0

yn

n!
sin(nt ) = e y cos t sin

(
y sin t

)
.

From these and the relation

cos[(ν+n) t −a sin t ] = cos(νt −a sin t )cos(nt )− sin(νt −a sin t )sin(nt ) ,

1In Ref. [70] there is an error in the upper bound of the first integral, which is taken as ∞ instead of π.
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we obtain

∞∑
n=0

yn

n!
cos[(ν+n)t −a sin t ] = e y cos t [

cos
(
y sin t

)
cos(νt −a sin t )− sin

(
y sin t

)
sin(νt −a sin t )

]
= e y cos t cos

[
νt − (a − y)sin t

]
. (C.33)

We also have

∞∑
n=0

yn

n!
sin[(ν+n)π]e−nt =

∞∑
n=0

(−ye−t
)n

n!
sin(νπ)

= e−ye−t
sin(νπ) ,

such that

∞∑
n=0

yn

n!
sin[(ν+n)π]e−nt−νt−a sinh t = sin(νπ)e−y(cosh t−sinh t )−νt−a sinh t

= sin(νπ)e−νt−y cosh t−(a−y)sinh t . (C.34)

Thanks to Eqs. (C.32), (C.33) and (C.34) we have upon integration∫ π

0
e y cos t cos

[
νt − (a − y)sin t

]
dt − sin(νπ)

∫ ∞

0
e−νt−y cosh t−(a−y)sinh t dt

=
∞∑

n=0

yn

n!

∫ π

0
cos[(ν+n)t −a sin t ]dt −

∞∑
n=0

yn

n!
sin[(ν+n)π]

∫ ∞

0
e−nt−νt−a sinh t dt

=π
∞∑

n=0

yn

n!
Jν+n(a) for ℜ(a) > 0. (C.35)

The latter sum can be computed thanks to Ref. [128, p. 141], giving

∞∑
n=0

yn

n!
Jν+n(a) =

(
1− 2y

a

)− ν
2

Jν

(
a

√
1− 2y

a

)
. (C.36)

Note that Eq. (C.36) is not exactly the same as the correspondant formula in Ref. [127]: in the latter the
argument of the Bessel function has been replaced by

√
a2 −2ay which turns out not to be same as

a
√

1− 2y
a when arg a +arg

(
1− 2y

a

)
>π or arg a +arg

(
1− 2y

a

)
≤−π as we know from e.g. Ref. [124, p. 70].

Here only a is restricted to have an argument between −π
2 and π

2 , but not 1− 2y
a .

Combining Eqs. (C.35) and (C.36) and letting x = a − y we get∫ π

0
e y cos t cos(x sin t −νt )dt − sinνπ

∫ ∞

0
e−νt−y cosh t−x sinh t dt =

π

(
x − y

x + y

)− ν
2

Jν

[(
x + y

)( x − y

x + y

) 1
2

]
, valid for ℜ(x + y) > 0. (C.37)

There are two differences between Eq. (C.37) and the equation given in Ref. [125, p. 82]. The first one
concerns the argument of the Bessel function, as we already pointed out. The second one is in the way

the factor
(

x−y
x+y

)− ν
2

is written. It was replaced by
(

x+y
x−y

) ν
2

which does not give an identical value in some
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cases, for the same reason as already mentioned above: from Ref. [124, p. 70] aν
( 1

a

)ν 6= 1 if arg a = π

(because then arg 1
a =π so arg a +arg 1

a >π).
One can get a slightly more compact form after some additional algebra. Letting x − y = ae jθ and
x + y = be jφ with a > 0, b > 0, −π< θ ≤π and −π<φ≤π, we write

(x + y)

√
x − y

x + y
= (x + y)e

1
2 ln

(
x−y
x+y

)
= be jφe

1
2 (ln a−lnb+ jθ− jφ+2 j mπ) =

p
abe

j
2 (θ+φ)e j mπ,

with m an integer such that m = 0 if −π< θ−φ≤π, m = 1 if θ−φ≤−π and m =−1 if θ−φ>π. Similarly,
we have√

x2 − y2 = e
1
2 ln[(x−y)(x+y)] =

p
abe

j
2 (θ+φ)e j nπ = (x + y)

√
x − y

x + y
e j (n−m)π,

with n an integer such that n = 0 if −π< θ+φ≤π, n = 1 if θ+φ≤−π and n =−1 if θ+φ>π. Therefore,
using Eq. (C.15) we can write

Jν

(√
x2 − y2

)
= Jν

[
(x + y)

(
x − y

x + y

) 1
2

]
e jν(n−m)π.

Now, we also have, with the same m and n defined above:(
x − y

x + y

)− ν
2 = e

− ν
2 ln

(
x−y
x+y

)
=

(
b

a

) ν
2

e j ν2 (φ−θ)e− jνmπ,

and

(x + y)ν(
x2 − y2

) ν
2

= bνe jνφ

(ab)
ν
2 e j ν2 (θ+φ)e jνnπ

=
(

b

a

) ν
2

e j ν2 (φ−θ)e− jνnπ =
(

x − y

x + y

)− ν
2

e jν(m−n)π.

We finally obtain:

Jν

[
(x + y)

(
x − y

x + y

) 1
2

](
x − y

x + y

)− ν
2 = Jν

(√
x2 − y2

)
(x + y)ν(
x2 − y2

) ν
2

,

such that we can write an equivalent form of Eq. (C.37)∫ π

0
e y cos t cos(x sin t −νt )dt − sinνπ

∫ ∞

0
e−νt−y cosh t−x sinh t dt =

πJν

(√
x2 − y2

)
(x + y)ν(
x2 − y2

) ν
2

, valid for ℜ(x + y) > 0. (C.38)

This relation, which is a generalization of Schläfli’s integrals, is quite similar to Eq. 8.413 in Ref. [70, p.
903] that we have quoted above, but according to our derivation there seems to be a sign error in the
argument of the Bessel function, in addition to the already mentioned incorrect upper limit of the first
integral.
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From this equation we would like to compute the following integral, used in Sections 1.5.5 and E.2.3:

∫ π

0
dφcos

(
nφ

)
cos

(
kx r sinφ

)
e

r cosφ

√
k2

x+ k2

γ2
.

To do so we first write

cos
(
nφ

)
cos

(
kx r sinφ

)= 1

2

[
cos

(
kx r sinφ+nφ

)+cos
(
kx r sinφ−nφ

)]
.

For the first term we can apply Eq. (C.38) with x = kx r , y = r
√

k2
x + k2

γ2 and ν=−n, giving (since sinνπ= 0

here):

1

2

∫ π

0
dφcos

(
kx r sinφ+nφ

)
e

r cosφ

√
k2

x+ k2

γ2 = π

2

r−n
(
kx +

√
k2

x + k2

γ2

)−n

(
−k2r 2

γ2

)− n
2

J−n

(
j

kr

γ

)

= π

2
j n

(
kx +

√
k2

x +
k2

γ2

)−n
kn

γn j−n In

(
kr

γ

)
using Eqs. (C.3) and (C.14)

= π

2

(
kx +

√
k2

x +
k2

γ2

)−n
kn

γn In

(
kr

γ

)
.

Similarly we get for the other term, this time with ν= n in Eq. (C.38)

1

2

∫ π

0
dφcos

(
kx r sinφ−nφ

)
e

r cosφ

√
k2

x+ k2

γ2 = π

2

r n
(
kx +

√
k2

x + k2

γ2

)n

(
−k2r 2

γ2

) n
2

Jn

(
j

kr

γ

)

= π

2
j−n

(
kx +

√
k2

x +
k2

γ2

)n
γn

kn j n In

(
kr

γ

)

= π

2

(
kx +

√
k2

x +
k2

γ2

)n
γn

kn In

(
kr

γ

)
.

Adding the two we finally get

∫ π

0
dφcos

(
nφ

)
cos

(
kx r sinφ

)
e

r cosφ

√
k2

x+ k2

γ2 =

π

2
In

(
kr

γ

)[(
kx +

√
k2

x +
k2

γ2

)−n
kn

γn +
(

kx +
√

k2
x +

k2

γ2

)n
γn

kn

]
. (C.39)
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D Various mathematical relations

D.1 Inversion of a two-by-two matrix

Given a 2×2 matrix of the form

M =
[

a b
c d

]
, (D.1)

whose determinant ad −bc is non zero, its inverse is given by

M −1 = 1

ad −bc

[
d −b
−c a

]
. (D.2)

This can be checked simply by multiplying the two matrices.

D.2 Some integrals involving exponentials

The following well-known integral can be readily computed∫ ∞

0
dωe jωt = j

t
if ℑ(t ) > 0, (D.3)

j being the imaginary constant. From this result we can also get, for any positive integer n∫ ∞

0
dωe jωtωn = 1

j n

d n

d t n

(∫ ∞

0
dωe jωt

)
= (−1)nn!

j (n−1)t n+1
= n!

(
j

t

)n+1

if ℑ(t ) > 0. (D.4)

Similar integrals with different bounds can be computed in the same way: for any complex number x we
have ∫ 1

0
dhe j hx = e j x −1

j x
, (D.5)∫ 1

0
dhe j hx h = 1

j

d

d x

(
e j x −1

j x

)
=− j xe j x +1−e j x

x2 =− j e j x

x
+ e j x −1

x2 , (D.6)
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∫ 1

0
dhe j hx h2 = 1

j

d

d x

(∫ 1

0
dhe j hx h

)
= 1

j

d

d x

(
− j e j x

x
+ e j x −1

x2

)
=− j e j x

x
+ 2e j x

x2 + 2 j
(
e j x −1

)
x3 ,

(D.7)∫ 1

0
dhe j hx h3 = 1

j

d

d x

(∫ 1

0
dhe j hx h2

)
= 1

j

d

d x

(
− j e j x

x
+ 2e j x

x2 + 2 j
(
e j x −1

)
x3

)

=− j e j x

x
+ 3e j x

x2 + 6 j e j x

x3 − 6
(
e j x −1

)
x4 . (D.8)
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E Derivations used for the impedance and
wake function calculations

E.1 Axisymmetric multilayer chamber

E.1.1 Transverse components of the electromagnetic fields

From the transverse components of Maxwell equations (1.9) and (1.10) written in cylindrical coordinates
thanks to Eqs. (B.3), assuming y 6= a1 and omitting the superscript (p), we have the relations

1

r

∂Hs

∂θ
− ∂Hθ

∂s
= jωεc Er , (E.1)

∂Hr

∂s
− ∂Hs

∂r
= jωεc Eθ, (E.2)

1

r

∂Es

∂θ
− ∂Eθ

∂s
=− jωµHr , (E.3)

∂Er

∂s
− ∂Es

∂r
=− jωµHθ. (E.4)

Differentiating with respect to s Eq. (E.4) and combining it to Eq. (E.1), we get, knowing that Es is
proportional to e− j ks from Eqs. (1.42) and (1.43)

∂2Er

∂s2 +ω2εcµEr =− j k
∂Es

∂r
− jωµ

1

r

∂Hs

∂θ
. (E.5)

In the same way, we can differentiate with respect to s Eqs. (E.3), (E.2) and (E.1), then combine them
respectively to Eqs. (E.2), (E.3) and (E.4), obtaining

∂2Eθ
∂s2 +ω2εcµEθ =− j k

1

r

∂Es

∂θ
+ jωµ

∂Hs

∂r
, (E.6)

∂2Hr

∂s2 +ω2εcµHr = jωεc
1

r

∂Es

∂θ
− j k

∂Hs

∂r
, (E.7)

∂2Hθ

∂s2 +ω2εcµHθ =− jωεc
∂Es

∂r
− j k

1

r

∂Hs

∂θ
. (E.8)
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If we now introduce the decompositions from Eqs. (1.20) and (1.21) and identify the integrand and each
terms in the Fourier series (since the equations are valid for any s and any θ), we get

(−k ′2 +ω2εcµ
)

Ê m,c
r =− j k

dÊ m,c
s

dr
− jωµ

m

r
Ĥ m,s

s , (E.9)

(−k ′2 +ω2εcµ
)

Ê m,s
r =− j k

dÊ m,s
s

dr
+ jωµ

m

r
Ĥ m,c

s , (E.10)

(−k ′2 +ω2εcµ
)

Ê m,c
θ

=− j k
m

r
Ê m,s

s + jωµ
d Ĥ m,c

s

dr
, (E.11)

(−k ′2 +ω2εcµ
)

Ê m,s
θ

= j k
m

r
Ê m,c

s + jωµ
d Ĥ m,s

s

dr
, (E.12)

(−k ′2 +ω2εcµ
)

Ĥ m,c
r = jωεc

m

r
Ê m,s

s − j k
d Ĥ m,c

s

dr
, (E.13)

(−k ′2 +ω2εcµ
)

Ĥ m,s
r =− jωεc

m

r
Ê m,c

s − j k
d Ĥ m,s

s

dr
, (E.14)

(−k ′2 +ω2εcµ
)

Ĥ m,c
θ

=− jωεc
dÊ m,c

s

dr
− j k

m

r
Ĥ m,s

s , (E.15)

(−k ′2 +ω2εcµ
)

Ĥ m,s
θ

=− jωεc
dÊ m,s

s

dr
+ j k

m

r
Ĥ m,c

s . (E.16)

From the right hand side of the above equations, and knowing that the field matching conditions between
different cylindrical layers will relate together only the same component of the fields ~E and ~H (i.e. it will
relate radial components between them, azimuthal ones between them and longitudinal ones between
them, but for instance not Er to Es – see Section E.1.2), we can notice that Ê m,c

s and Ĥ m,s
s are coupled

together, as well as Ê m,s
s and Ĥ m,c

s , and that Ê m,c
s is never coupled to Ê m,s

s or Ĥ m,c
s . This means, since no

external excitation appears in Eqs. (1.32) and (1.33), and using the same argument as in Section 1.4.1,
that

Ê m,s
s = Ĥ m,c

s = 0. (E.17)

Using then Eqs. (E.10), (E.11), (E.13) and (E.16), we have

Ê m,s
r = Ê m,c

θ
= Ĥ m,c

r = Ĥ m,s
θ

= 0. (E.18)

The non zero transverse components are, from Eqs. (E.9) to (E.15), all proportional to δ(k ′−k) as Ê m,c
s

and Ĥ m,s
s , and multiplying by e− j k ′s , integrating over k ′ and applying the definitions from Eqs. (1.24)

and (1.25) we finally get (assuming ν 6= 0, see Section 1.4.1)

E m,c
r = j k

ν2

(
dE m,c

s

dr
+ mυµ

r
H m,s

s

)
, (E.19)

E m,s
θ

= j k

ν2

(
−m

r
E m,c

s −υµd H m,s
s

dr

)
, (E.20)

H m,s
r = j k

ν2

(
mυεc

r
E m,c

s + d H m,s
s

dr

)
, (E.21)

H m,c
θ

= j k

ν2

(
υεc

dE m,c
s

dr
+ m

r
H m,s

s

)
. (E.22)
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Those formulae were also obtained in Refs. [1, 14].

E.1.2 Field matching between the layers

We derive here the recurrent relation existing between adjacent layers for the integration constants of
Eqs. (1.56) and (1.57). To do so we consider the boundary condition at r = b(p) for 1 ≤ p ≤ N −1 (see
Fig. 1.1). Since there are no externally imposed surface charges or currents between the cylindrical layers,
from Ref. [11, p. 18] and Eqs. (1.12) and (1.13) the following relations hold across the boundary (for any
θ, s and ω)

ε
(p)
c E (p)

r
(
b(p),θ, s;ω

)= ε(p+1)
c E (p+1)

r
(
b(p),θ, s;ω

)
,

E (p)
θ

(
b(p),θ, s;ω

)= E (p+1)
θ

(
b(p),θ, s;ω

)
,

E (p)
s

(
b(p),θ, s;ω

)= E (p+1)
s

(
b(p),θ, s;ω

)
,

µ(p)H (p)
r

(
b(p),θ, s;ω

)=µ(p+1)H (p+1)
r

(
b(p),θ, s;ω

)
,

H (p)
θ

(
b(p),θ, s;ω

)= H (p+1)
θ

(
b(p),θ, s;ω

)
,

H (p)
s

(
b(p),θ, s;ω

)= H (p+1)
s

(
b(p),θ, s;ω

)
.

When decomposing these according to Eqs. (1.22) and (1.23) (ignoring the zero terms from Eqs. (E.17)
and (E.18)), term by term identification gives for any m, s and ω

ε
(p)
c E m,c

r
(p) (b(p), s;ω

)= ε(p+1)
c E m,c

r
(p+1) (b(p), s;ω

)
, (E.23)

E m,s
θ

(p) (b(p), s;ω
)= E m,s

θ

(p+1) (b(p), s;ω
)

, (E.24)

E m,c
s

(p) (b(p), s;ω
)= E m,c

s
(p+1) (b(p), s;ω

)
, (E.25)

µ(p)H m,s
r

(p) (b(p), s;ω
)=µ(p+1)H m,s

r
(p+1) (b(p), s;ω

)
, (E.26)

H m,c
θ

(p) (b(p), s;ω
)= H m,c

θ

(p+1) (b(p), s;ω
)

, (E.27)

H m,s
s

(p) (b(p), s;ω
)= H m,s

s
(p+1) (b(p), s;ω

)
. (E.28)

When plugging them in Eqs. (1.56) and (1.57), Eqs. (E.25) and (E.28) read respectively, in terms of the
integration constants

C m
Ie

(p)Im
(
ν(p)b(p))+C m

K e
(p)Km

(
ν(p)b(p))=C m

Ie
(p+1)Im

(
ν(p+1)b(p))+C m

K e
(p+1)Km

(
ν(p+1)b(p)) ,

(E.29)

C m
I h

(p)Im
(
ν(p)b(p))+C m

K h
(p)Km

(
ν(p)b(p))=C m

I h
(p+1)Im

(
ν(p+1)b(p))+C m

K h
(p+1)Km

(
ν(p+1)b(p)) ,

(E.30)
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while Eqs. (E.27) and (E.24), using Eqs. (E.22) and (E.20), can be written

1(
ν(p)

)2

[
υε

(p)
c

dE m,c
s

(p)

dr

∣∣∣∣∣
b(p)

+ m

b(p)
H m,s

s
(p) (b(p))]

= 1(
ν(p+1)

)2

[
υε

(p+1)
c

dE m,c
s

(p+1)

dr

∣∣∣∣∣
b(p)

+ m

b(p)
H m,s

s
(p+1) (b(p))] ,

1(
ν(p)

)2

[
− m

b(p)
E m,c

s
(p) (b(p))−υµ(p) d H m,s

s
(p)

dr

∣∣∣∣∣
b(p)

]

= 1(
ν(p+1)

)2

[
− m

b(p)
E m,c

s
(p+1) (b(p))−υµ(p+1) d H m,s

s
(p+1)

dr

∣∣∣∣∣
b(p)

]
,

which, using Eqs. (1.56) and (1.57), become

1(
ν(p)

)2

[
υε

(p)
c ν(p)

{
C m

Ie
(p)I ′m

(
ν(p)b(p))+C m

K e
(p)K ′

m

(
ν(p)b(p))}

+ m

b(p)

{
C m

I h
(p)Im

(
ν(p)b(p))+C m

K h
(p)Km

(
ν(p)b(p))}]

= 1(
ν(p+1)

)2

[
υε

(p+1)
c ν(p+1)

{
C m

Ie
(p+1)I ′m

(
ν(p+1)b(p))+C m

K e
(p+1)K ′

m

(
ν(p+1)b(p))}

+ m

b(p)

{
C m

I h
(p+1)Im

(
ν(p+1)b(p))+C m

K h
(p+1)Km

(
ν(p+1)b(p))}]

, (E.31)

and

1(
ν(p)

)2

[
− m

b(p)

{
C m

Ie
(p)Im

(
ν(p)b(p))+C m

K e
(p)Km

(
ν(p)b(p))}

− υµ(p)ν(p)
{

C m
I h

(p)I ′m
(
ν(p)b(p))+C m

K h
(p)K ′

m

(
ν(p)b(p))}]

= 1(
ν(p+1)

)2

[
− m

b(p)

{
C m

Ie
(p+1)Im

(
ν(p+1)b(p))+C m

K e
(p+1)Km

(
ν(p+1)b(p))}

− υµ(p+1)ν(p+1)
{

C m
I h

(p+1)I ′m
(
ν(p+1)b(p))+C m

K h
(p+1)K ′

m

(
ν(p+1)b(p))}]

. (E.32)

We can express Eq. (E.31) using Eq. (E.30), leading to

1

ν(p)
υε

(p)
c

[
C m

Ie
(p)I ′m

(
ν(p)b(p))+C m

K e
(p)K ′

m

(
ν(p)b(p))]

+
(

1(
ν(p)

)2 − 1(
ν(p+1)

)2

)
m

b(p)

[
C m

I h
(p)Im

(
ν(p)b(p))+C m

K h
(p)Km

(
ν(p)b(p))]

= 1

ν(p+1)
υε

(p+1)
c

[
C m

Ie
(p+1)I ′m

(
ν(p+1)b(p))+C m

K e
(p+1)K ′

m

(
ν(p+1)b(p))] . (E.33)
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Similarly we rewrite Eq. (E.32) using Eq. (E.29), to get(
1(

ν(p+1)
)2 − 1(

ν(p)
)2

)
m

b(p)

[
C m

Ie
(p)Im

(
ν(p)b(p))+C m

K e
(p)Km

(
ν(p)b(p))]=

υ

[
µ(p)

ν(p)

{
C m

I h
(p)I ′m

(
ν(p)b(p))+C m

K h
(p)K ′

m

(
ν(p)b(p))}

−µ
(p+1)

ν(p+1)

{
C m

I h
(p+1)I ′m

(
ν(p+1)b(p))+C m

K h
(p+1)K ′

m

(
ν(p+1)b(p))}]

. (E.34)

To determine the constants in front of the modified Bessel functions in the expression of Es and Hs of
Eqs. (1.56) and (1.57) (four integration constants per layer), we will use the continuity at the boundaries

between the different materials of E (p)
θ

, E (p)
s , H (p)

θ
and H (p)

s as expressed in Eqs. (E.29), (E.30), (E.33)

and (E.34). Continuity of ε(p)
c E (p)

r and µ(p)H (p)
r give redundant equations, which can be readily seen from

Eqs. (E.1) and (E.3)1.
With the definitions

Z0 = 1

ε0c
=µ0c =

√
µ0

ε0
, (E.35)

~G = Z0~H ,

C m
I g

(p) = Z0C m
I h

(p),

C m
K g

(p) = Z0C m
K h

(p),

xp+1,p = ν(p+1)b(p),

xp,p = ν(p)b(p), (E.36)

the continuity of Es and Hs is given by Eqs. (E.29) and (E.30) which we can rewrite, using the above
notations:

C m
Ie

(p)Im(xp,p )+C m
K e

(p)Km(xp,p ) = C m
Ie

(p+1)Im(xp+1,p )+C m
K e

(p+1)Km(xp+1,p ), (E.37)

C m
I g

(p)Im(xp,p )+C m
K g

(p)Km(xp,p ) = C m
I g

(p+1)Im(xp+1,p )+C m
K g

(p+1)Km(xp+1,p ). (E.38)

1Note that the redundancy of Dr continuity would not have occurred if (as done in Refs. [1, 14]) we had used ~D = ε0εb~E
instead of Eq. (1.12) for the definition of the electric displacement field used in Eq. (1.8), while Eqs. (1.9) and (E.1) remain the
same. In the absence of surface charges at the boundaries, this would lead to the following boundary condition in replacement
of Eq. (E.23)

ε
(p)
b E

(p)
r

(
b(p),θ, s;ω

)
= ε(p+1)

b E
(p+1)
r

(
b(p),θ, s;ω

)
,

and consequently to one additional equation per boundary and necessarily to an inconsistency. Still, it had no impact on the
final results of Refs. [1, 14] because the continuity of the radial components was never used. Also, consistency is recovered
simply by saying that in such a formalism there exists a surface charge density at the layers boundary (physically, those charges
are actually induced charges, created by the discontinuity of the complex permittivity – particularly its conductive part – which
results in a discontinuity in the current density at that boundary – see also Appendix A).
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The continuity of Hθ and Eθ can be written, from Eqs. (E.33) and (E.34), by virtue of the above definitions

βε
(p)
1

ν(p)

[
C m

Ie
(p)I ′m(xp,p )+C m

K e
(p)K ′

m(xp,p )
]

+
(

1(
ν(p)

)2 − 1(
ν(p+1)

)2

)
m

b(p)

[
C m

I g
(p)Im(xp,p )+C m

K g
(p)Km(xp,p )

]

= βε
(p+1)
1

ν(p+1)

[
C m

Ie
(p+1)I ′m(xp+1,p )+C m

K e
(p+1)K ′

m(xp+1,p )
]

, (E.39)

and

βµ
(p)
1

ν(p)

[
C m

I g
(p)I ′m(xp,p )+C m

K g
(p)K ′

m(xp,p )
]

+
(

1(
ν(p)

)2 − 1(
ν(p+1)

)2

)
m

b(p)

[
C m

Ie
(p)Im(xp,p )+C m

K e
(p)Km(xp,p )

]

= βµ
(p+1)
1

ν(p+1)

[
C m

I g
(p+1)I ′m(xp+1,p )+C m

K g
(p+1)K ′

m(xp+1,p )
]

. (E.40)

We can write Eqs. (E.37) and (E.39) in matrix form:

 Im(xp+1,p ) Km(xp+1,p )

βε
(p+1)
1

ν(p+1) I ′m(xp+1,p )
βε

(p+1)
1

ν(p+1) K ′
m(xp+1,p )

 ·

C m
Ie

(p+1)

C m
K e

(p+1)

=


C m

Ie
(p)Im(xp,p )+C m

K e
(p)Km(xp,p )

βε
(p)
1

ν(p)

{
C m

Ie
(p)I ′m(xp,p )+C m

K e
(p)K ′

m(xp,p )
}+(

1
(ν(p))2 − 1

(ν(p+1))2

)
m

b(p)

{
C m

I g
(p)Im(xp,p )+C m

K g
(p)Km(xp,p )

}
 .

This can be readily solved for

[
C m

Ie
(p+1)

C m
K e

(p+1)

]
, knowing that the determinant of the first matrix is proportional

to the wronskian of the modified Bessel functions, more precisely equal to (see Eq. (C.6) ) − βε
(p+1)
1

(ν(p+1))2b(p)
.

We get, using the inversion formula of a 2×2 matrix (see Appendix D.1)
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C m
Ie

(p+1)

C m
K e

(p+1)

=−
(
ν(p+1)

)2
b(p)

βε
(p+1)
1


βε

(p+1)
1

ν(p+1) K ′
m(xp+1,p ) −Km(xp+1,p )

−βε
(p+1)
1

ν(p+1) I ′m(xp+1,p ) Im(xp+1,p )

 ·


 Im(xp,p ) Km(xp,p )

βε
(p)
1

ν(p) I ′m(xp,p )
βε

(p)
1

ν(p) K ′
m(xp,p )

 ·

C m
Ie

(p)

C m
K e

(p)

+

{
1(

ν(p)
)2 − 1(

ν(p+1)
)2

}
m

b(p)

 0 0

Im(xp,p ) Km(xp,p )

 ·

C m
I g

(p)

C m
K g

(p)


 . (E.41)

Very similarly we can write for

[
C m

I g
(p+1)

C m
K g

(p+1)

]
, from Eqs. (E.38) and (E.40) (we only need to substitute ε1

with µ1 in the above 2×2 matrices):

C m
I g

(p+1)

C m
K g

(p+1)

=−
(
ν(p+1)

)2
b(p)

βµ
(p+1)
1


βµ

(p+1)
1

ν(p+1) K ′
m(xp+1,p ) −Km(xp+1,p )

−βµ
(p+1)
1

ν(p+1) I ′m(xp+1,p ) Im(xp+1,p )

 ·


 Im(xp,p ) Km(xp,p )

βµ
(p)
1

ν(p) I ′m(xp,p )
βµ

(p)
1

ν(p) K ′
m(xp,p )

 ·

C m
I g

(p)

C m
K g

(p)

+

{
1(

ν(p)
)2 − 1(

ν(p+1)
)2

}
m

b(p)

 0 0

Im(xp,p ) Km(xp,p )

 ·

C m
Ie

(p)

C m
K e

(p)


 . (E.42)
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Let us now define the four following 2× 2 matrices, enabling the computation of the values of the
constants for the p +1 region knowing those of the p region:

P p+1,p =

−
(
ν(p+1)

)2
b(p)

βε
(p+1)
1


βε

(p+1)
1

ν(p+1) K ′
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1
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 ·
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βε
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)2(
ν(p)
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)
m
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1
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 ·
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)2
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1
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−βµ
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1
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 ·
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βµ
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1
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βµ
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1
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 ,

Sp+1,p =

−
((
ν(p+1)

)2(
ν(p)

)2 −1

)
m

βµ
(p+1)
1


βµ

(p+1)
1

ν(p+1) K ′
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−βµ
(p+1)
1

ν(p+1) I ′m(xp+1,p ) Im(xp+1,p )

 ·
 0 0

Im(xp,p ) Km(xp,p )

 ,

such that Eqs. (E.41) and (E.42) become

C m
Ie

(p+1)

C m
K e

(p+1)

 = P p+1,p ·

C m
Ie

(p)

C m
K e

(p)

+Qp+1,p ·

C m
I g

(p)

C m
K g

(p)

 , (E.43)

C m
I g

(p+1)

C m
K g

(p+1)

 = Rp+1,p ·

C m
I g

(p)

C m
K g

(p)

+Sp+1,p ·

C m
Ie

(p)

C m
K e

(p)

 . (E.44)

It is crucial to be able to compute accurately these four matrices, which is not straightforward since
components can be equal to a difference between very large numbers, especially when ν(p)b(p) or
ν(p+1)b(p) becomes large: for large arguments Im and I ′m are exponentially growing while Km and K ′

m

are exponentially decaying (see Eqs. (C.20) and (C.21), as well as formulas 9.7.1 to 9.7.4 in Ref. [56]). It is
therefore better to write them in the following way
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P p+1,p = −
(
ν(p+1)

)2
b(p)

ε
(p+1)
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Im(xp,p )Km(xp+1,p )

{
ε

(p+1)
1

ν(p+1)
K ′

m (xp+1,p )
Km (xp+1,p ) −

ε
(p)
1

ν(p)
I ′m (xp,p )
Im (xp,p )

}

Im(xp,p )Im(xp+1,p )

{
− ε

(p+1)
1

ν(p+1)
I ′m (xp+1,p )
Im (xp+1,p ) +

ε
(p)
1

ν(p)
I ′m (xp,p )
Im (xp,p )

}
Km(xp,p )Km(xp+1,p )

{
ε

(p+1)
1

ν(p+1)
K ′

m (xp+1,p )
Km (xp+1,p ) −

ε
(p)
1

ν(p)
K ′

m (xp,p )
Km (xp,p )

}

Km(xp,p )Im(xp+1,p )

{
− ε

(p+1)
1

ν(p+1)
I ′m (xp+1,p )
Im (xp+1,p ) +

ε
(p)
1

ν(p)
K ′

m (xp,p )
Km (xp,p )

}
 , (E.45)

Qp+1,p = −
((
ν(p+1)

)2(
ν(p)

)2 −1

)
m

βε
(p+1)
1

−Im(xp,p )Km(xp+1,p ) −Km(xp,p )Km(xp+1,p )

Im(xp,p )Im(xp+1,p ) Km(xp,p )Im(xp+1,p )

 , (E.46)

Rp+1,p = −
(
ν(p+1)

)2
b(p)

µ
(p+1)
1


Im(xp,p )Km(xp+1,p )

{
µ

(p+1)
1

ν(p+1)
K ′

m (xp+1,p )
Km (xp+1,p ) −

µ
(p)
1

ν(p)
I ′m (xp,p )
Im (xp,p )

}

Im(xp,p )Im(xp+1,p )

{
−µ

(p+1)
1

ν(p+1)
I ′m (xp+1,p )
Im (xp+1,p ) +

µ
(p)
1

ν(p)
I ′m (xp,p )
Im (xp,p )

}
Km(xp,p )Km(xp+1,p )

{
µ

(p+1)
1

ν(p+1)
K ′

m (xp+1,p )
Km (xp+1,p ) −

µ
(p)
1

ν(p)
K ′

m (xp,p )
Km (xp,p )

}

Km(xp,p )Im(xp+1,p )

{
−µ

(p+1)
1

ν(p+1)
I ′m (xp+1,p )
Im (xp+1,p ) +

µ
(p)
1

ν(p)
K ′

m (xp,p )
Km (xp,p )

}
 , (E.47)

Sp+1,p = ε
(p+1)
1

µ
(p+1)
1

Qp+1,p , (E.48)

in which the quotients involving modified Bessel functions and their derivatives can be computed
accurately using Eqs. (C.7) and (C.8)

I ′m(z)

Im(z)
= Im−1(z)

Im(z)
− m

z
,

K ′
m(z)

Km(z)
= −Km−1(z)

Km(z)
− m

z
, (E.49)

and we can normalize the Bessel functions in the first quotient of these expressions with ez for Im and
e−z for Km , which does not change the quotient value.
We can then define the 4×4 matrix M p+1,p by

M p+1,p =
[

P p+1,p Qp+1,p

Sp+1,p Rp+1,p

]
, (E.50)
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such that

C m
Ie

(p+1)

C m
K e

(p+1)

C m
I g

(p+1)

C m
K g

(p+1)


= M p+1,p ·



C m
Ie

(p)

C m
K e

(p)

C m
I g

(p)

C m
K g

(p)


, (E.51)

which is the relation looked for.

E.1.3 Direct space-charge impedances

When injecting in Eq. (1.97) the longitudinal electric field due to the direct space charge from Eq. (1.90) to-
gether with the definition of C in Eq. (1.62), one gets the following longitudinal space-charge impedance:

Z SC ,di r ect
‖ =− jωµ0L

2πβ2γ2 K0

k
√

a2
1 +a2

2 −2a1a2 cos(θ2 −θ1)

γ

 . (E.52)

Using Eqs. (1.98) and (1.99) with Eqs. (1.90), (C.13) and (1.62), we find for the transverse space-charge
impedances:

Z SC ,di r ect
x =−C L

Qγ
K1

(
k

γ

√
a2

1 +a2
2 −2a1a2 cos(θ2 −θ1)

)−cosθ2
a2 −a1 cos(θ2 −θ1)√

a2
1 +a2

2 −2a1a2 (θ2 −θ1)

+sinθ2

a2

a1a2 sin(θ2 −θ1)√
a2

1 +a2
2 −2a1a2 cos(θ2 −θ1)


= jωµ0L

2πβ2γ3 K1

k
√

a2
1 +a2

2 −2a1a2 cos(θ2 −θ1)

γ

 a2 cosθ2 −a1 cosθ1√
a2

1 +a2
2 −2a1a2 cos(θ2 −θ1)

, (E.53)

Z SC ,di r ect
y =−C L

Qγ
K1

(
k

γ

√
a2

1 +a2
2 −2a1a2 cos(θ2 −θ1)

)−sinθ2
a2 −a1 cos(θ2 −θ1)√

a2
1 +a2

2 −2a1a2 cos(θ2 −θ1)

−cosθ2

a2

a1a2 sin(θ2 −θ1)√
a2

1 +a2
2 −2a1a2 cos(θ2 −θ1)


= jωµ0L

2πβ2γ3 K1

k
√

a2
1 +a2

2 −2a1a2 cos(θ2 −θ1)

γ

 a2 sinθ2 −a1 sinθ1√
a2

1 +a2
2 −2a1a2 cos(θ2 −θ1)

. (E.54)
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E.1.4 Wall impedances

The total longitudinal wall impedance is obtained when plugging the wall part of the longitudinal electric
field from Eq. (1.92) into the definition (1.97):

Z W all
‖ = 2

C L

Q

∞∑
m=0

αm
TM cos(m (θ2 −θ1))

1+δm0
Im

(
ka1

γ

)
Im

(
ka2

γ

)
. (E.55)

This expression gives the general nonlinear longitudinal wall impedance. To get the first order terms
in the source and test positions (for small ka1

γ and ka2
γ ), we inject the development in Taylor series of

Im from Eq. (C.16). We see that to go up to the second order in both the source and test positions, we
need to go up to m = 1 in the above sum. Approximating then up to second order the modified Bessel
functions thanks to Eq. (C.16) and using

cos(θ2 −θ1) = cosθ2 cosθ1 + sinθ2 sinθ1 = x1x2 + y1 y2

a1a2
,

we get

Z W all
‖ ≈ 2

C L

Q

[
α0

TM

2

{
1+

(
ka1

2γ

)2

+
(

ka2

2γ

)2}
+α1

TM
x1x2 + y1 y2

a1a2

ka1

2γ

ka2

2γ

]

≈ C L

Q

[
α0

TM + k2α0
TM

4γ2 x2
1 +

k2α0
TM

4γ2 y2
1 +

k2α0
TM

4γ2 x2
2 +

k2α0
TM

4γ2 y2
2 +

k2α1
TM

2γ2 x1x2 +
k2α1

TM

2γ2 y1 y2

]
.

(E.56)

In a similar way, the total horizontal wall impedance is obtained when plugging Eq. (1.92) into the
definition (1.98):

Z W all
x = 2

C L

kQ

∞∑
m=0

αm
TM

1+δm0
Im

(
ka1

γ

)[
k cosθ2 cos(m (θ2 −θ1))

γ
I ′m

(
ka2

γ

)
+m sinθ2 sin(m (θ2 −θ1))

a2
Im

(
ka2

γ

)]
, (E.57)

such that, with Eq. (C.7):

Z W all
x = 2

C L

kQ

∞∑
m=0

αm
TM

1+δm0
Im

(
ka1

γ

)[
k cosθ2 cos(m (θ2 −θ1))

γ
Im−1

(
ka2

γ

)
−m cos(θ2 +m (θ2 −θ1))

a2
Im

(
ka2

γ

)]
. (E.58)

From this and Eq. (C.16) we see that we need to go up to m = 1 to obtain Z W all
x up to the second order in

the source and test coordinates. Approximating the Bessel functions up to that order we obtain

Z W all
x ≈ 2

C L

kQ

[
α0

TM

2

(
1+

(
ka1

2γ

)2) k2x2

2γ2 +α1
TM
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γ
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)]
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2

k2x2

2γ2 +α1
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]
,
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where we have used various trigonometric identities. The total horizontal impedance up to second order
can be rewritten

Z W all
x ≈ C Lk

2γ2Q

(
α1

TMx1 +α0
TMx2

)
. (E.59)

The next non-zero terms are of third order.
Similarly, the total vertical wall impedance is obtained when plugging Eq. (1.92) into the definition (1.99),
using also Eq. (C.7):

Z W all
y = 2

C L

kQ

∞∑
m=0

αm
TM

1+δm0
Im

(
ka1

γ

)[
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γ
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(
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γ

)
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(
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γ
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, (E.60)

= 2
C L

kQ

∞∑
m=0

αm
TM

1+δm0
Im

(
ka1

γ

)[
k sinθ2 cos(m (θ2 −θ1))

γ
Im−1

(
ka2

γ

)
−m sin(θ2 +m (θ2 −θ1))

a2
Im

(
ka2

γ

)]
. (E.61)

Again, as above we approximate Z W all
y up to the second order in the source and test coordinates thanks

to Eq. (C.16) and going up to m = 1:

Z W all
y ≈ 2

C L

kQ

[
α0

TM

2

(
1+

(
ka1

2γ

)2) k2 y2

2γ2 +α1
TM

ka1

2γ

(
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4γ2 sinθ1

]

≈ C Lk

2γ2Q

(
α1

TM y1 +α0
TM y2

)
. (E.62)

Again, the next non-zero terms are of third order.

E.1.5 Panofsky-Wenzel theorem

We check here that the beam-coupling impedances derived in Section 1.4.6 comply with the Panofsky-
Wenzel theorem. First, for the space-charge impedances in Eqs. (1.100), (1.101) and (1.102), we have,
thanks to Eq. (C.13)

∂

∂x2
Z SC ,di r ect
‖ = − jωµ0L

2πβ2γ2

k

γ
K ′

0

(
k
√

(x2 −x1)2 + (y2 − y1)2

γ

)
x2 −x1√

(x2 −x1)2 + (y2 − y1)2

= k Z SC ,di r ect
x , (E.63)

∂

∂y2
Z SC ,di r ect
‖ = − jωµ0L

2πβ2γ2

k

γ
K ′

0

(
k
√

(x2 −x1)2 + (y2 − y1)2

γ

)
y2 − y1√

(x2 −x1)2 + (y2 − y1)2

= k Z SC ,di r ect
y . (E.64)
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For the wall impedances, we begin by stating that

a2 =
√

x2
2 + y2

2 , and

(
a2

a1

)m [
cos(m(θ2 −θ1))+ j sin(m(θ2 −θ1))
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2 e j mθ2
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1 e j mθ1
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(
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(
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From these we obtain the following derivatives:
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Using the above and Eq. (1.103) we obtain

∂

∂x2
Z W all
‖ = 2

C L

Q

∞∑
m=0

αm
TM

1+δm0
Im

(
ka1

γ

)[
cos(m (θ2 −θ1))

k cosθ2

γ
I ′m

(
ka2

γ

)
+m sinθ2

a2
sin(m(θ2 −θ1)) Im

(
ka2

γ

)]
= k Z W all

x from Eq. (E.57) , (E.65)

∂

∂y2
Z W all
‖ = 2

C L

Q

∞∑
m=0

αm
TM

1+δm0
Im

(
ka1

γ

)[
cos(m (θ2 −θ1))

k sinθ2

γ
I ′m

(
ka2

γ

)
−m cosθ2

a2
sin(m(θ2 −θ1)) Im

(
ka2

γ

)]
= k Z W all

y from Eq. (E.60) , (E.66)

which are in agreement with the Panofsky-Wenzel theorem as stated in Ref. [7, p. 90].

E.2 Flat multilayer chamber

E.2.1 Transverse components of the electromagnetic fields

From the transverse components of Maxwell equations (1.9) and (1.10) written in cartesian coordinates
(see Appendix B.2), assuming y 6= y1 and omitting the superscript (p), we have the relations

∂Hs

∂y
− ∂Hy

∂s
= jωεc Ex , (E.67)

∂Hx

∂s
− ∂Hs

∂x
= jωεc Ey , (E.68)

∂Es

∂y
− ∂Ey

∂s
= − jωµHx , (E.69)

∂Ex

∂s
− ∂Es

∂x
= − jωµHy . (E.70)

Differentiating with respect to s Eq. (E.70) and combining it to Eq. (E.67), we get, knowing the longitudinal
dependence of Es

∂2Ex

∂s2 +ω2εcµEx =− j k
∂Es

∂x
− jωµ

∂Hs

∂y
. (E.71)
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In the same way, we can differentiate with respect to s Eqs. (E.69), (E.68) and (E.67), then combine them
respectively to Eqs. (E.68), (E.69) and (E.70), to get

∂2Ey

∂s2 +ω2εcµEy = − j k
∂Es

∂y
+ jωµ

∂Hs

∂x
, (E.72)

∂2Hx

∂s2 +ω2εcµHx = jωεc
∂Es

∂y
− j k

∂Hs

∂x
, (E.73)

∂2Hy

∂s2 +ω2εcµHy = − jωεc
∂Es

∂x
− j k

∂Hs

∂y
. (E.74)

If we now introduce the decompositions from Eqs. (1.113) and (1.114) and identify the integrands and
each cosine and sine term (since those equations are valid for any s and x), we get

(−k ′2 +ω2εcµ
)

Ẽ c
x =− j kkx Ẽ s

s − jωµ
d H̃ c

s

d y
, (E.75)

(−k ′2 +ω2εcµ
)

Ẽ s
x = j kkx Ẽ c

s − jωµ
d H̃ s

s

d y
, (E.76)

(−k ′2 +ω2εcµ
)

Ẽ c
y =− j k

dẼ c
s

d y
+ jωµkx H̃ s

s , (E.77)

(−k ′2 +ω2εcµ
)

Ẽ s
y =− j k

dẼ s
s

d y
− jωµkx H̃ c

s , (E.78)

(−k ′2 +ω2εcµ
)

H̃ c
x = jωεc

dẼ c
s

d y
− j kkx H̃ s

s , (E.79)

(−k ′2 +ω2εcµ
)

H̃ s
x = jωεc

dẼ s
s

d y
+ j kkx H̃ c

s , (E.80)

(−k ′2 +ω2εcµ
)

H̃ c
y =− jωεc kx Ẽ s

s − j k
d H̃ c

s

d y
, (E.81)

(−k ′2 +ω2εcµ
)

H̃ s
y = jωεc kx Ẽ c

s − j k
d H̃ s

s

d y
. (E.82)

From the right hand side of the above equations, and knowing that the field matching conditions between
different layers will relate together only the same component of the fields ~E and ~H (i.e. it will relate
horizontal components between them, vertical ones between them and longitudinal ones between them,
but for instance not Ex to Es – see Section E.2.2), we can notice that Ẽ c

s and H̃ s
s are coupled together, as

well as Ẽ s
s and H̃ c

s , and that Ẽ c
s is never coupled to Ẽ s

s or H̃ c
s . This means, since no external excitation

appears in Eqs. (1.125) and (1.126), and using the same argument as in Section 1.5.1, that

Ẽ s
s = H̃ c

s = 0. (E.83)

Using then Eqs. (E.75), (E.78), (E.80) and (E.81), we have

Ẽ c
x = Ẽ s

y = H̃ s
x = H̃ c

y = 0. (E.84)
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The non zero transverse components are, from Eqs. (E.76) to (E.82), all proportional to δ(k ′−k) as Ẽ c
s

and H̃ s
s , and upon multiplication by e− j k ′s and integration over k ′, we finally obtain, assuming that ν 6= 0

and using the definitions from Eqs. (1.117), (1.118) and (1.39):

E s
x = j k

ν2

(
−kx E c

s +υµ
d H s

s

d y

)
, (E.85)

E c
y =

j k

ν2

(
dE c

s

d y
−kxυµH s

s

)
, (E.86)

H c
x = j k

ν2

(
−υεc

dE c
s

d y
+kx H s

s

)
, (E.87)

H s
y =

j k

ν2

(
−kxυεc E c

s +
d H s

s

d y

)
. (E.88)

E.2.2 Field matching between the layers

We derive here the recurrent relation existing between adjacent layers for the integration constants of
Eqs. (1.147) and (1.148). To do so we consider the boundary condition at y = b(p) for 1 ≤ p ≤ N −1 or
−M +1 ≤ p ≤−1 (see Fig. 1.3). There are no externally imposed surface charges or currents between the
layers and the boundary is perpendicular to ~ey , so according to Ref. [11, p. 18] and Eqs. (1.12) and (1.13)
the following relations hold across the boundary (for any x, s and ω)

E (p)
x

(
x,b(p), s;ω

)= E(p±1)
x

(
x,b(p), s;ω

)
,

ε
(p)
c E (p)

y
(
x,b(p), s;ω

)= ε(p±1)
c E(p±1)

y
(
x,b(p), s;ω

)
,

E (p)
s

(
x,b(p), s;ω

)= E(p±1)
s

(
x,b(p), s;ω

)
,

H (p)
x

(
x,b(p), s;ω

)= H(p±1)
x

(
x,b(p), s;ω

)
,

µ(p)H (p)
y

(
x,b(p), s;ω

)=µ(p±1)H(p±1)
y

(
x,b(p), s;ω

)
,

H (p)
s

(
x,b(p), s;ω

)= H(p±1)
s

(
x,b(p), s;ω

)
,

where in the superscripts the plus sign is selected for the layers in the upper part (y > 0), and the minus
sign for the layers in the lower part (y < 0).
When decomposing the above equations according to Eqs. (1.115) and (1.116) (ignoring the zero terms
from Eqs. (E.83) and (E.84)), integrand identification gives, for any kx , s and ω

E s
x

(p) (b(p), s;kx ,ω
)= E s

x
(p±1) (

b(p), s;kx ,ω
)

, (E.89)

ε
(p)
c E c

y
(p) (b(p), s;kx ,ω

)= ε(p±1)
c E c

y
(p±1) (

b(p), s;kx ,ω
)

, (E.90)

E c
s

(p) (b(p), s;kx ,ω
)= E c

s
(p±1) (

b(p), s;kx ,ω
)

, (E.91)

H c
x

(p) (b(p), s;kx ,ω
)= H c

x
(p±1) (

b(p), s;kx ,ω
)

, (E.92)

µ(p)H s
y

(p) (b(p), s;kx ,ω
)=µ(p±1)H s

y
(p±1) (

b(p), s;kx ,ω
)

, (E.93)

H s
s

(p) (b(p), s;kx ,ω
)= H s

s
(p±1) (

b(p), s;kx ,ω
)

. (E.94)
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We focus first on the upper layers and assume therefore 1 ≤ p ≤ N − 1. In terms of the integration
constants, Eqs. (E.91) and (E.94) read respectively, when plugging in Eqs. (1.147) and (1.148)

C (p)
e+ ek(p)

y b(p) +C (p)
e− e−k(p)

y b(p) =C (p+1)
e+ ek(p+1)

y b(p) +C (p+1)
e− e−k(p+1)

y b(p)
, (E.95)

C (p)
h+ek(p)

y b(p) +C (p)
h−e−k(p)

y b(p) =C (p+1)
h+ ek(p+1)

y b(p) +C (p+1)
h− e−k(p+1)

y b(p)
, (E.96)

while Eqs. (E.89) and (E.92), using Eqs. (E.85) and (E.87), can be written

1(
ν(p)

)2

(
−kx E c

s
(p) (b(p))+υµ(p) d H s

s
(p)

d y

∣∣∣∣∣
b(p)

)
= 1(

ν(p+1)
)2

(
−kx E c

s
(p+1) (b(p))+υµ(p+1) d H s

s
(p+1)

d y

∣∣∣∣∣
b(p)

)
,

1(
ν(p)

)2

(
−υε(p)

c
dE c

s
(p)

d y

∣∣∣∣∣
b(p)

+kx H s
s

(p) (b(p))) = 1(
ν(p+1)

)2

(
−υε(p+1)

c
dE c

s
(p+1)

d y

∣∣∣∣∣
b(p)

+kx H s
s

(p+1) (b(p))) ,

which, using again Eqs. (1.147) and (1.148), become

1(
ν(p)

)2

[
−kx

{
C (p)

e+ ek(p)
y b(p) +C (p)

e− e−k(p)
y b(p)

}
+υµ(p)k(p)

y

{
C (p)

h+ek(p)
y b(p) −C (p)

h−e−k(p)
y b(p)

}]
= 1(

ν(p+1)
)2

[
−kx

{
C (p+1)

e+ ek(p+1)
y b(p) +C (p+1)

e− e−k(p+1)
y b(p)

}
+υµ(p+1)k(p+1)

y

{
C (p+1)

h+ ek(p+1)
y b(p) −C (p+1)

h− e−k(p+1)
y b(p)

}]
, (E.97)

and

1(
ν(p)

)2

[
−υε(p)

c k(p)
y

{
C (p)

e+ ek(p)
y b(p) −C (p)

e− e−k(p)
y b(p)

}
+kx

{
C (p)

h+ek(p)
y b(p) +C (p)

h−e−k(p)
y b(p)

}]
= 1(

ν(p+1)
)2

[
−υε(p+1)

c k(p+1)
y

{
C (p+1)

e+ ek(p+1)
y b(p) −C (p+1)

e− e−k(p+1)
y b(p)

}
+kx

{
C (p+1)

h+ ek(p+1)
y b(p) +C (p+1)

h− e−k(p+1)
y b(p)

}]
. (E.98)

To determine the integration constants in the expression of E c
s and H s

s (four such constants per layer,
so 4(N +M) of them in total), we will use the continuity at the boundaries between the different layers,

of E (p)
x , E (p)

s , H (p)
x and H (p)

s as expressed in Eqs. (E.95) to (E.98). Continuity of ε(p)
c E (p)

y and µ(p)H (p)
y give

redundant equations, which can be readily seen from Eqs. (E.68) and (E.70) (see also the discussion in
Section E.1.2, in particular footnote 1).
First we introduce as in the cylindrical case the free space impedance Z0 and the field ~G which has the
same dimension as the electric field ~E

Z0 = 1

ε0c
=µ0c =

√
µ0

ε0
and ~G = Z0~H ,

and the corresponding constant coefficients for ~G

C (p)
g+ = Z0C (p)

h+ and C (p)
g− = Z0C (p)

h− .
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Appendix E. Derivations used for the impedance and wake function calculations

We can rewrite the continuity of Es and Hs given by Eqs. (E.95) and (E.96) thanks to the above definitions

C (p)
e+ ek(p)

y b(p) +C (p)
e− e−k(p)

y b(p) =C (p+1)
e+ ek(p+1)

y b(p) +C (p+1)
e− e−k(p+1)

y b(p)
, (E.99)

C (p)
g+ek(p)

y b(p) +C (p)
g−e−k(p)

y b(p) =C (p+1)
g+ ek(p+1)

y b(p) +C (p+1)
g− e−k(p+1)

y b(p)
. (E.100)

Then, the continuity of Ex and Hx can be written, from Eqs. (E.97) and (E.98), with the use of the above
equations and the definitions in Eqs. (1.12) and (1.13)(

1(
ν(p+1)

)2 − 1(
ν(p)

)2

)
kx

[
C (p)

e+ ek(p)
y b(p) +C (p)

e− e−k(p)
y b(p)

]
=

β

[
k(p+1)

y µ
(p+1)
1(

ν(p+1)
)2

{
C (p+1)

g+ ek(p+1)
y b(p) −C (p+1)

g− e−k(p+1)
y b(p)

}
− k(p)

y µ
(p)
1(

ν(p)
)2

{
C (p)

g+ek(p)
y b(p) −C (p)

g−e−k(p)
y b(p)

}]
,

(E.101)

and (
1(

ν(p+1)
)2 − 1(

ν(p)
)2

)
kx

[
C (p)

g+ek(p)
y b(p) +C (p)

g−e−k(p)
y b(p)

]
=

β

[
k(p+1)

y ε
(p+1)
1(

ν(p+1)
)2

{
C (p+1)

e+ ek(p+1)
y b(p) −C (p+1)

e− e−k(p+1)
y b(p)

}
− k(p)

y ε
(p)
1(

ν(p)
)2

{
C (p)

e+ ek(p)
y b(p) −C (p)

e− e−k(p)
y b(p)

}]
.

(E.102)

We can write Eqs. (E.99) and (E.102) in matrix form:


ek(p+1)

y b(p)
e−k(p+1)

y b(p)

βk(p+1)
y ε

(p+1)
1

(ν(p+1))2 ek(p+1)
y b(p) −βk(p+1)

y ε
(p+1)
1

(ν(p+1))2 e−k(p+1)
y b(p)

 ·

C (p+1)
e+

C (p+1)
e−

=


C (p)

e+ ek(p)
y b(p) +C (p)

e− e−k(p)
y b(p)

βk(p)
y ε

(p)
1

(ν(p))2

{
C (p)

e+ ek(p)
y b(p) −C (p)

e− e−k(p)
y b(p)

}
+(

1
(ν(p+1))2 − 1

(ν(p))2

)
kx

{
C (p)

g+ek(p)
y b(p) +C (p)

g−e−k(p)
y b(p)

}

 .

This can be readily solved for

[
C (p+1)

e+
C (p+1)

e−

]
, knowing that the determinant of the left hand side matrix is

equal to −2βk(p+1)
y ε

(p+1)
1

(ν(p+1))2 . We get, assuming that2 k(p+1)
y 6= 0 and using the inversion formula of a 2×2 matrix

2k
(p+1)
y = 0 can happen if ν(p+1) is purely imaginary (Cherenkov radiation in the layer considered, see e.g. Refs. [11, p. 637],

[14, p. 11] or [55, p. 406]) and if k2
x =−

(
ν(p+1)

)2
from Eq. (1.149). This can be the case for only a finite number of kx values (one

for each layer where ν(p+1) is purely imaginary), so is not a concern since we will in the end perform a continuous integration
over kx . Moreover even a small imaginary part in εc (thanks to a non-zero conductivity for instance) will be enough to suppress
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E.2. Flat multilayer chamber

(see Appendix D.1)

C (p+1)
e+

C (p+1)
e−

=−
(
ν(p+1)

)2

2βk(p+1)
y ε

(p+1)
1


−βk(p+1)

y ε
(p+1)
1

(ν(p+1))2 e−k(p+1)
y b(p) −e−k(p+1)

y b(p)

−βk(p+1)
y ε

(p+1)
1

(ν(p+1))2 ek(p+1)
y b(p)

ek(p+1)
y b(p)

 ·




ek(p)
y b(p)

e−k(p)
y b(p)

βk(p)
y ε

(p)
1

(ν(p))2 ek(p)
y b(p) −βk(p)

y ε
(p)
1

(ν(p))2 e−k(p)
y b(p)

 ·

C (p)
e+

C (p)
e−

+

{
1(

ν(p+1)
)2 − 1(

ν(p)
)2

}
kx

 0 0

ek(p)
y b(p)

e−k(p)
y b(p)

 ·

C (p)
g+

C (p)
g−


 . (E.103)

Very similarly we can write for

[
C (p+1)

g+
C (p+1)

g−

]
, from Eqs. (E.100) and (E.101) (we simply need to replace ε1 by

µ1 in the above matrices)

C (p+1)
g+

C (p+1)
g−

=−
(
ν(p+1)

)2

2βk(p+1)
y µ

(p+1)
1


−βk(p+1)

y µ
(p+1)
1

(ν(p+1))2 e−k(p+1)
y b(p) −e−k(p+1)

y b(p)

−βk(p+1)
y µ

(p+1)
1

(ν(p+1))2 ek(p+1)
y b(p)

ek(p+1)
y b(p)

 ·




ek(p)
y b(p)

e−k(p)
y b(p)

βk(p)
y µ

(p)
1

(ν(p))2 ek(p)
y b(p) −βk(p)

y µ
(p)
1

(ν(p))2 e−k(p)
y b(p)

 ·

C (p)
g+

C (p)
g−

+

{
1(

ν(p+1)
)2 − 1(

ν(p)
)2

}
kx

 0 0

ek(p)
y b(p)

e−k(p)
y b(p)

 ·

C (p)
e+

C (p)
e−


 . (E.104)

such singularities.
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Appendix E. Derivations used for the impedance and wake function calculations

Let us now define the four following 2× 2 matrices, enabling the computation of the values of the
constants for the p +1 region knowing those of the p region:

P p+1,p = −(
ν(p+1)

)2

2βk(p+1)
y ε

(p+1)
1


−βk(p+1)

y ε
(p+1)
1

(ν(p+1))2 e−k(p+1)
y b(p) −e−k(p+1)

y b(p)

−βk(p+1)
y ε

(p+1)
1

(ν(p+1))2 ek(p+1)
y b(p)

ek(p+1)
y b(p)

 ·


ek(p)

y b(p)
e−k(p)

y b(p)

βk(p)
y ε

(p)
1

(ν(p))2 ek(p)
y b(p) −βk(p)

y ε
(p)
1

(ν(p))2 e−k(p)
y b(p)

 ,

Qp+1,p =
kx

(
(ν(p+1))2

(ν(p))2 −1

)
2βk(p+1)

y ε
(p+1)
1


−βk(p+1)

y ε
(p+1)
1

(ν(p+1))2 e−k(p+1)
y b(p) −e−k(p+1)

y b(p)

−βk(p+1)
y ε

(p+1)
1

(ν(p+1))2 ek(p+1)
y b(p)

ek(p+1)
y b(p)

 ·

 0 0

ek(p)
y b(p)

e−k(p)
y b(p)

 ,

Rp+1,p = −(
ν(p+1)

)2

2βk(p+1)
y µ

(p+1)
1


−βk(p+1)

y µ
(p+1)
1

(ν(p+1))2 e−k(p+1)
y b(p) −e−k(p+1)

y b(p)

−βk(p+1)
y µ

(p+1)
1

(ν(p+1))2 ek(p+1)
y b(p)

ek(p+1)
y b(p)

 ·


ek(p)

y b(p)
e−k(p)

y b(p)

βk(p)
y µ

(p)
1

(ν(p))2 ek(p)
y b(p) −βk(p)

y µ
(p)
1

(ν(p))2 e−k(p)
y b(p)

 ,

Sp+1,p =
kx

(
(ν(p+1))2

(ν(p))2 −1

)
2βk(p+1)

y µ
(p+1)
1


−βk(p+1)

y µ
(p+1)
1

(ν(p+1))2 e−k(p+1)
y b(p) −e−k(p+1)

y b(p)

−βk(p+1)
y µ

(p+1)
1

(ν(p+1))2 ek(p+1)
y b(p)

ek(p+1)
y b(p)

 ·

 0 0

ek(p)
y b(p)

e−k(p)
y b(p)

 ,

such that Eqs. (E.103) and (E.104) become

C (p+1)
e+

C (p+1)
e−

 = P p+1,p ·

C (p)
e+

C (p)
e−

+Qp+1,p ·

C (p)
g+

C (p)
g−

 , (E.105)

C (p+1)
g+

C (p+1)
g−

 = Rp+1,p ·

C (p)
g+

C (p)
g−

+Sp+1,p ·

C (p)
e+

C (p)
e−

 . (E.106)
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We can rewrite these four matrices in the following way

P p+1,p = 1

2


(
1+ (ν(p+1))2

(ν(p))2

k(p)
y

k(p+1)
y

ε
(p)
1

ε
(p+1)
1

)
e

(
k(p)

y −k(p+1)
y

)
b(p)

(
1− (ν(p+1))2

(ν(p))2

k(p)
y

k(p+1)
y

ε
(p)
1

ε
(p+1)
1

)
e

(
−k(p)

y −k(p+1)
y

)
b(p)(

1− (ν(p+1))2

(ν(p))2

k(p)
y

k(p+1)
y

ε
(p)
1

ε
(p+1)
1

)
e

(
k(p)

y +k(p+1)
y

)
b(p)

(
1+ (ν(p+1))2

(ν(p))2

k(p)
y

k(p+1)
y

ε
(p)
1

ε
(p+1)
1

)
e

(
k(p+1)

y −k(p)
y

)
b(p)

 ,

(E.107)

Qp+1,p =
kx

(
(ν(p+1))2

(ν(p))2 −1

)
2βk(p+1)

y ε
(p+1)
1

−e

(
k(p)

y −k(p+1)
y

)
b(p) −e

(
−k(p)

y −k(p+1)
y

)
b(p)

e

(
k(p)

y +k(p+1)
y

)
b(p)

e

(
k(p+1)

y −k(p)
y

)
b(p)

 , (E.108)

Rp+1,p = 1

2


(
1+ (ν(p+1))2

(ν(p))2

k(p)
y

k(p+1)
y

µ
(p)
1

µ
(p+1)
1

)
e

(
k(p)

y −k(p+1)
y

)
b(p)

(
1− (ν(p+1))2

(ν(p))2

k(p)
y

k(p+1)
y

µ
(p)
1

µ
(p+1)
1

)
e

(
−k(p)

y −k(p+1)
y

)
b(p)(

1− (ν(p+1))2

(ν(p))2

k(p)
y

k(p+1)
y

µ
(p)
1

µ
(p+1)
1

)
e

(
k(p)

y +k(p+1)
y

)
b(p)

(
1+ (ν(p+1))2

(ν(p))2

k(p)
y

k(p+1)
y

µ
(p)
1

µ
(p+1)
1

)
e

(
k(p+1)

y −k(p)
y

)
b(p)

 ,

(E.109)

Sp+1,p = ε
(p+1)
1

µ
(p+1)
1

Qp+1,p . (E.110)

Then we define the 4×4 matrix M p+1,p by

M p+1,p =
[

P p+1,p Qp+1,p

Sp+1,p Rp+1,p

]
, (E.111)

such that

C (p+1)
e+

C (p+1)
e−

C (p+1)
g+

C (p+1)
g−


= M p+1,p ·



C (p)
e+

C (p)
e−

C (p)
g+

C (p)
g−


. (E.112)

All the above was performed for the upper part of the chamber, i.e. the layers 1 to N . For the lower part of
the chamber we can essentially obtain the same results: for this we simply need to consider p between
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−M and −1 and replace the (p +1) superscript by (p −1). This gives the following definitions:

P p−1,p = 1

2


(
1+ (ν(p−1))2

(ν(p))2

k(p)
y

k(p−1)
y

ε
(p)
1

ε
(p−1)
1

)
e

(
k(p)

y −k(p−1)
y

)
b(p)

(
1− (ν(p−1))2

(ν(p))2

k(p)
y

k(p−1)
y

ε
(p)
1

ε
(p−1)
1

)
e

(
−k(p)

y −k(p−1)
y

)
b(p)(

1− (ν(p−1))2

(ν(p))2

k(p)
y

k(p−1)
y

ε
(p)
1

ε
(p−1)
1

)
e

(
k(p)

y +k(p−1)
y

)
b(p)

(
1+ (ν(p−1))2

(ν(p))2

k(p)
y

k(p−1)
y

ε
(p)
1

ε
(p−1)
1

)
e

(
k(p−1)

y −k(p)
y

)
b(p)

 ,

(E.113)

Qp−1,p =
kx

(
(ν(p−1))2

(ν(p))2 −1

)
2βk(p−1)

y ε
(p−1)
1

−e

(
k(p)

y −k(p−1)
y

)
b(p) −e

(
−k(p)

y −k(p−1)
y

)
b(p)

e

(
k(p)

y +k(p−1)
y

)
b(p)

e

(
k(p−1)

y −k(p)
y

)
b(p)

 , (E.114)

Rp−1,p = 1

2


(
1+ (ν(p−1))2

(ν(p))2

k(p)
y

k(p−1)
y

µ
(p)
1

µ
(p−1)
1

)
e

(
k(p)

y −k(p−1)
y

)
b(p)

(
1− (ν(p−1))2

(ν(p))2

k(p)
y

k(p−1)
y

µ
(p)
1

µ
(p−1)
1

)
e

(
−k(p)

y −k(p−1)
y

)
b(p)(

1− (ν(p−1))2

(ν(p))2

k(p)
y

k(p−1)
y

µ
(p)
1

µ
(p−1)
1

)
e

(
k(p)

y +k(p−1)
y

)
b(p)

(
1+ (ν(p−1))2

(ν(p))2

k(p)
y

k(p−1)
y

µ
(p)
1

µ
(p−1)
1

)
e

(
k(p−1)

y −k(p)
y

)
b(p)

 ,

(E.115)

Sp−1,p = ε
(p−1)
1

µ
(p−1)
1

Qp−1,p . (E.116)

We can then define the 4×4 matrix M p−1,p by

M p−1,p =
[

P p−1,p Qp−1,p

Sp−1,p Rp−1,p

]
, (E.117)

and the relations between the integration constants for −M +1 ≤ p ≤−1 become

C (p−1)
e+

C (p−1)
e−

C (p−1)
g+

C (p−1)
g−


= M p−1,p ·



C (p)
e+

C (p)
e−

C (p)
g+

C (p)
g−


. (E.118)

E.2.3 Wall term of the longitudinal electric field

In the vacuum region of a flat chamber, the wall term of the electric field is written as (see Section 1.5.5)

E vac,W
s = e− j ks

∫ ∞

0
dkx cos(kx x)

[
C (1)

e+ek(1)
y y +C (−1)

e− e−k(1)
y y

]
. (E.119)

To identify the dependencies in the test particle coordinates as well as in the source particle offset y1, the
idea is to try to get back to a formula in the form of a series involving modified Bessel functions of the
first kind Im of argument proportional to the coordinates of the source and test particles, in a similar
way to what was found in the case of an axisymmetric geometry.
We begin by introducing the cylindrical coordinates (r,θ, s) associated to the cartesian ones we have
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E.2. Flat multilayer chamber

considered up to now, i.e. x = r cosθ and y = r sinθ. For convenience we make an additional change of
angle, defining φ as

φ= θ− π

2
,

such that

x =−r sinφ and y = r cosφ.

Then from the invariance of E vac,W
s with the sign of x we have the symmetry relation

E vac,W
s (r,−φ, s) = E vac,W

s (x = r sinφ, y = r cosφ, s)

= E vac,W
s (x =−r sinφ, y = r cosφ, s)

= E vac,W
s (r,φ, s).

The main idea is then to decompose E vac,W
s into a Fourier series with respect to the angle φ. Since this

function is even, there is no sine term in the series and the coefficients are given by [129]:

an = 1

π

∫ π

−π
dφcos(nφ)E vac,W

s ,

such that

E vac,W
s =

∞∑
n=0

an

1+δn0
cos

(
nφ

)
, (E.120)

where δn0 = 1 if n = 0, 0 otherwise. Using first the parity of E vac,W
s with φ, recalling that k(1)

y =
√

k2
x + k2

γ2

and inverting then the order in the integrals in kx and φ, we can obtain for an :

an = 2

π
e− j ks

∫ π

0
dφcos(nφ)

∫ ∞

0
dkx cos

(
kx r sinφ

)[
C (1)

e+e

√
k2

x+ k2

γ2 r cosφ+C (−1)
e− e

−
√

k2
x+ k2

γ2 r cosφ
]

= 2

π
e− j ks

∫ ∞

0
dkx

[
C (1)

e+
∫ π

0
dφcos(nφ)cos

(
kx r sinφ

)
e

r cosφ

√
k2

x+ k2

γ2

+C (−1)
e−

∫ π

0
dφcos(nφ)cos

(
kx r sinφ

)
e
−r cosφ

√
k2

x+ k2

γ2

]

= 2

π
e− j ks

∫ ∞

0
dkx

[
C (1)

e+ + (−1)nC (−1)
e−

]∫ π

0
dφcos(nφ)cos

(
kx r sinφ

)
e

r cosφ

√
k2

x+ k2

γ2
,
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thanks to the change of variable φ→π−φ for the second integral in φ. It turns out that the final integral
in φ can be computed analytically as shown in Appendix C.7. By virtue of Eq. (C.39) we get

an = e− j ks In

(
kr

γ

)∫ ∞

0
dkx

[
C (1)

e+ + (−1)nC (−1)
e−

][(
kx +

√
k2

x +
k2

γ2

)−n
kn

γn +
(

kx +
√

k2
x +

k2

γ2

)n
γn

kn

]

= e− j ks k

γ
In

(
kr

γ

)∫ ∞

0
du

[
C (1)

e+ + (−1)nC (−1)
e−

]
coshu

[
(coshu + sinhu)−n + (coshu + sinhu)n]

with the change of variable kx = k

γ
sinhu

= e− j ks 2k

γ
In

(
kr

γ

)∫ ∞

0
du

[
C (1)

e+ + (−1)nC (−1)
e−

]
coshu cosh(nu) . (E.121)

This, when combined with (E.120), gives the dependence of Es in the test particle transverse position
(r,φ). To get the dependence in the source particle position we need some additional steps. First, in
an we replace C (1)

e+ and C (−1)
e− by their expressions from Eqs. (1.176), using the fact that kx = k

γ sinhu and

k(1)
y = k

γ coshu in our change of variable:

an =−2C e− j ks In

(
kr

γ

)∫ ∞

0
du

[{
χ1

(
k

γ
sinhu

)
e

k y1
γ

coshu +η1

(
k

γ
sinhu

)
e−

k y1
γ

coshu
}

+(−1)n
{
χ2

(
k

γ
sinhu

)
e

k y1
γ

coshu +η2

(
k

γ
sinhu

)
e−

k y1
γ

coshu
}]

cosh(nu) .

From Eqs. (C.24) and (C.25) applied with z = k y1

γ , this can be decomposed into

an =−4C e− j ks In

(
kr

γ

)∫ ∞

0
du cosh(nu)

∞∑
m=0

cosh(mu)

1+δm0
Im

(
k y1

γ

)[
χ1

(
k

γ
sinhu

)
+(−1)mη1

(
k

γ
sinhu

)
+ (−1)nχ2

(
k

γ
sinhu

)
+ (−1)m+nη2

(
k

γ
sinhu

)]
.

Now we can invert the order of the integral and the sum, before plugging the result into Eq. (E.120), to
obtain finally (using also φ= θ− π

2 ):

E vac,W
s =−4C e− j ks

∞∑
m,n=0

αmn cos
[
n

(
θ− π

2

)]
(1+δm0) (1+δn0)

Im

(
k y1

γ

)
In

(
kr

γ

)
, (E.122)

with αmn defined by the integral

αmn =
∫ ∞

0
du cosh(mu)cosh(nu)

[
χ1

(
k

γ
sinhu

)
+ (−1)mη1

(
k

γ
sinhu

)
+(−1)nχ2

(
k

γ
sinhu

)
+ (−1)m+nη2

(
k

γ
sinhu

)]
. (E.123)
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We can also write E vac,W
s in cartesian coordinates: using r =

√
x2 + y2 and

cos
[

n
(
θ− π

2

)]
= cos

(
nφ

)=ℜ
(
e j nφ

)
=ℜ[(

cosφ+ j sinφ
)n]

= 1

r n ℜ[(
y − j x

)n] = 1

2r n

[(
y − j x

)n + (
y + j x

)n]
, (E.124)

where ℜ is the real part of a complex number, we obtain

E vac,W
s =−2C e− j ks

∞∑
m,n=0

αmn
[(

y − j x
)n + (

y + j x
)n]

(
x2 + y2

) n
2 (1+δm0) (1+δn0)

Im

(
k y1

γ

)
In

(
k
√

x2 + y2

γ

)
. (E.125)

E.2.4 Wall impedances

In the case when x1 = 0, the total longitudinal wall impedance of a flat chamber is obtained when
plugging Eq. (1.187) into the definition (1.192):

Z W all
‖ = 4

C L

Q

∞∑
m,n=0

αmn cos
(
nφ2

)
(1+δm0) (1+δn0)

Im

(
k y1

γ

)
In

(
kr2

γ

)
, (E.126)

where r2 =
√

x2
2 + y2

2 and φ2 is such that x2 = −r2 sinφ2 and y2 = r2 cosφ2 (see Appendix E.2.3). This
expression gives the general nonlinear longitudinal wall impedance. We can identify the first order terms

in the source and test positions, so for small k y1

γ and kr2
γ . From the development in Taylor series of Im

and In in Eq. (C.16) we see that to go up to the second order in both the source and test positions, we
need to go up to m = 2 and n = 2 in the above summation. Approximating then up to second order the

Bessel functions thanks to Eq. (C.16) and using cosφ2 = y2

r2
and cos2φ2 = 2cos2φ2 −1 = 2y2

2

r 2
2
−1 we get

Z W all
‖ ≈ 4

C L

Q

[
α00

4

{
1+

(
k y1

2γ

)2

+
(

kr2

2γ

)2}
+ α01

2

y2

r2

kr2

2γ
+ α02

2

(
2y2

2

r 2
2

−1

)
1

2

(
kr2

2γ

)2

+α10

2

k y1

2γ
+α11

y2

r2

k y1

2γ

kr2

2γ
+ α20

2

1

2

(
k y1

2γ

)2]
≈ C L

Q

[
α00 + kα10

γ
y1 + kα01

γ
y2 +k2

(
α00 +α20

4γ2

)
y2

1 +k2
(
α00 −α02

4γ2

)
x2

2

+k2
(
α00 +α02

4γ2

)
y2

2 +
k2α11

γ2 y1 y2

]
.

In a similar way, the total horizontal wall impedance for x1 = 0 is obtained when plugging Eq. (1.187)
into the definition (1.193):

Z W all
x = 4

C L

kQ

∞∑
m,n=0

αmn

(1+δm0) (1+δn0)
Im

(
k y1

γ

)[
In

(
kr2

γ

)
∂cos

(
nφ

)
∂x

∣∣∣∣
x2,y2

+k cos
(
nφ2

)
γ

I ′n
(

kr2

γ

)
∂r

∂x

∣∣∣∣
x2,y2

]
.
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Now we have, using in particular Eq. (E.124)

∂r

∂x

∣∣∣∣
x2,y2

= x2

r2
,

∂cos
(
nφ

)
∂x

∣∣∣∣
x2,y2

= n j

2r n
2

[
−(

y2 − j x2
)n−1 + (

y2 + j x2
)n−1

]
− nx2

2r n+2
2

[(
y2 − j x2

)n + (
y2 + j x2

)n]
= n j

2r2

[
−(

cosφ2 + j sinφ2
)n−1 + (

cosφ2 − j sinφ2
)n−1

]
+ n sinφ2

r2
cos

(
nφ2

)
= n

r2

[
sin

{
(n −1)φ2

}+ sinφ2 cos
(
nφ2

)]
= ny2

r 2
2

sin
(
nφ2

)
.

We then obtain

Z W all
x = 4

C L

kQ

∞∑
m,n=0

αmn

(1+δm0) (1+δn0)
Im

(
k y1

γ

)
1

r2

[
ny2 sin

(
nφ2

)
r2

In

(
kr2

γ

)
+ kx2 cos

(
nφ2

)
γ

I ′n
(

kr2

γ

)]
.

(E.127)

Upon differentiation of Eq. (C.16) we have for small z

I ′n(z) ≈ 1

2(n −1)!

( z

2

)n−1
+ n +2

2(n +1)!

( z

2

)n+1
,

where l ! is the factorial of the integer l , with the convention (−1)! =∞. From this and Eq. (C.16) we see
that we need to go up to m = 2 and n = 3 to obtain Z W all

x up to the second order in the source and test
coordinates. Approximating the Bessel functions up to second order we obtain

Z W all
x ≈ 4

C L

kQ

[
α00

4

k2x2

2γ2 + α01

2

{
1+ k2 y2

1

4γ2

}{
k sin

(
φ2

)
y2

2γr2
+ k3 sin

(
φ2

)
y2r2

16γ3

+kx2 cosφ2

2γr2
+ 3k3x2 cosφ2r2

16γ3

}
+ α02

2

{
2y2 sin(2φ2)k2

8γ2 + k2x2 cos
(
2φ2

)
4γ2

}

+α03

2

{
3y2 sin

(
3φ2

)
k3r2

48γ3 + k3x2 cos
(
3φ2

)
r2

16γ3

}
+ α10

2

k y1

2γ

k2x2

2γ2

+α11
k y1

2γ

{
y2 sin

(
φ2

)
k

2γr2
+ kx2 cos

(
φ2

)
2γr2

}
+α12

k y1

2γ

{
y2 sin

(
2φ2

)
k2

4γ2 + k2x2 cos
(
2φ2

)
4γ2

}

+α21
k2 y2

1

8γ2

{
y2 sin

(
φ2

)
k

2γr2
+ kx2 cos

(
φ2

)
2γr2

}]
,

≈ 4
C L

kQ

[
α00k2

8γ2 x2 + α01k3

16γ3 x2 y2 − α02k2

8γ2 x2 − α03k3

16γ3 x2 y2 + α10k3

8γ3 y1x2 − α12k3

8γ3 y1x2

]
,

where we have used various trigonometric identities and

cosφ2 = y2

r2
, sinφ2 =−x2

r2
, sin(2φ2) =−2

x2 y2

r 2
2

.
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The horizontal impedance for x1 = 0 up to second order can be rewritten

Z W all
x ≈ C Lk

2γ2Q

[
(α00 −α02) x2 +k

α10 −α12

γ
y1x2 +k

α01 −α03

2γ
x2 y2

]
.

Finally, the total vertical wall impedance for x1 = 0 is obtained when plugging Eq. (1.187) into the
definition (1.194):

Z W all
y = 4

C L

kQ

∞∑
m,n=0

αmn

(1+δm0) (1+δn0)
Im

(
k y1

γ

)[
In

(
kr2

γ

)
∂cos

(
nφ

)
∂y

∣∣∣∣
x2,y2

+k cos
(
nφ2

)
γ

I ′n
(

kr2

γ

)
∂r

∂y

∣∣∣∣
x2,y2

]
.

As above we can write

∂r

∂y

∣∣∣∣
x2,y2

= y2

r2
,

∂cos
(
nφ

)
∂y

∣∣∣∣
x2,y2

= n

2r n
2

[(
y2 − j x2

)n−1 + (
y2 + j x2

)n−1
]
− ny2

2r n+2
2

[(
y2 − j x2

)n + (
y2 + j x2

)n]
= n

r2

[
cos

{
(n −1)φ2

}−cosφ2 cos
(
nφ2

)]
=−nx2

r 2
2

sin
(
nφ2

)
.

We then get

Z W all
y = 4

C L

kQ

∞∑
m,n=0

αmn

(1+δm0) (1+δn0)
Im

(
k y1

γ

)
1

r2

[
−nx2 sin

(
nφ2

)
r2

In

(
kr2

γ

)

+k y2 cos
(
nφ2

)
γ

I ′n
(

kr2

γ

)]
. (E.128)
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With the same approximation as above for Im , In and I ′n , and going up to second order we can approxi-
mate the vertical impedance for x1 = 0 by

Z W all
y ≈ 4

C L

kQ

[
α00

4

k2 y2

2γ2 + α01

2

{
1+ k2 y2

1

4γ2

}{
−x2 sinφ2k

2γr2
− x2 sinφ2k3r2

16γ3 + k y2 cosφ2

2γr2

+3k3 y2 cosφ2r2

16γ3

}
+ α02

2

{
−2x2 sin

(
2φ2

)
k2

8γ2 + k2 y2 cos
(
2φ2

)
4γ2

}

+α03

2

{
−3x2 sin

(
3φ2

)
k3r2

48γ3 + k3 y2 cos
(
3φ2

)
r2

16γ3

}
+ α10

2

k y1

2γ

k2 y2

2γ2

+α11
k y1

2γ

{
−x2 sinφ2k

2γr2
+ k y2 cosφ2

2γr2

}
+α12

k y1

2γ

{
−2x2 sin

(
2φ2

)
k2

8γ2

+k2 y2 cos
(
2φ2

)
4γ2

}
+α21

k2 y2
1

8γ2

{
−x2 sinφ2k

2γr2
+ k y2 cosφ2

2γr2

}]

≈ 4
C L

kQ

[
α00k2

8γ2 y2 + α01k

4γ
+ α01k3

16γ3 y2
1 +

α01k3

32γ3 x2
2 +

3α01k3

32γ3 y2
2 +

α02k2

8γ2 y2 + α03k3

32γ3 y2
2

−α03k3

32γ3 x2
2 +

α10k3

8γ3 y1 y2 + α11k2

4γ2 y1 + α12k3

8γ3 y1 y2 + α21k3

16γ3 y2
1

]
,

using again some trigonometric identities and

cosφ2 = y2

r2
, sinφ2 =−x2

r2
, cos(2φ2) = 2

y2
2

r 2
2

−1 = y2
2 −x2

2

r 2
2

.

Our approximation of the total vertical impedance up to second order can be rewritten

Z W all
y ≈ C L

γQ

[
α01 + α11k

γ
y1 +k

α00 +α02

2γ
y2 +k2α01 +α21

4γ2 y2
1 +k2α01 −α03

8γ2 x2
2

+k2 3α01 +α03

8γ2 y2
2 +k2α10 +α12

2γ2 y1 y2

]
.

E.2.5 The case of two perfectly conducting plates

Here we compare the longitudinal electric field obtained from the theory of Section 1.5 to the one we
would get with the method of images [64, chap. 4], in the case of a flat chamber made of two perfectly
conducting plates. The method of images consists in placing several sources (i.e. point-like charge and
current density as in Eqs. (1.4) and (1.7)) such as to enforce automatically the boundary condition Es = 0
on the plates at y =±b, which is the only condition needed to get the longitudinal component of the
electric field. The basic idea is then that if one such source is at x = 0 and y = y1 and another one with
an opposite charge −Q is at x = 0 and y = 2b − y1 (i.e. symmetrically placed with respect to the plate
at y = b), all of this being in vacuum, then we get automatically Es = 0 on the plate at y = b. This can
be seen using Eq. (1.184) which represents Es created by the first of those source in vacuum: from the
superposition principle the longitudinal component of the electric field created by those two sources
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would be

Es =C e− j ks
[

K0

(
k

γ

√
x2 + (

y − y1
)2

)
−K0

(
k

γ

√
x2 + (

y + y1 −2b
)2

)]
,

which is obviously zero3 for y = b. Then, to get Es = 0 at y = −b one needs as well to symmetrize in
the same way the two sources previously mentioned, with respect to the plane y =−b, obtaining two
new sources, one of charge −Q at y =−2b − y1 and one of charge Q at y =−4b + y1. These again should
have their symmetric counterparts with respect to the first plate, thus we need two more images on the
upper part, and we repeat the process to get an infinite number of sources farther and farther away from
the plates, such that in the end the overall sum converges to the solution with the desired boundary
condition Es = 0 for y =±b. The images arrangement is illustrated in Fig. E.1: we get in the end sources
of charge Q at positions 4lb + y1 and sources of charge −Q at positions 2(2l +1)b − y1 (l being a positive
or negative integer).
Finally the total longitudinal component of the electric field will be given by the sum of Es from all the
sources, each being obtained thanks to Eq. (1.184):

y
1

y

x

y=0y=0

y=b

y=-b

y=2b

y=-2b

y=3b

y=-3b

+

-
y

1

y
1

+

-
y

1

y=-4b

y=4b
y

1

+

Chamber 
walls

Figure E.1: Several of the electric images used to impose the boundary condition Es = 0 on the plates at
y =±b. Images with a plus sign denotes a charge of Q while those with a minus sign have a charge of −Q.

3More general arguments exist [64, chap. 4] to prove that Es (and even the tangential component) is zero at the plane
equidistant to two such sources. For instance it can be seen in time domain (and therefore in frequency domain from the
linearity of the Fourier transform) by changing the reference frame to the rest frame of the two point-like sources (which go at
the same velocity υ). Upon application of Coulomb’s law in the rest frame for each source, one can clearly see that the tangential
component on the plate is zero after summation of the two Coulomb’s fields. Then, using the Lorentz transform of the fields
one would directly obtain the result.
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E PC ,i mag es
s =C e− j ks

[ ∞∑
l=−∞

K0

(
k

γ

√
x2 + (

y −4lb − y1
)2

)
−

∞∑
l=−∞

K0

(
k

γ

√
x2 + (

y −2b(2l +1)+ y1
)2

)]

=C e− j ks

[ ∞∑
l=−∞

(−1)2l K0

(
k

γ

√
x2 + (

y −2b(2l )− (−1)2l y1
)2

)

+
∞∑

l=−∞
(−1)2l+1K0

(
k

γ

√
x2 + (

y −2b(2l +1)− (−1)2l+1 y1
)2

)]

=C e− j ks
∞∑

l=−∞
(−1)l K0

(
k

γ

√
x2 + (

y −2lb − (−1)l y1
)2

)
. (E.129)

Now, we would like to compare this expression with the one obtained from the approach developped in
Chapter 1. To do so we first rewrite the αmn constants from Eq. (1.214) as

αPC
mn = [

(−1)m+n +1
]∫ ∞

0
du

cosh(mu)cosh(nu)

e2 kb
γ

coshu
(
1−e−4 kb

γ
coshu

) [
1− (−1)me−2 kb

γ
coshu

]

= (−1)m+n +1

2

∫ ∞

0
du

{
[cosh{(m +n)u}+cosh{(m −n)u}]e−2 kb

γ
coshu

∞∑
l=0

e−4l kb
γ

coshu

[
1− (−1)me−2 kb

γ
coshu

]}
using a geometric series decomposition of

1

1−e−4 kb
γ

coshu

= (−1)m+n +1

2

∫ ∞

0
du

{
[cosh{(m +n)u}+cosh{(m −n)u}]

[ ∞∑
l=0

(−1)(m+1)(2l+2)e−2(2l+1) kb
γ

coshu

+
∞∑

l=0
(−1)(m+1)(2l+3)e−2(2l+2) kb

γ
coshu

]}

= (−1)m+n +1

2

∫ ∞

0
du [cosh{(m +n)u}+cosh{(m −n)u}]

[ ∞∑
l=1

(−1)(m+1)(l+1)e−2l kb
γ

coshu

]

= (−1)m+n +1

2

∞∑
l=1

(−1)(m+1)(l+1)
∫ ∞

0
du [cosh{(m +n)u}+cosh{(m −n)u}]e−2l kb

γ
coshu

= (−1)m+n +1

2

∞∑
l=1

(−1)(m+1)(l+1)
[

Km+n

(
2l

kb

γ

)
+Km−n

(
2l

kb

γ

)]
,
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E.2. Flat multilayer chamber

where we used Eq. (C.30) for the last step. Reinserting this into Eq. (1.187), adding also the direct
space-charge part from Eq. (1.184), we get, with φ= θ− π

2 :

E PC
s =C e− j ks

{
K0

(
k

γ

√
x2 + (

y − y1
)2

)
−2

∞∑
l=1

∞∑
m,n=0

(−1)l+1

(
(−1)m(l+1) + (−1)ml+n

)
cos

(
nφ

)
(1+δm0) (1+δn0)

Im

(
k y1

γ

)
In

(
kr

γ

)[
Km+n

(
2l

kb

γ

)
+Km−n

(
2l

kb

γ

)]}
=C e− j ks

{
K0

(
k

γ

√
x2 + (

y − y1
)2

)
+2

∞∑
l=1

(−1)l
∞∑

n=0

cos
(
nφ

)
(1+δn0)

In

(
kr

γ

)
∞∑

m=0

(−1)m(l+1) + (−1)ml+n

1+δm0
Im

(
k y1

γ

)[
Km+n

(
2l

kb

γ

)
+K−m+n

(
2l

kb

γ

)]}
using Eq. (C.4)

=C e− j ks

{
K0

(
k

γ

√
x2 + (

y − y1
)2

)
+2

∞∑
l=1

(−1)l
∞∑

n=0

cos
(
nφ

)
(1+δn0)

In

(
kr

γ

)
∞∑

m=−∞

[
(−1)m(l+1) + (−1)ml+n

]
Im

(
k y1

γ

)
Km+n

(
2l

kb

γ

)}
using Eq. (C.3)

=C e− j ks

{
K0

(
k

γ

√
x2 + (

y − y1
)2

)
+2

∞∑
l=1

(−1)l
∞∑

n=0

cos
(
nφ

)
(1+δn0)

In

(
kr

γ

)[
Kn

(
k

γ

(
2lb + (−1)l y1

))
+(−1)nKn

(
k

γ

(
2l b + (−1)l+1 y1

))]}
,

where we used Eq. (C.28) in the last step, knowing that
∣∣y1

∣∣< 2l b for l ≥ 1. Then, since 0 < r < b < 2lb±y1

we can obtain from Eq. (C.27):

E PC
s =C e− j ks

{
K0

(
k

γ

√
x2 + (

y − y1
)2

)
+

∞∑
l=1

(−1)l
[

K0

(
k

γ

√
r 2 + (

2lb + (−1)l y1
)2 −2r

(
2lb + (−1)l y1

)
cosφ

)
+K0

(
k

γ

√
r 2 + (

2l b + (−1)l+1 y1
)2 +2r

(
2lb + (−1)l+1 y1

)
cosφ

)]}
=C e− j ks

{
K0

(
k

γ

√
x2 + (

y − y1
)2

)
+

∞∑
l=1

(−1)l
[

K0

(
k

γ

√
x2 + (

y −2lb − (−1)l y1
)2

)
+K0

(
k

γ

√
x2 + (

y +2l b − (−1)l y1
)2

)]}
from y = r cosφ and r 2 = x2 + y2

=C e− j ks
∞∑

l=−∞
(−1)l K0

(
k

γ

√
x2 + (

y −2l b − (−1)l y1
)2

)
. (E.130)

This is exactly the result in Eq. (E.129) obtained with the method of images.
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Appendix E. Derivations used for the impedance and wake function calculations

E.3 Fourier integrals computation

E.3.1 Asymptotic approximation of a Fourier integral

We treat here the second and semi-infinite part of the integral in Eq. (1.231) thanks to an asymptotic
approximation. First, we perform a Taylor’s expansion of the function f around ωmax [124, p. XII]:

f (ω) =
∞∑

n=0

(ω−ωmax )n

n!
f (n)(ωmax ),

where f (n) is the nth derivative of f . If we insert this expansion into the second term in the right hand
side of Eq. (1.231), we get

Iωmax (t ) ≡
∫ ∞

ωmax

dωe jωt f (ω) =
∫ ∞

ωmax

dω
∞∑

n=0
e jωt (ω−ωmax )n

n!
f (n)(ωmax ). (E.131)

Since f is integrable, the definition of Iωmax (t ) is actually valid for any complex number t with ℑ(t ) ≥ 0.
As a consequence we can also write the above relation for t + jεwhere t is real and ε> 0 (with the change
of variable ω→ω+ωmax ):

Iωmax (t + jε) = e jωmax (t+ jε)
∞∑

n=0

f (n)(ωmax )

n!

∫ ∞

0
dωωne jω(t+ jε) = e jωmax (t+ jε)

∞∑
n=0

j n+1 f (n)(ωmax )

(t + jε)n+1 ,

thanks to Eq. (D.4) in Appendix D.2. Since both the right hand side and the left hand side admit a
well-defined limit when ε→ 0, we can take the limit of both expressions and obtain, for any real t :

Iωmax (t ) = e jωmax t
∞∑

n=0

j n+1 f (n)(ωmax )

t n+1 . (E.132)

The above equation was obtained in Refs. [69, p. 590] and [73]. We can approximate Iωmax (t ) by taking
only the first term of the expansion:

Iωmax (t ) ≈ e jωmax t j f (ωmax )

t
. (E.133)

E.3.2 Fourier integral on a finite interval of a linear function

Given a linear function pi (ω) defined as the linear interpolation of a function f on the interval [ωi ,ωi+1],
i.e. such that

pi (ω) = fi +
(

fi+1 − fi
) ω−ωi

∆i
= fi

ωi+1 −ω
∆i

+ fi+1
ω−ωi

∆i
, (E.134)
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E.3. Fourier integrals computation

with fi = f (ωi ) and ∆i =ωi+1 −ωi , we can compute its finite Fourier integral on [ωi ,ωi+1]:

Ii (t ) ≡
∫ ωi+1

ωi

dωe jωt pi (ω) = fi

∫ ωi+1

ωi

dωe jωt ωi+1 −ω
∆i

+ fi+1

∫ ωi+1

ωi

dωe jωt ω−ωi

∆i

=∆i

[
fi e jωi+1t

∫ 1

0
dhe− j∆i ht h + fi+1e jωi t

∫ 1

0
dhe j∆i ht h

]
=∆i

[
fi e jωi+1tΛ (−∆i t )+ fi+1e jωi tΛ (∆i t )

]
, (E.135)

withΛ a function defined, and calculated by virtue of Eq. (D.6), as

Λ(x) ≡
∫ 1

0
dhe j hx h =− j e j x

x
+ e j x −1

x2 . (E.136)

When the argument ofΛ is very small compared to unity, the analytical formula in the above equation
is subject to high numerical errors, because one tries to compute a difference between almost equal
and very large numbers. One way around this problem is to write this function in terms of its Taylor’s
expansion, knowing the one of the exponential function:

Λ(x) =− j

x

∞∑
n=0

(
j x

)n

n!
+ 1

x2

∞∑
n=0

(
j x

)n

n!
− 1

x2

=− j

x
+

∞∑
n=0

(
j x

)n

(n +1)!
+ 1

x2 + j

x
−

∞∑
n=0

(
j x

)n

(n +2)!
− 1

x2

=
∞∑

n=0

1

n +2

(
j x

)n

n!
. (E.137)

To allow numerical computation, the infinite sum has to be truncated. To do so accurately, one has
to be sure the remainder of the sum is small enough, which can be controlled thanks to the following
inequality:∣∣∣∣∣ ∞∑

n=p+1

1

n +2

(
j x

)n

n!

∣∣∣∣∣≤ ∞∑
n=p+1

1

n +2

|x|n
n!

≤ 1

p +3

∞∑
n=0

|x|n+p+1

(n +p +1)!
≤ |x|p+1

(p +3)(p +1)!
e |x|, (E.138)

which can be made smaller than any given number when |x| ≤ 1, such thatΛ can be computed within
any required accuracy.

E.3.3 Fourier integral on a finite interval of a cubic polynomial

Given a cubic polynomial pi (ω) defined as the cubic Hermite interpolation of a function f on the interval
[ωi ,ωi+1], i.e. such that

pi (ω) = fiφ

(
ωi+1 −ω
∆i

)
+ fi+1φ

(
ω−ωi

∆i

)
−di∆iψ

(
ωi+1 −ω
∆i

)
+di+1∆iψ

(
ω−ωi

∆i

)
, (E.139)

with

di = p ′
i (ωi ), φ(h) = 3h2 −2h3 and ψ(h) = h3 −h2, (E.140)
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one obtains for its Fourier integral on the interval [ωi ,ωi+1]

Ii (t ) =
∫ ωi+1

ωi

dωe jωt pi (ω)

= fi

∫ ωi+1

ωi

dωe jωtφ

(
ωi+1 −ω
∆i

)
+ fi+1

∫ ωi+1

ωi

dωe jωtφ

(
ω−ωi

∆i

)
−di∆i

∫ ωi+1

ωi

dωe jωtψ

(
ωi+1 −ω
∆i

)
+di+1∆i

∫ ωi+1

ωi

dωe jωtψ

(
ω−ωi

∆i

)
=∆i

[
fi e jωi+1t

∫ 1

0
dhe− j∆i htφ (h)+ fi+1e jωi t

∫ 1

0
dhe j∆i htφ (h)

−di∆i e jωi+1t
∫ 1

0
dhe− j∆i htψ (h)+di+1∆i e jωi t

∫ 1

0
dhe j∆i htψ (h)

]
=∆i

[
fi e jωi+1tΦ (−∆i t )+ fi+1e jωi tΦ (∆i t )−di∆i e jωi+1tΨ (−∆i t )+di+1∆i e jωi tΨ (∆i t )

]
,

(E.141)

where the functionsΦ andΨ are defined, and calculated thanks to Eqs. (D.7) and (D.8), as

Φ(x) ≡
∫ 1

0
dhe j hxφ (h) =− j e j x

x
− 6 j

(
e j x +1

)
x3 + 12

(
e j x −1

)
x4 , (E.142)

Ψ(x) ≡
∫ 1

0
dhe j hxψ (h) = e j x

x2 + 2 j
(
2e j x +1

)
x3 − 6

(
e j x −1

)
x4 . (E.143)

As for the case of the linear interpolation, the analytical formulae in Eqs. (E.142) and (E.143) are subject
to high numerical errors when |x|¿ 1, because differences between very large numbers that are almost
equal appear. Again, a way around this problem is to write those functions in terms of their Taylor’s
expansions:

Φ(x) =− j

x

∞∑
n=0

(
j x

)n

n!
− 6 j

x3 − 6 j

x3

∞∑
n=0

(
j x

)n

n!
− 12

x4 + 12

x4

∞∑
n=0

(
j x

)n

n!

=− j

x
+

∞∑
n=0

(
j x

)n

(n +1)!
− 12 j

x3 + 6

x2 + 3 j

x
−

∞∑
n=0

6

(n +2)(n +3)

(
j x

)n

(n +1)!

+ 12 j

x3 − 6

x2 − 2 j

x
+

∞∑
n=0

12

(n +2)(n +3)(n +4)

(
j x

)n

(n +1)!

=
∞∑

n=0

n +6

(n +3)(n +4)

(
j x

)n

n!
, (E.144)
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and

Ψ(x) = 1

x2

∞∑
n=0

(
j x

)n

n!
+ 2 j

x3 + 4 j

x3

∞∑
n=0

(
j x

)n

n!
+ 6

x4 − 6

x4

∞∑
n=0

(
j x

)n

n!

= 1

x2 + j

x
−

∞∑
n=0

(
j x

)n

(n +2)!
+ 6 j

x3 − 4

x2 − 2 j

x
+

∞∑
n=0

4

n +3

(
j x

)n

(n +2)!

− 6 j

x3 + 3

x2 + j

x
−

∞∑
n=0

6

(n +3)(n +4)

(
j x

)n

(n +2)!

=−
∞∑

n=0

1

(n +3)(n +4)

(
j x

)n

n!
. (E.145)

When truncating those infinite sums in order to evaluate them numerically, the remainders can be
controlled thanks to the inequalities∣∣∣∣∣ ∞∑

n=p+1

n +6

(n +3)(n +4)

(
j x

)n

n!

∣∣∣∣∣≤ ∞∑
n=p+1

2n +6

(n +3)(n +4)

|x|n
n!

≤ 2

p +5

∞∑
n=0

|x|n+p+1

(n +p +1)!
≤ 2|x|p+1e |x|

(p +5)(p +1)!
, (E.146)

and ∣∣∣∣∣ ∞∑
n=p+1

1

(n +3)(n +4)

(
j x

)n

n!

∣∣∣∣∣≤ 1

(p +4)(p +5)

∞∑
n=0

|x|n+p+1

(n +p +1)!
≤ |x|p+1e |x|

(p +5)(p +4)(p +1)!
. (E.147)

When |x| ≤ 1,Φ andΨ can therefore be computed within any required accuracy.

E.4 Impedances of a rotated flat chamber

We consider a flat chamber whose walls are parallel to the (Ox ′s) plane, where the transverse coordinates
(x ′, y ′) are obtained by a rotation of angle π

2 −α of the (x, y) ones, as in Fig. 2.2. Knowing the impedances
Zx ′ and Zy ′ from Eqs. (1.199) and (1.200) as

Z W all
x ′ ≈ Z W all ,di p

x ′ x ′
1 + Z W all ,quad

x ′ x ′
2,

Z W all
y ′ ≈ Z W all ,0

y ′ + Z W all ,di p
y ′ y ′

1 + Z W all ,quad
y ′ y ′

2. (E.148)

we can compute Zx and Zy in the initial coordinate system (x, y) thanks to[
x ′

y ′
]
=

[
sinα cosα
−cosα sinα

]
·
[

x
y

]
and

[
Zx

Zy

]
=

[
sinα −cosα
cosα sinα

]
·
[

Zx ′

Zy ′

]
, (E.149)

since Zx and Zy behave in a change of coordinates as the components of the electromagnetic force
vector (see the impedances definitions in Eqs. (1.95) and (1.96)). By virtue of Eqs. (E.148) and (E.149) we
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get

Z W all
x ≈ sinα

[
Z W all ,di p

x ′
(
x1 sinα+ y1 cosα

)+Z W all ,quad
x ′

(
x2 sinα+ y2 cosα

)]
−cosα

[
Z W all ,0

y ′ +Z W all ,di p
y ′

(−x1 cosα+ y1 sinα
)+Z W all ,quad

y ′
(−x2 cosα+ y2 sinα

)]
,

≈−cosαZ W all ,0
y ′ +

(
Z W all ,di p

x ′ sin2α+Z W all ,di p
y ′ cos2α

)
x1

+cosαsinα
(

Z W all ,di p
x ′ −Z W all ,di p

y ′

)
y1 +

(
Z W all ,quad

x ′ sin2α+Z W all ,quad
y ′ cos2α

)
x2

+cosαsinα
(

Z W all ,quad
x ′ −Z W all ,quad

y ′

)
y2,

and

Z W all
y ≈ cosα

[
Z W all ,di p

x ′
(
x1 sinα+ y1 cosα

)+Z W all ,quad
x ′

(
x2 sinα+ y2 cosα

)]
+ sinα

[
Z W all ,0

y ′ +Z W all ,di p
y ′

(−x1 cosα+ y1 sinα
)+Z W all ,quad

y ′
(−x2 cosα+ y2 sinα

)]
,

≈ sinαZ W all ,0
y ′ +cosαsinα

(
Z W all ,di p

x ′ −Z W all ,di p
y ′

)
x1

+
(

Z W all ,di p
x ′ cos2α+Z W all ,di p

y ′ sin2α
)

y1 +cosαsinα
(

Z W all ,quad
x ′ −Z W all ,quad

y ′

)
x2

+
(

Z W all ,quad
x ′ cos2α+Z W all ,quad

y ′ sin2α
)

y2.
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F LHC machine elements parameters

F.1 Obtaining the beta functions from MAD-X twiss files

The impedances of the various elements of the machine need to be weighted by the mean beta function
at their location over the beta function at the point of observation (see Section 2.3.2). To find the beta
functions, we used the code MAD-X [90, 130] with the LHC optics. To obtain the “twiss” files giving all
required beta functions (if necessary interpolated on a finer mesh before computing an average), the
following parameters have been used [131]:

• LHC optics version [132]: V6.503.

• Sequence used: latest version of the thick optics (as of September 2011), from the file
/afs/cern.ch/eng/lhc/optics/V6.503/V6.5.as-built.seq. This sequence is slightly different from the
design sequence (V6.5.seq) in the sense that it should be more realistic with respect to the actual
LHC machine (phase 1). We have checked that choosing one or the other of these two sequences
has anyway a very little impact (maximum relative differences on the beta function is 1.2 ·10−5,
both at injection and collision and for both beams).

• Magnet strengths used: from the file /afs/cern.ch/eng/lhc/optics/V6.503/V6.5.inj.str for injection
settings, and from /afs/cern.ch/eng/lhc/optics/V6.503/V6.5.coll_special.3.5TeV_1.5m10m1.5m3m.str
for collision settings (squeeze of 1.5 m in IP1 and IP5, 3 m in IP8 and 10 m in IP2). Thick optics are
used because they are more realistic than the thin ones.

• All the parameters concerning the IPs (crossing angles, beam separations, optimization flags,
strength of the magnets from the experiments) have basically no impact on the beta functions and
can be set to any value.

• Flag for the direction of rotation bv: bv= 1 for beam 1, bv=−1 for beam 2.

With these settings, interpolating the beta functions on a fine mesh (points every 10 cm) and integrating
using the trapezoidal rule, we get the average beta functions at injection (for beam 1 and beam 2)

<βi n j
x (b1) >≈ 96.8m and <βi n j

y (b1) >≈ 100.9m,

<βi n j
x (b2) >≈ 96.6m and <βi n j

y (b2) >≈ 102.4m, (F.1)
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and at collision with the 1.5 m squeeze in IP1 and IP5:

<βcol l
x (b1) >≈ 138m and <βcol l

y (b1) >≈ 142.2m,

<βcol l
x (b2) >≈ 137.5m and <βcol l

y (b2) >≈ 143.8m. (F.2)

Note that this is quite different from the usual smooth approximation [133] which in the case of the LHC
would give at injection (for both beams)

<βsmooth,i n j
x >= C

2πQ i n j
x

≈ 66.01m and <βsmooth,i n j
y >= C

2πQ i n j
y

≈ 71.54m, (F.3)

and at collision (for both beams)

<βsmooth,col l
x >= C

2πQcol l
x

≈ 65.98m and <βsmooth,col l
y >= C

2πQcol l
y

≈ 71.53m. (F.4)

where C = 26658.883 m [84, chap. 2, p. 6] is the LHC total length while the tunes are given by [84, chap. 2,
p. 6]

Q i n j
x = 64.28 and Q i n j

y = 59.31,

Qcol l
x = 64.31 and Qcol l

y = 59.32. (F.5)

F.2 Obtaining the relaxation time

In Tables F.4 and F.7, the relaxation time for the AC conductivity τAC (see Eq. (1.14)) is either taken directly
from the indicated reference, or calculated using the formulae [44]

τAC = meσDC

ne2 , (F.6)

n = 6.022 ·1023 Zρm

A
(F.7)

with me the electron mass, n the number of charge carriers for the conduction per m3, e the elementary
charge, ρm the mass density in g/m3 (given by the reference indicated in the column giving τAC ), A the
atomic mass in g/mol and Z the number of charge carriers provided by each atom. Z is actually chosen
almost arbitrarily; for metals it is taken as the number of electrons in the outermost electron shell (Z = 1
for copper, Z = 2 for tungsten and for titanium). For CFC and graphite, Z = 2 ·10−5 is given by Ref. [134,
p. 273], which is confirmed by Ref. [135]. For titanium the relaxation time obtained in this way is very
small (less than 10−15 s) so of no significance, and we rather set it to zero.

F.3 Collimators data

Tables F.1, F.2, F.3 and F.4 summarize all the parameters used in the LHC impedance model for the
collimators (see Section 2.1.1).
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F.3. Collimators data

Table F.1: Parameters of the beam 1 collimators [88, 92, 136–139]. Half gaps and beta functions are given
at injection and collision (3.5 TeV/c, squeeze of 1.5 m in IP1 and IP5, 3 m in IP8 and 10 m in IP2). The
half gaps were measured on May 8th, 2011 (see Chapter 4.3), and the beta functions are from MAD-X
(see Section F.1). All the jaws have a thickness of 25 mm except for the TDI (see Table F.3) and the TCLIA
(33 mm).

Collimator Jaw Half gap b Half gap b Angle Length βx βy βx βy

name mat. (injection) (collision) α L (inj.) (inj.) (coll.) (coll.)
[mm] [mm] [rad] [m] [m] [m] [m] [m]

TCL.5R1.B1 Cu 25 25 0 1 146 133 72.1 355
TCTH.4L2.B1 W 9.18 5.46 0 1 47.3 47.8 47.3 47.8
TDI.4L2 4.94 20 π/2 4.1 114 46.5 114 46.5
TCTVB.4L2 W 8.30 5.78 π/2 1 128 52.3 128 52.3
TCLIA.4R2 C 6.71 25 π/2 1 48.9 121 48.9 121
TCLIB.6R2.B1 CFC 3.55 25 π/2 1 261 37.9 261 37.9
TCP.6L3.B1 CFC 7.83 4.2 0 0.6 131 145 132 145
TCSG.5L3.B1 CFC 5.87 3.54 0 1 54.3 299 54.3 299
TCSG.4R3.B1 CFC 4.08 2.47 0 1 26.4 394 26.4 394
TCSG.A5R3.B1 CFC 5.25 3.16 2.98 1 36.6 341 36.6 341
TCSG.B5R3.B1 CFC 5.94 3.57 0.199 1 46.5 310 46.5 310
TCLA.A5R3.B1 W 11.3 7.14 π/2 1 145 174 145 174
TCLA.B5R3.B1 W 10.5 6.62 0 1 154 167 154 167
TCLA.6R3.B1 W 9.71 6.12 0 1 127 171 127 171
TCLA.7R3.B1 W 6.97 4.41 0 1 65.9 88.2 68.3 88.2
TCTH.4L5.B1 W 14.6 10.1 0 1 159 79.5 582 229
TCTVA.4L5.B1 W 10 7.12 π/2 1 158 79.6 584 237
TCL.5R5.B1 Cu 25 25 0 1 145 133 72.2 356
TCDQA.A4R6.B1 C 16.9 6.47 0 3 495 165 495 165
TCDQA.B4R6.B1 C 16.9 6.47 0 3 506 170 506 170
TCSG.4R6.B1 CFC 15 6.51 0 1 520 175 520 175
TCP.D6L7.B1 CFC 4.32 1.56 π/2 0.6 159 78.3 159 78.3
TCP.C6L7.B1 CFC 5.96 2.12 0 0.6 151 82.8 151 82.8
TCP.B6L7.B1 CFC 5.04 1.80 2.22 0.6 142 87.5 142 87.5
TCSG.A6L7.B1 CFC 6.29 2.77 2.46 1 39.3 229 39.3 229
TCSG.B5L7.B1 CFC 7.1 3.30 2.5 1 163 164 163 164
TCSG.A5L7.B1 CFC 7.48 3.37 0.71 1 189 143 189 143
TCSG.D4L7.B1 CFC 5.44 2.16 π/2 1 335 68 334 68
TCSG.B4L7.B1 CFC 7.24 3.09 0 1 138 132 138 132
TCSG.A4L7.B1 CFC 6.56 3.01 2.35 1 127 143 127 143
TCSG.A4R7.B1 CFC 6.48 3.02 0.808 1 117 154 117 154
TCSG.B5R7.B1 CFC 8.30 3.51 2.47 1 124 264 124 264
TCSG.D5R7.B1 CFC 7.64 3.5 0.897 1 217 156 217 156
TCSG.E5R7.B1 CFC 7.64 3.51 2.28 1 245 133 245 133
TCSG.6R7.B1 CFC 10.9 4.76 0.00873 1 333 47.3 333 47.3
TCLA.A6R7.B1 W 5.77 3.74 π/2 1 294 48.3 294 48.3
TCLA.B6R7.B1 W 11.4 6.83 0 1 158 77.2 158 77.2
TCLA.C6R7.B1 W 11.4 6.67 π/2 1 67.7 153 67.7 153
TCLA.D6R7.B1 W 7.08 4.38 0 1 64.2 159 64.2 159
TCLA.A7R7.B1 W 7.07 4.3 0 1 65.4 144 65.4 144
TCTH.4L8.B1 W 7.82 5.45 0 1 47.3 47.8 244 302
TCTVB.4L8 W 7.92 5.75 π/2 1 128 52.3 537 335
TCTH.4L1.B1 W 13.8 10.1 0 1 159 79.5 582 229
TCTVA.4L1.B1 W 10.1 7.1 π/2 1 158 79.6 584 237
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Table F.2: Parameters of the beam 2 collimators [88, 92, 137–139]. Half gaps and beta functions are given
at injection and collision (3.5 TeV/c, squeeze of 1.5 m in IP1 and IP5, 3 m in IP8 and 10 m in IP2). The
half gaps were measured on May 8th, 2011 (see Section 4.3), and the beta functions are from MAD-X (see
Section F.1). All the jaws have a thickness of 25 mm except for the TDI (see Table F.3) and the TCLIA (33
mm).

Collimator Jaw Half gap b Half gap b Angle Length βx βy βx βy

name mat. (injection) (collision) α L (inj.) (inj.) (coll.) (coll.)
[mm] [mm] [rad] [m] [m] [m] [m] [m]

TCTVA.4R1.B2 W 10.8 7.1 π/2 1 158 79.6 584 237
TCTH.4R1.B2 W 14.2 10.1 0 1 161 79.4 581 222
TCTVB.4R2 W 6.76 5.78 π/2 1 128 52.3 128 52.3
TCTH.4R2.B2 W 7.75 5.45 0 1 46.6 48.9 46.6 48.9
TCLA.7L3.B2 W 6.94 4.37 0 1 65.9 94.4 65.9 94.4
TCLA.6L3.B2 W 9.71 6.11 0 1 132 167 132 167
TCLA.B5L3.B2 W 10.5 6.62 0 1 149 171 149 171
TCLA.A5L3.B2 W 11.3 7.15 π/2 1 140 178 140 178
TCSG.B5L3.B2 CFC 5.9 3.56 0.189 1 44.6 315 44.6 315
TCSG.A5L3.B2 CFC 5.24 3.16 2.98 1 35.2 347 35.2 347
TCSG.4L3.B2 CFC 4.09 2.46 0 1 26.1 397 26.1 397
TCSG.5R3.B2 CFC 5.87 3.53 0 1 54.9 298 54.9 298
TCP.6R3.B2 CFC 7.85 4.22 0 0.6 132 145 132 145
TCL.5L5.B2 Cu 25 25 0 1 141 137 74.6 361
TCTVA.4R5.B2 W 9.4 7.12 π/2 1 158 79.6 584 237
TCTH.4R5.B2 W 13.9 10.1 0 1 161 79.4 581 222
TCSG.4L6.B2 CFC 14.8 6.54 0 1 521 173 522 173
TCDQA.B4L6.B2 C 17.9 7.32 0 3 511 169 511 169
TCDQA.A4L6.B2 C 17.9 7.32 0 3 500 165 500 165
TCLA.A7L7.B2 W 6.29 4.5 0 1 65.1 145 65.1 145
TCLA.D6L7.B2 W 7.47 4.35 0 1 65.9 156 65.9 156
TCLA.C6L7.B2 W 11 6.66 π/2 1 69.5 150 69.5 150
TCLA.B6L7.B2 W 11.3 6.81 0 1 161 75.6 161 75.6
TCLA.A6L7.B2 W 6.3 3.76 π/2 1 300 48 300 48
TCSG.6L7.B2 CFC 10.4 4.78 0.00873 1 339 47.4 339 47.4
TCSG.E5L7.B2 CFC 7.74 3.48 2.28 1 238 139 238 139
TCSG.D5L7.B2 CFC 7.79 3.48 0.897 1 211 161 211 161
TCSG.B5L7.B2 CFC 7.96 3.46 2.47 1 119 271 119 271
TCSG.A4L7.B2 CFC 6.94 3 0.735 1 101 174 101 174
TCSG.A4R7.B2 CFC 6.43 3.08 2.31 1 141 130 141 130
TCSG.B4R7.B2 CFC 7.33 3.2 0 1 153 120 153 120
TCSG.D4R7.B2 CFC 5.07 2.14 π/2 1 331 69.8 331 69.8
TCSG.A5R7.B2 CFC 7.15 3.37 0.71 1 183 148 183 148
TCSG.B5R7.B2 CFC 7.67 3.29 2.51 1 157 169 157 169
TCSG.A6R7.B2 CFC 7.16 2.79 2.47 1 40.5 225 40.5 225
TCP.B6R7.B2 CFC 5.04 1.79 2.23 0.6 142 87.5 142 87.5
TCP.C6R7.B2 CFC 5.95 2.13 0 0.6 151 82.8 151 82.8
TCP.D6R7.B2 CFC 4.3 1.54 π/2 0.6 159 78.3 159 78.3
TCLIB.6L8.B2 CFC 2.41 25 π/2 1 229 21.3 263 12
TCLIA.4L8 C 6.73 25 π/2 1 50.1 123 334 522
TCTVB.4R8 W 8.48 5.75 π/2 1 128 52.3 537 335
TDI.4R8 4.56 20 π/2 4.1 104 42.7 465 327
TCTH.4R8.B2 W 7.90 5.47 0 1 46.6 48.9 239 301
TCL.5L1.B2 Cu 25 25 0 1 140 137 74.7 362
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F.3. Collimators data

Table F.3: Parameters of each longitudinal block of material in the TDI collimator [136, 140, 141].

Collimator Block Coating Jaw Coating Block
name material material thickness [mm] thickness [µm] length L [m]

TDI.4L2 or TDI.4R8
Cu - 54 - 0.7
Al - 54 - 0.6

hBN Ti 54 3a 2.8

a It was found recently [142] that the titanium coating on the hBN block of the TDI is actually thicker than what
was expected (5µm instead of 3µm) [143]. This has not yet been taken into account in the LHC impedance model.

Table F.4: Collimator material electromagnetic properties at 300 K (see parameters definition in Eqs. (1.14)
and (1.15), and Section F.2 for the way to obtain relaxation times). Magnetic properties have been
neglected for those materials, as well as the dielectric constants of metals. When available we indicate in
the first column the provider and commercial name of the material, between parentheses.

Material full name Symbol εb ρDC [Ω.m] τAC [ps] µr tanϑE tanϑM

Copper Cu 1 1.7 ·10−8 [144] 0.027 [44] 1 0 0
Carbon-carbonb

CFC 1 5 ·10−6 [145, 146] 4.2 [145, 146] 1 0 0
(Tatsuno AC150)
Graphite

C 1 1.5 ·10−5 [145, 147] 1.3 [145] 1 0 0
(SGL R4550)
Tungsten W 1 5.4 ·10−8 [144] 0.005 [144] 1 0 0
Titanium Ti 1 4.3 ·10−7 [144]c 0 1 0 0
Aluminum Al 1 2.7 ·10−8 [144] 0.008 [44] 1 0 0
Hexagonal boron

hBN 4 [148]e 4 ·1012 [149] 0 1 0 0
nitrided (Syntec BN5000)
Stainless

ss304L 1 7.2·10−7 [144] 0 1 0 0
steel (304L)

b This CFC is actually an anisotropic material (more precisely, orthotropic with a transverse isotropy): it has differ-
ent properties in the plane parallel to the jaw (the plane that “sees” the beam) and in the direction perpendicular
to that plane [137]. In particular, the resistivity is 5 times higher in the direction perpendicular to the jaw than in
the plane parallel to the jaw [146]. We quote here only the latter resistivity (in-plane), as the image currents flow in
a direction parallel to the beam orbit. The effect of the anisotropy has been therefore totally neglected, which is
justified by the agreement between theory and measurements of the impedance of CFC collimator jaws in Ref. [9].
Note finally that previous versions of the LHC impedance model used the value of 10−5Ω.m for ρDC , which was
actually a design value rather than the real resistivity measured in the CFC jaws [150].
c It was found recently [142] that the titanium coating on the hBN block of the TDI got contaminated by the hBN
ceramic, possibly increasing its resistivity to ρ ≈ 2.5 ·10−6Ω.m [143]. This has not yet been taken into account in
the LHC impedance model.
d hBN is actually anisotropic (during manufacturing it is pressed along the longitudinal direction, parallel to the
beam orbit [151]), but this has very little impact on its electric properties, and we will neglect it here.
e The dielectric constant is not known on this specific type of hBN, we use the value given by another provider on
a similar material. Still, when hBN is coated by a 3µm layer of titanium, it was checked that the beam coupling
impedances and wake functions do not depend on εb between 2 and 5, on the frequency range (or time range)
useful for the LHC.
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F.4 Beam screens data

Tables F.5, F.6 and F.7 summarize all the parameters useful to compute the beam-coupling impedances
and wake functions of the beam screens (see Section 2.1.2).

Table F.5: Beam screens parameters [96]. The Yokoya factors [23] are those obtained for an elliptic
geometry of semi-axes b and w (b being in the direction indicated in the column “Orientation”), with
respect to a round geometry of radius b.

Type of
Orientation

b w Length L Yokoya factors
beam screen [mm] [mm] [m] x dip. y dip. x quad. y quad.
50A V 18.375 23.175 21992.03 0.651 0.898 -0.238 0.241
50L V 18.775 23.575 167.23 0.655 0.899 -0.234 0.238
53V V 20.175 24.975 31.59 0.667 0.901 -0.223 0.229
53H H 20.175 24.975 31.59 0.901 0.667 0.229 -0.223
63V V 25.225 30.025 284.22 0.715 0.913 -0.193 0.199
63H H 25.225 30.025 94.98 0.913 0.715 0.199 -0.193
69 V 28.075 32.875 130.64 0.738 0.918 -0.180 0.185
74 V 30.475 35.325 64.61 0.751 0.921 -0.171 0.175

Table F.6: Beam screens average beta functions from MAD-X (see Section F.1), for each beam, at injection
and collision with a squeeze of 1.5 m in IP1 and IP5, 3 m in IP8 and 10 m in IP2.

Type of βx βy βx βy βx βy βx βy

beam screen (B1, inj.) (B1, inj.) (B1, coll.) (B1, coll.) (B2, inj.) (B2, inj.) (B2, coll.) (B2, coll.)
50A 86.3 91.1 86.4 91.2 86.4 91.2 86.4 91.5
50L 146 148 149 145 149 145 146 168
53V 77.1 77.1 350 350 77.1 77.1 350 350
53H 77.1 77.1 273 273 77.1 77.1 273 273
63V 160 160 396 398 157 164 397 399
63H 149 149 574 574 149 149 574 574
69 152 132 262 242 140 165 250 275
74 124 124 429 429 124 124 429 429

F.5 Warm vacuum pipe data

Tables F.8 and F.9 summarize all the parameters useful to compute the beam-coupling impedances and
wake functions of the warm vacuum pipe (see Section 2.1.3). Electromagnetic properties of copper can
be found in Table F.4.
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F.5. Warm vacuum pipe data

Table F.7: Beam screens materials properties at 20 K (see Section F.2 for the way to obtain relaxation
times). For copper, to take into account its magnetoresistance, resistivity is given for several magnetic
induction amplitudes B (expressed in terms of proton momentum in the bending radius of the LHC
dipoles, i.e. R = 2803.9 m). Magnetic properties and dielectric constants have been neglected. The
copper coating thickness taken in the model is 50µm.

Material Proton momentum
εb

ρDC τAC
µr tanϑE tanϑMname [GeV/c] [Ω.m] [ps]

Copperf 450 1 2.8 ·10−10 [99, 101] 1.5 [144] 1 0 0
Copperf 3500 1 5.1 ·10−10 [99, 101] 0.8 [144] 1 0 0
Copperf 7000 1 7.7 ·10−10 [99, 101] 0.5 [144] 1 0 0
Stainless steel

any 1 6·10−7 [95, 96] 0 1 0 0
(grade P506)

f Magnetoresistance has been taken into account thanks to the empirical law [101]

ρ(B , T = 20K) = ρ(B = 0, T = 20K)[1.0048+0.0038×B ×RRR],

where, according to Ref. [99], RRR= ρ(B=0,T=300K)
ρ(B=0,T=20K) = 70 (“residual resistivity ratio”) and ρ(B = 0, T = 20K) =

2.4 ·10−10Ω.m.

Table F.8: Warm vacuum pipe parameters [84, chap. 5, p. 98]. For the MQWs, Yokoya factors [23] are those
obtained for an elliptic geometry of semi-axes b and w (b being in the direction indicated in the column
“Orientation”), with respect to a round geometry of radius b. MBW and the rest of the vacuum pipe have
circular cross-sections. The chamber is assumed to be made of 2 mm-thick copper (see properties in
Table F.4) surrounded by infinite vacuum.

Type of
Orientation

b w Length L Yokoya factors
vacuum pipe [mm] [mm] [m] x dip. y dip. x quad. y quad.
MBW - 22 22 70.6 - - - -
MQW_V V 14.5 25.5 74.59 0.484 0.848 -0.364 0.364
MQW_H H 14.5 25.5 74.59 0.848 0.484 0.364 -0.364
Rest of the

- 40 40 3592.71 - - - -
circumference
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Table F.9: Warm vacuum pipe average beta functions from MAD-X (see Section F.1), for each beam, at
injection and collision with a squeeze of 1.5 m in IP1 and IP5, 3 m in IP8 and 10 m in IP2.

Type of βx βy βx βy βx βy βx βy
vacuum pipe (B1, inj.) (B1, inj.) (B1, coll.) (B1, coll.) (B2, inj.) (B2, inj.) (B2, coll.) (B2, coll.)
MBW 139 135 139 135 138 136 138 136
MQW_V 192 210 192 210 192 210 192 210
MQW_H 192 210 192 210 192 210 192 210
Rest of the

145 146 215 216 143 155 213 227
circumference

F.6 Skin depth

According to Ref. [11, p. 354], the skin depth in a conductor is written

δs =
√

2ρDC

µ0µrω
. (F.8)

We show in Fig. F.1 the skin depth versus frequency for the conductors mentioned in the previous
sections, computed thanks to the resistivites of Tables F.4 and F.7.
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Figure F.1: Skin depth as a function of frequency for the conductors present in the various machine
elements. The resistivities of Tables F.4 and F.7 were used.
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G Comparisons between single-bunch mea-
surements and the LHC impedance model

We compare here the results from the simulation code HEADTAIL using the wake functions from the LHC
impedance model described in Chapter 2, with beam-based measurements of tune shifts and instability
rise times performed in 2010 and 2011, in single-bunch regime. The plots and conclusions shown below
are the result of a collaborative work that was presented during the LHC beam operation workshop in
Evian, in December 2011 [152].
At 450 GeV/c, tune shifts measurements were performed on May 28th, 2010 [153]. The total tune shift
due to the impedance of the machine was measured using either an overinjection of a high-intensity
bunch on a previously injected low-intensity one or an intensity scraping done thanks to one collimator.
The specific contributions given to the tune shift by certain collimators were separately quantified, by
moving groups of collimators together, in particular the injection protection collimators – TDI, TCLIA
and TCLIB – and the collimators in the IR7 insertion region. On November 1st, 2011 [154] additional
measurements were done on the TDI alone, by moving this collimator and measuring the corresponding
tune shift. At 3.5 TeV/c some measurements of the tune shift due to a subset of collimators (in particular
those of IR7) were performed on May 7th, 2011 [155]. An instability rise time measurement took place on
May 17th, 2010 [110, 156].
Results of all these experiments, compared to HEADTAIL simulations using the LHC impedance model,
are shown in Figs. G.1 and G.2 in respectively horizontal and vertical. The tune shifts normalized by the
bunch intensity are then shown in Figs. G.3 and G.4. Note that the other beam or machine parameters
(e.g. bunch length and chromaticity) can differ slightly between the various measurements, and this
was taken into account in the simulations. Finally, the discrepancy factors between the measurements
and the simulations are exhibited in Figs. G.5 and G.6. In most cases, we find a disagreement between
the model and the measurements by a factor 2-3. At 3.5 TeV/c, simulations tend to be closer to the
measurements than at 450 GeV/c, especially when taking into account the experimental error bars
which are visible in Figs. G.1 and G.2. One can also note the systematic and yet unexplained discrepancy
between the overinjection measurements and the scraping ones, the former giving a higher discrepancy
factor with respect to the model than the latter. Finally, the tune shift due to the injection protection
collimators, which is expected to be dominated by the TDI contribution (in particular its ceramic block)
has changed drastically between 2010 and 2011. This could be explained either by a rather bad quality of
the measurement in 2010 with respect to that of 2011, or by some damage done to the titanium coating
on the ceramic part of the TDI jaw, resulting in a reduction of its thickness [154]. Visual inspection of the
TDI jaws did not reveal any absence of coating, but its thickness has not been measured. On the other
hand, the beam screens around the jaws were observed to be deformed.
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Figure G.1: Horizontal single-bunch tune shifts measured and simulated, in various cases.
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Figure G.2: Vertical single-bunch tune shifts measured and simulated, in various cases.
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Figure G.3: Horizontal single-bunch tune shifts measured and simulated in various cases, normalized
with the bunch intensity in units of 1011 particles per bunch.
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Figure G.4: Vertical single-bunch tune shifts measured and simulated in various cases, normalized with
the bunch intensity in units of 1011 particles per bunch.
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Figure G.5: Discrepancy factor between the horizontal single-bunch tune shifts measured and simulated,
in various cases.
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Figure G.6: Discrepancy factor between the vertical single-bunch tune shifts measured and simulated, in
various cases.
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