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Abstract 
 
Although used in a very large variety of applications, drilling is one of the most complex and least 
understood manufacturing processes. Most of the research on drilling was done in the field of metal 
cutting for mechanical parts since, in this case, high precision and quality are needed. The use of 
composite materials in engineering applications has increased in recent years, and in many of these 
applications drilling is one of the most critical stages in the manufacturing process. This is because it is 
among the last operations in the manufacturing plan of composite parts. Delamination and extensive tool 
wear are among the problems which drilling of composite materials are currently facing.  
 
A major difference between metallic and composite plates is their structure: isotropic for metals and 
anisotropic for composite materials; meaning that while for metallic materials all the structure will respond 
in a similar manner under the machining loads, the composite structure will have localized responses 
from the same loads, leading to defects in the internal structure of the remaining work-piece material (i.e. 
delamination). Delamination can lead to failure in use and parts with such defects are usually discarded. 
Delamination is not usually visually detectable and special testing is necessary, affecting the costs of the 
final parts. Delamination during drilling was found to occur at tool entry (peel-up) or tool exit (push-out) 
and depends on the loads at inter-laminar level.  
 
The work presented in the current thesis focuses in providing reliable information about the thrust and 
torque distribution along the drill radius (and work-piece thickness) during drilling for varying cutting 
parameters, drill geometry and work-piece material. Such data should assist in the development of 
delamination models capable of capturing the influence of the drill geometry and cutting parameters on 
delamination onset and propagation during both exit and entry of the drill in the work-piece. 
 
A cutting force model is proposed to obtain the elementary cutting force distribution along the drill radius 
which is able to account for changes in axial feed rate and drill geometry.  Based on oblique cutting, 
forces are considered on both rake and relief faces. A generic relationship in the form of a transformation 
matrix is developed to relate oblique cutting to drilling, valid for any drill geometry. The mathematical 
description of the drill geometry in the scope of cutting force modeling has been revised. The kinematics 
of the drilling process is now taken into account for (i) all geometrical parameters of the drill and for (ii) the 
elementary cutting forces decomposition. Additionally, a new drill type and its geometric features have 
been described mathematically and the definition of the geometrical parameters has been generalized so 
that other drills types or variations could be easily implemented into the model. It proved therefore 
possible to adopt simpler expressions for the empirical force coefficients of the cutting force model. Up to 
four empirical coefficients are used, which are calculated from experiments for each work-piece material 
and drill type.  
 
Most experimental investigations on drilling fiber reinforced composites analyze only the total thrust and 
torque generated during drilling or separately the forces caused by the chisel edge and cutting lips by 
drilling with or without a pilot hole. The later type of analysis suggested that is possible to obtain more 
detailed information about the distribution of the loads in drilling from the analysis of the forces variation 
during tool entry into the work-piece. Pursuing this direction, an experimental analysis method is 
proposed to obtain the axial and tangential elementary cutting force distribution along the tool radius or 
work-piece thickness. The cutting force distribution obtained experimentally was used to calibrate the 
cutting force model, rather than the total thrust and torque. The experimentally obtained cutting force 
distribution can also be used alone for analyzing the drilling process (i.e. the loads distribution among the 
plies of the composite laminate and how this load is influenced by changes in the drill geometry and the 
cutting conditions). 
 
Keywords: drilling, fiber reinforced composites, cutting forces 
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Résumé 
 

Bien qu'il soit utilisé dans une très grande variété d'applications, le perçage est l'un des 
processus les plus complexes et les moins compris de la fabrication. La plupart des recherches sur le 
perçage a été faite dans le domaine de la découpe de métal pour les pièces mécaniques, car, dans ce 
cas, une haute précision et la qualité sont nécessaires. L'utilisation de matériaux composites dans les 
applications d'ingénierie a augmenté ces dernières années, et dans beaucoup de ces applications le 
perçage est l'une des étapes les plus critiques dans le processus de fabrication. Ceci est du au fait qu'il 
est parmi les dernières opérations dans le plan de la fabrication de pièces composites. Le délaminage et 
l'usure intensive des outils sont parmi les problèmes que le perçage des matériaux composites est 
actuellement confronté. 

Une différence majeure entre les plaques métalliques et composites est leur structure: isotrope 
pour les métaux et anisotrope pour les matériaux composites, ce qui signifie que,  pour les matériaux 
métalliques toute la structure réagira de la même manière sous les charges d'usinage, la structure 
composite aura des réponses localisées aux mêmes charges, conduisant à des défauts dans la structure 
interne du reste de matériaux de la pièce à travailler (à savoir le délaminage). Le délaminage peut 
conduire à des pannes lors de l'utilisation et les pièces avec de tels défauts sont habituellement mises au 
rebut. Le délaminage n'est pas détectable visuellement et des tests spéciaux sont nécessaires, affectant 
les coûts des pièces finales. Délaminage lors du perçage se produit à l'entrée de l'outil (Peel-up) ou à la 
sortie de l'outil (push-out) et dépend de la charge au niveau inter-laminaire. 

Le travail présenté dans cette thèse porte actuellement à fournir des informations fiables sur la 
répartition du couple et de la poussée le long du rayon de perçage (et l’épaisseur de la pièce à travailler) 
pendant le perçage pour différents paramètres de coupe, géométries de perçage et matériaux de la pièce 
à travailler. Ces données devraient aider à l'élaboration modèles de délaminage capables de capter 
l'influence de la géométrie de perçage et paramètres de coupe sur l’apparition  de l’initiation du 
délaminage et sa propagation au cours de l’'entrée et la sortie de la perceuse dans la pièce à travailler. 

Un modèle de effort de coupe est proposé afin d'obtenir la distribution de effort de coupe 
élémentaire le long du rayon de perçage qui est capable de tenir compte des changements dans la 
vitesse d'avance axiale et la géométrie de perçage. Basées sur  la coupe oblique, les efforts sont 
considérées à la fois sur la face de coupe et la face de dépouille. Une relation générique sous forme 
d'une matrice de transformation est développée pour lier la coupe oblique au perçage, valable pour toute 
géométrie de perçage. La description mathématique de la géométrie de perçage dans le cadre de la 
modélisation des efforts de coupe a été révisée. La cinématique du processus de perçage est maintenant 
prise en compte pour (i) tous les paramètres géométriques du perçage et pour (ii) la décomposition des 
efforts de coupe élémentaires. En plus, un nouveau type de perçage et ses caractéristiques 
géométriques ont été décrits mathématiquement et la définition des paramètres géométriques a été 
généralisée de telle façon que d'autres types de perçage ou variations puissent être facilement 
implémentées dans le modèle. Il s'est avéré donc possible d'adopter des expressions plus simples pour 
les coefficients d’effort empiriques du modèle d’effort de coupe. Jusqu'à quatre coefficients empiriques 
sont utilisés, qui sont calculées à partir des expériences pour chaque matériau de pièce à usiner et 
chaque type de perçage. 

La plupart des investigations expérimentales sur le perçage composites en fibres renforcés 
analysent uniquement la poussée et le couple totaux générés lors du perçage ou séparément les efforts 
causées par l’arête centrale et les lèvres de coupe par perçage avec ou sans un trou pilote. Le dernier 
type d'analyse suggère qu'il est possible d'obtenir des informations plus détaillées sur la répartition des 
charges dans le perçage à partir de l'analyse de la variation des efforts lors de l’entrée de l’outil dans la 
pièce à travailler. Poursuivant sur cette voie, une méthode d'analyse expérimentale est proposée pour 
obtenir les distributions des efforts de coupe axiale et tangentielle le long du rayon outil ou l’épaisseur de 
la pièce à travailler. La distribution de l’effort de coupe obtenue expérimentalement a été utilisée pour 
calibrer le modèle de l’effort de coupe, plutôt que la poussée et le couple totaux. La distribution de l’effort 
de coupe obtenue expérimentalement peut aussi être utilisée seule pour analyser le processus de 
perçage (i.e. la distribution des charges entre les plis du composite stratifié et comment cette charge est 
influencée par des changements dans la géométrie de perçage et les conditions de coupe). 
 
Mots clé: perçage, composites renforcés de fibre, effort de coupe 
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1.1 Motivation 
 
 
The use of long-fiber reinforced composites is extending beyond the initial applications in aerospace and 
military fields, driven by the advances in manufacturing technologies which made the production process 
more cost effective. Long fiber reinforced composite materials offer excellent and highly customizable 
mechanical properties, while being much more lightweight than metallic alloys. However, their processing 
technology is still in the incipient stage with many restrictions in shape and structure forming, all these 
restrictions making the part design and manufacture more difficult and expensive. Extensive research and 
development is currently undergoing to overcome such restrictions and difficulties in various stages of 
their production. Our work is aiming to bring contributions in the machining processes of these types of 
materials. 
 
As parts made out of fiber reinforced composites are usually integrated in a mechanical assembly, drilling 
is the most often encountered machining process in the production plan of such parts. Drilling occurs 
mainly during the last stages of the manufacturing process in order to create fixing features like holes. 
Drilling of long-fiber reinforced composites is governed by different physical laws than drilling of metals 
(brittle chip formation in opposition to plastic deformation) – this being the reason that current industrial 
practice are not fully understood and optimized. 
 
Two major problems are highlighted: delamination defect and excessive tool wear. Delamination (and 
overall hole quality) is a critical aspect of the drilling process, as it can lead to failure in use and parts with 
such defects are usually discarded. Furthermore, delamination is usually not detectable for the eye and 
special inspection process is necessary. The excessive tool wear make the drilling process of long fiber 
reinforced composites very expensive as only a limited number of holes can be drilled with one particular 
drill. 
 
From the process planning point of view, delamination defect was found to be related to the thrust force 
generated during drilling, force which for a given work-piece and material combination depends on the 
drill geometry and the cutting conditions. Tool wear is believed to be related to both cutting forces and 
thermal loads with more complex material properties dependence.  
 
A major difference between metallic and composite components is their structure: isotropic for metals and 
anisotropic for composite materials; meaning that while for metallic materials all the structure will respond 
in a similar manner under the machining loads, the composite structure will have localized responses 
from the same loads, leading to defects in the internal structure of the remaining work-piece material (i.e. 
delamination). Therefore, we find important for studying the onset of such defects the existence of a 
cutting force model which can provide the distribution of the loads on the composite structure in addition 
to only the total loads needed to characterize the drilling process in metallic materials. To obtain such 
model, a better description of the drill geometry and its relationship to the elemental oblique (or 
orthogonal) cutting elements is needed than currently developed (which include many assumptions and 
simplifications). Additionally, the experimental analysis of the drilling process has to be extended to 
capture the distribution of the cutting forces needed to validate such method. We will then be able to 
provide better tools for understanding and eliminating delamination defects and to a certain extent reduce 
tool wear. 
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1.2 Research organization 
 
 
Early literature surveys found that limited information on the mathematical modeling of the drills 
geometries is available. The most detailed mathematical model for drill geometry exists for the conical 
twist drill, the most commonly employed drill geometry in metal cutting, while other drill types are not 
addressed almost at all. The exact drill geometry definition remains in most cases proprietary to the 
manufacturers which are not willing to disclose such information. Literature reports also that the conical 
twist drill (considered among the best performer in the metal drilling process) is not particularly suitable for 
drilling fiber-reinforced composites, and new geometries have been proposed (like the tapered drill 
reamer). The geometrical definition of a drill has to be related to the orthogonal and oblique cutting 
models. Therefore, in the current PhD thesis we are proposing a generic methodology for defining 
mathematically the geometry of drill in the light of cutting force modeling (i.e. oblique cutting model). 
 
When looking into the models for predicting cutting forces, a strong theoretical and analytical background 
was found for metal cutting, while composite cutting theory is only in an incipient stage. Prediction of the 
cutting forces takes place based orthogonal or oblique cutting models, providing a unified physical 
analysis for all traditional machining processes based on chip-forming (see figure 2.1). However, even for 
metals, all models suitable for drilling have a strong empirical component (i.e. no pure analytical model 
has been proposed and validated). These models are labeled as mechanistic models (with mixed 
components of analytical and empirical parts). The shear angle theory was initially proposed by Merchant 
in [1] for metal cutting, and creates the basics of many other later models which extend and complete its 
application range. However, due to the fact that chip forming mechanism is based on plastic deformation 
it is only applicable in theory for metal cutting. It was postulated that the cutting of composite materials 
should be based on fracture mechanics theory, as chip separation occurs rather by fracture than plastic 
deformation. However, currently no analytical model was proposed for composite machining and all the 
few proposed models for these materials are either empirical or using the same shear plane theory as for 
metals.  
 
Using orthogonal or oblique cutting framework to model the cutting forces in drilling allows the 
determination of the elementary cutting forces on each point on the cutting edges of a drill. To compare 
the elementary cutting forces with actual experimental data proved rather difficult and of little practical 
interest in metal drilling. Although many cutting force models for drilling are proposed based on 
orthogonal and oblique cutting (such as [2], [3], [4], [5] etc.), no attempt was noted to validate the cutting 
forces distribution along the drill radius, which we believe to be a critical aspect if one is interested how 
the drilling load is distributed in the structure of the composite work-piece.  
 
Modeling of the cutting forces in drilling as well as mathematical description of the drill geometry for the 
purpose of cutting force modeling represents the modeling part of the thesis and is presented in chapter 
3. In the modeling of the cutting forces the particularities of drilling composite materials have been taken 
into account, although the approach is mechanistic (i.e. forces are modeled as normal/tangential to 
cutting surfaces in oblique cutting framework) and could be applicable to metals as well. 
 
The implementation of even an empirical model for predicting the cutting forces according to the oblique 
cutting model (which by definition needs to be always calibrated by experiments) valid for a wide variety 
of geometrical cases (for a given case of work-piece and tool material combination) as needed in drilling 
will allow the estimation of the drilling loads on the composite structure. The distribution of the loads over 
the hole radius or drilling distance from the tool tip will give an image of the load distribution on each ply in 
the composite structure and how this distribution varies with the cutting parameters of the drilling process 
as well as the geometrical parameters of the drill. Comparing these distributions for different tool 
geometries and cutting conditions the most suitable cutting parameters can be identified and 
improvements can be proposed for drill design. 
 
The most important aspect in analyzing the load distributions on the composite structure is to analyze the 
delamination defect. It will be possible to relate the cutting parameters and drill geometry with the 
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delamination onset and propose means of avoiding it. Based on fracture mechanics, a delamination onset 
model for drilling was proposed by Hocheng and others ([6], [7], [8] etc.) – a “critical thrust force value” 
over which limit delamination occurs at drill exit. Due to lack of prediction models of the thrust force for 
composite materials, the delamination onset model can only be applied after conducting experiments or 
on-line within a controller. Furthermore, the model assumes a simplified distribution of the thrust force 
along the drill radius (in its simplest case, constant load acting in the center of the drill). Such assumption 
does not allow capturing the effect of changing cutting parameters or drill geometrical parameters on the 
distribution. Our cutting force model will allow accurate off-line prediction of the total thrust force (and 
additionally torque), but also its distribution on each ply of the laminate. We will show the strong influence 
of the drill geometry and feed rate on the actual load distribution. Additionally, providing information about 
the tangential component of the elementary cutting forces (contributing to torque in drilling), such models 
can be extended to take into consideration mixed-mode fractures (with two or more loading directions –
more information on fracture mechanics theory can be found in [9]). In addition to improving the accuracy 
of predicting exit-delamination, mixed-mode fracture modeling of delamination during drilling might be 
able to predict entry-delamination, currently not fully understood. Numerical simulations are also used to 
model delamination onset and propagation ([10], [11], [12], [13], [14] etc.) but they suffer from the same 
lack of information about the distribution of the drilling forces within the composite structure. 
 
The geometrical modeling of the drill geometry was confirmed and completed by optical measurements 
for 3 drill types, while the cutting force model was calibrated and validated experimentally for each tool 
type and 2 different long-fiber composite materials (carbon fiber/epoxy and glass fiber/epoxy) and for a 
wide range of cutting conditions within practical domain.  
 
The experimental session is fully described in the chapter 4 of the current thesis and the results were 
published in [15]. When comparing with other experimental measurements of the cutting forces in drilling 
([16], [17], [18], [2] etc.), the experiments reported in the thesis have focused on obtaining as well the 
distribution of the elementary cutting forces in axial and tangential directions along the drill axis and work-
piece thickness. The classical method of recording the cutting forces (thrust and torque) throughout the 
drilling process from drill entry to full engagement and drill exit was used, without employing pilot holes. 
The distribution was obtained in the post-processing stage of the experimental thrust and torque curves. 
By considering the drill geometry (cutting profiles) and the cutting parameters, the thrust and torque 
variation with the drilling time has been split into stages, allowing the determination of the contribution of 
each stage to the cutting forces, therefore obtaining a distribution of the elementary cutting forces along 
both the drill radius and work-piece thickness. Experimentally determined distribution curves of axial and 
tangential force components are for the first time presented and discussed for varying cutting conditions 
and different drills and work-pieces (composite materials). 
 
The distribution of the elementary cutting forces as well as the total values of thrust and torque have been 
used to calibrate the cutting force model and to validate its results as detailed in chapter 5. The 
mechanistic model (presented in chapter 3) uses three empirical coefficients which need to be 
determined experimentally: specific cutting pressure on the rake face (Kc), friction coefficient (Kf) and 
specific pressure on the relief face (Kp). These coefficients can also be defined as functions of various 
parameters (such as normal rake angle – αn, cutting velocity – V etc.). Several expressions for these 
coefficients have been tested and the best results were found with a total of only 4 empirical coefficients 
(i.e. the specific cutting pressure on the rake face – Kc as a function of the normal rake angle αn, while the 
other coefficients remain constant). Results show the capabilities of the model to predict the distribution of 
the elementary cutting force components in axial and tangential directions as well as the total thrust and 
torque values. Furthermore, the model captures the changes in distribution with the changes in cutting 
parameters (notably the axial feed rate) and drill type as shown in the experimental results, proving its 
usefulness for further studies on delamination. 
 
Summarizing, the current PhD thesis proposes a change of focus for the drilling process analysis 
especially aimed at drilling composite materials towards the distribution of the elementary cutting forces 
along the cutting edges. Therefore, we propose (i) an improved mechanistic model capable to predicting 
the distribution of elementary cutting forces along drill radius and validated as such and (ii) a new 
experimental method to analyze the distribution of the cutting forces along the drill radius and work-piece 
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thickness. The mechanistic cutting force model for drilling is notable for (i) using up to 4 empirical 
coefficients (whereas similarly positioned models use 12 empirical coefficients); (ii) considering the forces 
acting on the relief face; (iii) introducing a transformation matrix to relate the elementary cutting forces 
defined in oblique cutting framework to drilling (providing an easy and drill-type-independent way of 
applying to drilling existing or new force models developed in oblique cutting framework); (iv) considering 
the drilling process kinematics (represented by the cutting angle – μ) for all derivation of the angles 
defining the geometry of the cutting elements and forces decompositions (whereas previously was 
ignored at least for the cutting lip region of a drill); (v) mathematically describing a new type of drill 
(tapered-drill reamer) for the purpose of cutting force modeling. 
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Chapter 2 
Background and theory 
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2.1 Drilling as a machining process 
 
 
The current work lies in the scientific and engineering domain of machining, which is a more generic term 
for metal cutting, used to refer to machining processes applicable to metallic materials. Machining 
processes refer to the industrial process in which parts are shaped by removal of unwanted material. The 
traditional chip-forming processes are turning, boring, drilling and milling, while grinding and honing are 
abrasive processes. Non-traditional machining processes refer to other means of part shaping, such as 
electro-discharge, ultrasonic, electrochemical and laser machining. 
 
Drilling is hence a traditional machining process based on chip-forming. In metal cutting, material is 
removed as a plastically deformed chip of appreciable dimensions, while in the case of some other non-
metallic materials (like fiber-reinforced composites hereby treated) the material is removed by fracture 
[13], and the chips are powder-like [19]. 
 
For all traditional machining process based on chip-forming on metallic and non-metallic materials alike, a 
fairly unified physical analysis can be carried out using basic orthogonal and oblique cutting models (fig. 
2.1). In the frame of oblique and orthogonal cutting models one can compare and relate other traditional 
machining process based on chip-formation and unified theories of the cutting forces development can be 
applied. 
 

Fig. 2.1 – Orthogonal and oblique cutting models 
 
The difference between oblique and orthogonal cutting models is the inclination angle (i) which is zero in 
the case of orthogonal cutting. The presence of an inclination angle (i) between the cutting edge and the 
normal to the tool motion direction (in the plane defined by the cutting edge and tool motion direction) 
generates a third force component (referred to as lateral force component) when compared with the 
planar situation of the cutting forces in orthogonal cutting. This effect makes illustrating certain theories 
and the mathematical derivations associated more complicated. Therefore, in many cases orthogonal 
cutting is assumed for simplifications reasons (i=0°). Most of the traditional machining processes have a 
geometrical configuration as in the oblique cutting model. However, to validate certain force models 
specifically designed experiments are conducted according to the orthogonal cutting model. 
 
Drilling, the standard process for producing holes, is among the most common material removal process. 
Drilling is performed by a tool (named “drill”) which is rotated by the spindle of a machine. The work-piece 
and the revolving drill (although in some cases the work-piece can be revolving and attached to the 
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spindle) are positioned by movements of the machine table and/or the spindle assembly. When drilling 
starts, a linear movement (along the drill rotating axis) occurs between the rotating drill and work-piece. 
Most of the time drilling operations are performed on specialized drilling machines of different 
configurations (upright, radial or specialized), but drilling can also be performed on lathes, boring mills 
and milling machines. 
 
Geometrically, drilling is one of the most complex machining processes, mainly due to the complex 
geometry of the drills. The difficulty of producing drills with consistent geometries has traditionally limited 
accuracy, although drill consistency and repeatability has greatly increased recently with the advent of 
CNC drill grinders. The same complexity of the tool geometry has inhibited the introduction of new tool 
materials, so that the productivity gains in drilling have lagged those made in turning and milling over the 
past 30 years. Drilling is applied to a large variety of materials in different industries, but has been mostly 
studied for metals cutting. In recent years, non-metallic materials (plastics, ceramics and composite 
materials) are steadily replacing metallic parts in various industries. As the processes governing the 
cutting process in these novel materials are not yet fully understood and modeled, drilling is often 
employed as used for metallic structures, leading to a high degree of failures and low efficiencies. 
 
Drilling performance depends on the materials involved, the drill geometry, the cutting parameters 
(spindle speed and the axial feed rate) and the process conditions (i.e. cooling, lubricant, fixturing etc.). 
An overview of the current industrial practices with respect to the materials involved and the drill 
geometries is presented in the next subchapter dedicated to the drilling tools (2.2), while the methods 
employed in the analysis of the drilling process are presented in subchapter 2.3. Chapter 2.4 introduces 
the particularities of drilling long fiber reinforced composite materials. 
 
 
 
 
  



 

26 
 

2.2 Drilling tools. Classification and terminology 
 
 
A drill is an end-cutting tool which has one or more straight or helical flutes, and which may have a hollow 
body for the passage of cutting fluid and chips during the generation of a hole in a solid or cored material. 
Drills vary widely in form, dimension, and tolerance. Drills are classified according to the material from 
which they are made, their lengths, shapes, number of flutes, point characteristics, shank style and size 
series. The best type of drill for a given application depends on the material to be drilled, its structural 
characteristics, the hole dimensions, whether the material to be drilled is cored or solid, whether a 
through or blind hole is required and the characteristics of the machine tool and fixture and the cutting 
conditions. Selecting the proper type of drill for a given application requires consideration of all these 
factors. Drill manufacturers offer the same type drill with slight variations in both configuration and 
metallurgy. These slight variations strongly affect drill life and hole quality especially for small diameter 
drills. 
 
A wide variety of types of drills are employed. No clear classification currently exists, although we will try 
to provide a few categories further on based on a review of drilling tools from [20]. Firstly, we note the 
drills to be either made from one body (usually referred to as regrindable drills) or employing inserts 
(spade drills, indexable, etc.). Our work focuses on the regrindable drills and hence the indexable drills 
category will not be further discussed. Regrindable drills are usually limited in the maximum diameter, 
while the drills with inserts are limited in the minimum diameter. The later are often employed in other 
industries other the metal cutting (i.e. mining industry) due to the possibility to make them as large as 
needed, although smaller diameter ones are suitable for metal cutting applications. 
 
Another particular type of drill are the so-called “core drills” (or “trepanning drills”) which only cut an 
annular groove at the hole periphery and leave a solid core at the hole center. These drills cut more 
efficiently than conventional drills because they cut less material overall and no material at low velocities 
near the center of the hole. Core drills are most often used for holes larger than 40mm even though they 
are available in drills sizes down to 12mm (or even lower). These types of drills are interesting for drilling 
fiber reinforced composites as well, as the overall thrust (causing delamination) force is much lower than 
other solutions. However, as the practical applications in fiber reinforced composites often require hole of 
smaller diameters they cannot normally be employed. 
 
Regrindable drills come in a wide variety of shapes: twist drills (often referred to as regular drills as they 
are the most common type of drills), gundrills, counterdrills (i.e. stepped or subland drills), pilot drills, drill-
reamers etc. 
 
Twist drills are the most common type of drills, but differ widely from their geometry point of view. They 
are called “twist drill” due to the presence of one or more helical channels for chip evacuation along their 
body, feature called “flute”. However, the case when the helical angle is zero and the flutes are straight 
(called “zero helix” or “straight flute”) is also considered as a twist drill type. The experimental work in the 
current PhD thesis is done with 2 twist drills (2-facet and 8-facet twist drills) and a tapered-drill reamer 
(which can be regarded as a twist drill with zero helix angle); hence an in-depth view of these types of 
drills will be presented in the current chapter.  
 
Figure 2.2 introduces the nomenclature of the twist drills features. 
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Fig. 2.2 – Nomenclature of a twist drill 

 
 
The main features of the twist drills that play an important role in the analysis of the drilling process are 
further discussed below. 
 
 

a) Cutting edges 
 
In drilling, cutting takes place along the following cutting edges: chisel edge, cutting lips and the leading 
edges. The chisel edge and the cutting lips are the main cutting areas and are responsible for most of the 
work in material removal, while the cutting on the leading edge is referred to as “reaming”, with the 
purpose of finishing the hole surface. Theoretically, no cutting should take place along the leading edge, 
but due to work-piece deformation under the thrust force, some material is removed. The final hole 
surface will always have a conical shape (rather than a perfect cylinder) after the removing of the process 
loads and assuming the deformations of the work-piece are in the domain of elasticity. 
 
Throughout the current thesis the “cutting edge” term is used to denote both the chisel and the cutting lip 
edges, while “chisel edge” and “cutting lip” terms are used to refer to the particular cutting edges they 
represent. 
 
In the cutting lips area the cutting is the most efficient and it is desired to have as small as possible size of 
the chisel edge. The drill strength is dependent directly on the web size, and the chisel edge is the cutting 
edge associated with the web. Due to highly negative rake angle and low local cutting speeds, the chisel 
edge area is one of the least effective cutting regions, with the highest elemental cutting forces. Even as 
the chisel edge area is usually less than 20% of the drill diameter, it seldom accounts for about 50% of 
the thrust force.  
 
The chisel edge positions the drill before the main cutting lips begin to cut, and stabilizes the drill 
throughout the cutting process. It also affects the drill’s centering characteristics (skidding and wandering 
at entry). In some cases additional grinding operations is performed on the tool point to lower the size of 
the chisel edge, referred to as “web thinning”. 
 
The main cutting edges are the cutting lips, which affect the torque, thrust, radial forces, power 
consumption, drilling temperature, and entry and exit burr formation. 
 
The size and orientation of each cutting edge can be defined from the following parameters: 

- Web thickness (w); 
- Chisel edge angle (ψ); 
- Point angle(-s) (p); 
- Helix angle (θ); 
- Drill diameter (D); 
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Normally all of these parameters are provided in the drill’s specifications or can be fairly easily measured 
by optical means. Some are introduced in fig.2.2, and more extensively discussed in chapter 3.  
 
 

b) Helix angle (θ) 
 
The helix angle (θ) is defined as the angle between the leading edge and a parallel to the drill axis. It is 
the main parameter in the control of the cutting face geometry (rake face) along the cutting lips area of 
the drill. Helix angle affects the efficiency of the cutting (increasing with the angle) but also the strength of 
the drill (decreasing with the angle). 
 
Standard helix drills have a helix angle of approximately 30° and are used for drilling malleable and cast 
irons, carbon steels, stainless steels, hard aluminum alloys, brass, bronze, plexiglass and hard rubber. 
Low (slow) helix drills have helix angles of approximately 12°. They have increased strength and are used 
for drilling high-temperature alloys and other hard to machine materials. They are also used for brass, 
magnesium, aluminum alloys and similar materials, since they provide quick ejection of chips at high 
penetration rates, especially for shallow holes. High (quick) helix drills have helix angles of approximately 
40°, as well as wide, polished flutes and narrow lands. They are used for drilling low strength non-ferrous 
materials such as aluminum, magnesium, copper, zinc, plastics and for low-carbon steels. Zero helix 
(straight flute) drills have a 0° helix angle. They are used for materials which produce short chips such as 
brass, other nonferrous materials and cast iron. They are especially common in horizontal drilling 
applications. Low or zero helix drills can be used for holes with length to diameter ratios exceeding 4 
provided coolants (pressure-fed through the tool) are used to evacuate chips. 
 
The helix angle affects not only the chip ejection capability of a drill, but also its cross-sectional strength, 
area moments of inertia and rigidity. Some evidence indicates that a spiral flute counters the tendency of 
a straight flute drill to buckle. According to [20], the torsional stiffness of a drill varies parabolically with the 
helix angle and reaches a maximum at a helix angle of approximately 28°. The radial stiffness of a drill 
decreases with increasing helix angle, and reaches a minimum at a helix angle of about 35°. The axial 
stiffness also varies parabolically with the helix angle, with a minimum occurring at 20°. The allowable 
thrust and critical cutting speed are also affected by the helix angle, especially for small diameter drills. 
On the performance side, an increase in helix angle results in increased rake angles (more efficient 
cutting) and lower torque and thrust. 
 
 

c) Number of flutes 
 
The number of flutes may vary from one to four, with two being the most common choice. The optimum 
number of flutes on a drill depends on the drill diameter, the work material, required hole quality and hole 
exit conditions. Generally, one-flute drills are used for deep hole drilling, two-flute drills are used for most 
general purpose applications, and three- and four-flute drills are used for close tolerance work and for 
drilling interrupted holes or through holes in work-pieces with inclined exit surfaces. For a given set of 
cutting parameters the number of flutes strongly influences the chip load on each flute, hence the loads 
are shared on more edges. Additional flutes provide better hole quality because they have more margins 
for guiding the tool. An interesting 4-flutes design has two flutes that cut to center and two flutes 
separated from the chisel edge by an undercut, as the case of the tapered-drill reamer (or “one-shot” drill) 
considered in our experiments and detailed in chapter 3.5. 
 
 

d) Web and flute geometry 
 
The strength of the drill is largely determined by its web and flute sizes. The two main conflicting 
parameters in drill body design are adequate flute area for efficient chip disposal and high drill rigidity to 
reduce deflections and increase dynamic stability. The ratio of the web thickness to the drill diameter 
directly affects the drill’s torsional and bending strength. For conventional two-flute drills, this ratio is 
usually about 0.21:1. The flute-to-land ratio also significantly affects the drill’s strength (conventional drills 
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have a flute-to-land ratio of about 1.1:1, which provides a flute space area of 45 to 55% of the total cross-
sectional area, suitable for general purpose applications with most work materials). These ratios can be 
optimized for specific work materials and hole depths. 
 
Parabolic (rolled-heel) flute forms increase the chip space and enhance chip ejection and therefore widely 
used for dry and deep hole applications. The use of parabolic flutes with high helix angles (greater than 
30°) further improves chip ejection. Parabolic drills have a heavier core, approximately 40% the diameter 
compared with 20% of standard twist drills; the heavier core adds rigidity and increases stability when 
drilling deep holes and harder materials. Drills of this type are used not only for soft materials, such as 
plastics, aluminum, copper and low-carbon steel, but also for stainless steel, cast iron and nodular iron. 
 
 

e) Material 
 
Twist drills are most commonly made of HSS (high-speed steels), HSS-Co, solid WC (carbide steels), or 
with WC tips or heads brazed on a steel body. Special applications employ twist drills made of solid 
ceramics, with PCD (Polycrystalline Diamond) edges or tips brazed on a steel body, PCD heads brazed 
on a WC (Tungsten Carbide, commonly referred to simply as “carbide”) body, PCBN (Polycrystalline 
Cubic Boron Nitride) and ceramic tips, and PCD veined on a WC body. 
 
The greatest improvements in productivity have resulted from the acceptance of solid carbide (Tungsten 
Carbide - WC) drills. Compared with HSS drills, carbide drills permit an increase in productivity by a factor 
of 2 to 10, and increase the hole quality. Solid carbide drills are especially well suited for high-throughput 
precision hole manufacturing. Solid ceramic and cermet and PCBN- and PCD-tipped drills are used at 
higher speeds than carbide drills. Ceramic drills can be used for fiber-reinforced composites, but their 
application in ferrous materials has been limited by a lack of machine tools with sufficient speed capability 
and acceleration/deceleration rates for the spindle slide reversal in blind holes. PCD-veined drills 
eliminate concerns about the integrity of the braze interface with carbide blank. PCD drills have been 
used extensively to drill aluminum alloys, other non-ferrous alloys, and fiber-reinforced composites at 
conventional and high speeds. Solid ceramics and even more PCD drills have the disadvantage of being 
expensive for general applications. 
 
Generally, improved drill rigidity has a positive effect on most aspects of the drilling operation. A stiffer drill 
exhibits less of vibration and deflection, which allows the use of higher speeds and feed rates and 
produce better hole quality and longer tool life. 
 
Early experiments in drilling fiber-reinforced composites [21] have shown that the HSS drills are the least 
suitable for this application with extreme levels of tool wear. Carbide drills perform better, but are 
outmatched by the extremely high-priced PCD drills. 
 
 

f) Point geometry 
 
One very important feature of a twist drill is its point geometry. It determines the characteristics of the 
drill’s cutting edges introduced earlier. The principal geometric features of the point are the point angle(-s) 
(p), web thickness (w), chisel edge angle (ψ) and the relief angle (γ). 
 
The point angle (p) is defined as the angle of the cone obtained by rotation about the drill axis of the 
cutting lips. Some twist drills can have multiple point angles (as for “double angle point” drills) or this 
angle is not constant (as for “radial/racon point” drills). More information and comments on the definition 
of the point angle (p) can be found in chapter 3.4.2. 
 
The cutting lip length is inversely related to the point angle.  
 
An optimum point angle which yields maximum drill life and hole quality exists for every work material. A 
standard 118° point is used for general purpose drilling of readily machined materials. Point angles 
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smaller than 118° are preferred for many cast irons, copper, fiber aluminum alloys, die castings and 
abrasive materials. Point angles greater than 118° are used for hard steels and other difficult materials. 
Generally, a lower point angle reduces thrust force while increasing torque; the thrust force varies 
parabolically with the point angle and reaches a minimum value at roughly 118°, the point angle used on 
standard drills. 
 
The cutting edge is formed by the intersection of the cutting face (rake face) and the flank face; a straight 
shape of lip is desirable because it generally provides maximum tool life. Specialized drill designs with 
concave lips (e.g. racon point drills) are used for some steels, since a concave lip induces more strain in 
the chip and improves chip breaking. 
 
The rake angle (α, defined generally as the angle between the rake face and the normal to the local 
velocity vector in the plane formed by the cutting edge and velocity vector) distribution across the main 
cutting edges depends on the flute helix angle. The flute helix angle reaches the maximum at the margin 
and decreases to zero at the center. Similarly, the rake angle decreases near the web; it is typically 
negative at the center of the drill and roughly equal to the helix angle at the outer corner. Lip correction 
can be used to reduce the rake angle and increase the edge strength along the main cutting edge; it 
generates a constant rake (helix) angle along the entire length of the cutting edge. Lip correction is used 
especially for inhomogenous materials such as cast iron, and when small, discontinuous chips are 
desired. A 0° to 5° positive rake angle produced by lip correction or the use of straight flute drills provides 
a strong edge for general purpose drilling of hard and brittle materials such as cast iron, metal-matrix 
aluminum composites, stainless steel, steel alloys,  nickel-chrome steel, titanium alloys and high-
temperature alloys. A small or neutral rake angle will not help chip evacuation and may cause material 
build-up on the cutting edges in softer materials.  
 
The chisel edge is the blunt cutting edge at the center of the drill. It is formed by the flank surface ground 
on the drill web. The ratio of the web to core diameter to the drill diameter is usually large. The optimal 
web thickness depends primarily on the work material. The web thickness is usually about 15 to 20% of 
the drill diameter for large drills, but may reach 50% of the diameter for small drills, which require a 
proportionately heavier web to maintain stiffness. Because it cuts slowly and has a large negative rake 
angle, the chisel edge produces a chip by an extrusion or smearing action (in metal drilling), rather than 
by cutting. Because the chisel edge chips have a less direct path to the flutes, they is more likely that 
material build-up will occur. The chisel edge contributes substantially to the thrust force; the size of the 
contribution depends on the relative lengths of the chisel and main cutting edges. The chisel edge 
contributes roughly 50% of the thrust for a drill with a typical web thickness equal to 20% of the diameter. 
If the web thickness to diameter ratio is increased to 30%, the chisel edge thrust doubles; if the ratio is 
further increased to a 40%, it will increase by a factor of 2 (or a factor of 4 when compared to a 20% web 
drill). The three common approaches to reducing problems associated with the chisel edge are: (i) 
reducing the chisel edge length by web-thinning or splitting the drill point, (ii) changing the shape of the 
chisel edge to improve its cutting action, and (iii) eliminate the chisel edge altogether. 
 
The nature of the cutting edge (referred to as the edge treatment) is another important factor influencing 
the cutting forces. A sharper cutting edge will cut better, but it is more prone to chipping or breaking. It is 
very difficult to assess the edge treatment for a particular tool, considering the fact that it might vary along 
the cutting edges. 
 
 
A wide variety of drill point and body configurations have been developed to improve aspects of drill 
performance such as the drill’s centering ability, thrust force and rigidity. Briefly, the common types of 
points include the following. 
 

- Conventional point or conical point is the most common type of drill point ground on standard, 
118° point drills. The chisel edge is either conventional (with conical relief) or two faceted (which 
results in a flat or blunt chisel), and has a high negative rake angle (-50° to -60°). Conventional 
drills tend to “walk” or drift during entry and thus often require a centering hole. They are most 
commonly used in applications which do not require high precision or production rates. The 
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conical point can be ground to provide a small crown (0.07 to 0.2mm depending on the drill 
diameter) along the chisel edge, which results in significant improvement in the chisel edge 
cutting action and centering characteristics. 

- Radial/racon point is a type of drill that has an arch-shaped radiused point, resulting in a more 
positive rake angle at the center. The radial tip provides a self-centering effect; it can therefore 
drill more accurate holes than a conventional drill. The cutting edge is longer than on a 
conventional point, resulting in slightly higher torque and thrust, but also lower edge temperatures 
and stresses since the heat and forces generated during drilling are spread out over a larger 
area. Radial points thin the chip at the outer corner, protecting the corner and margin from wear, 
reducing burr formation, and improving drilled surface finish and tool life. 

- Web thinned point, is a conventional point with the chisel edge thinned by grinding a notch at 
the chisel edge corner with a radiused wheel. There are several variations of the web thinning. 
This operation reduces the chisel edge length, reducing thrust and improving chip evacuation 
from the center of the drill. Reducing the chisel edge length also improves the drill centering 
properties. The web is typically thinned to a diameter between 8 and 12% of the drill diameter. Lip 
correction can be used to thin the chisel edge as well. 

- Split point is often referred to as a crankshaft drill. It is produced by notch type web thinning. 
There are two or three similar variations of this point style. The most common split point type is a 
special case of the web-thinned point with a much smaller residual chisel edge length (typically 2 
to 3% of the diameter). There are however a number of drill point designs, which use a modified 
split with a S-shaped secondary cutting edges. The S-form split reduces secondary edge wear 
and drill failures when drilling hard materials. The notches in split point drills are prone to build-up 
when drilling soft materials and prone to edge chipping when drilling tough alloys. The notches on 
the crankshaft or true split point often do not reduce the chisel edge length, but generate two 
small cutting edges, one on each side of the chisel edge passing ahead of center. This point is 
self-centering and also reduces the thrust force, especially when drilling work-hardening 
materials. The split point is especially common on long drills, such as crankshaft oil hole drills, 
and on small diameter (<12mm) drills. It is also a preferred point configuration for drilling titanium, 
stainless steel, and high-temperature alloys. 

- Helical/spiral point has an “S” contour with a radiused crown chisel that reduces the thrust force 
and makes the drill self-centering. It eliminates the need for web thinning. In general, a spiral 
point drill has a thicker web than a conventional drill because a thin S-shaped chisel edge limits 
its effectiveness when drilling soft materials. The main advantage of this point is that it reduces 
burr formation at drill exit. Helical points are weaker than split points and require a special drill 
grinder. 

- Bickford point is a combination of the helical and racon point geometries. The helical point is 
ground on the center of the drill, while the racon point is used for the outer portion of the drill. This 
point combines the benefits of both the helical and racon points. 

- Four-facet chisel point, also called bevel ground point has a chisel edge formed by the 
intersection of primary and secondary relief planes ground on the flank, producing a less negative 
rake angle as compared to the conventional point. The more favorable chisel edge geometry 
reduces the thrust force, improves centering accuracy, and increases drill life. This is the most 
common point on microdrills and can be used successfully with most work-piece materials. 

- Double angle points are ground with a corner break (chamfer) to reduce the included point 
angle at the drill periphery, resulting in four-facet lips. The reduced peripheral point angle reduces 
corner wear and burr formation at breakthrough and improves size accuracy; the abrupt change 
in point angle also serves to split or break the chip. This point is particularly effective when drilling 
brittle ferrous or hard materials with severe break-through conditions. 

- Multi-facet points are most easily classified by the number of facets, or the number of primary 
and secondary relief surfaces ground on the flank. As the number of facets is increased, the point 
becomes increasingly difficult to grind consistently. 

- Brad point has a web thinned center point ground on an acute point angle (less than 120° and 
usually 90°) and slightly concave main lips. The outer corner functions as a trepanning tool. The 
center point length is usually equal to 20 to 30% of the diameter. The brad point is designed for 
drilling accurate, round holes in sheet metal with minimal burr formation. A disk or slug of material 
is produced at exit. 
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- Non-chisel edge drills (inverted point drills) have an inverted point angle near the drill’s center 
(greater than 180°). Grinding the inverted center section, splits the cutting lips into two segments 
and serves to split the chip. 

 
 
As can be noted, a wide variety of drill types exist. A lot of research and development of the drilling 
geometries has actually taken place in industry rather than in research centers. Although many published 
studies are approaching the design and performance aspects of drilling tools, they cannot provide a 
compressive overview of the current state-of-art and industrial practices.  
 
In selecting test cases for modeling, we have looked at drills often employed in reported studies on drilling 
fiber reinforced composites. An additional constrain was to use tools for which enough information exists 
to describe them mathematically or to be of simple geometry. We have therefore employed a 2-facet twist 
drill commonly used in metal cutting; a tapered drill reamer – developed especially for drilling composite 
materials and reported to provide high performance [16], [22]; and a 8-facet twist drill suitable for drilling 
both metals and composite materials. The geometry of the first two drills has been modeled 
mathematically in the current thesis, while the third one was only employed in experiments but not 
described mathematically due to difficulties to assess the geometric details of the web-thinning feature. 
The above mentioned drills are introduced and discussed in chapter 3.5. 
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2.3 Drilling process analysis 
 
 
Drill performance cannot be analyzed without consideration of the process parameters. Cutting 
parameters (spindle speed and axial feed), cutting conditions (dry, with coolant or lubricant), work-piece 
characteristics (material, geometry, structure etc.), fixturing configuration and the machine tool are to be 
considered as well in the drilling process analysis. 
 
In addition to the tool geometry, the major operating parameters to be specified in drilling process 
analysis are the spindle speed (n[rpm]) and axial feed (f[mm/rev]). They are referred to as the cutting 
parameters. 
 
The rotating speed of the spindle (n) is the main factor to influence the cutting velocity (V[mm/min]). In 
drilling the cutting speed varies along the radial direction, and as a reference is usually expressed at the 
periphery of the drill. Ignoring the feed, the cutting speed at the periphery can be expressed as: 
 

nDV ⋅⋅= π  [mm/min]        (2.1) 
 
where D is the drill diameter. 
 
The axial feed (f, often simply referred to as “feed”) is the tool advancement per revolution along its 
cutting path in mm/rev. The feed rate (or axial speed) fr (or Vn) is the speed at which the tool advances 
into the part in [mm/min], and is related to f through the spindle speed n by: 
 

nffr ⋅=           (2.2) 
 
The feed per tooth (ft [mm/rev]) depends on axial feed (f) and the number of flutes N ([-]), and is used to 
calculate the depth of cut (tc – introduced in chapter 3.4.9): 
 

N
fft =           (2.3) 

 
The feed rate (or axial speed) is the input parameter provided to the machine tool. The (axial) feed is 
usually employed in drilling process analysis as more representative in describing the process. However, 
in many cases confusion is made between the two, although the units can provide an easy way of 
identifying the reference. Throughout the thesis document we refer almost always to the axial feed (f). 
 
The usage of coolant or lubricant has a strong influence on the cutting forces by aiding the chip 
evacuation and lowering the friction forces and the temperature of the drill, although it is difficult to 
mathematically account for their influence into a drilling model. Furthermore, unless the coolant and 
lubricant is provided through holes in the drill or the work-piece thickness in small, the amount of 
lubrication or coolant reaching the cutting area varies during the drilling process. 
 
Clamping configuration of the work-piece as well as the machine tool also affect the drilling process. 
Usually its effect on the drilling process is analyzed separately by finite element studies. 
 
Drilling process analysis usually involves the calculation of the drilling forces, which are used to estimate 
the drill loads, power consumption, thermal loads and hole quality aspects.  
 
The cutting forces measured during drilling experiments are referred to as thrust (axial force – Fz[N]) and 
torque (rotational momentum – Mz[Nm]). During typical drilling experiments these forces are measured on 
the time scale from drill entry into the work-piece to full engagement and drill exit from the material. The 
following figure (fig. 2.3) introduces an example of such measurements extracted from our own 
experimental investigation on drilling fiber reinforced composites (carbon fiber with epoxy matrix – CFRP 
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– of 10mm in thickness) using a tapered drill reamer at a spindle speed n=500rpm and axial feed of 
f=0.2mm/rev. The different stages of drilling with this particular tool have been outlined. The chisel edge 
engages almost instantly, while the rest of the cutting edges are becoming engaged in drilling gradually 
until full engagement is obtained. Once the drill pierces through the bottom surface of the work-piece, the 
full engagement stage finishes and drill is gradually exiting the work-piece until all the cutting edges are 
out. Axial downwards movement of the drill might continue a little more, until the drill is extracted from the 
work-piece (usually at very high speeds). Starting with full engagement stage the leading edges of the 
drill come in contact with the work-piece, action referred to as “reaming”. They remain in contact until the 
drill is pulled out of the work-piece, although the contact length varies. 
 

 

Fig. 2.3 – Sample cutting force measurement during drilling (CFRP, 10mm thickness, tapered drill reamer 
(T1), n=500rpm, f=0.2mm/rev) – a) thrust; b) torque 

 
Knowing the axial speed (fr – eq. 2.2), one can relate the time coordinate to the distance to be drilled, 
allowing the identification of full engagement stage, when theoretically one should obtain the maximum 
values for thrust and torque. The maximum values of thrust and torque are the first stage of 
characterization of the cutting forces during drilling operations. These values vary for each tool/work-
piece combination, drilling geometry, cutting parameters and conditions. 

Chisel edge ¦ Stage 2 ¦ Stage 3 ¦ Stage 4 ¦ Full engagement ¦ Drill exit 
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As these forces are important in the process optimization, research has focused on means to predict 
them. The approach used in simulating other machining processes, in which the forces are calculated by 
multiplying the uncut chip area by previously measured cutting pressures (in orthogonal or oblique cutting 
tests), can be applied to drilling, but is not well suited to the process. This is due in part to the influence of 
the drill point geometry on the process performance: for a given spindle speed and feed rate, drills with 
different point configurations yield the same total uncut chip area but often produce significantly different 
forces.  
 
Empirical models (as functions of spindle speed and axial feed) have been developed ([23], [24], etc.) to 
estimate the maximum thrust and torque forces for a drilling case. These types of models are often 
sufficient to estimate the power consumption, aid the clamping design or even tool wear rate estimation. 
However, they provide little information to a user interested in optimizing the drill geometry or studies on 
the quality related aspects of the drilling process (i.e. exit burrs, delamination etc.). 
 
In view of this fact, drilling forces can be more effectively simulated by dividing the drill’s cutting edges 
into small segments which can be treated as oblique cutting edges, determining the forces on each 
element by oblique cutting measurements or calculations, and summing the results to calculate total 
loads. 
 
The configuration of the oblique cutting element varies extensively along the radius of one drill, but also 
for each different tool. The current analytical models in the framework of oblique and orthogonal cutting 
developed for other machining operations (turning, milling, etc.) are not able to provide accurate 
predictions for such a wide range of rake and inclination angles as encountered in only one drill geometry 
case. Therefore to estimate these forces experimental methods are usually employed. The experiments 
can either be run for oblique cutting cases, or drilling, both methods being quite challenging. To be able to 
find the elemental forces in oblique cutting to use in calculating the drilling forces implies testing a large 
number of oblique cutting cases, while trying to maintain similar overall conditions as in drilling (same tool 
and work-piece material and other conditions). Some aspects as the curvature of the rake face for twist 
drills are close to impossible to replicate in oblique cutting experiments. This task has proved too difficult 
to be attempted, except for a few simplified studies. 
 
The other solution is to continue the analysis of the cutting forces curves obtained directly from drilling 
experiments to obtain the distribution of the axial and tangential forces along the radius, a solution which 
is encouraged by the advancement of the force measurement equipment and data processing 
capabilities. [2] and [13] have attempted using this method, but mainly to fit their prediction model, rather 
than present the results of this analysis and discuss them. Due to the noisy nature of the raw 
measurement data and the significant differences between each drilling case, the method is not yet 
developed at its full potential. In chapter 4, it is attempted to perfect the experimental analysis to obtain 
complete distribution of the forces for generic drilling cases. 
  
When developing cutting force models for drilling, the desire is to obtain a good separation between the 
geometrical and kinematic factors of the process from the material specific factors (like specific cutting 
pressure and friction coefficient), so that the model becomes portable across different combinations of 
drill/work-piece materials. However, due to the complexity of the drill point geometry and the kinematic 
process, the material and geometric factors are difficult to separate. Furthermore, usually 2 models are 
required to describe the drilling process, one suitable for the cutting lips and one for the chisel edge, as in 
the case of one of the recent cutting force model presented in [2]. In chapter 3 an improved cutting force 
prediction model is introduced. Although it will be shown that the geometrical and material related factors 
are not fully separated, the proposed model can predict resulting cutting forces with good accuracy using 
up to 4 empirical coefficients to account for material specific factors (when 12 empirical coefficients are 
employed by a similar model – for a full review of the topic see chapter 5.2). Additionally, the current 
model is generally applicable to all areas of a generic drill (both chisel edge and cutting lip), providing that 
the geometry of the drill can be described mathematically. 
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2.4 Particularities in drilling fiber reinforced composites 
 
 
In recent years, the number of applications of fiber reinforced composites has increased driven by the 
developments in their manufacturing processes and their weight to mechanical properties ratio. Industries 
like aerospace were among the first to adopt these types of materials, but in recent years they found their 
way into automotive and other industries. With increase usage, new demands are made in terms of the 
economy of the manufacturing processes; therefore the manufacturing processes of fiber reinforced 
composites have to become more reliable and efficient. 
 
The term “composite material” generally refer to materials with at least two distinctive constituents, 
combined to give a unique combination of properties. The term “fiber reinforced composite material” refer 
to a composite material with one of the constituents being in the form of fiber, usually in combination with 
a resin (generally referred to as a “matrix”). The reinforcing “fiber” or “fabric” provides strength and 
stiffness to the composite, whereas the matrix gives rigidity and environmental resistance. The fibers can 
be long or short. Short fiber composite materials usually have lower properties than continuous (or long) 
fibers, although their properties are rather isotropic (like in the case of metals). Long-fiber reinforced 
composites are usually made out of laminated plies, although other methods and types exist. The current 
study addresses particularities in the drilling of the long-fiber reinforced composite laminates; although the 
methods derived hereby can be applied to other types of composites as well as other materials. 
 
Drilling as a manufacturing process is often encountered among the last operations of the manufacturing 
plan, where requirements of reliability and quality are higher due to increase cost of discarding the part at 
this late stage. Most of the parts processed by drilling operation are in the shape of plates, with thickness 
varying from under 1mm to 10-20mm. The thin plates to be drilled are common to the fabrication of 
electronic boards, while the thicker ones are employed as structural parts in aerospace industry. 
Composite parts with higher thickness than 15-20mm are very uncommon due to problems occurring 
during the curing process. 
 
An important particularity of the fiber composite materials is their anisotropy. Besides the anisotropy of 
these materials caused by the finite number of fiber directions (playing an important role in the part 
design), another degree of anisotropy is introduced by the weaknesses of the inter-ply interface, as they 
are made out as a stack of layers. While in use, the fiber reinforced part is designed so that the main 
loads act along the direction of the fiber, rather than perpendicular on it. Only out of the ordinary 
situations may cause loads acting along their weak direction, and in most of the cases these loads are 
external and produce little if no internal defects. However, drilling is an operation which in most cases 
introduces loads along their weakest direction (perpendicular on the fiber directions and inter-ply 
interface) and furthermore, the loads act differently on each ply during the process causing internal 
damage. The figure below (2.4) introduces the defect of delamination – the inter-ply separation of a 
layered structure during drilling operations. 
 

 

(a)  “Push-out” delamination at exit [27] (b) “Peel-up” delamination at entrance [27] 
Fig. 2.4 – Delamination during drilling of composite laminates 
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Delamination is an internal defect and in most cases is not visible with the naked eye. Solutions like C-
Scan, X-Ray computerized tomography [25] or shadow moiré laser based imaging technique [26] are 
available for detecting delamination, but they are expensive and time consuming. While material 
scientists are trying to define the conditions for the onset of delamination using fracture mechanics theory, 
researchers in the manufacturing field are attempting to asses more accurately the loading conditions 
appearing when drilling fiber reinforced composites. Models for delamination onset like those introduced 
by [12] or [27] are able to determine the critical thrust force over which delamination occurs at tool exit. 
Little modeling resources are available for entrance delamination. While exit delamination is believed to 
develop as a mode I fracture, entrance delamination can be modeled only by mode II fracture or mixed-
mode [9]. However, although the tools to model the onset of delamination are becoming available, little 
work has been done to actually determine (prediction or measurement) the loading distribution on each 
ply occurring during drilling. Experimental measurement or empirical predictions of maximum thrust and 
torque values are, in the author’s opinion insufficient to assess the loading conditions causing 
delamination.  
 
A deeper experimental analysis of the drilling process is desired, which could allow us to estimate the 
loads on each ply in various drilling stages. As the experimental measurements of the cutting forces could 
be affected by the delamination, the experimental analysis has to be doubled by a prediction model to be 
widely applicable. 
 
When attempting cutting force predictions using the orthogonal or oblique cutting model, another 
particularity is noted in comparison with metal cutting. During the machining process on metallic 
materials, the chips are formed by plastic deformation, while during machining of fiber reinforced 
materials the chips are formed by brittle fractures, as exemplified by the following figures. While 
continuous (or in general large chips) are obtained in metal cutting, powder-like chips are reported in 
long-fiber composites machining. 
 
 

Fibers and cutting direction form positive angle 
(a) 

Fibers and cutting direction forms negative angle 
(b) 

Fig. 2.5 – Schematics of fiber cutting during orthogonal cutting model [28] 
 
It is believed that the chip is formed by at least two fractures, one along the fiber direction and one 
perpendicular to it (the order depending on the configuration). The fracture planes are very difficult to 
assess, considering that the relative orientation between the cutting and fiber directions vary widely in 
drilling along the cutting edges, with different geometry, cutting parameters or pattern of the composite 
material. Although there are fracture mechanics models to predict the onset of a crack and its direction of 
propagation, they are not yet applied to machining process, due to the reasons outlined above and also 
the fact that such models would be difficult to calibrate experimentally. The shear plane theory for metal 
cutting ([1], [29], etc.) is obviously not applicable in the case of machining fiber reinforced materials. 
 
As a consequence to the fracture-based chip formation mechanism, heat is mostly generated by friction 
during the machining process of fiber reinforced composites. However, these materials do not dissipate 
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the generated heat as easily as the metals, and it is believed that temperature buildup in the tool is one of 
the causes of extensive tool wear reported – another problem in machining fiber reinforced composites. 
 
The new challenges encountered in drilling (and machining in general) of fiber reinforced composites 
need to be addressed in order to optimize these processes. Currently the same tool geometries as in 
metals are employed and there is a lack of information in selecting the cutting parameters suitable for a 
defect free drilling process. The work in the current thesis attempts to address a few of these challenges, 
by introducing a new cutting force model and a methodology of analyzing the drilling process with focus 
on the cutting force distribution along the tool radius and height. Our mechanistic cutting force model for 
drilling, able to capture the variation of the elementary forces along cutting edges is notable for: 
 

(i) Using fewer empirical coefficients (up to 4, whereas similarly positioned models use 12 
empirical coefficients);  

(ii) Considering the forces acting on the relief face (which we will show to be important in the 
case of composite materials);  

(iii) Introducing a transformation matrix to relate the elementary cutting forces defined in oblique 
cutting framework to drilling (providing an easy and drill-type-independent way of applying to 
drilling existing or new force models developed in oblique cutting framework);  

(iv) Considering the drilling process kinematics (represented by the cutting angle – μ) for all 
derivation of the angles defining the geometry of the cutting elements and forces 
decompositions (whereas previously was ignored at least for the angles describing the cutting 
lip region of a drill);  

(v) Mathematically describing a new type of drill (tapered-drill reamer) for the purpose of cutting 
force modeling. 

 
Experiments were carried out in the current thesis using two types of commercially available bi-directional 
long-fiber reinforced composite laminates: carbon-fiber reinforced epoxy (further referred to as CFRP) 
and glass-fiber reinforced epoxy (referred to as GFRP). The exact specifications of these materials are 
presented in chapter 4.2. 
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Chapter 3 
Cutting force model for drilling 
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3.1 Introduction 
 
 
As shown in chapter 2.3, cutting forces occurring during drilling process are important for the process 
analysis. Although cutting forces in drilling (thrust and torque) are often derived starting from an 
oblique/orthogonal cutting model, it is very difficult to relate it to other machining operations, mainly due to 
the large variation of element’s geometry, not encountered in any other machining processes, as well as 
due to some particularities of the drilling process (i.e. cutting around the chisel edge). Therefore, most of 
the times, cutting force models are developed separately for drilling, although based on the same 
principle of oblique (or orthogonal) cutting. 
 
One of the most accurate published cutting force prediction models for drilling is presented in detail in [2] 
and has been applied to fiber reinforced composites in [3]. In spite of the complexity of the model and the 
number of empirical coefficients the geometric and dynamic effects are not fully isolated from the material 
properties. As the shear angle theory (introduced by Merchant in [1] and [29]) has no theoretical reason to 
be applied to composite materials (because the cutting process is based on fracture rather than plastic 
deformation), the model uses a mechanistic approach in defining the cutting forces (as normal and friction 
forces on the rake face). Two different models (with respect to the empirical coefficients) are used for the 
cutting lips and chisel edge of the drill respectively and the forces on the clearance face are not modeled 
(although Rubenstein [30] and other propose a model to consider them). The model is also notable for 
introducing the idea of model calibration based on the cutting forces distribution along the radius obtained 
experimentally, rather than the total maximum forces. Calibration for the radial distribution of the cutting 
forces is much more complex, as it involves tedious post-processing of the experimental results 
(discussed in more detail in chapter 4.4 and published in [15]). However, it has the advantages that it 
minimizes the number of experiments needed for calibration and provides an accurate distribution curve 
along the tool radius, suitable for the study of drill geometry performance and various local defects 
especially relevant for composite materials (i.e. delamination). 
 
It is found that most of the cutting force models (mentioned above or [31]) for drilling provide equations for 
thrust and torque, developed starting from forces defined in the oblique or orthogonal cutting model. If 
one wants to change the assumptions on the orientation of elementary forces in the oblique (or 
orthogonal) cutting model, one has to decompose the forces each time to reach equivalent thrust and 
torque equations. It was found of practical importance to adopt a generally accepted oblique to drilling 
transformation as proposed by Altintas in [32]. Therefore, in section 3.2, we introduce a transformation 
matrix to relate vectors defined in oblique cutting to drilling reference systems, assumption-free and valid 
for any type of drill geometry and even for the chisel edge region as long as the drill geometry can be 
modeled mathematically.  
 
In chapter 3.3 a normal/friction force model is proposed in an oblique cutting framework similar to [2], but 
including the second pair of normal/friction forces on the clearance face (based on suggestions in [30]). 
Using three coefficients (specific pressure on rake face coefficient, friction coefficient and specific 
pressure on relief face – some of them defined as functions – for details see chapter 5.2), the model is 
later calibrated for experiments conducted using two different drills from a geometric point of view 
(tapered drill reamer and 2-facet twist drill) on two work-piece materials (bi-directional carbon- and glass-
fiber reinforced epoxy).  
 
The geometrical parameters of a generic drill needed for the modeling of the cutting forces are derived 
and discussed extensively in chapter 3.4, in the same order as they are introduced in chapters 3.2 and 
3.3. As they are normally part of the cutting force model, in order to keep their definition clear, the 
decision was made to separate them. In chapter 3.5, two case studies of drill geometry also used in 
experiments are introduced, including the particular values of the geometrical parameters and their 
variation along the drill radius. 
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Later on, the methodology to obtain experimentally the elementary force distribution along the drill radius 
is detailed in chapter 4 and published in [15]. The model calibration methodology and discussions about 
the model’s performance is presented in chapter 5. 
 
Summarizing, in this chapter a cutting force model for drilling of fiber reinforced composites is proposed, 
which considers also the forces acting on the relief face (which we will later show play a much more 
significant role than in metal drilling), and it is notable for using fewer empirical coefficients defined 
intuitively (3 coefficients, some of them defined as functions, resulting in up to 4 empirical coefficients in 
comparison with 12 in [2], a similar mechanistic cutting force model for drilling – for details see chapter 
5.2). Additionally, for the first time a transformation matrix is practically implemented in a cutting force 
model for drilling to relate oblique cutting to drilling, in a generic manner, while previous models 
decompose each elementary force component individually. Of notable interest are also the improvements 
in the definition of the geometrical parameters of the drill geometry needed for the cutting force modeling:  

- Most geometrical parameters (like web angle – β, point angle – p, normal rake angle – αn, etc.) 
are now defined in a more generic way as functions along drill radius, including the chisel edge 
area. Previously point angle (p) was considered a constant parameter, making it difficult to model 
multi-stage or variable point angle drills; web angle (β) and normal rake angle (αn) were only 
defined along the cutting lips, etc.. 

- The influence of the process kinematics (through the cutting angle – μ) is now considered for all 
geometrical parameters of the drill and along all the cutting edges, including but not limited to: 
inclination angle (i – chapter 3.4.4), normal rake angle (αn – chapter 3.4.6 and 3.4.8), relief angle 
(γ – chapter 3.4.7 and 3.4.8), depth of cut (tc – chapter 3.4.9), etc. Previous models were ignoring 
the influence of the cutting angle (μ) along the cutting lips, on the grounds that it is too small and 
can be therefore ignored. We will show in chapter 5.3 that considering the influence of the cutting 
angle (μ) on the normal rake angle (αn, and the rest of the angles) along the cutting lips is critical 
in capturing a local increase of the elemental cutting forces. 

- An additional angle (named “2nd Euler rotation angle – τ, see chapter 3.4.5) has been introduced 
in the derivation of the transformation matrix and element’s dimensions for simplification reasons. 

- A suggestion for a correction of the point angle (p) to a more representative definition for cutting 
force modeling – “manufacturer’s point angle” (p’, chapter 3.4.2), although not employed in the 
final model for reasons discussed in the same chapter. 

- A discussion on the validity of the rake (α) and relief (γ) angles equations employed in previous 
models along the chisel edge in chapter 3.4.8 and a new equation to determine them for a 
particular case of a straight chisel edge inclined from the drill axis (a particular case of drill not 
treated yet by other cutting force models). 

- A complete mathematical description for cutting force modeling for a new type of drill (tapered drill 
reamer). 
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3.2 Oblique to drilling coordinate system transformation 
 
 
Most cutting force prediction models use the oblique or orthogonal cutting models to estimate the 
elementary forces acting on an element of the cutting edge. An element is defined a small section of the 
cutting edges of a drill, for which oblique (in our case, or orthogonal as well in a generic manner) cutting 
can be assumed (i.e. the cutting direction, inclination angle and the angles defining the inclination of rake 
and relief faces are assumed to be constant across the width of the element). Along the cutting edges of 
drill, the elements will have different sizes for reasons discussed in chapter 3.3 and 3.4.9. 
 
The elementary forces defined in oblique (or orthogonal) cutting models have to be decomposed along 
the thrust/torque/lateral directions as defined in the drilling operation and summed for all elements of the 
cutting edge to obtain the total values of thrust and torque (and occasionally lateral force). The total thrust 
and torque values are representative for describing the cutting forces in drilling. The measured lateral 
component should be zero for a perfect drill of minimum 2 flutes (due to the symmetry along the drill axis, 
the lateral force on a flute is canceled by the others) and therefore is only important when one wants to 
study the effects of symmetry imperfections on mechanical loads. Unless the drill has a single flute, the 
lateral force cannot be measured effectively, and this poses a significant problem in the calibration of 
drilling force models based on oblique cutting as compared with milling, turning or other machining 
processes. 
 
In the current section, a simple, effective and generic method is proposed to separate the definition of the 
elementary forces defined in the oblique (or orthogonal) cutting model from their decomposition in the 
drilling coordinate system, by introducing a coordinate transformation matrix.  
 
Fig. 3.1 shows the two coordinate systems for a point A 
on the cutting lip of a twist drill. XYZ is the coordinate 
system associated with the drilling process, with the X 
axis along the radial direction; the Z axis aligned with the 
drill axis and the Y axis, corresponding to the tangential 
direction, is perpendicular to both. The forces along the Z 
direction will contribute to the thrust, while the forces 
along the Y direction will generate the torque and along 
the X direction the lateral forces will be developed (which 
will be canceled by the action of the second flute). 
 
The X’Y’Z’ coordinate system is associated with the 
oblique cutting element, with the Y’ axis aligned according 
to the local velocity vector (which due to the axial feed 
makes an angle greater than zero with the tangential 
direction – Y axis); the X’ axis perpendicular to the Y’ axis 
in the plane defined by the Y’ axis and the cutting edge and Z’ 
axis perpendicular to the X’Y’ plane (which also includes the 
cutting edge). 
 
The same coordinate system can be defined for a point on the chisel edge as well. In this particular case, 
for a chisel edge located in a plane perpendicular on the tool axis, X and X’ axes will coincide. 
 
A relationship can be found between the two coordinate systems for any point A on the cutting edge 
(either on the cutting lip region or the chisel edge) if the following angles are known: 
 

- Point angle (p) defined as the angle between the cutting edge at point A and the tool axis (or its 
parallel through A – Z axis). The point angle is discussed in chapter 3.4.2. 

Fig. 3.1 – Oblique and drilling 
coordinate system for a point A on 

the cutting lip of a twist drill 
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- Web angle (β) defined as the angle at point A between the radial direction (X axis) and the 
projection of the cutting edge in a plane perpendicular to the drill axis (XY plane), as in fig. 3.4 
and derived in chapter 3.4.1. 

- Cutting angle (μ) defined as the angle at point A between the local velocity vector (V/Y’ axis) and 
the tangential velocity (Vt – projection of the velocity vector on a plane perpendicular to the drill 
axis – XY plane). A discussion about this angle is presented in chapter 3.4.3, including the 
representative figure 3.8; 

- Inclination angle (i) defined as the angle at point A between the X’ axis (the normal to the velocity 
vector (V) in the plane containing both the velocity vector and the cutting edge) and the cutting 
edge. This angle was previously introduced in fig. 2.1-b for oblique cutting. An illustration for 
drilling is provided in fig. 3.9, while chapter 3.4.4 contains a discussion about its derivation. 

 
All these angles are frequently used in describing drill geometries, their formulations are known and 
widely discussed and their particular values can be determined from basic parameters of the drill 
geometry found in suppliers’ catalogues. In chapter 3.4, these angles and other parameters needed for 
describing the drill geometry are derived (when needed) as functions of the radial coordinate and 
discussed for general purposes, while in chapter 3.5 introduces their particular values for the drills 
employed in our study. 
 
To transform a vector {v}XYZ defined in one coordinate system into another a transformation matrix (often 
called the direction cosine matrix regardless of how it is derived or represented) can be applied as 
follows: 
 
{ } { } ''',''' ZYXXYZZYXXYZ vTv ⋅=         (3.1)

 
{ } { } { }XYZT

XYZZYXXYZXYZZYXZYX vTvTv ⋅=⋅= −
,'''

1
,''''''       (3.2) 

 
It is noted that the transformation matrices have the property that their determinant is 1 and their inverse 
is equal to their transpose. 
 
The transformation matrix from X’Y’Z’ to XYZ can be obtained by either calculating the cosine of the 
angles between the respective axes, or by determining a sequence of Euler rotations from one system to 
the other. Between two arbitrary coordinate systems a maximum of three rotations are needed. For the 
particular case of transforming X’Y’Z to XYZ only two rotations are required. It was found easier and more 
intuitive to use the Euler rotations to describe the transition from XYZ to X’Y’Z’ as follows and after that to 
calculate its transpose for practical use. In fig. 3.2 the necessary Euler rotations are presented, where 
X3Y3Z3 is the intermediate coordinate system and τ is the 2nd Euler angle of rotation, which can be found 
by eq.3.3 (its derivation is presented in chapter 3.4.5). 
 

 
Fig. 3.2 – Determining the transformation matrix by two consecutive Euler rotations 
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( ) ( )( ) ( )( )
( )( ) ⎥

⎦

⎤
⎢
⎣

⎡ ⋅
=

ri
rrpr

cos
cossinarccos βτ        (3.3) 

 
The transformation matrix from XYZ to X’Y’Z can be computed by matrix multiplication of the two 
intermediary rotations: 
 

''',,''', 333333 ZYXZYXZYXXYZZYXXYZ TTT ×=        (3.4) 
 
Where the intermediate matrices are determined through cosine direction method as follows: 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

ZZYZXZ

ZYYYXY

ZXYXXX

ZYXXYZT

333

333

333

333

coscoscos
coscoscos
coscoscos

,

θθθ
θθθ
θθθ

     (3.5) 

 
The X axis coincides with X3 hence θX3X =0˚ and cos(θX3X)=1. The angle between X and Y3 and 
respectively Z3 will still be 90˚, and the cosine of the respective angles 0. The rest of the angles can be 
expressed as functions of μ(r) as follows: 
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333,

rr
rrT ZYXXYZ  (3.6) 

 
And 
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⎥

⎦

⎤
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⎢
⎢
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'''

''',
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ZYYYXY
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θθθ
θθθ
θθθ

     (3.7) 

 
Y3 coincides with Y’ hence θY’Y3=0˚ and cos(θY’Y3)=1. The angle between Y3 (or Y’) and X’ and 
respectively Z’ will still be 90˚, and the cosine of the respective angles is 0. Expressing the rest of the 
angles in terms of the 2nd Euler rotation angle introduced previously we obtain: 
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''',333

rr

rr
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Replacing them in equation 3.4 we obtain: 
 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( )⎥
⎥
⎥
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⎢
⎢
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⎣
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''',   (3.9) 

 
While the properties of transformation matrixes state that: 
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T

ZYXXYZZYXXYZXYZZYX TTT ''',
1

''',,''' == −        (3.10)
 

 
It is found: 
 

( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )⎥

⎥
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⎦

⎤

⎢
⎢
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,''' XYZZYXT     (3.11) 

 
The transformation matrix can be used to transform any vector defined in X’Y’Z’ to the XYZ coordinate 
system and its transpose is suitable for decompositions from XYZ to X’Y’Z’. It is valid for any drill 
geometry at any point on the cutting edge (including chisel edge) as long as the angles introduced 
previously can be determined. For most drills, the chisel edge is perpendicular to the drill axis, therefore 
orthogonal cutting can be assumed. In this case, the inclination angle (i) becomes zero, the point angle 
(p) is 90° and the web angle (β) is also zero, therefore the 2nd Euler rotation angle (τ) becomes zero and 
the transformation matrix can be simplified. The cutting angle (μ) is only significant in the close vicinity of 
the drill axis, therefore one may choose to assume it to be zero for the cutting lip region, resulting in 
further simplification. We will however show in chapter 5.3 that the later simplification is not recommended 
at least for a part of the cutting lip close to the drill axis. 
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3.3 Elementary cutting forces in oblique cutting model 
 
 
Experiments conducted in [13] on orthogonal cutting of uni-directional long-fiber composites revealed that 
the cutting mechanism is fracture-based, while in the case of metals it is based on plastic deformations. 
Furthermore, the powder-like chip is formed by a fracture in two stages; those directions vary with the 
fiber orientation with respect to the cutting direction. No theoretical model was found to describe the 
fracture-based cutting process of long fiber reinforced composites, while for metals the shear angle theory 
is widely used. Nevertheless, mechanistic cutting force models have been proposed for these types of 
material. These models consider the principal elemental forces as normal and tangential to the rake face. 
The forces on the relief face are usually ignored mainly based on the experience in metal cutting, where 
they play a rather small role in comparison with the forces on the rake face.  
 
Orthogonal cutting experiments of uni-directional glass-fiber reinforced composites [33] revealed that, as 
in the case of metals, the depth of cut has a linear influence on both horizontal and vertical resultant force 
components, with the intercept above zero (attributed to forces acting on the relief face, which are 
believed to be independent of the change of depth of cut within practical boundaries). The same 
experiments report that the rake angle has a strong influence on the resultant cutting force (noted as 
higher than in the case of metals) while the relief angle has little if no influence. No similar oblique cutting 
experiments were found for composite materials. 
 
For the current study, we will consider a mechanistic force model based on oblique cutting, considering 
both the forces acting on the rake and relief face as in fig. 3.3. 
 

 
Fig. 3.3 – Elementary cutting forces defined in oblique cutting 

Notes : 
Fn1 and Ff1 are the forces on the rake face; Fn1 normal to 
the rake face and Ff1 tangent to the rake face in point A; 
Fn2 and Ff2 are forces on the relief face (hidden); Fn2 is 
normal to the relief face, while Ff2 is tangent to the rake face 
in point A; 
The line which together with the Z’ axis defines the normal 
rake angle (αn) is perpendicular on the cutting edge in a 
plane tangent to the rake face in point A 
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On the rake face, normal (Fn1) and friction (Ff1) forces are represented in red, while forces on the relief 
face (Fn2 and Ff2 respectively) are colored blue. As usual, the force directions are normal and tangential to 
the respective surfaces (rake and relief). Furthermore, it is assumed that the friction force on the rake face 
(Ff1) acts along the chip flow direction, at an angle ηc (chip flow angle, discussed later) from the normal to 
the cutting edge lying on the rake face, while the friction force on the relief face (Ff2) acts along the 
projection of the velocity direction (Y’ axis) on the relief face.  
 
In addition to the angles presented in the previous section, determining the vector direction in the X’Y’Z’ 
coordinate system requires the introduction of the angles defining the rake and relief faces in drilling as 
follows: 

- Normal rake angle (αn), defined as the angle between the rake face (or tangent to the rake face – 
if the rake face is not planar) at a point A on the cutting edge and the normal to both the cutting 
velocity vector and the cutting edge (Z’ axis), measured in a plane perpendicular to the cutting 
edge at point A (see chapter 3.4.6 for a more extensive discussion and figure 3.10). 

- Relief angle (γ) is the angle at point A between the relief face and the local velocity (along the Y’ 
axis) measured in the Y’Z’ plane (formed by the local velocity and the normal to both the velocity 
and the cutting edge). Discussions and derivations for this angle are presented in chapter 3.4.7. 

- Chip flow angle (ηc) is a characteristic angle to oblique cutting and defines the direction of chip 
movement after separation from the work-piece. It is defined in the plane of the rake face (or 
tangent plane to the rake face at point A if the rake face is not planar) as the angle between the 
chip flow direction and the normal to the cutting lip. Oblique cutting experiments conducted on 
metals [34] concluded that it is proportional to the inclination angle by a factor between 0.9 and 
1.0. This proportionality is known as the chip flow law of Stabler. The same is commonly 
assumed in drilling cutting force models, although Watson in [35] challenges this assumption by 
noting that the chip in drilling is usually complete across the cutting lip, and therefore there might 
be some restrictions in the variation of the chip flow angle in this region (cutting lip) and 
recommends using a constant value for the case of metal drilling. As unlike metals, the chip is 
powder-like in machining fiber reinforced materials, the current study does not identify such 
constrain on the variation of the chip flow angle and therefore the chip flow law of Stabler [34] is 
assumed valid. However, the current study identifies the need for experimental clarification in this 
direction. 

 
The equations used to determine the values of these angles are derived and discussed in chapters 3.4.6, 
3.4.7 and 3.4.8, while their values for the drills used in experiments are presented in chapter 3.5. 
 
It is further assumed that the magnitude of the elementary forces acting on both rake and relief faces 
introduced above are as follows: 
 

ucn AKF ⋅=1           (3.12) 
ucfnff AKKFKF ⋅⋅=⋅= 11         (3.13) 

cpn AKF ⋅=2           (3.14) 
cpfnff AKKFKF ⋅⋅=⋅= 22         (3.15) 

 
Where Kc [N/mm2], Kf [-] and Kp [N/mm2] are empirical coefficients representing the specific cutting 
coefficient, friction coefficient and specific contact pressure on relief face respectively. It is assumed that 
the friction coefficient is identical for both friction forces acting on rake and relief faces, as the materials 
are identical and the relative velocities comparable. These coefficients are extensively discussed in 
chapter 5.2. 
 
It is noted that the proposed magnitude of the elemental cutting forces on the rake face are proportional 
to the uncut chip area (Au – uncut chip section area in a plane perpendicular to velocity vector), while the 
relief forces are proportional to the contact area (Ac – on the relief face) as generally accepted by 
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researchers. By tests with restricted contact between tool and chip, [36] shows that for metals the contact 
area on the rake face plays also a role in the magnitude of the recorded forces, although it is not clear 
that the influence reported by the authors will be consistent for different work-piece materials and different 
cutting configurations. The difficulties in experimentally determining the contact area on the rake face and 
also the lack of the underlying model to calculate the contact area from the uncut chip area (Au easily 
defined) have prohibited further studies in this direction.  
 
From fig.3.3, it can be derived that the uncut chip area Ac [mm2] is equal to: 
 

dxtA cu ⋅=           (3.16)
  

  
 

Where tc [mm] is the actual depth of cut which can be calculated for drilling starting from the feed f 
[mm/rev] (eq. 3.17 below, where N[-] is the number of flutes – for more details see chapter 3.4.9) and dx 
[mm] is the element’s width. In drilling the elements are defined of constant size along the radial direction 
– dr [mm]. Therefore, dx (and later dl) need to be calculated from dr using equation 3.18. A more detailed 
discussion about the definition of the oblique cutting elements in drilling is presented in chapter 3.4.9 and 
fig. 3.17, where the derivations of these equations are also presented. 
 

( ) ( )τμ coscos ⋅⋅=
N
ftc         (3.17) 

( )τcos
drdx =           (3.18) 

 
After some simplifications, Au reduces to the generally accepted equation: 
 

( ) dr
N
fAu ⋅⋅= μcos          (3.19) 

 
It can be observed that, while the uncut chip area Au is only influenced by the cutting angle (μ) (for the 
cutting lip region its influence is small and negligible and for the chisel edge area Au decreases sharply 
towards the drill axis), the actual depth of cut (tc) is also influenced by the 2nd Euler rotation angle (τ) or 
point angle (p), web angle (β) and inclination angle (i) (see eq. 3.3) and varies more widely even for the 
cutting lip region. The variation with the radius of the actual depth of cut (tc) is usually ignored in cutting 
forces modeling, although it should have an influence on the chip velocity, chip flow angle (ηc) and, for the 
case of metals, on the shear angle. 
 
Ac [mm2] represents the contact area on the relief face. The forces acting on the relief face have been 
modeled in a similar manner to Rubenstein in [30] and [37], which estimates the contact area (Ac) in 
orthogonal cutting to be a function of the relief angle (γ), the cutting edge radius (Re [mm]) and a critical 
rake angle (αc) over which value ploughing is believed to occur instead of cutting [38]. This modeling 
approach is based on the fact that the cutting edge has a radius (Re), and due to this radius a certain 
amount of work-piece material (which otherwise should be removed) is extruded under the tool as 
exemplified in figure 3.4. The extruded material is deformed both elastically and plastically. The thickness 
of the extruded layer (h) is defined by the point of stagnation D which is characterized by the critical rake 
angle (αc). In general it was shown that the extruded layer is very small in comparison with the depth of 
cut, therefore its subtraction from the theoretical depth of cut (tc – eq. 3.17) is not necessary. Point F on 
the relief face defines the end of the contact length (cl – DF in fig. 3.4a), and due to plastic deformations is 
usually at a lower level than point D. However, it is customary to assume only elastic deformations and a 
constant pressure along the complete contact area, assumption which is even more suitable for 
composite materials. 
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a) Illustration of the flow pattern of work-piece 
material approaching a tool of finite sharpness

b) Representation of the contour of the cutting edges of 
a tool illustrating the critical rake angle (αc) 

Fig. 3.4 – Illustration of the extrusion of the work-piece material under the tool for orthogonal cutting [30]
(D – point of “stagnation”; αc – critical rake angle; α – rake angle; β – relief angle (γ, as used in the current 

thesis); E, F – point on the relief face delimiting the contact segments l1 and l2, h – the thickness of the 
extruded layer) 

 
For oblique cutting the influence of the inclination angle (i) on the contact length on the relief face (cl [mm]) 
has to be considered. Therefore, Ac is assumed: 
 

dlcA lc ⋅=           (3.20) 
 
Where 

( ) ( )[ ]
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Following simplification: 
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α

α
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sin1
cos drRA c

cec ⋅
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⎫

⎩
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⎧ −

+⋅=       (3.22) 

 
It is assumed that the cutting edge radius is constant along the cutting edges of the drill and as estimated 
by others [30, 38] around the value of 0.00762mm (0.0003 in), while the critical rake angle is 70° (-70° if 
measured in the same manner as for the normal rake angle, from the Z axis), according to [38]. 
 
Before proceeding, the elementary forces need to be expressed as vectors in the X’Y’Z’ coordinate 
system. Their components have been derived in chapter 3.4.10. Considering their magnitude proposed 
by equations 3.12-15, we obtain the following relationships. 
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Using equation 3.1, the vectors can be transformed into the XYZ coordinate system. Of interest in drilling 
are the components in the Y and Z direction (Fy and Fz – see below), corresponding to tangential (torque) 
and axial (thrust) loads, while the lateral component (Fx) has only minor importance (for reasons 
previously discussed). The axial feed rate (f) only influences the forces acting on the rake face, therefore 
we have grouped them together before applying the coordinate system transformation:  
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The resultant force in the XYZ coordinate system will be calculated as follows: 
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Where: 
 

xcpxucx gAKgAKF 21 ⋅⋅+⋅⋅=        (3.30) 

ycpyucy gAKgAKF 21 ⋅⋅+⋅⋅=        (3.31) 

zcpzucz gAKgAKF 21 ⋅⋅+⋅⋅=        (3.32) 
 
And g1x, g2x, g1y, g2y, g1z and g2z are geometric functions derived from the matrix multiplication operation in 
eq. 3.27 and 3.28: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ...sinsincoscossinsincoscos1 −⋅⋅−⋅⋅+⋅−⋅= iiKig nccfnx αηηατ  

( ) ( ) ( ) ( )[ ]ncfn K αηατ coscossinsin... ⋅⋅+−⋅−      (3.33) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ...sinsincoscossinsincossinsin1 +⋅⋅−⋅⋅+⋅−⋅⋅= iiKig nccfny αηηαμτ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ...sinsincossincoscoscoscos... +⋅+⋅⋅⋅−⋅−⋅+ iiKi cncfn ηαηαμ  

( ) ( ) ( ) ( ) ( )[ ]ncfn K αηαμτ coscossinsincos... ⋅⋅+−⋅⋅+     (3.34) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ...sinsincoscossinsincoscossin1 −⋅⋅−⋅⋅+⋅−⋅⋅= iiKig nccfnz αηηαμτ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ] ...sinsincossincoscoscossin... +⋅+⋅⋅⋅−⋅−⋅− iiKi cncfn ηαηαμ  

( ) ( ) ( ) ( ) ( )[ ]ncfn K αηαμτ coscossincoscos... ⋅⋅+−⋅⋅+     (3.35) 
 

( ) ( ) ( )[ ]γγτ sincossin2 ⋅+⋅−= fx Kg       (3.36) 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]γγμτγγμ sincossincoscossincos2 ⋅+⋅⋅+⋅−⋅= ffy KKg  (3.37) 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]γγμτγγμ sincoscoscoscossinsin2 ⋅+⋅⋅+⋅−⋅−= ffz KKg  (3.38) 
 
As most of the angles vary with the radial coordinate of the point A from the drill axis, Fx, Fy and Fz are 
functions of the radius and axial feed rate (f). The Fy and Fz functions (for elemental size equal to unity, 
dr=1) will be compared with the data obtained experimentally for the cutting forces distribution along the 
drill radius (as obtained in chapter 4) for various cutting conditions in order to obtain the values of the 3 
employed coefficients (Kc, Kf and Kp).  
 
It is noted that the spindle speed (n [rpm]) is not a parameter for the cutting forces at this point, as the 
local velocity (function of the spindle speed as in eq. 3.52) does not affect the decomposition of the forces 
and geometrical parameters of the cutting element. Its influence can only be accounted for in a material 
property, such as the empirical coefficients (Kc, Kf and Kp), subject which is more extensively discussed in 
chapter 5.2.  
 
As the positive direction of the Y axis is chosen to coincide with the tangential velocity (see fig. 3.1), Fy 
will always yield negative values under practical ranges of the considered angles. While the 
measurements of thrust and torque are always considered positive, for comparison with experimental 
data and calculating the total torque Fy will have its sign inverted. 
 
To obtain the total thrust (FZ [N]) and torque (MZ [N*mm]) generated during drilling, functions 3.31 and 
3.32, can be integrated in the following manner: 
 

( )∫
=

=
⋅⋅=

Rr

r zZ drrFNF
0

        (3.39) 

( )∫
=

=
⋅⋅⋅=

Rr

r yZ drrrFNM
0

        (3.40) 

 
Where r is the radial coordinate, R is the outer radius of the drill and N is the number of flutes. The torque 
will further be converted to [N*m] units for discussion, when the results of the cutting force model will be 
compared with the experimental data in chapter 5.  
 
For a drill with two flutes (N=2) the total lateral force will be zero, as the action of each flute cancels the 
action of the other: 
 

( ) ( )∫∫
=

= =

=

= = ⋅−⋅=
Rr

r flutey

Rr

r fluteyX drrFdrrFF
0 2,0 1,      (3.41) 

 
Although not the scope of the current PhD thesis, the analysis of the lateral force could help describe 
defects resulting from the asymmetry of the flutes as in [2]. Experimental testing with single flute drills 
could also be used to study the variation of the lateral force, although no published reports were found 
about such attempts.  
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3.4 Extended derivations 
 
 
To provide clarity to the thesis, we have separated in this chapter the derivation and discussion about the 
geometrical parameters used in the definition of the cutting force model in chapters 3.2 and 3.3. The 
derivations presented hereby are mostly analytic and in general can be applied to any drill geometry, 
unless otherwise mentioned. In chapter 3.5, two different drills employed in the experiments are fully 
described mathematically, using the final equations obtained in the current chapter. The geometrical 
parameters are introduced in a logical order, similar to their introduction in the cutting force model. 
 
Most of the equations introduced below are of practical importance to the cutting force model presented in 
this thesis, with the exception of the manufacturer’s point angle (p’) introduced in 3.4.2, which was not 
employed in the model.  
 
 
 

3.4.1 Chisel edge angle (ψ) and the web angle (β) 
 
 
The attached figure represents a top view of a generic 
twist drill, outlining the definitions of the web thickness 
(2*w), the chisel edge angle (ψ) and the web angle (β) for 
a point A on the cutting lip. 
 
The chisel edge is the segment of the cutting edge closest 
to the drill center with an orientation passing through the 
drill axis. In most cases the chisel edge is a straight line 
(or can be approximated as such) lying in a plane 
perpendicular to the drill axis. However, in some cases 
(like the 2-facet twist drill employed in our experiments) 
the chisel edge does not lie in a plane perpendicular to 
the drill axis, but an angle exists with the drill axis. 
Nevertheless, the chisel edge area can be defined by 3 
geometrical parameters: web thickness (2w), chisel edge outer 
radius (Rc – see fig. 3.7) and the chisel edge angle (ψ, defined 
in a plane perpendicular to the drill axis). For all cases where 
the chisel edge can be approximated as a straight line, the following relationship can be easily deduced 
between the 3 parameters: 
 

( )ψsin
wRc =           (3.42)

 
 
The web angle (β) is defined as the angle measured in a plane perpendicular to the drill axis between the 
cutting edge and the radial direction at point A, as shown in the above figure. For any point on the chisel 
edge (if the chisel edge is a straight line), the web angle is zero, while for the cutting lips its equation can 
be easily deduced from figure 3.5: 
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We also note that the web angle at radius Rc is equal to the chisel edge angle: β(Rc)=ψ. 
 

Fig 3.5 – Top view of a generic 
twist drill introducing the web 
thinness (2w), the chisel edge 

angle (ψ) and the web angle (β) 
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3.4.2 Point angle (p) and manufacturer’s point angle (p’) 
 
 
The point angle is one of the most important characteristic of the drill. In general it is defined as the 
angle(-s) of the sweeping cone(-s) obtained by the rotation of the drill around its axis, and hereby referred 
to as “point angle” (p). As above defined, it has importance to describe the hole obtained for blind holes. 
In cutting force modeling, it is important as it defines the inclination of the cutting edges with respect of 
the drill axis, which is in fact half of the value of the point angle provided by drill manufacturers. For the 
chisel edge area, which usually lies in the plane perpendicular to the drill axis, the point angle is 180° (or 
90° if we consider the angle with the drill axis) and as most of the drills have straight and un-segmented 
cutting lips, there is only one value provided as the point angle. However, there are drills where the 
cutting lips are segmented (tapered drill reamer, stepped drills etc.) or where they are curved (racon 
drills), where the point angle should be defined in stages or as functions (seldom provided by drill 
manufacturers). In the current thesis a generic approach is used to mathematically define the point angle 
– as a function of the radial direction, to accommodate the definition of this angle for any type of drill. For 
practical details, see chapter 3.5.1. 
 
A difference exists between the point angle 
defined as the angle of the sweeping cone and 
the actual inclination between the cutting lips 
and the tool axis for all areas where the web 
angle (β) is different than zero, although this 
difference is most of the time ignored. The angle 
between the cutting lips and the drill axis is 
referred to as “manufacturer’s point angle” (p’) 
and can be calculated from the point angle and 
other geometrical parameters.  
 
To exemplify this difference, fig. 3.6 is showing 
the tip of a generic twist drill, where the cutting 
lip (straight line - a), if extended, does not 
intersect the tool axis. By the tool rotation about 
its axis, the cutting lips generate a conical 
surface, which can be defined by its generators 
(lines c, lying in a plane parallel to both cutting lips and passing through the drill axis) which by definition, 
if extended, will intersect the tool axis. If we further project the cutting lip (a) on the same plane, the 
cutting lip projection (b) is obtained, which have a different inclination than the cone’s generators (c). 
 
A relationship can be found between the point angle (p) and the manufacturer’s point angle (p’). Fig. 3.7 
was constructed to assist with the derivation of this relationship starting from a projected view from the tip 
of a generic twist drill. 
 
In the triangle ∆N1T1A2 (with the <N1T1A2=90˚ in sketch along a-a), the segment N1T1 equals: 
 

cRRTN −=11           (3.44) 
 
And A2T1: 
 

p
RR

p
TNTA c

tantan
11

12
−

==         (3.45) 

 

Fig 3.6 – The difference between the point 
angle (p) and the manufacturer’s point angle (p’) 
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Fig.3.7 – Sketch to assist in the derivation of the manufacturer’s point angle (p’) 

 
In the top view of the drill, from ∆OO1T1 (with the <OO1T1=90˚), O1T1 can be expressed as: 
 

( )( ) ( )( )R
w

R
OOTO

ββ tantan
1

11 ==        (3.46) 

 
Further on, from the top view of the drill, triangle ∆OO1A1 (with the <OO1A1=90˚), O1A1 can be expressed 
as: 

Notes : 
• O is the drill center;  
• OA1 is the chisel edge (of length Rc) and with 

half of the web thickness w; 
• A1A2 is the cutting lip segment, inclined with the 

manufacturing point angle (p’) from the drill axis 
(represented in sketch along b-b). Its projection 
in XY plane perpendicular on the drill axis is 
A1T1. 

• ON1 and N1A2 is the revolution contour 
obtained by the rotation of the drill along its 
axis, with segment ON1 equal to the radius of 
the chisel edge and N1A2 inclined from the drill 
axis by the point angle (p). The projection of 
the contour on a plane perpendicular on the 
drill axis is OT1, segment equal in length with 
the radius of the drill. 
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( ) ( )( ) ( )( )cc R
w

R
OOOOAO

ββψ tantantan
11

11 ===       (3.47) 

 
It is found more generic to work on the relationship with the angle β(Rc) rather than the chisel edge angle 
(ψ) as we have shown their equality in chapter 3.4.1, in order to account for cases where the cutting lips 
have several segments (as the tapered drill reamer). 
 
The length of the segment A1T1 can be calculated from the difference: 
 

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )c
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And from the triangle ∆A1T1A2 (with the <A1T1A2=90˚ in sketch along b-b), the manufacturer’s point angle 
(p’) can be now derived: 
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    (3.49) 

 
Using the above equation, the manufacturer’s point angle (p’) can be estimated from the point angle (p) 
and for the studied cases p’ is usually 1-2° greater than p. However, the optical measurements of the 
drills used in the performed experiments during the current doctoral thesis, showed that the value 
supplied as the point angle in the catalogues by the manufacturers are usually rounded up to usual 
values like 118°, where in fact a difference of even a few degrees plus/minus was discovered from the 
advertised value. Therefore, it was decided that for the practical calculations presented in this thesis to 
use the measured values (as close as possible to the definition of the manufacturer’s point angle – 
introduced in chapter 3.5), rather than the correction provided by eq. 3.49 from the value supplied in the 
drill’s catalogues. 
 
 
 

3.4.3 Cutting angle (μ) and kinematics of the drilling process 
 
 
When drilling, an axial movement and a rotation are imposed 
to the drill. The axial feed (f) and the spindle speed (n) are 
used to describe separately these movements and are 
referred to as the drilling parameters. They have been 
introduced in chapter 2.3. 
 
Due to the nature of the rotational movement about the drill 
axis, each point on the cutting edges will move at a different 
velocity (both in magnitude and direction). If we consider the 
velocity vector (V) decomposed along the axial and 
tangential directions, we observe that the axial velocity (Vn) 
is always constant while its tangential component (Vt) will 
vary with the radial coordinate, considering that the axial 
feed and speed rate are constant. 
 
As each component of the local velocity is controlled 
separately by its respective cutting parameter, the magnitude 
of the axial and tangential components of the velocity can be 
easily deduced by: 
 

Fig. 3.8 – Local velocities and the 
cutting angle (μ) 
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As exemplified in fig. 3.8, we can further calculate the magnitude of the resultant velocity: 
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For cutting force modeling purposes, it is found very useful to introduce the cutting angle (μ), as the angle 
at a point on the cutting edge between the axial and tangential components of the velocity (measured in a 
plane perpendicular to the radial direction passing through the point). This angle, derived from fig. 3.8 
using the equation below, will be used to describe the cutting direction at any point on the cutting edges 
(including the chisel edge). 
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3.4.4 Inclination angle (i) 
 
 
The inclination angle (i) is an angle characteristic to oblique cutting, defined as the angle between the 
cutting edge and the normal to the velocity vector in the plane containing both the velocity and the cutting 
edge. In drilling it is derived by the commonly accepted equation 3.54, although in many cases its 
simplified version is employed 3.55 (where the cutting angle is ignored). 
 
( ) ( ) ( ) ( ) ( ) ( )[ ]ppri cossinsincossinarcsin ⋅+⋅⋅= μμβ      (3.54) 

( ) ( ) ( )[ ]pri sinsinarcsin ⋅= β         (3.55) 
 
In [39] equation 3.55 was first introduced by the 
main authors, although in an appendix a reviewer 
presents the derivation of eq. 3.54, which 
considers the dynamic effects of the axial feed 
through the cutting angle (μ). Through our own 
derivation, we have reached the same form of the 
equation 3.54. As it is already published and 
accepted, we do not find of interest presenting the 
derivation proof in the current thesis. In figure 3.9, 
a generic twist drill is presented showing the 
inclination angle for an arbitrary point. 
 
It is noted that the definition of the inclination angle 
as above is valid for the chisel edge area as well. 
However, the web angle (β) is always zero for the 
chisel edge, while the point angle (p) is in many 
cases equal to 90°, therefore the inclination angle 
becomes zero (and orthogonal cutting can be 

Fig. 3.9 – The inclination angle (i) in drilling 
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assumed). The 2-facet twist drill used in our experiments has the chisel edge inclined with an angle 
smaller than 90° from the drill axis, therefore an inclination angle greater than zero exists for the chisel 
edge area in this case. More details about this particular case are given in chapter 3.5.3. 
 
 
 

3.4.5 2nd Euler rotation angle (τ) 
 
 
The 2nd Euler angle of rotation (τ) is introduced as an auxiliary angle used to obtain the transformation 
matrix from drilling system of coordinates (XYZ) to oblique coordinate system (X’Y’Z’), those details are 
presented in chapter 3.2. More specifically, it describes the 2nd rotation about the Y’ axis, as can be 
visualized in fig. 3.2 and 3.10 below. 
 

 
Fig. 3.10 – Introducing the 2nd Euler angle of rotation (τ) 

 
As this angle is not used by any other cutting force models, we present below its derivation, starting from 
the angles introduced previously. 
 
Let us assume a segment AA3 of the cutting edge equal to unity. By projecting this segment on plane XY, 
we obtain the triangle ∆AT3A3 (with the <AT3A3=90˚). In this triangle the angle <AA3T3 is the point angle 
(p), as defined in 3.4.2. Therefore, we can deduct that: 
 

( )pAT sin3 =           (3.56) 
 
Furthermore, the angle between AT3 and the X axis will be equal to the web angle (β) as defined in 
section 3.4.1. By considering the triangle ∆AC1T3 (with the angle <AC1T3=90˚), we obtain by projecting 
segment AT3 on the X axis and we can determine that: 
 

( ) ( )βcossin1 ⋅= pAC          (3.57) 
 
Also, by the definition of the inclination angle (i) in section 3.4.4 of the current chapter, we find the angle 
<C2AA3=i, where AC2 is the projection of AA3 on X’Z’ plane. Therefore, from the triangle ∆AC2A3 (with the 
angle <AC2A3=90˚) we can calculate AC2 as: 
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( )iAC cos2 =           (3.58) 
 
Finally, from triangle ∆AC1C2 (with the angle <AC1C2=90˚), we can calculate the 2nd Euler angle of 
rotation (τ) as follows: 
 

( ) ( ) ( )
( )i

p
AC
AC

cos
cossincos

2

1 βτ ⋅
==        (3.59) 

 
As long as the point angle (p), web angle (β) and inclination angle (i) are defined as earlier in this chapter 
(sections 3.4.2; 3.4.1 and 3.4.4 respectively), the 2nd Euler angle of rotation can be used for any region of 
the drill (including the chisel edge), with the mention that it will vary with the radial coordinate. In section 
3.5.4 the variation of this angle along the radial coordinate for the particular cases of drill geometries 
considered in the current thesis is presented. 
 
 
 

3.4.6 Normal rake angle (αn) along the cutting lips 
 
 
The most important geometrical parameter in oblique or orthogonal cutting is the rake angle, which 
defines the orientation of the rake face with respect to the cutting direction (more specifically with the 
normal to the cutting direction in a plane containing both the cutting direction and the cutting edge, i.e. 
X’Y’ plane in fig. 3.11). While for orthogonal cutting the situation is fairly simple and straightforward, in 
oblique cutting appears the problem of which plane to use to measure this angle. Therefore, 3 possible 
definitions were proposed: 

- The normal rake angle (αn) defined in oblique cutting as the angle between the rake face (or 
tangent to the rake face if the rake face is not planar) at a point A on the cutting edge and the 
normal (i.e. Z’ in fig. 3.11) to both the cutting velocity (direction, i.e. Y’) and the cutting edge, 
measured in a plane perpendicular to the cutting edge in point A. 

- The velocity rake angle (αv) defined in oblique cutting as the angle between the rake face (or 
tangent to the rake face if the rake face is not planar) at a point A on the cutting edge and the 
normal to both the cutting velocity (direction) and the cutting edge, measured in the plane (i.e. 
Y’Z’ plane in fig. 3.11) passing through point A and containing the axial and tangential 
components (Vn and Vt) of the cutting velocity. 

- The effective rake angle (αe) defined in oblique cutting as the angle between the rake face (or 
tangent to the rake face if the rake face is not planar) at a point A on the cutting edge and the 
normal to both the cutting velocity (direction) and the cutting edge, measured in the plane 
passing through point A and containing the cutting direction vector and the chip flow 
direction vector. 

 
Fig. 3.11 presents the various possibilities of defining the rake angle in oblique cutting. The subject as to 
which one is most representative has been discussed in the literature. The velocity rake angle (αv) is the 
easiest to derive in drilling, while the effective rake angle (αe) and normal rake angle (αn) are more 
complex. To derive the effective rake angle (αe) presumes assumptions have to be made with respect to 
the chip flow angle (ηc), a highly discussed angle both in oblique cutting and drilling (details in chapter 
3.3).  By experimental means [2] shows that the most relevant is the normal rake angle (αn) and this 
conclusion is supported by several other published studies. Therefore, the current thesis assumes the 
normal rake angle (αn) as the parameter to describe the rake face for oblique cutting. 
 
In drilling, it is customary to consider distinctly the rake angle of the cutting lips and of the chisel edge as 
for each cutting edge the rake face is generated differently. Although we will eventually use a 
discontinuous function (similar to as the web angle was defined in chapter 3.4.1) to unify its definition, we 
will discuss them separately, starting with the rake angle for the cutting lip region.  
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[4], [39], [5] and [2] introduce various equations to calculate the normal rake angle in drilling for the cutting 
lip region of a twist drill as presented in table 3.1. All notations have been changed to adapt the notations 
used in the current thesis (see nomenclature). 

 
Fig. 3.11 – Rake angles in oblique cutting 

 
Table 3.1 – State-of-art in definition of normal rake angle
Equations for normal rake angle (αn) Notes 
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         ([2]-eq.3-20) 
It can be observed that none of them considers the influence of the cutting angle (μ), which affects the 
cutting direction. As for the cutting lip region the cutting angle is usually small, the assumption that it is 
zero could seem reasonable. However, the influence of the normal rake angle over the elementary cutting 
forces is twofold: (i) it affects the decomposition of the cutting forces (as it appears a parameter in the 
geometrical factors defined by equations 3.33 to 3.35); (ii) it affects the specific cutting pressure (Kc) as 
later discussed in chapter 5.2. Therefore, we find that in particular cases small variations of the normal 
rake angle might have a strong influence on the elementary cutting forces and could allow capturing the 
variation of the elementary cutting forces with varying the feed.  
 
Below we present the derivation of the normal rake angle (αn) considering the cutting angle (μ). 
 
We first have to introduce the helix angle 
(θ) which is usually supplied by the drill 
manufacturers and is the main parameter 
defining the surface of the rake face. As in 
fig. 3.12, the helix angle (θ) is defined as 
the angle between the tangent to the rake 
face and a parallel to the drill axis at the 
outermost point on the cutting edge (r=R), 
measured in a plane perpendicular on the 
radial direction. 
 
In general, for a helical surface, the helix 
angle at a point on the helical surface found 
at distance r from the helix axis (θl(r)) 
between the tangent to the surface and the 
axis can be found with the following 
relationship from the pitch (H) of the helix: 
 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅

=
H
rrl

πθ 2arctan         (3.60) 

 
Therefore, knowing the helix angle (θ), defined at r=R, we can calculate the pitch of the helix (H, constant) 
and express the “local helix angle” (θl) as a function of the reference helix angle (θ): 
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Therefore: 
 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ⋅=

R
rrl θθ tanarctan         (3.62) 

 
Fig. 3.13 has been constructed to assist in the derivation of the normal rake angle for an arbitrary point A 
on the cutting lip segment of a drill whose rake face can be defined by the local helix angle (θl) as 
introduced above. It is noted that for the reference helix angle (θ) equal to zero, the rake face will be 
planar, but the current derivation can still be applied. 
 

Fig. 3.12 – Definition of the helix angle (θ) 
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Fig. 3.13 – Derivation sketches for the normal rake angle (αn) 
 
Let us assume a segment AA3 along the cutting lip equal in length to unity. The tangent plane to the rake 
face at point A will pass through this segment (if the cutting lip is assumed to be a straight line) and its 
intersection with the YZ plane will define the segment AF2 (with angle <P2AF2 being equal to the local 
helix angle – θl) and the intersection with the plane normal to the cutting lip AA3 at point A will define the 
segment AF1 (with angle <E1AF1 being the searched for normal rake angle – αn). Points F2, F1, P2, E1, P1 
and E2 were defined along the segments starting from A, by a plane parallel to XY (perpendicular to drill 
axis) through point A3. Segment AE2 is defined along the normal to the cutting direction (Y’ axis) in the YZ 
plane and point P1 is defined as the intersection of A3P2 line with the plane normal to the cutting lip 
segment. 
 
Considering ∆P1AA3 (with the angle < P1AA3=90˚, as the plane containing P1, E1 and F1 lie in a plane 
perpendicular to AA3) and AP2 the altitude in point A, we can identify the point angle as the angle <AP1A3 

Notes : 
• Tangent plane to the rake face includes the following line segments:AA3 (the cutting edge segment); 

AF2 (in YZ plane); AF1 (in plane normal to the cutting edge); A3F1 (parallel to XY plane); 
• YZ plane includes the Y’ axis (cutting direction, V) and the following line segments: AE3; AP2 (Z 

axis); AF2 (on tangent plant to the rake face); 
• Plane normal to the cutting lip at point A contains the following segments: AP1; AE1 (Z’ axis); AF1 

(on tangent plane to the rake face); 
• Plane parallel to XY plane through point A3 contains the following line segments: A3P1; A3F1 (on 

tangent plane to the rake face); P1F1 (on plane normal to the cutting lip); E2F2 (on plane YZ); E1E2; 
• Cutting direction corresponds to Y’ axis; 
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and <P2AA3 (AP2 is along the drill axis – Z which makes with the cutting lip segment the point angle as 
defined previously). Assuming the cutting lip segment AA3 equal to unity, from fig. 3.13-c we can 
determine: 
 

( )pAP
tan

1
1 =           (3.63) 

( )pPA sin23 =           (3.64) 

( )pAP cos2 =           (3.65) 
( )
( )p
pPP

tan
cos

12 =           (3.66) 

( )pPA
sin

1
13 =           (3.67) 

 
In plane F2AE2 (YZ) we find ∆F2AE2 and its altitude AP2, where <F2AP2 is equal to the local helix angle 
(θl) as previously defined and <P2AE2 equal to the cutting angle (μ) as AE2 is perpendicular on the cutting 
direction (Y’ axis) in the above mentioned plane. As we previously determined the length of AP2 segment 
(by eq. 3.65) we can calculate: 
 

( ) ( )lpPF θtancos22 ⋅=         (3.68) 

( ) ( )μtancos22 ⋅= pEP         (3.69) 
 
The situation in plane A3P1F1 (XY) is shown in fig. 3.13-f. As A3P1 is the projection of the cutting lip in a 
plane perpendicular on the drill axis (XY) and E2E1 is perpendicular on the cutting velocities plane (YZ), 
the angle between the two segments is the web angle (β) as defined in a previous section 3.4.1. It is also 
noted that the AE3 segment is oriented along the intermediary axis of rotation Z3 as introduced previously, 
while the AP1 segment is oriented along another possible intermediary axis of rotation if a different 
sequence would have been considered. 
 
In the ordinary triangle ∆F2P2A3, we will attempt to determine the angle <F2A3P2, knowing that 
<F2P2A3=(90˚-β) and the length of the segments F2P2 and A3P2 determined previously (3.68 and 3.64). 
We can write: 
 

( )β−°⋅⋅⋅−+= 90cos2 2223
2

22
2

23
2

23 PFPAPFPAFA     (3.70) 
 
Substituting, we obtain:  
 

( ) ( ) ( ) ( ) ( ) ( )βθθ sintantan2tantancos 22
23 ⋅⋅⋅−+⋅±= ll pppFA

   
(3.71) 

 
We will only consider the positive solution as the negative solution is not practically occurring. The angle 
<F2A3P2 can be determined from the same triangle from the generic theorem of Pythagoras: 
 

( )2322323
2

23
2

23
2

22 cos2 PAFPAFAPAFAPF ⋅⋅⋅−+=      (3.72) 

 

Where, 
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( )
2323

2
22

2
23

2
23

232 2
cos

PAFA
PFPAFAPAF

⋅⋅
−+

=       (3.73) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )βθθ

βθ

sintantan2tantan

sintantan
cos

22232
⋅⋅⋅−+

⋅−
=

ll

l

pp

p
PAF

    

(3.74) 

 
To be useful the value of <F2A3P2 angle needs to be expressed as a tangent function rather than cosine: 
 

( ) ( )
( )232

232
2

232 cos
cos1

tan
PAF
PAF

PAF
−

±=
       

(3.75) 

( ) ( ) ( )
( ) ( ) ( )βθ

βθ
sintantan

costan
tan 232 ⋅−

⋅
±=

l

l

p
PAF

      
(3.76)

 
 
From the triangle ∆A3P1F1 (<A3P1F1=90˚) in the same plane (fig. 3.13-f), knowing the angle <F1A3P1 
(equal to <F2A3P2, determined above by eq. 3.76) and the length of A3P1 segment (3.67), we can 
determine the length of the P1F1 segment (as function of tan(<F2A3P2)): 
  

( )
13

11
131tan

PA
PFPAF =

         
(3.77)

 
 
As the tangent function is expressed as the ration of 2 positive length segments; we will only consider the 
positive solution of eq. 3.76. We can determine the length of F1P1 segment as follows: 
 

( )1311311 tan PAFPAPF ⋅=         (3.78) 

( ) ( )
( ) ( ) ( ) ( )[ ]βθ

βθ
sintantansin

costan
11 ⋅−

⋅
=

l

l

pp
PF

      

(3.79) 

 
From the same plane (fig. 3.13-f) we also need to determine the length of the E1P1 segment. As the angle 
between F2E2 and E1P1 is equal to the web angle (β), so does the angle between P2P1 and E2E1. From 
∆P2E2B (<P2E2B=90˚) where P2E2 is expressed in eq. 3.69, we can determine P2B as: 
 

( )βsin
22

2
EPBP =           (3.80) 

( ) ( )
( )β

μ
sin

tancos
2

⋅
=

pBP          (3.81) 

 
We also note that: 
 

BPPPBP 2121 −=          (3.82) 
 
And replacing P2P1 (eq. 3.66) and P2B (eq. 3.81) results: 
 

( ) ( )
( )
( )⎥⎦

⎤
⎢
⎣

⎡
−=

β
μ

sin
tan

tan
1cos1 p

pBP
    

   (3.83) 
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From the triangle ∆E1P1B (<E1P1B=90˚) as in fig. 3.13-f, we can determine E1P1: 
 

( )βtan111 ⋅= BPPE          (3.84) 

( ) ( ) ( )
( )
( )⎥⎦

⎤
⎢
⎣

⎡
−⋅=

β
μβ

sin
tan

tan
1costan11 p

pPE       (3.85) 

 
In the triangle ∆F1P1A (<F1P1A=90˚) as in fig. 3.13-e, we have already determined the length of the 
segments F1P1 (eq. 3.79), E1P1 (eq. 3.85) and AP1 (eq. 3.63). According to its definition, the normal rake 
angle (αn) can be identified as angle <F1AE1, which can be expressed as: 
 

( ) ( )1111 APEAPFn <−=<α         (3.86) 
 
Where angles <F1AP1 can be determined from ∆F1P1A (<F1P1A=90˚) and <E1AP1 from ∆E1P1A 
(<E1P1A=90˚): 
 

( )
1

11
11tan

AP
PF

APF =          (3.87) 

( ) ( )
( ) ( ) ( ) ( )⎥⎦

⎤
⎢
⎣

⎡
⋅⋅−

⋅
=<

βθ
βθ

sintancossin
costan

arctan11
l

l

pp
APF      (3.88) 

 
And 
 

( )
1

11
11tan

AP
PEAPE =          (3.89) 

( ) ( ) ( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡ ⋅−⋅
=<

β
μβ

cos
tansincossinarctan11

ppAPE      (3.90) 

 
Hence, by replacing these angles in eq. 3.86 it is obtained: 
 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡ −
−⎥

⎦

⎤
⎢
⎣

⎡
−

=
β

μβ
βθ

βθ
α

cos
tansincossinarctan

sintancossin
costan

arctan pp
pp l

l
n (3.91) 

 
Eq. 3.91 produces very similar results with the equivalent ones used in [39] and [2] (see table 3.1) if the 
cutting angle (μ) is assumed to be equal to zero. Considering the cutting angle, a difference up to several 
degrees in the value of αn is observed for usual cases for the point on the cutting lip closest to the chisel 
edge, where the cutting angle is larger. However, this small difference (collaborated with the 
consideration of the cutting angle in the rest of the angles affecting the element’s geometry and cutting 
forces decomposition) will allow us to capture the recorded increase of elementary cutting forces in the 
vicinity of the chisel edge with increasing the axial feed which otherwise should not be more pronounced 
than the rest of the cutting lip region. More discussions are included in chapter 5.2 and 5.3. 
 
It is noted that eq. 3.91 can only be used to estimate the normal rake angle for cutting lips and it is not 
suitable for the chisel edge, mainly because there is no local helix angle (θl) for this region and the 
equivalent is differently derived. The rake angle along the chisel edge will be discussed in section 3.4.8 of 
the current chapter. 
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3.4.7 Relief angle (γ) along the cutting lips 
 
 
The inclination of the relief face, characterized by the relief angle (γ, briefly introduced in fig. 3.3) plays 
only a minor role in the cutting forces. Its influence is often overlooked by the cutting force models 
proposed for drilling. As discussed in chapter 3.3, the relief angle (γ) is a parameter for the elementary 
forces acting on the relief face, which are usually independent with the depth of cut (axial feed). Often a 
constant empirical coefficient is employed to model these forces, or they are assumed to be zero. 
 
However, in our study we note that the relative forces acting on the relief face are higher (in comparison 
with the rake forces) than in the case of metal drilling (see chapter 4). Therefore, we find important that 
the influence of the relief angle should be accounted for as accurately as possible. 
 
The relief angle (γ, sometimes referred to as the clearance angle) is defined as the angle between the 
cutting direction and the tangent to the relief face measured in a plane normal to the radial direction (see 
fig. 3.3). A similar discussion about the plane in which this angle is defined exists just as in the case of the 
rake angle for oblique cutting model. However, it is generally accepted that the above definition is the 
most relevant considering that the relative movement between the cutting edge and work-piece is along 
the cutting direction. As in the case of rake angle, the cutting angle (γ) will influence the actual relief angle 
in practical drilling cases. Furthermore, as the cutting angle and relief angle are defined in the same 
plane, a distinction is usually made between the “static relief angle” (γs) which assumes the cutting angle 
to be equal to zero and “dynamic relief angle” (further on referred to simply as “relief angle”) calculated 
as: 
 

μγγ −= s           (3.92) 
 
The tool manufacturers usually provide the value of the reference relief angle (γ0) which represents the 
static relief angle (measured between the tangent to the relief face and the tangential velocity vector 
measured in a plane perpendicular to the radial direction) defined at the outermost point on the cutting 
edge, as in fig. 3.14. 
 
The mathematical definition of the relief face (sometimes referred to as the flank face as a whole) is 
usually much more complex than the rake face and strongly depends on the manufacturing process of the 
drill. The most common style of grinding the relief face is by a conical surface (as in figure 3.13), although 
also common are cases when several planar faces are used to ground the flank surface (as the 3 types of 
drills employed in our experiments). 
 

 
Fig. 3.14 – Definition of the reference relief angle (γ0) 

Notes : 
• The reference relief angle (γ0) and the 

cutting angle (μ) are defined in the 
plane normal to the radial direction at 
the outermost point of the drill (r=R) 
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The conical grinding of the flank face has been widely discussed in the literature ([40], [41], etc.) as it is 
the most important operation to define the point of a drill (including point angle, chisel edge angle etc.) as 
well as the most commonly employed in practice. These studies show that in order to obtain certain drill 
point geometry several solutions exist for choosing the grinding parameters, and unless these parameters 
are known, the conical flank face cannot be described mathematically in a unique way. However, if the 
reference relief angle is known and if the cutting lip is assumed to be a straight line, the function of 
variation of the relief angle along the radius coordinate for the cutting lip region can be obtained starting 
from the fact that the cutting lip and the tangent to the relief face at the outermost point on the cutting 
edge have to be in the same plane. 
 
[42] already derived a function for the static relief angle for the cutting lip region of a drill starting from the 
same assumption: 
 

( ) ( ) ( )022

22

22

22

tan1tan γγ
wR
wr

r
Rpctg

wR
wr

r
w

s −
−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−=     ([42] – eq.24) 

 
Where γ0 is the static reference relief angle at r=R. 
 
It is found that the shape of the above equation is not suitable for drills where the point angle varies, as 
the tapered drill reamer employed in our experiments. Therefore, we will attempt to obtain an equivalent 
function developed based on the web angle (β) rather than the web thickness (w). 
 
For a generic drill, for which the reference relief angle (γ0) is known at a point A2 at a distance of R from 
the drill axis, we will attempt to derive the static relief angle at an arbitrary point A on the cutting lip as in 
fig. 3.15. 
 
Let us assume a segment (A2R1) equal to unity along the tangent to the relief face at point A2 on the 
cutting lip of a generic drill in the plane perpendicular to the radial direction (YZ). This segment with its 
projection (A2P3) on a plane perpendicular on drill axis (XY) at point A2 will form the reference relief angle 
(γ0). 
 
From the resulting triangle (∆R1P3A2, with angle <R1P3A2=90˚) we can determine: 
 

( )031 sin γ=PR          (3.93) 

( )023 cos γ=AP          (3.94) 
 
P3A2 is situated along the Y axis, while R1P3 along the Z axis. We will construct a parallel (P3R2) to the X 
axis (radial direction) through point P3, and a parallel (R1R2) to the cutting edge passing through R1. 
These two lines will intersect in point R2. The angle between R1P3 and R1R2 is equal to the point angle 
(p), as the angle between the cutting lip and the Z axis. From the triangle ∆R1P3R2 (<R1P3R2=90˚) we 
obtain: 
 

( ) ( ) ( )03123 sintantan γ⋅=⋅= ppPRRP       (3.95) 
 
By projecting the point A2 on P3R2 we obtain point P4 and the angle <P4A2P3 will equal the web angle (β, 
at R), since A2P3 is perpendicular on X axis and A2P4 is perpendicular to AA2 (cutting lip); the later 
directions defining the web angle (β, as discussed in section 3.4.1). 
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Fig. 3.15 – Derivation sketch for the static relief angle (γs) 

 
From the resulting triangle (∆P3P4A2, <P3P4A2=90˚) we obtain: 
 

( ) ( ) ( )( )RRAPPP βγβ sincos)(sin 02343 ⋅=⋅=       (3.96) 

( ) ( ) ( )( )RRAPPA βγβ coscos)(cos 02342 ⋅=⋅=      (3.97) 
 
We also note that: 
 

( ) ( ) ( ) ( ))(sincossintan 00432324 RpPPRPRP βγγ ⋅−⋅=−=     (3.98) 
 
If we move our attention to the similar construction in an arbitrary point A on the cutting lip in fig. 3.15-b, 
we observe that the plane R1P3P5R4 is parallel to the cutting lip AA2 and the plane XZ, hence the distance 
between the cutting lip and this plane will always be constant (A2P4=AP6). Also, the two segments (A2P4 
and AP6) will be parallel. Furthermore, intersecting the plane tangent to the relief face (defined by points 
A, A2, R1 and R4) with two parallel planes (defined by A2P3R2 and respectively AP5R4, both planes 
perpendicular to drill axis), will result in parallel lines (i.e. A2R2 and AR3), therefore we can state that the 
angles <P4A2R2 and <P6AR4 are equal. With a constant side and angle, the right-angled triangles 
∆A2P4R2 and ∆AP6R4 will be equal, and that P4R2=P6R4. Summarizing: 
 

( ) ( )( )RPAAP βγ coscos 0426 ⋅==        (3.99) 

( ) ( ) ( ) ( ))(sincossintan 002446 RpRPRP βγγ ⋅−⋅==      (3.100) 
 
Similarly, the angle <P6AP5 is the web angle (β at r). From the triangle ∆AP6P5 (<AP6P5=90˚) we can 
obtain: 
 

Notes : 
• AA2 is a segment of the cutting lip, with A2 the outermost point on the cutting lip (r=R); 
• AA2R1R4 is the plane tangent to the relief face; 
• R1R4 is parallel to AA2 (cutting lip); 
• P3R2 is parallel to X axis; 
• A2P4 is perpendicular to P3R2 
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( )
( ) ( )( )

( )β
βγ

β cos
coscos

cos
06

5
RAP

AP
⋅

==       (3.101) 

 
And 
 

( ) ( ) ( )( ) ( )ββγβ tancoscostan 0665 ⋅⋅=⋅= RAPPP     (3.102) 
 
Also, 
 

466545 RPPPRP +=          (3.103) 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ))(sincossintantancoscos 00045 RpRPP βγγββγ ⋅−⋅+⋅⋅=   (3.104) 
 
From the triangle ∆R3P5R4 (<R3P5R4=90˚), knowing the angle < P5R3R4 is the point angle (p – see 
justification above), we can obtain: 
 

( )p
RPRP

tan
45

35 =          (3.105) 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( )p

RpRRP
tan

)(sincossintantancoscos 000
35

βγγββγ ⋅−⋅+⋅⋅
=  (3.106) 

 
And from the triangle ∆R3P5A (<R3P5A=90˚), we can obtain the local static relief angle (γs(r)=<R3AP5). 
Angle <R3AP5 is the static relief angle at point A, since AR3 is at the intersection between the tangent 
plane to the relief face and a plane R3P5A, perpendicular to the radial direction (X axis) in point A. 
 

( )
5

35tan
AP
RP

s =γ          (3.107) 

( ) ( ) ( ) ( )
( )

( )
( )( )⎥⎦

⎤
⎢
⎣

⎡
+

−
⋅=

Rp
R

s β
γβββγ

cos
tan

tan
)(tantancostan 0     (3.108) 

 
Or 
 

( ) ( ) ( ) ( )
( )

( )
( )( ) ⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

−
⋅=

Rp
Rrs β

γβββγ
cos

tan
tan

)(tantancosarctan 0    (3.109) 

 
And replacing it in eq. 3.92 we obtain the dynamic relief angle: 
 

( ) ( ) ( ) ( )
( )

( )
( )( ) ( )r
Rp

Rr μ
β
γβββγ −

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
+

−
⋅=

cos
tan

tan
)(tantancosarctan 0   (3.110) 

 
Equation 3.110 is valid for the cutting lip region of a generic drill, providing the reference relief angle is 
known at a point R. For multi-stage point drills, the same equation can be used, with γ0 defined at the 
outermost point of each stage, as discussed in chapter 3.5. 
 
Although not employed in the current cutting force model, we have derived the equation of the normal 
relief angle (γn defined in a plane normal to the cutting edge) through a similar method as the normal rake 
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angle (αn) has been derived. Equation 3.111 presents the resulting function of the normal relief angle (γn), 
although its derivation will not be included in this document. 
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cossinsintancos

arctan
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tansincossinarctan
γβ

γβγ
β

μβγ
R

Rpppp
n

 
           (3.111) 
 
It is noted that both functions are only valid for the cutting lip region of the drill. 
 
 
 
 

3.4.8 Normal rake (αn) and relief (γ) angles along the chisel edge 
 
 
The chisel edge area is made out of 2 symmetric surfaces obtained through the point grinding operation 
together with the relief face (generally referred to as flank surface). The most common type of surface for 
the flank is conical, obtained by conical grinding methods. Often employed is also planar grinding (with 
two or more faces) especially for small diameter drills. Other solutions are presented and discussed in 
chapter 2.2. The chisel edge is in general characterized by a highly negative rake angle (resulting in 
inefficient cutting), while the relief angle is in general large as can be visualized in fig. 3.26 and 3.27. 
 
In most studies focused on cutting forces in drilling it is assumed that the chisel edge is a straight line 
lying in a plane perpendicular to the drill axis. Such an ideal case only exists for planar grinding with a 
chisel edge in a plane perpendicular to the drill axis. For conical grinding the chisel edge is slightly a tri-
dimensional S-shape, but according to many it can still be assumed as a straight line in a plane 
perpendicular to drill axis. For other grinding techniques, the resulting shape deviates more than the 
above mentioned cases. 
 
Studies such as [40] and [41], focused on optimizing the grinding techniques, have proposed models to 
estimate the geometry of the chisel edge, both its shape and the rake and relief angles. They also show 
that the exact manufacturing parameters are needed to mathematically describe the chisel edge shape 
and angles, or the resulting function has several solutions.  
 
Meanwhile, the studies focused on cutting force modeling assume a straight chisel edge in a plane 
perpendicular to the drill axis obtained by planar grinding. The resulting wedge is perfectly symmetric and 
the following relationship can be stated between the static rake (αs) and relief angles (γs) along the chisel 
edge: 
 

ss αγ −°= 90           (3.112) 
 
The actual, rake and relief angle can be corrected considering the kinematics of the drilling process by 
the cutting angle (μ) as: 
 

μαα −= s           (3.113) 

μγγ += s           (3.114) 
 
It is noted that the static rake and relief angles are constant, and orthogonal cutting is used to describe 
the cutting process for this region, therefore the angles are defined in a plane perpendicular to the cutting 
edge, which also contains the cutting direction. Fig. 3.16 exemplifies the situation. 
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At point A on the chisel edge we define the two coordinate system of oblique/orthogonal element (X’Y’Z’) 
and drilling (XYZ). It can be observed that for the considered case (chisel edge lying in XY plane – i.e. 
perpendicular on the drill axis) the X and X’ axes coincide and that orthogonal cutting occurs (chisel edge 
is also aligned with X axis). Fig. 3.16-b introduces a section view through point A along YZ plane (or Y’Z’). 
According to the drill direction of rotation, for point A anywhere between the drill center point until the end 
of the chisel edge in the direction of X+ (as currently defined) the wedge side on the Y+ axis side will act 
as the rake face, while the side towards Y- will act as a relief face. For point A placed on the other side of 
the chisel edge the X+ axis will change direction and so the role of the wedge sides. The static rake angle 
(αs) is defined between the tangent to the wedge side acting as a rake face and the Z+ axis, while the 
static relief angle is defined as the angle between the tangent to the wedge side acting as a relief face 
and the Y axis. The dynamic rake and relief angles are defined from the same tangent to rake and relief 
faces respectively but considering the axes of the X’Y’Z’ coordinate system as shown in fig. 3.16a and b. 
 

 
Fig. 3.16 – Rake (α) and relief (γ) angles along the cutting edge 

 
The following equation (traced back to [43]) is used to calculate the rake and relief angles: 
 

( ) ( )[ ]ψα sintanarctan ⋅−= ls p        ([43]-eq.33) 
 
This equation is used in all cutting force models ([2], [3] etc.) to describe the chisel edge, in most cases 
for conical grounded drills without specifying the assumption based on which is developed. We were able 
to trace it back to [43] which is actually introducing it only for planar grinding of the chisel edge. We were 
able to confirm the validity of this equation for this case, with the mention that pl refers to the point angle 
of the cutting lips (or more specifically the point angle of the cutting lip closest to drill axis for a stepped 
drill such as the tapered drill reamer, pl=p(Rc+dr)). 
 
By “guessing” the manufacturing parameters of the conical grinding process, we have also used the 
model described in [40] and [41] to estimate the static relief angle (γs) along the chisel edge for some 
particular cases, and we have found the results within 5° difference when compared with the simplified 
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planar grinding model described by [43]-eq.33. We find this difference acceptable considering the 
complexity of the model for estimating the angles of the chisel edge by the model introduced by [40] and 
[41] and the uncertainties introduced by not knowing the exact parameters of the conical grinding 
process. 
 
Summarizing, equation [43]-eq.33 can be used to calculate the static rake angle, equation 3.113 the 
“dynamic” rake angle along the chisel edge, while equations 3.112 and 3.114 can be used to calculate the 
relief angle along the chisel edge for a drill with the chisel edge lying in a plane perpendicular to the drill 
axis ground by a planar flank like in the case of the tapered drill reamer employed (fig. 3.22) in our 
experiments. 
 
However, it is still needed to derive an equation to estimate these angles for the case where the chisel 
edge makes an angle with the drill axis as the case of the 2-facet twist drill (fig. 3.22) used in our 
experiments. Therefore, considering this particular case, figure 3.17 has been constructed to assist the 
derivation of these angles. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3.17 – Static rake angle (αs,ch-T2) for the chisel edge area of a 2-facet twist drill 
 
The 2-facet twist drill is ground by 2 planar faces (green and yellow). The first planar face (green) is used 
to obtain the relief face along the cutting lips and chisel edge, while the 2nd planar face (yellow) grounds 
the rake face along the chisel edge. The first planar face is defined by the cutting lip and the chisel edge, 

Notes : 
• AA3 is a chisel edge segment; AP7 lies along Z+ axis; AR5 is parallel to the cutting lip (of the 

other flute); P7R6 and P8R5 are parallel to Y+ axis;  
• AA3R5 lie on the rake face (planar, colored in yellow); 
• A3P7P8R5 is parallel to XY plane (perpendicular on the drill axis); 
• The chisel edge angle (ψ) is defined in a counter-clockwise direction from the projection on a 

plane parallel to XY plane of the chisel edge (A3P8) to the projection on the XY plane of the 
cutting lip P7R5; 
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while the 2nd planar face is defined by the chisel edge and the intersection between the two faces. From 
our measurements the intersection of the two faces appears to make the same angle with the Z axis as 
the cutting lips (they are parallel), therefore a plane passing through point A (on the chisel edge) parallel 
to the cutting lip will intersect the rake face and the intersection will make an angle with the Z axis equal 
to the point angle of the cutting lips (further referred to as pl, while the point angle of the chisel edge at 
point A will be referred to simply as point angle – p). 
 
Based on this assumption and assuming a segment AA3 equal to unity along the chisel edge we can 
derive the static rake angle (αs) measured in a plane perpendicular to the radial direction (X axis). A plane 
(A3P7P8R5 as in fig. 3.17) perpendicular on the drill axis passing through point A3 will cut the line (AR5) 
defining the point angle of the cutting lips (referred to as pl); the one defining the static rake angle (αs) and 
a parallel to Z axis through point A in points R5, R6 and P7 respectively. 
 
Starting from the triangle ∆AP7A3 (<AP7A3=90˚), where the chisel edge makes the point angle (p) with the 
Z axis (AP7), we can express: 
 

( ) ( )ppAAPA sinsin373 =⋅=         (3.115) 

( ) ( )ppAAAP coscos37 =⋅=         (3.116) 
 
While from the triangle ∆AP7R5 (<AP7R5=90˚), where the point angle of the cutting lips is found (see fig. 
3.17-b) we can calculate: 
 

( ) ( ) ( )pppAPPR ll costantan775 ⋅=⋅=       (3.117) 

( )
( )
( )ll p
p

p
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AR
cos
cos
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7

5 ==         (3.118) 

 
From the construction in the plane (A3P7P8R5) perpendicular to the drill axis through A3 we observe the 
chisel edge angle (<R5P7R6=ψ, as defined in section 3.4.1), where P8 is obtained by projecting point R5 
on the line A3P7 and the triangle ∆R5P8P7 (<R5P8P7=90˚ and <P7R5P8=ψ) and we can calculate: 
 

( ) ( ) ( ) ( )ψψ sincostansin7585 ⋅⋅=⋅= ppPRPR l      (3.119) 

( ) ( ) ( ) ( )ψψ coscostancos7587 ⋅⋅=⋅= ppPRPP l      (3.120) 
 
We can also note that: 
 

( ) ( ) ( ) ( )ψcoscostansin877383 ⋅⋅+=+= pppPPPAPA l     (3.121) 
 
Furthermore, we can observe that triangles ∆A3P7R6 (<A3P7R6=90˚) and ∆A3P8R5 (<A3P8R5=90˚) are 
alike, meaning that: 
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And eventually, from ∆AP7R6 (<AP7R6=90˚) we can estimate the tangent of the static rake angle (αs): 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )pppp

ppp
AP
PR

l

l
s cos

1
coscostansin
sinsincostan

tan
7

76 ⋅
⋅⋅+
⋅⋅⋅

==
ψ

ψ
α     (3.123) 



 

73 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )ψ

ψ
α

coscostansin
sinsintan

tan
⋅⋅+

⋅⋅
=

ppp
pp

l

l
s       (3.124) 

 
Or, considering that as defined the rake angle is negative (i.e. the rake face is on the side of the cutting 
direction with respect to the Z axis) around the chisel edge: 
 

( ) ( ) ( )
( ) ( ) ( ) ( )⎥⎦

⎤
⎢
⎣

⎡
⋅⋅+

⋅⋅
−=

ψ
ψ

α
coscostansin

sinsintan
arctan

ppp
pp
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l
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We observe that this value is constant for a straight chisel edge. Furthermore, for this type of drill we have 
shown that, due to the inclination of the chisel edge with respect to the drill axis, an inclination angle (i) 
exists and oblique cutting occurs. Therefore, it is needed to estimate the normal rake angle (αn). As the 
local helix angle (θl) is defined for the cutting lip region in the same way as the static rake angle (αs) is 
defined along the chisel edge, equation 3.91 can be also used to relate the static rake angle (αs) to the 
normal rake angle (αn) for the chisel edge region of this particular 2-facet twist drill. Additionally, the web 
angle (β) is equal to zero along this region and 3.91 can be further simplified to: 
 

( )
( ) ( ) ( )[ ]μ
α
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Where the normal rake angle along the chisel edge for the 2-facet twist drill (T2, as the notation adopted 
to represent this type of drill in the current PhD thesis – see chapter 3.5) is symbolized as αn,ch-T2. 
 
Additionally, to express the relief angle along the chisel edge, equations 3.112 and 3.114 can be used, 
with the static rake angle expressed by equation 3.125. For practical values, see chapter 3.5.5 and 3.5.6. 
 
 
 

3.4.9 Element’s dimensions (dr, dx, dl) and the depth of cut (tc) 
 
 
Although in the oblique or orthogonal cutting model, the uncut chip area (Au) is easily defined as in fig. 
3.3, the correlation to drilling is slightly more complicated. As defined in oblique (or orthogonal) cutting the 
uncut chip area (Au) is defined in a plane perpendicular to the cutting direction and is calculated by the 
product of elemental width (dx) and depth of cut (tc) – see eq. 3.16. 
 
In drilling it is customary to define the elements to be constant along the radial direction (dr, along X axis). 
It is therefore needed to find the relationship between dr, as defined in drilling, and dx, as defined in 
oblique cutting. In drilling, the element’s width (dx) will be defined along the X’ axis. Of importance is also 
the cutting length of the element (dl), different than the element’s width both in oblique cutting and drilling 
(see fig. 3.3 and 3.18). 
 
As dr is oriented along the X axis and dx along X’ axis, and noting that the angle between the two axes 
was previously defined as the 2nd Euler rotation angle (τ, calculated by eq. 3.3 derived in chapter 3.4.5) 
we can easily deduct the following relationship between the two from the fig. 3.18-b: 
 

( )τcos
drdx =           (3.128) 
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Fig. 3.18 – Definition of the uncut chip area (Ac) in drilling 
 
Furthermore between dx and dl the following relationship can be deducted: 
 

( )i
dxdl

cos
=           (3.129) 

 
Or, if equation 3.3 (2nd Euler angle of rotation) is used: 
 

( ) ( )βcossin ⋅
=

p
drdl          (3.130) 

 
The depth of cut of the element (tc) can be calculated starting from the axial feed rate per flute (f/N), which 
is defined long the Z axis, while tc is measured along the Z’ axis: 

Notes : 
• The construction starts by considering a segment of length dr along the X axis with its center in 

point A;  
• A line passing through point A along X’ axis will be delimited by planes perpendicular to X axis 

passing through the extremities of dr segment to obtain dx (the angle between dr and dx will be 
equal to the 2nd Euler angle of rotation, τ); 

• The cutting edge will be delimited by planes perpendicular to X axis passing through the 
extremities of dr segment to form dl (segment A4A3 passing through A, which makes the 
inclination angle, i, with dx); 

• Along Z axis, starting from point A, a segment will be defined of length f/N representing the 
axial feed per flute; 

• The f/N segment will be projected on the intermediary axis of rotation Z3, forming the cutting 
angle with the original segment. Through the upper extremity of this segment, a parallel line 
with dr will intersect Z’ axis to form starting from A the depth of cut (tc), at an angle equal to the 
2nd Euler angle of rotation (τ) with the previous segment;
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( ) ( )τμ coscos ⋅⋅=
N
ftc         (3.131) 

 
It is noted that except the radial length of the element (dr) all other dimensions of the element vary with 
the radial coordinate. Additionally, to derive the above equation the assumption is made that the 
coordinate systems (XYZ and X’Y’Z’) are identical for any point on the cutting edge of the element 
(between A3 and A4). In reality, as the cutting edge does not lie on the plane XZ (except for the chisel 
edge region) the orientation of X’Y’Z’ coordinate system will change for each point on the cutting edge, 
therefore the above equations are only valid for very small values of dr. 
 
 
 
 

3.4.10 Elementary cutting forces in X’Y’Z’ space (Fn1, Ff1, Fn2, Ff2) 
 
 
 
The components of the normal force on the rake face 
(Fn1) can be derived based on the normal rake angle 
(αn) and the inclination angle (i). Fig. 3.3 has been 
used as the starting point to construct fig. 3.19 
showing the components of this force (Fn1x, Fn1y, Fn1z 
along the X’Y’Z’ coordinate system axes) and Fn1xy its 
projection on X’Y’ plane.  
 
The normal rake angle (αn) is the angle measured in a 
plane normal to the cutting edge (which also contains 
the force normal to the rake face – Fn1) between the Z’ 
axis and the normal to the cutting edge in the plane 
tangent to the rake face in point A (as per its definition 
presented in chapter 3.4.6); and can also be identified 
as the angle between the force normal to the rake face 
(Fn1) and its projection in X’Y’ plane (Fn1xy).  
 
The angle between the projection of Fn1 force on the 
X’Y’ plane and the Y’ axis is the inclination angle (i) as 
both direction are perpendicular on the cutting edge 
(Fn1xy lies in a plane perpendicular on the cutting edge) 
and X’ axis which define the inclination angle as 
detailed in chapter 3.4.4. 
 
For the derivation we will assume Fn1 equal to unity, 
although its magnitude has been defined in chapter 3.3. 
 
Fn1xy and Fn1z can be easily expressed as: 
 

( )nxynF αcos1 =          (3.132) 

( )nznF αsin1 =           (3.133) 
 
Furthermore Fn1x and Fn1y can be calculated from Fn1xy to obtain: 
 

( ) ( ) ( )iiFF nxynxn sincossin11 ⋅=⋅= α        (3.134) 

Fig. 3.19 – Components of Fn1 in X’Y’Z’ 
coordinate system 
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( ) ( ) ( )iiFF nxynyn coscossin11 ⋅=⋅= α        (3.135) 
 
Therefore, considering the axes directions, we can write: 
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Determining the components (Ff1x, Ff1y, Ff1z) of the 
friction force (Ff1) on rake face is slightly more 
complicated, as the chip flow angle (ηc, discussed in 
chapter 3.3, which is defining the direction of the 
friction force) is defined in the plane tangent to rake 
face at point A from the normal to the cutting lip (see 
fig. 3.3 and 3.20).  
 
To do this, we first project Ff1 on the Z’ axis obtaining 
the Ff1z component, while projecting the same vector 
on a plane parallel to X’Y’ passing through the tip of 
Ff1 and Ff1z vectors we obtain Ff1xy. Further projecting 
Ff1xy on X’ and Y’ axes respectively we obtain Ff1x and 
Ff1y. Since we do not know the angle between Ff1 and 
its projection (Ff1z) on Z’ axis, we first project Ff1 on 
the normal to the cutting edge on the plane tangent to 
the rake face to obtain Ff1n and Ff1p. By projecting Ff1n 
to Z’ axis we obtain the same Ff1z (the projection of Ff1 
on the Z’ axis) and Ff1ny, which makes the inclination 
angle with the Y’ axis. We also identify the chip flow 
angle (ηc) as the angle between Ff1 and Ff1n, 
according to its definition in chapter 3.3 (and fig. 3.3). 
 
Assuming for simplification that the Ff1 vector is equal 
in magnitude with unity, its projection on the plane 
normal to the cutting edge (Ff1n) and Ff1p can be expressed as functions of the chip flow angle (ηc) as 
follows: 
 

( )cnfF ηcos1 =   (3.137) 

( )cpfF ηsin1 =    (3.138) 
 
Furthermore, the Z’ axis component of the friction force on the rake face (Ff1z) and Ff1ny can be calculated 
based on the rake angle (see definition in chapter 3.4.6): 
 

( ) ( ) ( )ncnnfzf FF αηα coscoscos11 ⋅=⋅=       (3.139) 

( ) ( ) ( )ncnnfnyf FF αηα sincossin11 ⋅=⋅=       (3.140) 
 
Ff1xy can also be determined from Ff1z, assuming that Ff1 is equal to unity. Its derivation is however not 
needed as it will simplify in the end. 
 
We observe that Ff1x and Ff1y can be computed if the angle between Ff1x and Ff1xy is known. The angle 
between Ff1y and Ff1ny is equal to the inclination angle (i, previously defined), therefore: 
 

Fig. 3.20 – Components of Ff1 in X’Y’Z’ 
coordinate system 
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( ) ( ) iFFFF xyfnyfxyfyf −=<< 1111 ,,        (3.141) 
 
Where, 
 

( ) ( )
xyf

c

xyf
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xyfnyf FF

F
FF

11

1
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sin
,sin

η
==<        (3.142)

 

( ) ( ) ( )
xyf

nc
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nyf
xyfnyf FF

F
FF

11

1
11

sincos
,cos

αη ⋅
==<      (3.143)

 
Knowing that in general: 
 

( ) ( ) ( ) ( ) ( )vuvuvu sincoscossinsin ⋅±⋅=±       (3.144) 

( ) ( ) ( ) ( ) ( )vuvuvu sinsincoscoscos ⋅⋅=± m       (3.145) 
 
We can calculate: 
 

( ) ( ) ( ) ( ) ( ) ( )
xyf

ncc
xyfyf F

iiFF
1

11
sinsincoscossin
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=<
αηη

   (3.146) 

 
And, 
 

( ) ( ) ( ) ( ) ( ) ( )
xyf

cnc
xyfyf F

iiFF
1

11
sinsincossincos

,cos
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=<
ηαη

   (3.147) 

 
Following, 
 

( ) ( ) ( ) ( ) ( ) ( )iiFFFF nccxyfyfxyfxf sinsincoscossin,sin 1111 ⋅⋅−⋅=<⋅= αηη   (3.148) 

( ) ( ) ( ) ( ) ( ) ( )iiFFFF cncxyfyfxyfyf sinsincossincos,cos 1111 ⋅+⋅⋅=<⋅= ηαη   (3.149) 
 
Summarizing, the components of the Ff1 force in the X’Y’Z’ coordinate system, considering the orientation 
of the axes, will be: 
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Ff1y has negative sign as it is oriented towards the negative direction of the Y axis. 
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As the forces on the relief face (Fn2 and Ff2) are acting 
in Y’Z’ plane, it is very simple to derive them from the 
schematic (fig. 3.21) constructed starting from fig. 3.3 
and knowing the relief angle between the Y’ axis and 
the relief face measured in Y’Z’ plane. 
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Fig. 3.21 – Components of Fn2 and Ff2 in 
X’Y’Z’ coordinate system 
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3.5 Mathematical representation of two drill geometries 
 
 
In this chapter we will introduce the geometrical aspects of the two drill types modelled in the current PhD 
thesis: 

- T1 – tapered drill-reamer (also known as a “one-shot” drill bit) is a tool specially designed for 
drilling fiber reinforced composites, but not suitable for metallic materials. The tool is made of 
solid carbide steels with small grain size (micro-grain). It has 4 straight flutes while only 2 are 
engaged in cutting initially. Due to the configuration chosen of 4 flutes, the chisel edge area is 
very small in comparison with other drills. The tool tip has a 2-stage point angle, featuring an 
unusually long tip. A diameter of 5.55mm was selected so that the tool tip was smaller than the 
work-piece thickness and full engagement was obtained, even if for a very short interval. The 
supplier is Starlite Industries. 

- T2 – 2-facet twist drill is a high-quality twist drill used extensively for drilling metallic materials. 
Unlike the conical twist drill, it has a straight chisel edge which makes an angle with the tool axis 
smaller than 180°. The flank faces are ground to planar surfaces, with no additional features. The 
material is also solid carbide steel. A 5.6mm diameter was selected from Tusa Carbide. 

 

a) Profile T1 b) Photo T1 c) Drawing T1 
   

d) Profile T2 e) Photo T2 f) Drawing T2 
 

Fig. 3.22 – Drills modeled mathematically in the current PhD thesis (T1 and T2) 

Small chisel edge 

Engagement of all 4 flutes

Inclined chisel edge 
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The above two drills are employed in our experiments, together with a third drill, which was not modeled 
mathematically. This later drill will be introduced in chapter 4, focusing on the experimental work. Figure 
3.22 shows their photograph, the measured profiles (at the EPFL workshops using optical means) and a 
drawing based on an approximate 3D model to introduce their main features. The geometrical parameter 
of each drill will be introduced following the work-flow of the model development. Only parameters which 
change with the drill geometry will be outlined below. 
 
All plots in the current chapter are calculated for an axial feed of 0.08mm/rev. The axial feed influences 
the cutting angle (μ), which will affect most of the angles presented hereby (for details see the specific 
derivations of each angle).  
 
 
 

3.5.1 Point angle (p) 
 
 
Point angle is one of the drill parameters usually supplied in drill catalogues. Its practical use is to define 
the angle of the revolution cone generated by the drill tip. Some theoretical remarks on the definition of 
the point angle (p) and the manufacturer’s point angle can be read in chapter 3.4.2 (including fig. 3.6). 
Drills designed in stages have several point angles (as for T1). In the current thesis the following 
functions have been used to define the point angle (p) for each tool type considered (pT1 and pT2), based 
on optical measurements: 
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Based on equations 3.153 and 3.154, fig. 3.23 plots the variation of the point angle along the drill radius 
for the two considered drills. 
 

 
Fig. 3.23 – Point angle (p) variation with the radius for the considered drills 
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3.5.2 Web angle (β) 

 
 
Web angle (β) is defined as the angle between the radial direction at a point on the cutting edges and the 
projection of the cutting edge on a plane perpendicular to the drill axis (as in fig. 3.5 and section 3.4.3). 
For the chisel edge area, the web angle will always be zero, while for the cutting lip region is variable with 
the radius as described by the generic equation 3.43. Considering the particularities of the two drills (i.e. 
web thickness), the following equations have been used to describe the web angle (β) of the two drills 
along their radius: 
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3.5.3 Inclination angle (i) 
 
 
The inclination angle (i) is an angle characteristic to oblique cutting, defined as the angle between the 
cutting edge and the normal (X’ axis as in fig. 3.9) to the velocity vector in the plane containing both the 
velocity and the cutting edge. In drilling it is derived by the commonly accepted equation 3.54, although in 
many cases its simplified version is employed (equation 3.55, with the cutting angle – μ – equal to zero). 
 
Its variation along the radius for the two drills considered in the current thesis is outlined in figure 3.24. It 
is noted that usually for the chisel edge the inclination angle is zero (as in the case of T1, for which the 
point angle in this region is 90°). However, for T2 the chisel edge is inclined with respect to the tool axis 
with an angle (p) smaller than 90°, therefore a positive value of the inclination angle is recorded, 
increasing with the cutting angle (μ). 
 

 
Fig. 3.24 – Inclination angle (i) variation with the radius for the considered drills 
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3.5.4 2nd Euler angle of rotation (τ) 
 
 
This angle was introduced for simplification reasons as defined by equation 3.3, derived in chapter 3.4.5 
(see also fig. 3.2 and 3.10). It is found interesting to present its variation along the radius for the drills 
employed in the current thesis in the following graph (fig. 3.25). This angle has a very important influence 
on the decomposition of the elementary cutting forces along the thrust and torque direction. 
 

 
Fig. 3.25 – 2nd Euler angle of rotation (τ) variation with the radius for the considered drills 

 
 
 

3.5.5 Normal rake angle (αn) 
 
 
The normal rake angle was found to be the representative angle to describe the orientation of the rake 
face in oblique cutting. It is defined as the angle between the rake face (i.e. the normal to the cutting edge 
lying in the plane tangent to the rake face – fig. 3.3) and the normal (i.e. Z’ axis in fig. 3.3) to both the 
velocity vector and the cutting edge, measured in a plane perpendicular to the cutting edge. Extensive 
discussions can be found in sections 3.4.6 and 3.4.8. 
 
Equation 3.91 is used to calculate the normal rake angle along the cutting lips starting from the reference 
helix angle (θ). According to the supplier’ catalogue, T2 has a helix angle (θ) of 25°, while for drill T1 the 
helix angle is zero and therefore equation 3.91 could be simplified.  
 
Equation 3.91 is valid only for the cutting lip region of both drills. For the chisel edge area, the needed 
equations were derived in chapter 3.4.8. Planar grinding is assumed for both drills, although T2 has an 
inclined chisel edge with respect to the drill axis. Therefore, [43]-eq.33 (presented in chapter 3.4.8) is 
used to derive the static rake angle (αs) along the chisel edge for drill T1, and equation 3.113 to derive the 
normal (dynamic) rake angle. Together, they can be written as: 
 

( ) ( ) ( )[ ] ( )rpr lTchn μψα +⋅−=− sintanarctan1,       (3.157) 
 
With particular values (pl in equation 3.157 equal to 59.5°; Rc=0.125mm and w=0.115mm to calculate the 
chisel edge angle ψ based on eq. 3.42) we obtain: 
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( ) ( ) ( )rrTchn μα +⎥⎦
⎤

⎢⎣
⎡ ⋅°−=− 125.0

115.05.59tanarctan1,      (3.158) 

 
For drill T2, the chisel edge is inclined from the drill axis and oblique cutting is observed and discussed in 
chapter 3.5.3. Therefore, the same generic equation 3.91 (or its adapted and simplified version 3.127) 
was used to derive the normal rake angle, based on the static rake angle (αs) which was shown to be 
equal to equation 3.125 (constant along the chisel edge).  
 
Summarizing, the normal rake angles for the two drills were evaluated using the following functions 
(3.159 and 3.160, with αn evaluated using 3.91, αn,ch-T1 by equation 3.158 and αn,ch-T2 by equation 3.127), 
while their plot is presented in fig. 3.26: 
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Fig. 3.26 – Normal rake angle (αn) variation with the radius for the considered drills 

 
 
 

3.5.6 Relief angle (γ) 
 
 
Relief (or clearance) angle (γ) is the angle describing the relief face, defined as the angle between this 
surface (tangent to relief face) and the velocity vector at any point on the cutting edges of a drill, and 
measured in a plane normal to the radial direction. For discussions see chapter 3.4.7 and 3.4.8 and fig. 
3.14. 
 
For the cutting lip region, it is evaluated with equation 3.110, starting from a reference relief angle (γ0), 
defined in a similar manner as the helix angle, at the outermost point of the cutting lip. For multi-stages 
drill points (as in T1) reference relief angles should be known at each stage, although they are not always 
provided by the drill manufacturers.  
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For the calculation, we have assumed γ0=14° for all cutting lip segments of each drill considered hereby. 
For the chisel edge area, the wedge is symmetric and the static rake and the complement of the static 
relief angles are equal (see fig. 3.16). Equation 3.157 (used to estimate the rake angle along the chisel 
edge for T1) can be adapted to account for the inverse effect of the cutting angle: 
 

( ) ( ) ( )rrTch μγ −⎥⎦
⎤

⎢⎣
⎡ ⋅°=− 125.0

115.05.59tanarctan1       (3.161) 

 
For the T2, drill, we have used the static rake angle (αs) calculated according to equation 3.125, to 
estimate the static relief angle (γs, by equation 3.112) and futher the “dynamic” relief angle (γ) by equation 
3.114. 
 
Summarizing, the following functions were used: 
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When plotted against the radius, for equations 3.162 and 3.163 we obtain the following graph (fig. 3.27): 
 

 
Fig. 3.27 – Relief angle (γ) variation with the radius for the considered drills 

 
 
 

3.5.7 Chip flow angle (η) 
 
 
As defined and discussed in chapter 3.3, the chip flow angle expression is based on the chip flow law of 
Stabler [34], which states that the chip flow angle is proportional to the inclination angle (i) by a factor 
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between 0.9 to 1. As the choice of the factor is rather empirical and the difference within the mentioned 
range is not significant, we have assumed the factor equal to unity for simplicity. Therefore: 
 

( ) ( )rirc =η           (3.164) 
 
 
 

3.5.8 Number of flutes (N) 
 
 
In practice, most drills have two flutes, as the case of T2. However, T1 has 4 flutes although not all of 
them are always engaged in cutting. It was found that: 
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Chapter 4 
Experimental analysis of the drilling process 
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4.1 Introduction 
 
 
The use of long-fiber reinforced composites is extending beyond the initial applications in aerospace and 
military fields, driven by the advances in manufacturing technologies which made the production process 
more cost effective. Long fiber reinforced composite materials offer excellent and highly customizable 
mechanical properties, while being much more lightweight than metallic alloys. As parts made out of fiber 
reinforced composites are usually integrated in a mechanical assembly, drilling is the most often 
encountered machining process in the production plan of such parts. Drilling occurs mainly during the last 
stages of the manufacturing process in order to create fixing features like holes. Delamination is a critical 
aspect of the drilling process, as it can lead to failure in use and parts with such defects are usually 
discarded. Furthermore, delamination is usually not visually detectable and a special inspection process 
is necessary.  
 
A major difference between metallic and composite plates is their structure: isotropic for metals and 
anisotropic for composite materials; meaning that while for metallic materials all the structure will respond 
in a similar manner under the machining loads, the composite structure will have localized responses 
from the same loads, leading to defects in the internal structure of the remaining work-piece material (i.e. 
delamination). Delamination was found to occur at tool entry (peel-up) or tool exit (push-out). The tool-exit 
delamination was found to be related to the thrust force generated during drilling [27, 12], force which for 
a given work-piece and material combination depends on the drill geometry and the cutting conditions.  
 
Most experimental investigations on drilling fiber reinforced composites [16, 17, 18] analyze only the total 
thrust and torque generated during drilling or separately the forces caused by the chisel edge and cutting 
lips by drilling with or without pilot hole [2, 3]. The later studies suggested that is possible to obtain more 
detailed information about the distribution of the loads in drilling from the analysis of the forces variation 
during tool entry into the work-piece; this knowledge is useful for selecting appropriate drills and cutting 
conditions for drilling fiber reinforced composites, accurate modeling of delamination defects, 
improvements of cutting forces prediction models, drill geometry and process planning optimization. 
 
The present experimental work is focused in determining the distribution of the drilling loads (thrust and 
torque) along the layered structure of long-fiber reinforced composite plates, and how this distribution 
varies with the cutting parameters and tool geometry. Carbon-fiber and glass-fiber reinforced materials 
are tested when drilling with 3 different tool geometries (introduced in chapter 4.2) for a wide range of 
cutting parameters. The choice of drills, work-pieces and cutting conditions (discussed in chapter 4.2) is 
based on practical considerations. 
 
Unlike previous published experimental investigations, current experiments have attempted to determine 
the complete distribution without employing pilot holes. The pilot hole method was used [2, 3] to 
determine distinctively the contributions of the chisel edge and the cutting lips – a very coarse distribution. 
Increasing the resolution of the cutting force distribution would mean a complex experimental plan with 
pilot holes of various sizes, which would in general limit the range of cutting conditions and drill 
geometries to be tested. Difficulties might arise in obtaining accurate pilot holes without inducing defects 
like delamination. [2] also proposed the solution to obtain the cutting forces distribution by analyzing the 
cutting forces variation (their derivative) during the drill entry stage into the work-piece to obtain a 
distribution along the cutting lips. An illustrative example of the cutting forces (thrust and torque) variation 
during the drilling process was previously presented in fig. 2.3. In [2] a power law function was fitted on 
the thrust and torque entry curves for the cutting lip engagement only (with blind pilot hole), which was 
later analyzed in a similar manner to us to obtain the distribution along the cutting lips. However, using a 
given function limits the applicability of the method to single stage drills (like twist drills) where the chisel 
edge is restricted from cutting by means of pilot hole. Additionally, the question is raised if the power law 
is suitable to describe the entry thrust and torque curves for any drill. The fitting of the thrust and torque 
curves with a power law was done to obtain a smoother curve, which can be differentiated to obtain the 
elementary cutting forces. 
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Our initial tests have shown that even if the chisel edge lies in a plane perpendicular on the drill axis, the 
thrust and torque readings do not increase instantaneously when drill and work-piece make contact. 
Therefore, for such cases an inclination of the chisel edge with respect to the drill axis can be assumed 
when calculating the differential (the exact methodology is described in chapter 4.4) of the thrust and 
torque curves. Furthermore, instead of opting for a given function (i.e. power law) to decrease the noise of 
the thrust and torque time curves, using a smoothing filter will make the process applicable to all regions 
of the cutting edges and to multi-stage drills. 
 
For the first time the distribution of the cutting forces both along the radius and work-piece thickness are 
presented and discussed, before being used in the calibration of the cutting force model (introduced in 
chapter 3). It will be shown that the maximum loads occur on the plies in contact with the tool tip. It is the 
moment when the drill tip exits the work-piece that is very likely to cause exit delamination. If the initial 
inter-laminar crack is as large as to extend beyond the boundaries of the future hole, or if additional 
propagation occurs as the drill continues its path towards exiting the work-piece is beyond the scope of 
the current thesis. We will however show that for particular cases the loads are significant for other areas 
of the drill tip than the chisel edge, concluding that it could be interesting to analyze both the onset and 
the propagation of the delamination defect (fracture). 
 
We will also show, that although the two considered work-piece materials have different mechanical 
properties their machinability is comparable. 
 
The experimental work on analyzing the drilling process of fiber reinforced composites presented in the 
current chapter has also been published in [15]. 
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4.2 Experimental setup 
 
 
In the current chapter we will introduce the equipment, drills and work-pieces used during the 
experiments and the reasoning in selecting them, together with the architecture of the final experimental 
setup. 
 
The selection of the machine-tool and measurement equipment has been based rather on reasons of 
availability. A high-speed 5-axes CNC milling machine (C.B.Ferrari A152) readily available in AEM 
(Electro-Mechanic Work-shop) at EPFL was selected to conduct the drilling experiments. Additional 
aspiration and filtering equipment has been purchased in order to adapt the machine-tool to the demands 
of machining fiber-reinforced composites, producing powder-like chips hazardous to health and very 
abrasive. 
 
A Kistler 9255B fixed-plate dynamometer was used to record the cutting forces, existing in the inventory 
of LICP laboratory at EPFL. Although the dynamometer was able to measures 3 force components (FX, 
FY, FZ) in 4 sensing points (suitable to calculate the torque about the Z axis, as detailed below), the cable 
collecting the data to the amplifier and later to a data-acquisition board, needed to be upgraded in order 
to gather individually the reading of the sensor in X and Y directions. Probably a better solution would 
have been to employ a rotating-dynamometer, to be mounted on the spindle of the machine tool, which 
would provide directly the Fz (thrust) and Mz (torque) data as needed in drilling. However, at the time of 
selection such a measuring device was able to operate up to 5000rpm and the desire was to test beyond 
this value. 
 
The dynamometer data was passed through an amplifier and a data-acquisition board before being 
centralized on a laptop using the LabView software package. As mentioned in chapter 2.3, of interest in 
drilling are the determination of thrust and torque, which were calculated in the data-acquisition software 
based on the following equations: 
 
Thrust [N]:  4321 zzzzZ FFFFF +++=        (4.1) 

Torque [Nm]:  ( )( ) ( )( ) ( )( ) ( )( )32414321 ++++ −++−+++−= yyxxZ FxaFxaFybFbyM
 (4.2) 

 
Where Fz1..Fz4; Fx1+2; Fx3+4; Fy1+4; Fy2+3 are the 8 force components provided by the dynamometer at the 4 
sensing points according to the layout introduced in fig. 4.1; a and b are the distances between the center 
of the dynamometer plate and the sensor lines along the X and Y axes (in our case a=b=80mm); x and y 
the coordinates of the drilled hole from the center of the dynamometer. Although in theory the torque 
could be calculated for any drilling point within the sensor perimeter, we found the results to be extremely 
noisy when drilling off-center, due to the latency of the sensors. As a matter of fact, the dynamometer’ 
manufacturer only recommend torque measurement at the center of dynamometer and only provide a 
simplified version of the equation 4.2 with x=y=0. 
 
Two types of work-pieces have been used: CFRP (bi-directional carbon-fiber/epoxy reinforced composite) 
and GFRP (bi-directional glass-fiber/epoxy reinforced composite), supplied by Carbon-Composite 
Technology Gmbh. The two materials are frequently used for generic applications and they are 
considered representative of the long-fiber reinforced composite class of materials. We have opted for a 
bi-directional ply structure as they are more frequently employed in practice in comparison with uni-
directional structures. Very common is also the laminate structure (easier to manufacture than the bulk 
structure), but is susceptible to inter-laminar defects such as delamination. Table 4.1 contains all the 
characteristics and mechanical properties of the work-pieces employed according to the supplier. No 
additional testing has been conducted by us to confirm these values, mainly because they are not critical 
to our modeling and experimental needs and are just informative. On request, the supplier provided us 
with approximated values of ply thickness, which were verified using measurements under microscope in 
our laboratories (introduced in table 4.1). The measurements have also indicated that the ply thickness 
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was quite variable; in our experimental results analysis we used a constant nominal value for the ply 
thickness. 
 

Table 4.1 – Characteristics and mechanical properties of work-pieces 
 CFRP GFRP 
Structure Bi-directional (0°/90°) laminates 

of carbon fiber and epoxy matrix 
Bi-directional (0°/90°) laminates 
of glass fiber and epoxy matrix 

Fiber content 60% 60-70% 
Temperature resistance 115°C 180°C 
Flexural strength 0° = 1050 MPa; 90° = 900 MPa approx. 350 MPa 
Flexural E-Modulus 0° = 62 GPa; 90° = 60 GPa approx. 22 GPa 
Tensile strength 0° = 950 MPa; 90° = 900 MPa approx. 240 MPa 
Tensile E-Modulus 0° = 60 GPa; 90° = 60 GPa - 
Compression strength - approx. 500 MPa 
Inter-Laminar-Shear-Strength 67 MPa - 
Fracture strain approx. 1.6 - 1.7%  
Density 1,56 g/cm³ 2 g/cm³ 
Ply thickness 0.25mm 0.15mm 

 
The selection of the work-pieces size was made based on the useful size of the dynamometer (the area 
between the 4 sensor as outlined in fig. 4.1), with additional space to provide fixturing. Thickness 
selection has been driven by the requirement to obtain full engagement of the cutting lips in drilling, 
therefore related to drill selection. As one of the drills intended to be employed in experiments (tapered 
drill reamer, T1) had an unusual long lip, it was opted for the maximum thickness available on the market, 
which was about 10mm. In general, the thickness of composite laminate parts is limited due to difficulty to 
obtain uniform temperatures during the curing stage of their manufacturing process. Therefore, all work-
pieces have been ordered to the following dimensions 260x150x10mm. 
 

Fig. 4.1 - 9255B Kistler dynamometer outlining the useful area for force measurements 
 
To obtain full engagement of the cutting lips in drilling with the least advantageous drill employed, the 
diameter of the holes was selected to slightly below 6mm (more specifically varying from 5.36 to 5.56mm 
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due to different suppliers, for details see the drill selection aspects below). As mechanical design 
handbooks [44] state that the influence of a hole in a plate extends to about 3r , a spacing of 30mm 
between holes assured that no interference occurred between two consecutive holes. Therefore, a 
configuration of 20 holes per plate was chosen as outlined in fig. 4.3. A work-piece and hole numbering 
system has also been employed as below.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.2 – Work-piece and hole numbering system 
 

Fig. 4.3 – Hole configuration on work-piece and hole numbering system 
 
An aluminum back-up plate, pre-drilled at a diameter slightly larger than the holes (6mm) made during the 
current experimental session was used to allow through drilling; minimize the chances of delamination 
and avoid un-wanted deformations which could affect the force readings.  
 
The restriction to drill at the center of the dynamometer required the displacement of the work-piece and 
back-up plate with respect to the dynamometer for each hole. The displacement required different 
fixturing configuration for each hole. Our initial tests showed a strong influence of the fixture design on the 
data quality (i.e. noise levels). Therefore, we have employed an indexable table which was installed 
between the dynamometer and the work-piece/back-up plate assembly. This allowed a common fixturing 
design for all experiments and allowed accurate repositioning of the plates in such a way that we always 
drilled at the center of the dynamometer, decreasing also the amount of time needed to conduct 
experiments. The alignment was confirmed using work-shop tools at several stages during the 

WP-□-□□-H□□ 

Work-piece material 
1 – CFRP 
2 – GFRP  

Work-piece number 
2 digits 

Hole number 
2 digits (01 to 20) 
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experiments. The use of the indexable table sped up the experiments significantly. The final experimental 
setup is presented in figures 4.4 and 4.5. 
 

 
Fig. 4.4 – Experimental setup details of work-piece assembly 

 

 
Fig. 4.5 – Experimental setup overview 

Spindle 
Work-piece (GFRP) 

Back-up plate 
Indexable table 
Dynamometer 

Machine-tool 
Aspiration and filtering unit 
Laptop for data acquisition 
Signal amplifier 
Work-piece assembly 
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[16] and [22] are two studies introducing the performance of the drill developed specifically for long-fiber 
composite materials, named the tapered drill reamer (or “one-shot” drill bit), produced by Starlite Industies 
in United States of America. No records were found of other drills designed especially for these materials, 
and therefore this drill was the first one selected for our study. From the same company, we found 
another drill suitable for drilling both composite materials and metallic alloys (aluminum and titanium in 
particular), a so-called 8-facet drill (a twist drill with its point ground by 8 planar faces), which was also 
selected for our study. Furthermore, we have extended our search to drill manufacturers aiming at 
metallic materials, while looking for what we believe should perform on fiber reinforced composites as 
well. We also wanted to have a drill with similar material (solid carbide steel). We have therefore found a 
Swiss company (Tusa Carbide from Ticino) providing high-quality drills for metallic alloys mostly for the 
Asian market, but including in their catalogue recommendation on cutting conditions for plastic materials 
(i.e. short fiber reinforced plastics). We found a 2-facet twist drill which looked promising suitable for 
drilling long-fiber reinforced materials, while in the same time rather similar in geometry with the standard 
twist drills. Standard twist drills are often employed in experimental studies on drilling long-fiber reinforced 
materials published in the literature (i.e. [3], [17], [45], [46], [47], [48] etc.) and their mathematical 
modeling is well covered. 
 
The tapered drill reamer (T1) and the 2-facet twist (T2) drills have been introduced in chapter 3.5 (and fig. 
3.22) with the purpose of modeling their geometry mathematically. We reiterate hereby their description 
together with the 8-facet twist drill. It should be noted that the geometry of the 8-facet twist drill is rather 
complex and we were not able to described it mathematically, mainly due to the existence of a web-
thinning feature. The manufacturers were unwilling to disclose additional information of their geometry 
other than the basic parameters provided in their catalogue. 
 

- T1 – tapered drill-reamer (also known as “one-shot” drill bit) is a tool specially designed for 
drilling fiber reinforced composites, but not suitable for metallic materials. The tool is made of 
solid carbide steels with small grain size (micro-grain). It has 4 straight flutes while only 2 are 
engaged in cutting initially. Due to the configuration chosen of 4 flutes, the chisel edge area is 
very small in comparison with other drills. The tool tip has a 2-stage point angle, featuring an un-
usual long tip. We have selected the diameter (5.55mm) so that the tool tip is smaller than the 
work-pieces thickness and full engagement is obtained, even if for a very short interval. The 
supplier is Starlite Industries. 

- T2 – 2-facet twist drill is a classical high-quality twist drill used extensively for drilling metallic 
materials. Unlike the conical twist drill, it has a straight chisel edge which makes an angle with the 
tool axis smaller than 180°. The flank faces are ground by planar surfaces, with no additional 
features. The material is also solid carbide steel. We have selected a 5.6mm diameter from Tusa 
Carbide. 

- T3 - 8-facet drill is a variant of the twist drill for increased efficiency in drilling fiber reinforced 
composites. The material is solid carbide steel (a common choice in tool material selection in 
metal cutting). Due to its geometric design with a helix angle this drill allows metallic chip removal 
in a same manner as a standard twist drill, therefore making it suitable for drilling both metals and 
composite materials. It features a web thinning grinding for minimizing the load concentration at 
the tool tip, as well as a secondary point angle. The diameter was selected as 5.36mm. The 
supplier is Starlite Industries. 

 
As the drilling depth was limited to 10mm, the tool lengths have been kept to a minimum found in the 
companies’ respective catalogue, although varied for each drill.  
 
Drills have been numbered as TX-YY, where X is the type of drill (1 to 3) and YY is used to denote a 
certain drill item. 
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a) Profile T1 b) Photo T1 c) Drawing T1 

d) Profile T2 e) Photo T2 f) Drawing T2 

 

 

g) Profile T3 h) Photo T3  
Fig. 4.6 – Photographs and measured profiles of the drills used in experiments 

 
For our analysis, we needed an accurate description of the tool tip profiles, which was impossible to 
construct based only on the geometrical parameters supplied by tool manufacturers. Therefore, an optical 

Small chisel edge 

Engagement of all 4 
flutes 

Chisel edge 

Chisel edge 
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measurement session was conducted in our laboratories to determine the tool tip profiles. The findings 
are reported in the sketches below (fig. 4.6), together with photographs of the drill tips.  
 
The following table summarizes the experimental setup: 
 

Table 4.2 – Summary of experimental setup
Machine-tool High-speed 5-axes CNC milling machine (C.B.Ferrari A152) 

+ aspiration and filtration unit (supplier C.B. Ferrari) 
+ 2D indexable table (installed between dynamometer & work-piece) 

Force measurement 
equipment 

Fixed-plate dynamometer (Kistler 9255B) 
+ 8-channel acquisition cable 
+ Signal amplifier 
+ Data acquisition cards (National Instruments) 

Data acquisition software Labview 10.0 (National Instruments) 
Work-piece (WP1) Bi-directional carbon-fiber reinforced epoxy CFRP – 260x150x10mm 

(Carbon-Composite Technology) 
Work-piece (WP2) Bi-directional glass-fiber reinforced epoxy (GFRP) – 260x150x10mm 

(Carbon-Composite Technology) 
Drill (T1) Tapered drill reamer Ø5.55mm (Starlight Industries) 
Drill (T2) 2-facet twist drill Ø5.56mm (Tusa Carbide) 
Drill (T3) 8-facet twist drill Ø5.36mm (Starlight Industries) 
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4.3 Experimental planning 
 
 
The purpose of the current experimental investigation is the measurement of the cutting forces: thrust 
(axial force) and torque (rotational momentum). Along the drilling process, from tool entry to full 
engagement and tool exit from the material, the measured thrust and torque vary. We can relate this 
variation with the time variable and knowing the axial feed, we can easily translate these curves from the 
time coordinate to the drilling distance. The raw experimental data will provide time variations of both 
thrust and torque. If full engagement happens during the drilling process (no pilot hole), the values of 
thrust and torque should maintain almost constant values during this time interval. We can average and 
extract their values on the time frame of full engagement and we will obtain the maximum thrust and 
torque values for a set of experimental conditions. These values will provide the first level of comparison 
between the experimental and predicted data. 
 
Further on, by correlating the time (or distance) curves of thrust and torque during tool entry (and exit) 
with the drill geometry, we can determine the variation of the forces with the radial engagement. The 
derivative of these curves will provide the distribution of the elementary forces along the tool radius. A 
challenge exists in determining the distribution along a chisel edge lying in a plane perpendicular to drill 
axis, because the chisel edge area becomes fully engaged at the moment the tool touches the work-
piece, and hence we cannot obtain a distribution along the radial direction for the chisel edge. The initial 
tests showed however that the forces do not rise instantaneously when the drill and work-piece enter in 
contact even for chisel edges without any point angle. It is believe that it is due to the latency of the 
sensors to react to the loads. Therefore, we have found that we can safely assume a point angle of the 
chisel edge, with a value close, but lower than 90° for each tool from the initial tests, that will allow us to 
obtain a rough estimation of the distribution of the loads along the chisel edge without employing pilot 
holes. The disadvantages of using pilot-holes for obtaining the cutting forces distribution have been 
outlined in the previous chapter 4.1. 
 
Summarizing, the experimental session has the objectives to measure or calculate based on original 
measurements the following: 
 

- Maximum thrust [N] – single value 
- Maximum torque [N*mm] – single value 
- Thrust/time curve: Thrust(t[s]) – easily translated in thrust/distance curve: Thrust(d[mm]); 
- Torque/time curve: Torque(t[s]) – easily translated in torque/distance curve: Torque(d[mm]); 
- Thrust distribution: Thrust(r[mm]); 
- Torque distribution: Torque(r[mm]); 

The lateral force is not of interest in the current study, although the original measurements could allow its 
calculation if needed. 
 
In the following table (4.3) the factors which are believed to influence the cutting forces in drilling are 
centralized. The current thesis is focused mainly in studying the influence of the drill geometry, cutting 
parameters and work-piece material properties. Therefore, in the experimental planning, the work-piece 
material, drill geometry and the cutting parameters (axial feed and spindle speed) are varied, while the 
others are kept constant. 
 
The work-piece material and the drill geometry are discrete factors varying on 2 and 3 levels respectively 
as introduced in chapter 4.2. The axial feed (f) and the spindle speed (n) can be varied continuously. We 
have selected respectively 4 and 5 levels of variation for the cutting parameters, to cover 20 different 
cutting conditions (as many as the number of holes for each composite plate – see chapter 4.2). 
 
In order to select the ranges of variation of the cutting parameters, a survey of the state of art was 
conducted. The ranges used by most important published studies on experimental drilling of fiber 
reinforced composites are summarized in figure 4.7. 
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Table 4.3 – Parameters influencing the cutting force measurements in drilling 
Material properties  
Work-piece material machinability The machinability is a combination of factors (based on the 

mechanical properties of the work-piece) which varies widely for 
each material. It is usually quantified as the specific cutting 
pressure coefficient (Kc) determined directly from machining 
experiments. 

Tool/work-piece friction coefficient Usually represented by the friction coefficient (Kf). 
Geometrical parameters  
Drill geometry 
 Drill diameter 
 Number of flutes 
 Point angle(-s) 
 Web thickness 
 Rake angle 
 Relief angle 
 Cutting edge radius 

The geometry of the drill is rather complex. It can be described by 
various sets of parameters, the most common ones presented 
here. The cutting edge radius (or sharpness) can quantify the tool 
wear status as well. 

Work-piece geometry 
 Thickness 
 Pilot hole 

The thickness of the work-piece and its geometrical configuration 
(i.e. existence of pilot holes, cut-outs, inclined holes, variable 
thickness, etc.) will influence the variation of the cutting forces. The 
2 parameters presented hereby usually can define the particular 
case of simple hole through constant thickness plates. 

Fixturing configuration The influence of the fixture on cutting forces is complex and open 
for discussion. Our initial tests showed that is greatly influencing 
the noise levels in the force measurements and the vibration levels. 

Cutting conditions  
Axial feed Will directly influence the depth of cut and the uncut chip area. It 

also defines the cutting angle (μ) which represents the kinematic 
aspect of the process. 

Spindle speed The influence of the speed extends upon the material properties 
mainly, although no definitive models are accepted. It also 
influences the noise in cutting forces measurements and vibration 
levels. 

Coolant/lubricant usage Liquids are used to cool the tool/work-piece and to provide 
lubrication in the case of metals. They affect the temperature field, 
but also lower the friction coefficient. Composite materials absorb 
moisture and this affects their mechanical properties, therefore 
coolants/lubricant are not usually employed in fiber-reinforced 
materials drilling. 

 
The most practical range was found at axial feeds between 0.02 and 0.20 mm/rev and spindle speeds of 
500 to 5’000rpm. We were initially planning to extend the domain of experimental testing at high-speeds 
(over 5’000rpm). However, due to the rather small diameters of the drill (under 6mm) the nominal torque 
values were seldom surpassed by the amplitude of its variation around the nominal value close to 
5’000rpm and the noise exhibited the trend to increase with the spindle speed. Therefore, considering the 
equipment in our possession, we were not able to obtain suitable cutting forces measurements at higher 
spindle speeds, although the machine tool was able to reach up to 50’000rpm. Figure 5.1 shows a thrust 
and torque entry curve for a case exhibiting large amplitudes around the nominal (averaged) value. The 
raw curve is unsuitable to derivate in order to obtain the cutting forces distribution, while the smoothed 
curve (filtered) can be used, although it will exhibit greater variations between similar experimental cases 
and the confidence in the distribution obtained is smaller. Other studies ([2]), use a power law to fit the 
raw curves as discussed previously. The amplitude around the nominal value can be caused by the 
following reasons (i) misalignment of the hole axis with the center of dynamometer; (ii) imperfections in 
the symmetry of the drill; (iii) anisotropy of the material properties, believe to be more pronounced for 
composite materials; (iv) process induced vibrations; etc. From our experiments we have noted that the 
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amplitude increases with the spindle speed and is drastically affected by the fixturing design. The 
amplitude appears to be independent of the nominal value of the forces, therefore using higher diameter 
tools can be translated in better experimental results for analysis. 
 
We also had the desire to test the influence of lubricant use. As coolant use is not recommended for 
composite materials as outlined previously, we wanted to capture in our model the possible reduction of 
the friction coefficient by using small amounts of sprayed lubricant (although for the same moisture issue 
can be raised for lubricant as in the case of coolant). However, we found that we were not able to assure 
a constant lubrication along the complete drilling process (it proved to be efficient at drill entry, but could 
not reach the tip of the drill as it emerged in the work-piece) and among different drills (some with long tip 
as the tapered drill reamer, while other with short tip).  
 

Fig. 4.7 – Map of cutting parameters employed in drilling fiber reinforced composites by references 
 
Obtaining constant and strong fixturing configuration proved difficult at first, but introducing the indexable 
table (as discussed in chapter 4.3) showed constant amplitude levels for each hole position on a plate, 
while the magnitude of the amplitude was lowered to minimum among all the fixturing configurations 
tested. 
 
Tool wear was another important issue to address. Many studies showed that extensive tool wear is to be 
expected when drilling fiber reinforced composites, especially with high-speed steels drills. For each 
work-piece material/drill combination, we have tested the variation of the cutting forces magnitude with 
the number of holes (using a constant set of cutting parameters believed to be the most prone to 
extensive tool wear, i.e. high spindle speed (n=5’000rpm) and low feed (f=0.02mm/rev)). The results 
showed that the maximum thrust and torque values increased by maximum 20% after 20 holes drilled 
with the same tool. Therefore, we have imposed the rule to use one drill item for no more than 5 holes 
(therefore, the influence of the tool wear should be below 5% of the maximum values of thrust and 
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torque). These tests were used also as repeatability tests, showing that in general there was no need to 
repeat one experimental case more than once.  
 
Summarizing, 20 holes with varying cutting 
parameters were drilled for each work-piece/drill 
combination (one work-piece plate). Axial feed rate 
(f – [mm/rev]) and spindle speed (n – [rpm]) were 
varied on 4 and 5 levels respectively within ranges 
based on practical reasons and literature survey as 
in table 4.4. The drill was changed after each 5 
holes. As 3 types of drills and 2 work-piece 
materials were tested, the experiment amounted to 120 holes across 6 work-pieces and using 24 drills.  
 
The sampling rate of the data acquisition was varied with the spindle speed, as to obtain always about 10 
points per drill each revolution.   

Table 4.4 – Cutting parameters 
n [rpm] 

f [
m

m
/re

v]
  500 1625 2750 3875 5000

0.02 H01 H02 H03 H04 H05 
0.08 H06 H07 H08 H09 H10 
0.14 H11 H12 H13 H14 H15 
0.20 H16 H17 H18 H19 H20 
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4.4 Experimental analysis 
 
 
The state of art in the analysis of the drilling process is reviewed in chapter 2.3. It is previously outlined 
that more information about the drilling process can be extracted from the classical measurements of 
cutting forces, more specifically the cutting forces distribution along the drill radius or within the work-
piece thickness. 
 
Fig. 4.8 shows a typical cutting force measurement (thrust Fz and torque Mz) for a drilling case using the 
tapered drill reamer (T1) on CFRP, f=0.20[mm/rev]; n=500[rpm]. The curves have been trimmed from tool 
entry (defined by a sharp increase in thrust) to just before the tool is pulled out from the work-piece (when 
thrust becomes again zero). Most published experimental investigations of the drilling process for both 
metals and other materials retain only the maximum values of the thrust and torque from analyzing the 
measured time-dependent curves. 
 

 

Fig. 4.8 – Sample cutting force measurement during drilling (CFRP, 10mm thickness, tapered drill reamer 
(T1), n=500rpm, f=0.2mm/rev) – a) thrust; b) torque 

 

Chisel edge ¦ Stage 2 ¦ Stage 3 ¦ Stage 4 ¦ Full engagement ¦ Drill exit 
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The time axis on thrust and torque curves can be easily related to the height (he) of the tool emerged in 
drilling, by knowing the axial speed (Vn): 
 

tVh ne ⋅= [mm]           (4.3) 
 
Where the axial speed (Vn) is calculated from the cutting parameters (axial feed and spindle speed) with 
equation 3.50. 
 
By using the tool profiles (h(r) as in fig.4.6a, 4.6c and 4.6e), the radial engagement re at a point t in time 
(coinciding with a vertical engagement of he) can also be determined.  
 
In fig. 4.8, we have indicated the drilling stages, based on drill T1’s geometry. The first marked interval 
corresponds to the engagement of the small chisel edge. During the second one (Stage 2) the main 
cutting lips (with a point angle of 119° according to our measurements) become fully engaged. The thrust 
force increases sharply during these first two stages, while the torque is increasing much slower. During 
the stages 3 and 4, the long cutting lips (with a point angle of 17.2°) become engaged in cutting as well. 
In stage 4, the secondary flutes begin to cut as well, therefore while in stage 1 to 3 we have only 2 flutes 
engaged, during stage 4 there are 4 flutes engaged – resulting in the halving of the depth of cut per flute. 
Full engagement for this type of tool is obtained only for a short while (due to its very long tip), before the 
chisel edge pierces through the last plies of the work-pieces.  
 
Theoretically, the maximum values for thrust and torque should be observed just before the tip of the drill 
exits the back of the plate. While this statement is true in the case of torque for almost all the experiments 
performed, the maximum thrust is usually obtained at the end of stage 4, at the beginning of the full 
engagement zone (in the case considered here, the maximum thrust is obtained during stage 4, probably 
due to the anisotropy of the work-piece material properties among other possible reasons). During the full 
engagement zone, the reaming forces (cutting with the side of the drill) add up to the measurements. The 
geometry and the cutting configuration in the reaming zone generate low elementary forces and 
particularly oriented in the tangential direction (and lateral, which are canceled by the cutting process of 
the opposite flute). The tangential elementary forces at this point have a noticeable effect on torque 
measurements as they are multiplied by the maximum possible arm. Furthermore, the thrust force is 
usually decreasing during this stage due to the deformation of the un-cut work-piece, which becoming 
thinner, is easier to deform. 
 
We also observe that for tool diameters bellow 6mm, the torque is rather small. For the particular case 
presented above (fig. 4.8), the feed rate is at the maximum considered (f=0.20mm/rev), and the forces 
are also close to their maximum values recorded in our experiments. For smaller values of the feed rate 
(i.e. f=0.02mm/rev), the maximum torque is sometimes below 0.2 [Nm], and therefore very noisy, 
especially at high spindle speeds. High-speed drilling tests are usually conducted at low feed rates, 
between 0.02 to 0.08mm/rev. We found difficult to analyze the torque measurements accurately at 
spindle speed over 5000rpm with the small diameter tool considered hereby.  
 
Let us assume 2 time instances t1 and t2 from 0 to tmax defined at the end of stage 4 (see fig. 4.8), t1<t2. 
For a drilling case such as in the above example, we can extract the values Fz1, Fz2, Mz1 and Mz2. Fz1 
and Mz1 (Fz2 and Mz2 respectively) correspond to the total thrust and torque caused by the cutting 
process of the cutting edges for the drill engaged up to a height of h1 (h2) and radius r1 (r2) into the work-
piece. h1, h2 can be calculated using equation 4.3 based on the cutting parameters, while r1 and r2 can be 
obtained by tracing the tool profile graphs (fig.4.6a, 4.6c and 4.6e). 
 
For the resulting element of the cutting lip segment defined by the points (r1,h1) and (r2,h2), we can 
calculate the axial (Fz) and tangential (Fy) forces acting on it, using the following equations: 
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For more reliable numerical results, we can assume the average torque to act in the middle of the 
element, and re-write equation 4.5 as: 
 

( ) ( )[ ]

2

,,,
12

12
2211 rr

MzMzhrhrFy
−
−

=        (4.6) 

 
For our analysis we can calculate the normalized (per unit length) values of the axial and tangential forces 
on the selected cutting lip element along the r and h directions: 
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Equations 4.7 to 4.10 will give the average distribution along the radius and thickness respectively, from 
the tool tip of the elementary axial and tangential cutting forces per unit length acting on each element of 
the cutting lip. 
 
Due to the noisy nature of the thrust and torque curves, considering very small elements will not provide 
conclusive results. Therefore we have opted for discretization adapted to the drill geometry, first with 
focus on the drilling stages of the drill geometries and later according to the ply thickness of the 
composite materials considered.  
 
The first analysis (with uneven discretization according to the drill geometry) will show the loads acting 
along each segment of the cutting lips. For large segments, as outlined in the tool profile (fig.4.6a, 4.6c 
and 4.6e), we have considered 2 elements for each segment of the tool profiles, while for small segments 
(as the chisel edge of the tapered drill reamer T1) we have considered only one element. The results of 
equations 4.7 and 4.9 are divided by the number of flutes (N) engaged at each stage in cutting. There are 
2 flutes for tools T2 and T3. T1 tool uses 2 flutes up to the last stage (stage 4, as described in fig.3), 
where the secondary flutes are becoming engaged in cutting and therefore N=4. 
 
This type of analysis is useful for evaluating the drill geometry performance stage by stage and for 
calibrating our cutting force prediction model presented in chapter 3. 
 
To be able to compare all different types of drills employed in our experiments a second analysis on the 
same principles is further carried on. In this case, the discretization is done in equal elements along the 
height direction (dh), with a size equal to the ply thickness (0.25mm for CFRP and 0.15mm for GFRP 
work-pieces – see table 4.1). This analysis will provide the load distribution within the composite structure 
(for each ply), the loads responsible for causing the delamination defect. As we are interested in the 
distribution of the loads among the plies, in this analysis we do not divide the forces acting on each 
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element by the number of flutes and we do not normalize the loads. It should be noted however, that the 
loads calculated as such will act on 2 (or 4) different areas, symmetrically displaced about drilling axis. 
 
For many experimental cases, the raw measurements of thrust and torque are too noisy for the analysis 
to be carried out directly. Therefore, smoothing techniques have been tested (like B-spline fitting 
technique and averaging functions). For the first type of analysis (radial distribution of elementary cutting 
forces) we have employed a B-spline fitting technique, which proved fairly reliable for the complete set of 
experimental conditions (different geometries, work-piece materials and cutting parameters), while for the 
second one (ply distribution of the loads) we used a moving averaging function. However, during the work 
on the model calibration (presented in chapter 5), we have found difficulties in using the smoothed curves 
obtained by B-spline fitting, mainly due to the inconsistencies (not being constrained to pass through the 
start and end point) at tool entry and just before the full engagement stage. We have therefore employed 
a moving average function before the trimming of the raw curves within the limits of interest. This method 
preserved much better the boundary conditions at the start and end of the analyzed interval of cutting 
forces. The length of the moving average window has been adapted to the sampling rate and noise levels 
for each experimental case. 
 
The post-processing of the measured raw data of thrust and torque according to the description above 
has been implemented in Labview 10.0 and takes into consideration the profiles of the drills as per figures 
4.6a, 4.6c and 4.6e and the cutting parameters as described in the experimental planning. As the theory 
itself can be implemented in any other curve fitting software, the actual source files are not presented nor 
discussed in the thesis. They are however available electronically together with the raw data 
measurements. 
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4.5 Results and discussion 
 
 
As mentioned in chapter 4.3 the effective number of experiments was 120 holes, although more were 
drilled as preparatory experiments. The current thesis will not present the raw and processed results of all 
the experiments, but rather a representative selection to justify the arguments introduced. All of them are 
however available electronically. 
 
For comparison with other published results of experimental studies ([3], [16], [22], [18], etc.) we start by 
introducing the maximum values of the cutting forces (thrust and torque). Previous mentioned studies use 
different cutting conditions (especially different drill diameter, the most major factor affecting the 
magnitude of the thrust and torque values), therefore a direct comparison in impossible. As the complete 
list of 120 holes is too extensive, a selection of cases with extreme cutting parameters for each drill/work-
piece combination is presented in table 4.5. It is noted that the current values are around the expected 
values, considering the values reported in experiments published in literature (see references above) and 
exhibit similar trends. A graphic comparison of experimental and predicted results with [3] is illustrated in 
fig. 5.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the current chapter we focus on the results of the experimental analysis as presented in chapter 4.4. 
More results will be introduced in chapter 5 when the cutting force model is calibrated and compared with 
the experimental results. 
 
Figures 4.9a to 4.9h present the radial distribution of the elementary forces per flute for the tapered drill 
reamer T1 for selected cases of the experimental plan. It is noted that the radial distributions of the 
elementary cutting forces are expected to be discontinuous functions, as from one stage to another the 
geometry of the element (rake angle, inclination angle) and the angles of decomposition along axial and 
tangential directions (point angle, inclination angle) are changing sharply. The stages are outlined by the 
vertical cursors. As expected, we observe a load concentration (for both axial and tangential forces) on 
the chisel edge. Additionally, the cutting along the 3rd stage (see figures 4.6a and 4.8) seems to generate 
an unusual amount of axial force (thrust) due to the drastic change in point angle (see fig. 3.23, triggering 
changes in rake and inclination angles). Introducing the secondary flutes during the 4th stage seems to 
lower the loads experienced by each flute, by halving the actual depth of cut. The second point in stage 3 
triggers an unexpected rise in axial force. An explanation of this effect is attempted in chapter 5.3. The 
spindle speed seems to have little if no effect on the axial forces (with the exception of the second point of 
stage 3, discussed above), while its effect is not clear for the tangential forces, and seems to be 
concentrated towards the tool center. Due to the sensitivity in calculating the elemental tangential force 
close to the tool center, this effect can be attributed to the accuracy of the measurements. Feed rate 
seems to have a clear and almost linear influence on both the axial and tangential elementary forces for 
most of the drilling stages. 

Table 4.5 – Maximum thrust and torque
Tool Work-

piece 
f 

[mm/rev]
n 

[rpm] 
Thrust 

[N] 
Torque 

[Nm] 
T1 CFRP 0.02 500 103.6 0.35

0.20 5000 222.5 0.89
GFRP 0.02 500 34.9 0.32

0.20 5000 284.6 1.02
T2 CFRP 0.02 500 58.1 0.27

0.20 5000 96.6 0.63
GFRP 0.02 500 26.8 0.23

0.20 5000 94.0 0.57
T3 CFRP 0.02 500 83.0 0.39

0.20 5000 189.2 0.63
GFRP 0.02 500 46.7 0.14

0.20 5000 162.7 0.69
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a) b) 

c) d)

e) f) 

g) h) 
Fig. 4.9 – Elementary (forces per unit length) axial (a,c,e,g) and tangential (b,d,f,h) force distribution along 

the drill radius for selected cutting parameters, CFRP/GFRP work-pieces and tapered drill reamer T1 
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a) b) 

c) d) 

e) f) 

g) h) 
Fig. 4.10 – Elementary (forces per unit lenght) axial (a,c,e,g) and tangential (b,d,f,h) force distribution 

along the drill radius for selected cutting parameters, CFRP/GFRP work-pieces and 2-facet twist drill T2
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a) b) 

c) d) 

e) f) 

g) h) 
Fig. 4.11 – Elementary (forces per unit length) axial (a,c,e,g) and tangential (b,d,f,h) force distribution 

along the drill radius for selected cutting parameters, CFRP/GFRP work-pieces and 8-facet twist drill T3
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Figures 4.10a to 4.10h introduce the results for the 2-facet twist drill (T2). As the cutting edges of this drill 
has only 2 segments (cutting lip and chisel edge) only 2 drilling stages are noted, marked by vertical 
cursors. At low feed rates, the load concentration seems to occur as expected on the chisel edge. 
However, as the feed rate increases, the loads on the first part of the cutting lip are increasing more 
rapidly, becoming the critical area. The cutting is less efficient in the vicinity of the transition point from 
stage 1 to 2 due mainly to the highly negative rake angle (see fig. 3.26). However, this only could not 
explain why the elementary axial forces are increasing more rapidly with the feed rate at the beginning of 
stage 2 than at the end of stage 1. However, from stage 1 to 2 the point and the inclination angles are 
also changing sharply, which should translate into a different decomposition of the forces along axial and 
tangential directions.  
 
Graphs 4.11a to 4.11h present the results for the 8-facet twist drill (T3). We observe the distribution along 
the radius to be more evenly, with load concentrations at the chisel edge and the last stage (see fig. 
4.6e). The influences of spindle speed and feed rate seem to be similar overall with T1, although for 
drilling CFRP we note a more clear increase in forces with the spindle speed, especially at high feed 
rates. However, this effect does not seem to appear when drilling GFRP. It is also noted that the increase 
of elementary axial force per unit length at the beginning of stage 2 with the feed rate is not as 
pronounced as for T2. We believe is due the web thinning feature, making the cutting more efficient.  
 
Furthermore, in figures 4.12 and 4.13 the calculated loads acting on each ply are presented. Equations 
4.8 and 4.10 were used to calculate the axial and tangential loads for a constant ply height interval (dh 
equal to 0.25mm for CFRP and 0.15mm for GFRP). It is noted that the loads have not been normalized 
(divided by the distance from the tool tip interval). Additionally, the results are not divided by the number 
of flutes, so that the total load on each ply is obtained, although the loads are in fact applied in 2 (or 4) 
points symmetrically displaced from the drill axis.  
 

a) b) 

c) d) 
Fig. 4.12 – Axial (a,c) and tangential (b,d) load distribution on each ply for selected cutting parameters 

(CFRP, ply thickness 0.25mm) 
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a) b) 

c) d) 
Fig. 4.13 – Axial (a,c) and tangential (b,d) load distribution on each ply for selected cutting parameters 

(GFRP, ply thickness 0.15mm) 
 
This analysis allows the comparison of different drill geometries with respect to the chances of 
delamination. As expected we observe that on the first ply from the tool tip almost always act the highest 
loads. For the tapered drill reamer (T1), the loads are significant during the stage 3 as well. T2 (2-facet 
twist drill) generated the maximum amount of axial load per ply, while the maximum tangential load is 
usually greater for T1 (tapered drill reamer). T3 (8-facet twist drill) seems to be the best performer, 
probably due to the web-thinning feature, which will make the cutting process more efficient in the close 
vicinity of the chisel edge, in comparison with T2. We also observe a decrease in cutting forces just 
before the drills are exiting the work-piece (last 1-2 plies), which we believe to be due to the deformation 
of the last plies (with or without delamination actually occurring). 
 
The graphs have been plotted for several selected experimental conditions. Overall we observe the same 
trends as in the previous analysis: feed rate has a strong influence on both axial and tangential loads per 
ply, while spindle speed has little or no influence. 
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Chapter 5 
Model calibration and validation 
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5.1 Introduction 
 
 
The three empirical coefficients (the specific cutting pressure on the rake face Kc and on the relief face Kp 
and the friction coefficient Kf) of the cutting forces in the drilling model presented in chapter 3 are to be 
determined experimentally, by fitting the model functions (equation 3.31 and 3.32) on the distribution of 
the tangential and axial elementary cutting forces obtained experimentally by a methodology presented in 
chapter 4.4 (sample distribution curves as in figures 4.9, 4.10 and 4.11). 
 
It should be noted that the analytical model in chapter 3 was developed initially in Mathcad 13 software, 
with assistance in the geometrical derivation by 3-dimensional constructions in Catia V5. On the other 
side the experimental data was gathered using Labview 10 software together with the post-processing of 
the raw data to obtain the distribution curves. The shear amount of experimental data (time dependent 
curves of thrust and torque for 120 holes) and the rather complex structure of the input factors (cutting 
parameters, work-piece material and drill type) caused difficulties in conducting the fitting in Mathcad 13. 
It was found more efficient to conduct the fitting in the Labview 10 software, where there was easy access 
to all the raw data and post-processing parameters.  
 
Fitting of the experimental data to calculate the empirical coefficients can be made on the cutting forces 
(axial and tangential) distribution or on the total values of thrust and torque. Except [2] and [3] all other 
cutting force models presented in literature are calibrated for the total thrust and torque. It was opted for 
the first method in order to give a practical significance to the cutting force distribution functions 
(equations 3.31 and 3.32), to allow the model to be used for drill geometry studies or delamination. This 
method has also the advantage to reduce the number of experimental drill cases needed to calibrate the 
model or to increase the number of the empirical coefficients in order to increase accuracy (see model 
introduced by [2]). 
 
Therefore, the model described analytically in chapter 3, was implemented in Labview 10 as a “model 
function”, which allows in principle two operations: (i) starting from guess values, the model functions 
(equations 3.31 and 3.32) can be fitted on experimental data (distribution of the axial and tangential 
elementary forces) to obtain solutions for the empirical coefficients and (ii) using the solution of the 
empirical coefficients (or any other values) as parameters the model function can be called to provide 
results (axial and tangential elementary cutting force distribution for a given case of cutting parameters, 
work-piece material and drill type). 
 
The model has been constructed for two drill geometries as introduced in chapter 3.5. The definition of 
the elementary cutting forces and their transformation from oblique to drilling coordinate system to obtain 
the thrust and torque are generic (independent of the drill geometry and type, summarized by equation 
3.30 to 3.32), although they employ functions to define the geometrical parameters of the drill. These 
functions are stand-alone (for the two considered drills they are presented in chapter 3.5, while they are 
discussed for generic cases in chapter 3.4) and can be easily changed to account for new drill 
geometries. Therefore, the model can be very easily adapted for different drills of the same type with 
different geometrical parameters (i.e. different point angle, helix angle, diameter, web thickness etc.) by 
only changing various constants in the equations presented in chapter 3.5. For different drill types it is 
very likely that the functions defining the variation of the geometrical parameters with radius have to be 
re-worked or adapted accordingly, but never-the-less once these functions are determined they can be 
easily plugged-in the model. 
 
The experimental data fitting procedure (obtaining solutions for the empirical coefficients) was done using 
the build-in Levenberg-Marquardt algorithm in Labview 10. The overall program was constructed such as 
to allow any number and selection of experimental test cases to be used for calculating the empirical 
coefficients. The fitting was done (i) on the experimentally determined distribution curves of axial and 
tangential forces (obtained through a methodology presented in chapter 4) or (ii) on the total thrust and 
torque values. For the first fitting case, in theory only one experimental case is needed to determine a set 
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of coefficients (introduced in detail in chapter 5.2), although if the final number of empirical coefficients 
employed is greater than two times the number of points on the distribution curves (as both axial and 
tangential elementary forces are used) the number of experimental cases used for calibration needs to be 
increased. However, to properly capture the variation of the forces with the axial feed rate at least two test 
cases with different feed rate should be considered, displaced as far as possible to cover the desired 
range. From our tests we have found that with 4 experimental cases covering the experimental range the 
solution found is almost identical with using all the experimental cases (20) for a combination of drill type 
and work-piece material. When fitting with the total values of thrust and torque at least two test cases are 
needed with different feed rates. If a more complex structure of the empirical coefficients is employed 
(than considered in the current PhD thesis) more than two test cases are needed (the number of test 
cases is half the number of empirical coefficients employed for fitting on the total values of thrust and 
torque). The prediction results were proved very good for the minimum number of experiments needed to 
obtain a solution of the empirical coefficients. 
 
After determining the empirical coefficients, the model results are compared with the experimental 
obtained distribution of axial and tangential elementary cutting forces and with the total thrust and torque 
(which within the model are calculated by equations 3.39 and 3.40). 
 
Summarizing, this chapter includes a detailed discussion about the empirical coefficients used in our 
model (chapter 5.2) while in the second part the results of the model are compared with the experimental 
data (in chapter 5.3) – both the elementary cutting forces distribution (axial and tangential) and the total 
values of thrust and torque are compared for various configurations of the empirical coefficients and 
different fitting strategies (distribution and total values of thrust and torque). It will be shown that using up 
to 4 coefficients, the model introduced in the current thesis provides reasonable predictions of both 
distribution and total cutting forces in drilling fiber reinforced composites. Increasing the complexity and 
the number of empirical coefficients slightly increases the performance of the model. Fitting on the total 
thrust and torque provides better results for these values, but in general the distributions of the 
elementary forces are not captured accordingly. 
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5.2 Empirical coefficients (Kc, Kf and Kp) 
 
 
The cutting force model introduced in the current thesis in chapter 3, uses three empirical coefficients as 
follows: 
 
Specific cutting pressure on the rake face (Kc, [N/mm2]), a common choice of empirical coefficient in 
cutting force modeling both for drilling and other machining operations for metals and composite materials 
alike. The value of this coefficient cannot be directly related to a single mechanical property of the work-
piece, although using the shear angle theory of Mechant [1], models have been developed to related it to 
properties such as the shear and normal/compression strengths of the work-piece material. Although it is 
widely accepted that a similar relation should exist for composite materials, relating the specific cutting 
pressure to material properties (such as fracture toughness), none has been proposed so far. Using the 
shear angle theory, geometrical parameters (such as the rake angle) interfere in the definition of the 
specific cutting pressure, and it is generally accepted that, for example the rake angle has an influence on 
this coefficient. Therefore, even for composite materials, the specific cutting coefficient is often defined as 
a function including the rake angle as parameter or the cutting velocity (which is believed in fact to modify 
the material behavior in a similar way the temperature does). [2] even includes the depth of cut as a 
parameter in such a function, without any solid justification. The current thesis started with the simplest 
cases – constant specific cutting pressure on the rake face (Kc) and found that it provide reasonable 
results. Improved accuracy was also obtain by considering Kc as a function of the normal rake angle 
(more specifically (1-sin(αn)) which is always positive). We have tested both a power law and a linear 
function of the above parameter and no significant difference was found between them, although in the 
case of metals it is often suggested that power law is better. The results using the following expressions 
for the specific cutting pressure on the rake face (Kc) are discussed further on: 
 

Table 5.1 – Expressions for specific cutting pressure Kc

Model Function Empirical 
coefficients 

M0 – constant coefficients 1cc KK =  1 

M1 – Kc linear function of the normal rake angle ( )( ) 21 sin1 cncc KKK +−⋅= α  2 
 
Friction coefficient (Kf [-]) is used to define the friction forces on both rake and relief faces as the 
proportion between the friction force on a surface and the normal force to it. As defined hereby, in metal 
cutting, high friction coefficients are observed (around or greater than unity, [1] and others) for models 
where the relief forces are ignored. When considering the forces on the relief face, the obtained value of 
the friction coefficient is usually smaller than the previous case, although still higher than the expected 
friction coefficient between work-piece and drill material. As many studies justify the difference (such as 
[36]) it is generally accepted that there is no equality relationship between the friction coefficient in metal 
cutting and as defined in classical friction laws. Therefore, some studies (i.e. [2]) prefer to define the 
friction force by an independent coefficient (a function of geometrical and kinematics parameters as 
employed for the specific cutting pressure on the rake face – Kc – in [2]). However, as there is no 
theoretical justification to consider different friction coefficients on rake and relief faces, we are assuming 
the two to be equal and constant for a work-piece/drill material combination. The only geometrical 
parameter which we believe it might have an influence on the friction coefficients is the curvature of the 
rake and relief surfaces, due to the helical nature of the rake surface for the twist drills (represented by 
tool T2 in our PhD thesis) and the conical nature of the relief face (although not encountered in the drills 
considered in the current PhD thesis). However, as this curvature exists only for a drill case among the 
drills considered in this study and only for the cutting lip region, we believe there is not enough variation 
of such a parameter to be able to capture its influence in the model at the current stage. Additionally we 
have conducted fitting tests assuming that the friction coefficient is a function of rake angle (a function 
similar to the one considered for the specific cutting pressure) without observing significant 
improvements. Therefore, for both models for the empirical coefficients considered hereby, the friction 
coefficient (Kf) was assumed constant.  
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The specific pressure on the relief face (Kp, [N/mm2]) is usually not employed in cutting force models 
in drilling as the forces acting on relief face are usually ignored. Forces on the relief face are believed to 
be independent on the depth of cut (or axial feed rate in drilling) and are caused by the rubbing action 
between the relief face and the work-piece. As the cutting edge has always a radius, a part of the uncut 
chip area (Au) sweeps under the tool, rather than being cut and removed. This caused the work-piece 
material to be deformed elastically and plastically, causing a pressure on the contact length on the relief 
face. Based on an assumed cutting edge radius and a relief angle the contact length can be estimated as 
described in chapter 3.3. Rubenstein in [30], assumes a constant pressure and shows that for metals the 
value of the specific cutting pressure is less than or equal to three times the yield stress in uniaxial 
tension or frictionless compression. The specific pressure on the relief face (Kp) should be independent 
on the drill geometry, although edge radius, relief angle and the inclination angle will modify the contact 
area on the relief face and therefore the magnitude of the forces on the relief face. The edge radius has 
been assumed constant for all cutting edges, although it was suggested in some studies ([30]) that it 
varies with the rake angle. Although we have tried modeling the specific pressure on the relief face as a 
function of the normal rake angle without observing significant improvements on the accuracy of the 
predicted results a further study on the variation of the edge radius with the rake angle could be an 
improvement to the current model. Summarizing we have considered a constant specific pressure on the 
relief face (Kp) for all variations of the model presented here. 
 
As discussed above, two structures of the empirical coefficients have be presented in the current thesis, 
the only difference between them consisting in different expression for the specific cutting pressure on the 
rake face (Kc – as in table 5.1). Therefore, the two variants will have 3 or 4 empirical coefficients 
respectively. 
 
In addition to the empirical coefficients discussed above, the introduction of a fourth one was suggested 
to relate the chip flow angle (ηc) to the inclination angle. As there is uncertainty as to the chip flow 
direction in composite cutting it can be modeled as in the case of metals where chips are connected and 
continuous, such a solution seemed natural. However, upon implementation of such a coefficient we 
found that the model converges at rather arbitrary value of this coefficient and significantly different even 
for similar drilling cases. In addition the model results were only improved by small margins (as naturally 
happening when introducing a new degree of freedom). Therefore, although we note a need of 
clarification in this direction, we have opted to not include such coefficient in the current model. 
 
The modeling of the cutting forces and the choice of empirical coefficients in our model follows a practical 
approach, considering rather the effects than the driving factors (i.e. a damage model, like the shear 
angle theory developed by Merchant in [1] for metals). Models like the current one are usually referred to 
as “mechanistic” ([3]). A theoretical model to account for the work-piece damage in the case of fiber-
reinforced materials would obviously enrich our understanding of the cutting process and should prove 
more accurate. There might be however needed (and possible) to formulate or to directly develop such 
model in the current framework; for example determining the friction coefficient could allow the calculation 
of the heat generated through friction (which is believed to be the only source of heat in the machining 
process of fiber-reinforced composites, as fracture process does not normally generate such). 
 
In the following table (5.2) the result of a literature survey it is introduced on other solutions employed by 
researchers to express the elementary cutting forces and the configuration and number of their empirical 
coefficients. The list is not exhaustive and is focused mostly for models applied to drilling and/or generic 
orthogonal/oblique cutting models developed for fiber reinforced composites using a “mechanistic” 
approach. Additionally, should be noted a model introduced by Watson in [31], [35], [49], [50] and [51] 
which covers a particular drill geometry (a type of 2-facet twist drill) in extensive detail but uses shear 
angle theory, therefore only applicable to metals. 
 
It can be observed that most models for drilling consider a simplified geometry by employing orthogonal 
cutting ([3] and [4]). Seldom is the direction of the elementary forces defined directly along the tangential 
and axial directions ([3], [4] and [5]) as opposed to our model and [2] where the elementary cutting forces 
are defined normal and tangent to the rake face. Additionally, none of these models consider the forces 
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acting on the relief face. The model introduced by [2] seems by far the most realistic and complex. 
However, their empirical coefficients are defined as functions of 3 factors: normal rake angle (αn), 
magnitude of the tangential velocity (Vt) and depth of cut (tc). Although the first two can be justified by 
arguments introduced previously in the description of the coefficients, the later one is very questionable. 
Further on, this model uses different definition of the elemental forces for the chisel edge region of the 
drill, increasing the number of coefficients to 12. We also note that the cutting angle (μ) is ignored by all 
models along the cutting lips. As this angle is a function of feed rate (f, see equation 3.53), we believe 
that considering its influence in the cutting model, would make unnecessary the use of depth of cut (tc) 
factor. Only [3] is a mechanistic model for drilling applied to composite materials and the results of our 
model will be compared with theirs in the next chapter. 
 

Table 5.2 - State of art in the definition of elementary cutting forces 
Ref. Equations for elemental cutting forces No. of 

empirical 
coeff. 

Notes 

[4] ( ) 5.010, c
a

csZ tBtF αα −⋅=         ([4]-eq.4a) 

( ) c
b

csY tBAtF αα −⋅+= 10,    ([4]-eq.4b) 

4 Drilling model based on 
orthogonal cutting model`; 4 
empirical coefficients: A, B, a, b; 
a constrained to be equal to b; 
the power of tc constrained to 0.5 
and 1 respectively 

[3] ( ) a
unuZ CAKAF ρρ 1⋅=⋅=   ([3]-eq.3a) 

( ) b
utuY CAKAF ρρ 2⋅=⋅=    ([3]-eq.3b) 

4 Based on orthogonal cutting 
model; 4 empirical coefficients: 
C1, C2, a, b; uses normalized 
radial coordinate (ρ) 

[33] ( ) ( ) EDtCtF c
ba

cZ ++⋅= γα α10,  
    ([33]-eq.10) 

( ) c
c

cY tBAtF αα −⋅+= 10,  ([33]-eq.7) 

8 Orthogonal cutting model for 
unidirectional composites; 8 
empirical coefficients: A, B, C, D, 
E, a, b, c 

[5] ( ) +⋅+++= icitctccVitF cctcZ αα 3210,,,  

 αctt tcVcVc 6
2

54 +++ , for α<5˚ 
    ([5]-eq.22) 

( ) tctcZ VdtddVtF 210, ++= , for α>5˚ 
    ([5]-eq.23)

( ) ++++= CLVaataaCLVtF tctcY 3210,,, αα  

 tVaa ⋅++ αα 5
2

4  ([5]-eq.20) 

( ) ibibbiFX 210, +⋅+= αα  ([5]-eq.21) 

19 Drilling model based on oblique 
cutting model; 19 empirical 
coefficients: ai, bi, ci, di (19); CL is 
a parameter for coolant (1 for 
flood coolant, 0 for no coolant); Vt 
is the tangential component of 
cutting speed 
 

[2] 
cnc AKF ⋅=    ([2]-eq.3-17) 
cff AKF ⋅=    ([2]-eq.3-17) 

( )[ ] +++= tcntcn VataaVtK lnln,,ln 210α  

 ( ) tcn Vtaa lnlnsin1ln 43 +−+ α  
    ([2]-eq.3-15) 

( )[ ] +++= tcntcf VbtbbVtK lnln,,ln 210α  

 ( ) tcn Vtbb lnlnsin1ln 43 +−+ α  
    ([2]-eq.3-16) 

12 Similar model for drilling based 
on oblique cutting model (Fc – 
force normal to rake face; Ff –
friction force along the direction 
of measurement of normal rake 
angle – αn – see section 3.4.6); 
10 empirical coefficients: a0-4, b0-4 
+ 2 more empirical coefficients 
for the forces defined separately 
along the chisel edge area. 
 

 



 

117 
 

In the initial stage, our model is calibrated and compared with axial and tangential radial distribution 
curves obtained from experiments through a methodology introduced in chapter 4 and published in [15]. 
Most cutting force models are calibrated on the total thrust and torque forces with the exception of [2] and 
[3] which uses the partial distribution along the cutting lips only. However, they do not present and 
compare the results of their model in comparison with the experimental distribution used for calibration. 
Obtaining reasonable distribution functions is much more complex than obtaining reliable results for the 
total thrust and torque. By fitting our model on both distribution and total values of thrust and torque, we 
will show that very accurate results can be obtained for the total values of thrust and torque if the model is 
fitted on these totals. However, reasonable distribution of the elementary axial and tangential cutting 
forces can only be obtained if fitting is conducted on the experimentally obtained distribution rather than 
using the total thrust and torque values. The disadvantage of this fitting strategy would be that both the 
distribution and total values of thrust and torque only reasonably agree with the experimental data. 
 
As detailed in chapter 4, the experiments were carried out using three different drills (although for 
modeling purposes only two are used and described geometrically in chapter 3.5) on two different work-
pieces (carbon and glass-fiber reinforced composites). Axial feed rate (f – [mm/rev]) and spindle speed (n 
– [rpm]) were varied on four and five levels respectively within practical ranges. The experimental setup 
and planning are extensively discussed in chapters 4.2 and 4.3 respectively. 
 

a) 

b) 
Fig. 5.1 – Sample cutting force measurement during drilling (CFRP, 2-facet twist drill (T2), n=2750rpm, 

f=0.14mm/rev) – a) thrust; b) torque 
 
Figure 4.8 presents a typical thrust and torque curved in its raw and untrimmed form. Figure 5.1 above 
presents another example of thrust and torque curve obtained during drilling experiments in its raw form 

Maximum on raw curve 
Maximum on filtered curve 

Maximum on raw curve 
Maximum on filtered curve 
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and smoothed for obtaining the distribution which is trimmed from entry point to full engagement of the 
cutting edges. This later case-study is a more difficult scenario for post-processing of the experimental 
data, and we introduce it to illustrate a few encountered problems. The cursor indicates the point where 
the cutting lips start to become engaged in cutting. The filtered curve is used to calibrate the model as 
well as for comparison with the model results. The maxima on the filtered (nominal) curves are always 
smaller than on the raw curves and we find that the difference increases with the spindle speed. The 
difference is always larger for torque. 
 
Furthermore, figure 5.2 shows the influence of the cutting parameters over the maximum thrust and 
torque recorded on the raw and filtered curves for drilling CFRP with T2 (2-facet twist drill). Similar results 
are observed for the rest of the work-piece/drill combinations. 
 

a) b) 

c) d) 
Fig. 5.2 – Influence of spindle speed and axial feed on maximum thrust (a,b) and torque (c,d) respectively 

for raw data and filtered curves (CFRP, 2-facet twist drill (T2)) 
 
It becomes clearer that the maximum forces recorded on filtered curves are always smaller than on the 
raw data, and this effect is more pronounced for torque. Furthermore, axial feed rate seems to have a 
clear linear influence on both thrust and torque (visible better on the filtered data), while spindle speed 
has a limited influence on thrust and torque (filtered data). When visible, the influence of the spindle 
speed is not consistent; different trends noted when changing the drill type or the work-piece material.  
 
The cutting force model introduced in chapter 3 (summarized by equations 3.31 and 3.32) is almost a 
linear function of the feed rate with no parameter accounting for the spindle speed. In theory, the 
coefficients can be defined as functions of local velocity (in additions to others as discussed previously in 
this chapter) and therefore account for the influence of spindle speed. The local velocity (which can be 
expressed by eq. 3.52) varies linearly with the radius as well, from almost zero on the drill axis to its 
maximum on the outermost point on the cutting edge. However, as seen from figure 5.2 above and 
figures 4.9 to 4.11 in chapter 4 it was found that the local velocity influences only slightly the filtered 
forces used to calculate the distribution and the distribution themselves at least for the experimental 
domain considered hereby. If such an influence exists we believe that the experimental domain of cutting 
velocities needs to be further extended to capture it properly. Therefore, we have opted to not include the 
local velocity as a parameter in the functions of empirical coefficients. This decision has been supported 
by testing such models without obtaining significant improvement in the model’s prediction capabilities. 
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As a suggestion, the influence of the spindle speed (especially on the maximum recorded values of 
torque in the raw measurement data) could be successfully modeled by a correction coefficient defined as 
a function of the spindle speed, which is however beyond the scope of the current study. 
 
The forces on the relief face are independent of the axial feed rate (f) and represent the intercept (at f=0, 
corresponding to the theoretical case where the drill is only rotating rather than advancing axially as well) 
of the thrust and toque, as in figures 5.2b and 5.2d. For the thrust in the case-study considered above, 
the intercept is about 60 to 80N (ignoring the case of n=500rpm, where the intercept appears to be 
negative, which obviously indicate a measurement error), which is about 40% from the maximum thrust 
recorded at f=0.2mm/rev (corresponding to an approximate depth of cut of 0.10mm). This value is rather 
high in comparison with metal drilling ([37] and others) where about 20% is expected for similar 
conditions. This fact leads us to believe that the forces on the relief face cannot be ignored and therefore 
they were not assumed to be zero, as in many of the cutting force models dedicated to metals and 
previous models for composites. As will be shown later, we believe that considering the forces acting on 
the relief face is the critical aspect that improved the results of the current model in comparison with 
previous mechanistic models applied to composite materials. 
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5.3 Model results and discussion 
 
 
As outlined in the previous sub-chapter, we have tested a large number of expressions for the empirical 
coefficients (Kc, Kf and Kp) from constant coefficients to more complex functions of various parameters 
believed to have an influence on the cutting process. However, only the most representative cases have 
been selected to be introduced here and discussed. 
 
In addition to various functions for the empirical coefficients we have also tested two different fitting 
strategies: (i) on the experimentally obtained distribution curves of axial and tangential elementary forces 
along the drill radius and (ii) on total values of thrust and torque for each experimental case. 
 
The number and selection of experimental cases used to calibrate the model (calculate the coefficients) 
has also been varied. For the case of fitting on the distribution curves, in theory only one experiment is 
sufficient to determine a set of coefficients (statement valid for up to 12 unknowns in the functions of 
empirical coefficients). However, for usable data, at least two experimental cases with varying feed rate 
are required to capture the influence of the feed rate. As the distribution is calculated based on the 
derivative of the thrust and torque curves its variation interval is larger, therefore we recommend to use 4 
experimental cases. From any other number of experimental cases used for calibration from 4 to 20, the 
variation of the solution is minor, although experimental cases where obvious errors in the distribution 
curves are observed should be avoided. For the case of fitting on the total values of thrust and torque a 
minimum of 2 experimental cases are required, but the results proved suitable for even this minimum 
requirement if the cases are considering with varying feed rate. 
 
The empirical coefficients are determined individually for each of the 4 work-piece/drill combinations. 
They are calculated in Labview (using the Levenberg-Marquardt algorithm) to fit either the axial and 
tangential distribution curves or the total thrust and torque values for all 20 drilling cases (see table 4.4) 
for a work-piece/drill combination. We have opted for discussing the results obtained for all drilling cases 
in order to avoid the small variations obtained by using a smaller number and various selections of 
experimental cases.  
 
Table 5.3 centralizes the solutions found for the empirical coefficients for the two variations of the 
empirical coefficients expressions as well as two different fitting strategies for each work-piece/drill 
combinations. 
 

Table 5.3 – Obtained empirical coefficients 
 Fitting on axial and tangential distribution Fitting on total thrust and torque values 
 M0 – constant coefficients 
 CFRP GFRP CFRP GFRP 

T1 
Kc=330.06 [N/mm2] 

Kf=0.560767 [-] 
Kp=2938.45 [N/mm2] 

Kc=325.75 [N/mm2] 
Kf=0.503423 [-] 

Kp=3758.62 [N/mm2] 

Kc=778.65 [N/mm2] 
Kf=0.586807 [-] 

Kp=1830.35 [N/mm2] 

Kc=851.57 [N/mm2] 
Kf=1.00824 [-] 

Kp=581.57 [N/mm2] 

T2 
Kc=279.72 [N/mm2] 

Kf=0.278023 [-] 
Kp=4714.25 [N/mm2] 

Kc=327.33 [N/mm2] 
Kf=0.167523 [-] 

Kp=4114.95 [N/mm2] 

Kc=163.71 [N/mm2] 
Kf=0.62640 [-] 

Kp=3824.54 [N/mm2] 

Kc=143.07 [N/mm2] 
Kf=2.15938 [-] 

Kp=443.24 [N/mm2] 
 M1 – Kc linear function of the sinus of the normal rake angle (Kc=Kc1*(1-sin(αn)+Kc2) 
 CFRP GFRP CFRP GFRP 

T1 

Kc1=406.43 [N/mm2] 
Kc2=-146.34 [N/mm2] 

Kf=0.586435 [-] 
Kp=2779.56 [N/mm2] 

Kc1=341.62 [N/mm2] 
Kc2=-71.91 [N/mm2] 

Kf=0.520918 [-] 
Kp=3562.94 [N/mm2] 

Kc1=-454.92 [N/mm2] 
Kc2=1262.58 [N/mm2] 

Kf=0.580706 [-] 
Kp=1909.99 [N/mm2] 

Kc1=-1211.98 [N/mm2] 
Kc2=2121.28 [N/mm2] 

Kf=1.11683 [-] 
Kp=520.48 [N/mm2] 

T2 

Kc1=435.26 [N/mm2] 
Kc2=-293.81 [N/mm2] 

Kf=0.750408 [-] 
Kp=2810.35 [N/mm2] 

Kc1=499.97 [N/mm2] 
Kc2=-298.63 [N/mm2] 

Kf=0.600504 [-] 
Kp=1694.71 [N/mm2] 

Kc1=399.29 [N/mm2] 
Kc2=-145.77 [N/mm2] 

Kf=0.77615 [-] 
Kp=2269.78 [N/mm2] 

Kc1=84.26 [N/mm2] 
Kc2=96.58 [N/mm2] 

Kf=1.62644 [-] 
Kp=587.26 [N/mm2] 
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A preliminary observation best noticed on the constant coefficients model (M0) is that the values of the 
coefficients vary with both the drill type and the combination of work-piece/drill material. Considering that 
the material of the drills is of similar type (solid-carbide steels for both cases although from two different 
suppliers – see chapter 4.2), the desire was to obtain a set of coefficients valid for a certain work-
piece/drill material combination for any drill geometry (i.e. this objective was not achieved since the 
values of the coefficients vary significantly with the drill type). An argument to justify the current results is 
that the machinability of the two work-piece materials proved to be comparable. The average maximum 
thrust for all tested conditions was only 3% higher for CFRP than GFRP, while the average maximum 
torque was 20% higher for GFRP, and probably due to increased vibrations noted during drilling of GFRP 
material (for further discussion see chapter 4.5). Therefore, we can conclude that there are still aspects of 
the influence of the geometrical and cutting parameters that are not fully understand and modeled before 
obtaining empirical coefficients depending only on the work-piece/drill material combination. 
 
It can also be observed that there are significant differences in the solutions obtained for fitting on the 
distribution and total values of thrust and torque. Fitting on the total thrust and torque values attempts to 
calculate the best coefficients so that the integral of the distribution curves (eq. 3.39 and 3.40) matches 
the maxima of the thrust and torque (fig. 5.1), while fitting on the distribution attempts to match the 
discreet points on the radial coordinate of the axial and tangential elementary cutting forces calculated as 
described in chapter 4.4. A perfect fitting on the distribution curves would theoretically result in perfect 
results of the total thrust and torque values, while a perfect fitting on the total forces would not necessary 
result in suitable distribution curves. When fitting on the distribution curves each point has the same 
importance although when integrating (according to eq. 3.39 and 3.40) different points (regions) will have 
different impact on the total thrust and torque, depending on the size of the region (dr), number of flutes 
(N) and most importantly for the tangential force the radial coordinate (r). Therefore, errors in predicting 
the distribution at various points will have different impact on the total forces, i.e. an error in predicting the 
tangential elementary cutting force component at small radius will have almost zero impact on the total 
force while an error at the outer radius will have a maximum impact. Summarizing, fitting on the 
distribution allows us to obtain relevant distribution curves of the elementary cutting forces while it is 
expected the total thrust and torque values to be less accurate. In the same time when fitting on the total 
thrust and torque values, the maximum forces can be estimated accurately while the distribution are not 
necessary relevant. 
 
Additionally, we observe that for the M1 model and drill T1 when fitting on the total thrust and torque 
values we obtain negative Kc1 values, which can be translated by the fact that the specific cutting 
pressure on rake face is inversely proportional to the sinus of the normal rake angle, contrary to the result 
for the rest of the cases. In the same time we note the large values for Kc2 (the constant), which means 
that the influence of the rake angle is significantly less than for T2 drill (same model and fitting strategy). 
When analyzing fig. 3.26 (normal rake angle variation of both drills with the radius) we note that for the 
most part of the radial domain the normal rake angle for drill T1 remains mostly constant, with significant 
changes only for the small region of the chisel edge and in its close vicinity. As will be discussed later, the 
variation of the normal rake angle for this drill cannot explain the raise in cutting forces noted in stages 3 
and 4. As the total thrust is affected more by the elementary forces in this larger region (in comparison 
with the small chisel edge) and even more the torque (as the points are closer to the outer radius), the 
fitting algorithm probably finds that the current values offer a better solution overall. When fitting on the 
distribution curves, we observe that Kc1 and Kc2 align with our expectation, although, as it will be later 
shown, the total values of thrust and torque are not predicted accurately. As it will be discussed later, we 
believe that there are some geometrical effects for this type of drill (T1) that our model currently is unable 
to capture. 
 
We start by analyzing the results obtained for the 2-facet twist drill, which is extensively studied in the 
literature and although full distribution curves either experimental or predicted were not published there is 
a general knowledge about the proportion of the forces caused by the chisel edge and the cutting lips 
respectively from experimental drilling using pilot holes. When comparing the distributions, as expected, 
only the solutions found for fitting on the experimental distribution have significance, and although 
reasonable for the model with constant coefficients (M0), the best results were obtained using the specific 
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cutting pressure coefficient (Kc) as a linear function of sinus of the normal rake angle (M1). Figure 5.3 
shows a representative case scenario of the cutting parameters (f=0.14mm/rev, n=500 to 5000rpm) for 
the 2-facet twist drill (T2) for both carbon- and glass-fiber reinforced composites. 
 
 CFRP GFRP 

T2 a) 

 
c) 

b) 

 
d) 

 
Fig. 5.3 – Comparison between predicted (M1 model, fitted on the distribution curves) and experimental 

elementary cutting force components distribution along the radius for f=0.14mm/rev, 2-facet twist drill and 
both work-piece materials 

 
Although not perfect, the predicted curves manage to capture fairly well the variation of the cutting forces 
along the radius for this type of drill. The predicted axial elementary force component around the chisel 
edge (r=0.5mm) of the drill seems to be always lower than the experimental results would indicate. In 
theory, it could result that using a power law of the normal rake angle (its variation presented in fig. 3.24) 
could capture this effect better. However, from our trials, such a function will cause the model to converge 
at rather extreme values of the coefficients, resulting in a peak axial force around r=0.5mm (much higher 
than predicted by experiments) and negative towards the outer radius (r=2.8mm). Additionally, we 
observe that the tangential force component is in general closer to the upper bounds of the experimental 
values in the same region (r=0.5mm) and using a power law will cause the overestimation of this force 
component in this region as well. Additionally, it should be noted that for all distribution curves, the 
interval of variation of a point is rather large (as they are calculated as the derivative of the thrust and 
torque entry curves) even for identical drilling cases. In the above figure and later on, we have used 5 
drilling cases with varying spindle speed to illustrate the variation interval. Furthermore, in general the 
variation interval is greater for the experimentally obtained tangential force especially in the close vicinity 
of the drill axis (chisel edge region) due to reasons discussed in chapter 4.5.  
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Previous experimental studies [3] with pilot holes estimate that a percentage usually between 40 to 60% 
of the total thrust force is generated by the chisel edge region for uni-directional carbon fiber reinforced 
composite and various twist drills. Although it is difficult to make an exact comparison as the drill 
geometry and work-piece materials vary, our predicted results for T2 drill are that roughly 45% of the total 
force is generated by the chisel edge for the glass-fiber reinforced material while 35% for the carbon-fiber 
reinforced composite respectively which correspond well with our experimental data. When compared 
with standard twist drills (as the ones employed in [3]), our 2-facet twist drill (T2) has the chisel edge 
inclined with the drill axis which should decrease slightly the loads in this region. It is also noted that the 
previous mechanistic models for both metals and composites, in order to predict such variations, usually 
employ 2 different sets of coefficients for chisel edge area and cutting lip region respectively and even 2 
different force models ([2], [3] etc.). Through the current results we have shown that, at least for 
composite materials it is not necessary to use two different sets of coefficients for the two cutting regions. 
 
It is also interesting to present how our model captures the changes in the distribution with increasing the 
feed rate, one of the most useful features of mechanistic cutting force models. Therefore, figure 5.4 
presents the predicted and experimental results for the axial elementary force component distribution (T2 
drill, glass-fiber reinforced composites and with coefficients determined by fitting the experimental 
distribution – see table 5.3) for drilling cases with varying feed rate (f=0.14mm/rev and f=0.20mm/rev). 
 

Fig. 5.4 – Comparison between experimental and predicted results for axial elementary cutting force 
component distribution along the radius for f=0.14 and 0.20mm/rev (T2/CFRP) 

 
It can be observed that with increasing feed rate the distribution of the axial elementary cutting force 
(valid for the other components as well) does not increase uniformly along the radius. The experimental 
results indicate an increase of the forces in the chisel edge area, but more pronounced in the vicinity of 
the chisel edge on the cutting lips. Our model captures better the increase on the chisel edge area than in 
its vicinity, an effect which can be improved by considering a power law for the specific cutting pressure 
on the rake face (Kc), aspect discussed previously. From the results published in [3] for uni-directional 
composite materials we can observe that the proportion of the forces caused by the chisel edge changes 
with the feed rate, although from the small number of experiments reported it is difficult to establish a 
clear trend. Our overall experimental results detailed in chapter 4.5 show that there is more rapid increase 
of the forces on the chisel edge with increasing feed rate than overall. However, the area in the close 
vicinity of the chisel edge experiences a more dramatic increase, while for the remaining cutting lip, the 
increase is minimal or none-existing. 
 
From figure 5.4 we can also observe the important role of not neglecting the cutting angle along the 
cutting lips region. If the cutting angle was to be assumed zero along the cutting lips (as in all the previous 
cutting force models), a constant offset would have been observed between the two distribution curves 
(corresponding to the two cases with varying axial feed) along the cutting lips. If the cutting angle, the 
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only difference between the two cases would be the uncut chip area, while all the angles affecting the 
cutting forces and their decomposition would have been identical. As the experimental data shows clearly 
that increasing the axial feed will cause an increase of the elementary forces more pronounced at the 
side of the cutting lips bordering the chisel edge, while almost no increase for the rest of the cutting lip; 
we can therefore state that such a variation could only be accounted for by considering the cutting angle 
(μ) in this region, and its effect on all angles involved in forces definitions and decomposition.  
 
Next, in figure 5.5 we present the results obtained for the total thrust and torque for the 2-facet twist drill 
(T2) with the coefficients (structured according to M1) obtained by fitting the distribution curves (see table 
5.3). To calculate these values the predicted distribution curves (as in fig. 5.3) have been integrated 
according to equations 3.39 and 3.40. 
 
The thrust (fig. 5.5a and 5.5b) seems to be predicted accurately although the largest error is noted always 
at the maximum feed rate (f=0.20mm/rev), which can be explained by the arguments discussed 
previously. The predicted results for torque (fig. 5.5c and 5.5d) tend to underestimate the experimental 
values especially at higher axial feeds.  
 
 CFRP GFRP 

T2 a) 

c) 

b) 

d) 

 
Fig. 5.5 – Comparison between predicted and experimental (filtered) results for maximum thrust and 

torque for varying axial feed, T2 and both work-piece materials, M1 fitted on the experimental distributions 
 
The prediction capabilities of our model for the total thrust and torque values can be greatly improved by 
using the coefficients obtained by fitting on the total values of the forces rather than their distributions. For 
the same combination of work-piece/drill as before and using the alternative set of coefficients as in table 
5.3, these results are presented in figure 5.6. 
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 CFRP GFRP 

T2 a) 

c) 

b) 

d) 

 
Fig. 5.6 – Comparison between predicted and experimental (filtered) results for maximum thrust and 
torque for varying axial feed, T2 and both work-piece materials, M1 fitted on the total forces values 

 
We can compare the prediction capabilities of our model with the model introduced in [3], developed for 
standard twist drills drilling uni-directional carbon-fiber reinforced composites as in figure 5.7. The 
magnitude of the forces reported in [3] is significantly greater than our values mainly due to the difference 
in drill diameters (5.6mm in our case while 15.9 and 12.7mm respectively for [3]). It can be observed that 
the [3] model greatly underestimate their experimental results for composite materials. In [3] and [2] the 
same model is applied to metals with better performance. We believe that the main reason for their poor 
performance for composite materials while the model performs well for metals is due to the assumption 
that the forces on the relief face are ignored in both cases. If the forces on the relief face would have 
been ignored, the line uniting our predicted results (in fig. 5.7) would have been forced to pass through 
the origins (thrust equal zero when axial feed is zero). If the slope of the line would have been 
maintained, we would have been obtaining values about 50% of the experiments, similar to their model 
results. In chapter 5.2 the difference between the two models is discussed more widely and arguments 
are presented to justify why the forces on the relief face cannot be ignored in the case of composite 
materials. 
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Fig. 5.7 – Comparison between experimental and predicted results of the current model and [3] 
 
As mentioned in chapter 4.2, the tapered-drill reamer (T2) is a type of drill developed recently specifically 
for drilling composite materials. There is very little literature on its performance that we can relate to, 
except the experimental study in [16] and [22]. Although force values are reported, the study uses thin 
composite plates where full-engagement in not reached with this drill, therefore not easily comparable 
with our results. The geometry of tapered-drill reamer is rather different from any other type of drills 
employed in metal cutting and no analogy could be made with other drills. 
 
The experiments reported in chapter 4.5 show that the distribution of the elementary cutting forces has a 
totally different pattern than for the previously analyzed drill. Using the M1 model fitted on the 
experimental distribution of the elementary cutting forces, the following curves (fig. 5.8) were predicted for 
the tapered-drill reamer case. 
 
It is observed that the distribution of the elementary cutting forces along the radius is not captured 
completely for this drill; especially during stages 3 and 4 of the engagement (from r=1.485mm to the outer 
radius – see chapter 4.4 and fig. 4.8). None of the variations of the expressions for the empirical 
coefficients tried (and discussed in chapter 5.2) managed to improve the results. Furthermore, the 
variations of the geometrical parameters as introduced along chapter 3.5, do not justify a drastic increase 
in the axial force component during these stages, such as recorded in the experiments.  
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 CFRP GFRP 

T1 

 
a) 

 
c) 

b) 

 
d) 

 
Fig. 5.8 – Comparison between predicted (M1 model, fitted on the distribution curves) and experimental 
elementary cutting force components distribution along the radius for f=0.14mm/rev, tapered-drill reamer 

and both work-piece materials 
 
The following 2 hypotheses are proposed to justify this behavior, although at the current stage they 
cannot be accounted for in the model: 
(i) The transition from stage 3 to 4 is the theoretical point of engagement of the secondary pair of 

flutes (see fig. 4.6a). It is however probable that the secondary flutes will not engage suddenly (as 
assumed) but rather in a certain time interval, which might vary with the feed rate (depth of cut). 
This engagement interval would be probably captured in stage 3, where currently we consider only 
2 flutes to be engaged. Additionally, the secondary flute seems to be (visually) poorly prepared for 
cutting (small relief angle) prior to the theoretical point of engagement, which could result in higher 
forces than usual. This hypothesis could help explain the rather large values recorded consistently 
for the second point of the stage 3, but fails to explain the rather large values recorded for stage 4 
as well. 

(ii) From stage 2 to 3 (see fig. 4.6) there is a drastic change in the point angle (see fig. 3.21). Although 
this change is reflected in the variation of the 2nd Euler angle of rotation (τ, see fig. 3.23) which 
modifies the proportion between the axial and tangential elementary forces, the normal rake angle 
(αn) and the inclination angle (i) which influence the efficiency of the cutting do not vary much. 
However, the orientation of the cutting lip changes also with respect to the fibers orientations of the 
composite materials. As composite materials are highly anisotropic, it might be expected that the 
material will behave differently and the specific cutting pressure (Kc) might experience a sudden 
change. However, the current model does not take into account the relative orientation between the 
cutting lip and cutting direction and the fibers orientation. Although it is often postulated that the 
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fiber direction might influence the cutting forces, no conclusive study (for bi-directional fiber 
composites) was previously published, based on which we could adapt our model to. We believe 
that such a dependency is best studied in orthogonal or oblique cutting experiments, rather than 
directly in drilling where the changes in the relative orientation vary discreetly. 

 
The experiments also show that there is a large variation interval of the elementary forces for the stages 3 
and 4 of T1 drill. Further studies should also attempt to improve the reliability of the experimentally 
obtained distribution curves, following the suggestions made in chapter 4.5. 
 
Although the fitting method on the distribution curves does not yield satisfying results, when fitted on the 
total thrust and torque values, the model becomes very accurate as outlined in figure 5.9 (the coefficients 
are reported in table 5.3). 
 
 CFRP GFRP 

T1 a) 

c) 

b) 

d) 

 
Fig. 5.9 – Comparison between predicted and experimental (filtered) results for maximum thrust and 
torque for varying feed rate, T1 and both work-piece materials, M1 fitted on the total forces values 

 
Summarizing, in the current chapter we have shown the excellent capabilities of our mechanistic model to 
predict the total thrust and torque forces in drilling fiber reinforced composites. Additionally, the model can 
reasonably predict the distribution of the axial and tangential elementary forces along the drill radius for 
two different drill types. We are confident that the model can be applied to different types of drills as long 
as they can be described mathematically and also to different work-piece materials including metals. By 
improving the accuracy of the experimental distribution curves the influence of various geometric and 
cutting parameters over the empirical coefficients can be studied and implemented in the model, thus 
improving the prediction capabilities of the elementary cutting forces distribution. 
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Chapter 6 
Conclusions 
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6.1 On experimental analysis of the drilling process 
 
 
Through the experimental analysis presented in detail in chapter 4, it was shown that a greater amount of 
information can be extracted from simple cutting force measurements during drilling experiments. The 
distribution of the drilling loads (axial and tangential elementary force component) along the drill radius (or 
on each ply) is particularly useful for drilling analysis of layered structures such as long-fiber reinforced 
composite laminate materials, where inter-laminar damage (delamination) is likely to occur. Furthermore, 
this technique can also be used in solving problems related to drilling metals, such as the optimization of 
the drill geometry or the minimization of the exit burrs when drilling soft metallic alloys. 
 
It was shown that the maximum loads occur on the plies in contact with the tool tip (see figures 4.12 and 
4.13). It is the moment when the drill tip exits the work-piece that is very likely to initiate exit delamination. 
The consideration of the possibility that the initial inter-laminar crack extends beyond the boundaries of 
the future hole (generating measurable delamination), or additional propagation occurs as the drill 
continues its path towards exiting the work-piece is beyond the scope of the current study. However, it is 
believed that the results presented hereby can be used for more accurate simulations of the delamination 
defects during drilling by numerical models (such as [12, 14]). The experimentally obtained distribution (or 
by the model introduced in this thesis) can be used as inputs in a numerical simulation of the drilling 
process to study the behavior of the work-piece under the drilling loads (i.e. study the onset and 
propagation of the delamination defect). A recent numerical simulation of drilling published in [52] 
imposes a drill movement onto a work-piece (composite) and uses failure criterions to remove material, 
while recording resulting forces and delamination amounts. The authors state that it takes 4 months of 
simulation for a drilling case, which is to be expected from such a brute approach in modeling the drilling 
process. Implementing the drilling loads (obtained either experimentally or by the model presented in the 
current thesis) will most likely significantly decrease the computation time and probably provide better 
accuracy in the force modeling. 
 
Although somewhat less accurate, it was shown that the distribution of the tangential forces as well can 
be determined. No delamination model currently considers the effect of the tangential forces (if any), but 
they are believed to play a key role in causing the entry delamination, which cannot be explained by only 
considering the axial loads. 
 
For lowering the critical loads, it was shown (fig. 4.12 and 4.13) that the geometry of the drill (especially 
the geometrical configuration of the chisel edge area) and the axial feed rate (f) are the most important 
parameters. Lowering the size of the chisel edge (as for the tapered drill reamer - T1) or performing an 
additional web-thinning grinding (as for the 8-facet twist drill T3) will make the cutting in close vicinity of 
the tool axis more efficient and therefore lower the chances of delamination onset. The maximum loads, 
but also the overall cutting forces distribution, seem to be directly proportional with axial feed rate. Within 
the experimental domain, the spindle speed has only a limited influence on the cutting loads distribution; 
therefore this could be used as a means to increase productivity when needed without increasing the 
chances of delamination. When analyzing only the maximum values of thrust and torque (as in table 4.5), 
spindle speed seems to have an increased importance, especially on the value of the torque. It is 
believed that this effect is due to the increased amplitude around the nominal values at higher rotational 
speeds, an effect which is diminished by the smoothing of the data performed in order to obtain the 
distribution. These results of the cutting parameters’ influences over the extent of delamination defect 
correspond to the conclusions of Davim in [46] and other researchers. 
 
The mechanical properties of carbon-fiber reinforced plastics are better than those reinforced by glass-
fiber (see table 4.1). However, the machinability (the ease with which a material can be machined) 
appears to be comparable. Overall, the average maximum thrust over all tested conditions is 3% higher 
for CFRP than GFRP, while the average maximum torque is 20% higher for GFRP (which is visible also 
for the small selection of experimental results reported in table 4.5). Small, powder-like chips were noted 
when drilling CFRP composites, while coarser and, under certain conditions, long chips were observed 
during GFRP drilling. 
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The current technique for obtaining the cutting forces distribution is the most reliable in analyzing the axial 
loads. Problems were encountered in its application to high spindle speeds (over 5000rpm) and low feed 
rates (0.02-0.08mm/rev). To extend the investigation to the high-speed domain more reliable torque 
measuring equipment must be employed. As alternatives, for experimental investigations, it is 
recommended to use an increased feed rate or a higher diameter tool. 
 
The experimental results of maximum thrust and torque experience similar trends with the variation of the 
cutting parameters as reported by others reported in literature (see table 4.5 and chapter 4.5 for 
discussions). The method of obtaining the cutting forces distribution from simple drilling experiments is 
pushing the boundaries of the state-of-art in the field of experimental investigation of the drilling process 
for both fiber-reinforced composites and other materials to provide new insights into the process. The 
elementary cutting forces distribution during drilling is for the first time presented and analyzed. We note 
that the spindle speed plays a diminished role (fig. 4.9, 4.10 and 4.11), due to the fact that apparently it 
only affects the amplitude of the nominal force readings, and the nominal values (rather than the raw 
data, see fig. 5.1) are differentiated to obtain the distribution.  
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6.2 On modeling the cutting forces in drilling 
 
 
The main objective of the current PhD thesis was to build a model for predicting the cutting forces in 
drilling of fiber reinforced composites with an emphasis on their distribution which was shown to be of 
interest for this particular type of material in chapter 1. Unlike metals, where the structure is isotropic, 
composite materials have a strong anisotropy, leading to different responses under drilling loads at 
various points within their structure, often resulting in internal defects (i.e. delamination). 
 
A “mechanistic” model for predicting the cutting forces occurring during drilling of fiber reinforced 
composites, focused at obtaining reliable information on their distribution along the cutting edges of the 
drill was introduced in chapter 3. The “mechanistic” term refers to the definition of the elementary cutting 
forces along the normal and friction directions on both rake and relief faces, considering the oblique 
cutting model and using experimentally obtained coefficients. 
 
The mathematical representation of drill geometry in the scope of cutting force modeling has been revised 
and improved. Most notable is the consideration given to the cutting angle (μ, an effect of the movement 
of the drill along its axis) and its influence across all the geometrical parameters describing the oblique 
cutting force elements and the elementary cutting forces decomposition to obtain the thrust and torque 
especially in the cutting lip region. The importance of this improvement is presented in fig. 5.4 and 
discussed in chapter 5.3 and allows us to capture the increase of the elementary cutting forces in 
particular regions of the drill when axial feed is increasing. Further clarifications on the underlying 
assumption used to derive the geometrical parameters of the element along the chisel edge are also 
given, and a new derivation is presented for a particular case (of the inclined chisel edge with respect to 
the drill axis).  
 
Through experimental work introduced in chapter 4 and published in [15] as well as through model results 
(chapter 5.3), it was shown that the drill geometry plays a very important role in the distribution of the 
drilling loads along the cutting edges of the drill and that chances of internal defects could be minimized 
by optimizing the drill geometry. The current model manages to capture most of the influence of the 
geometry over the resulting drilling loads, proven by the fact that good results are obtained with only three 
constant coefficients (as detailed in chapter 5.2). However, as the coefficients are proved to be drill type 
dependent we believe that we were not able to capture all the geometrical influence on the development 
of the cutting forces (see discussion in chapter 5.3). The number of coefficients has been kept to a 
minimum and they have been selected to be as intuitive as possible for practical reasons of simplicity. 
The accuracy of the model can be further improved by considering the coefficients as functions of other 
parameters currently ignored (cutting velocity, rake angle etc.). It is also noted that only one model and 
set of coefficients are used for both the chisel edge and cutting lip regions of the drill, unlike many of the 
previously introduced drilling force models in both metal and composite cutting (which will need to employ 
drilling with pilot holes for model calibration).  
 
The introduction of the coordinate system transformation matrix to easily relate oblique cutting to drilling 
(chapter 3.2) and allowing for a higher degree of generalization of the geometrical parameters of the drills 
(see chapter 3.4 and 3.5) was also found to be of practical importance. The same transformation matrix 
and mathematical model for drill geometry has been successfully used to apply the cutting force model to 
the drilling cases with two very different drill types (see chapter 3.5), showing the flexibility of the method. 
 
The model has been calibrated for the cutting force distribution rather than the total thrust and torque 
forces in order to obtain reliable distribution functions (chapter 5.2 and 5.3). This method also has the 
potential to decrease the number of experiments needed to calculate a set of empirical coefficients, 
although the challenge lies in obtaining reliable distribution curves. For improving the accuracy of the 
model in predicting the total values of thrust and torque, the model can also be calibrated on these total 
values. Both calibration methods are proven to be having prediction capabilities much better than the 
previous cutting force models [3] developed for composite materials as shown in fig. 5.7. We believe that 
the foremost reason for this improvement is the consideration of the forces acting on the relief face. This 
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improvement has been obtained in the same time as the number of empirical coefficients has been 
decreased. 
 
Several assumptions have been made (the “mechanistic” structure of the elemental cutting forces due to 
the lack of a more suitable theoretical model like the shear-angle model in metal cutting; the chip flow 
angle etc.) which deserve to be addressed and improved in further research efforts. 
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6.3 Outlook 
 
 
The work presented in the current thesis was initially planned to be only a first part of a more extensive 
study focused on delamination-free drilling of fiber reinforced composites. The elementary cutting forces 
distribution was to be used in a numerical simulation model of the drilling process able to capture the 
onset and propagation of the delamination defect and an optimization tool for selecting the cutting 
parameters and the drill type for delamination-free drilling was initially proposed. These objectives 
however can be still achieved by further studies. The conclusions of the current thesis supports the fact 
that significant improvements towards delamination-free drilling of fiber reinforced composites can be 
achieved by selecting an appropriate drill or developing novel drill designs for composite materials, while 
the choice of drill should be correlated with the cutting parameters selection for improving production 
time. 
 
The cutting forces prediction model can be further developed to take into consideration the thermal 
aspects of the drilling process and probably drill temperature prediction models can be obtained. Such 
insights could prove valuable in studying the tool wear, another major problem that machining fiber 
reinforced composites is facing. As the heat is believed to be mostly generated by friction between work-
piece and tool, we believe that such a model could be fairly easily developed starting from the current 
model for predicting the cutting forces (including the friction forces), although a more important challenge 
would be to validate experimentally the predicted temperature field. Probably, the powder-like chips 
obtained when machining fiber reinforced composites are not suitable for evacuating the heat generated 
during cutting and temperature build-up occurs on the tool edges. 
 
The modeling of the cutting forces could be also improved. There is currently a need for a fracture-based 
cutting force model which promises to better capture the particularities of machining fiber reinforced 
composites and brittle materials. Such a model will most likely be developed for orthogonal and oblique 
cutting, but could be later implemented in a drilling model using developments presented in the current 
thesis. A method to correlate the cutting direction with the fiber orientation is also desired for drilling and 
for other machining processes; although this relationship should also be captured in expressions of the 
elementary cutting forces (either if the current mechanistic approach is employed or a new theory based 
on fracture mechanics is proposed). 
 
A lot of work is needed to model more drill geometries (or features) mathematically to extend the usability 
of the current model or others alike. Such work should be conducted in close collaboration with drill 
manufacturers, as information about the operations needed to obtain certain drill geometries is not 
available to the public. Such partnerships could also undertake optimization studies of the drill geometry; 
as such studies need also consider other functional properties of the drills (i.e. stiffness, centering 
capabilities, buckling resistance etc.) besides the cutting efficiency. The tools and methods for 
experimental analysis of the drilling process can also be improved. Several suggestions in this respect 
have been made in chapter 4.5. 
 
Summarizing, there are important steps that could and probably will be undertaken in the next years to 
optimize the drilling process in general and to better adapt it to fiber reinforced composites or other novel 
materials. As the machining processes have the disadvantage of generating important mechanical and 
thermal loads upon the work-piece, and drilling in particular along the weakest direction of the composite 
plates, special attention should be given to new and non-conventional processes to obtain hole-like 
features in fiber reinforced composite plates. Among such processes, the author believes that sand-
blasting (or known as powder-blasting) could satisfy many of the particular demands required for making 
such features in composite plates. 
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