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Abstract 

Decision-making in an uncertain environment is driven by two major needs: exploring 

the environment to gather information or exploiting acquired knowledge to maximize 

reward. The neural processes underlying exploratory decision-making have been mainly 

studied by means of functional magnetic resonance imaging, overlooking any 

information about the time when decisions are made. Here, we carried out an 

electroencephalography (EEG) experiment, in order to detect the time when the brain 

generators responsible for these decisions have been sufficiently activated to lead to the 

next decision. Our analyses, based on a classification scheme, extract time-unlocked 

voltage topographies during reward presentation and use them to predict the type of 

decisions made on the subsequent trial. Classification accuracy, measured as the area 

under   the   Receiver   Operator’s   Characteristic   curve   was   on   average 0.65 across 7 

subjects. Classification accuracy reached a plateau for each of the subjects after ~510ms 

on average. We speculate that decisions were already made before this critical period, as 

confirmed by a positive correlation with reaction times across subjects. On an individual 

subject basis, distributed source estimations were performed on the extracted 

topographies to statistically evaluate the neural correlates of decision-making. For trials 

leading to exploration, there was significantly higher activity in dorsolateral prefrontal 

cortex and the right supramarginal gyrus; areas responsible for modulating behavior 

under risk and deduction. No area was more active during exploitation. We show for the 

first time the temporal evolution of differential patterns of brain activation in an 

exploratory decision-making task on a single-trial basis. 
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1. Introduction 

In various situations humans are faced with the need to make decisions in order to 

maximize their potential outcome. Often decisions have to be made in an uncertain 

environment and are therefore driven by the need to either explore the alternative 

options or to exploit any acquired information. Subjects need to alternate between these 

two behaviors as information gathering alone does not necessarily lead to the optimal 

decision, whereas simple exploitation of the acquired knowledge may leave unexplored 

other options. This kind of behavior has been studied in the context of reinforcement 

learning theory through the n-armed bandit paradigm (Suton and Barto 1998; Cohen et 

al., 2007), where subjects need to repeatedly decide among n-different options, each 

providing a different reward, chosen from a probability distribution.  

Neuroimaging evidence based on the n-armed bandit task has highlighted the role of 

anterior frontopolar cortex and anterior intraparietal sulcus in exploratory decisions 

(Daw et al., 2006). More generally, the prefrontal cortex and the anterior cingulate 

cortex have been repeatedly reported to be involved in decision-making under 

uncertainty (Hsu et al., 2005; Yoshida and Ishii, 2006; Hampton   and  O’Doherty   2007;  

Rushworth and Behrens 2008; Seo et al., 2009). Discrimination between 

exploratory/exploitatory decisions has also been documented using alpha and beta 

band EEG activity (Bourdaud et al., 2008).  

However, the temporal aspects of decision-making still remain under-explored. In the 

present study we aim at identifying how early in time the relevant generators start 

differentiating their responses in order to eventually lead to an exploratory or 

exploitatory decision. It is known that EEG responses start differentiating according to 
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the   subjects’   decisions   already   from   the   presentation   of   reward, at an average across 

trials and subjects level (Cohen and Ranganath 2007). Modulations of the EEG responses 

following reward presentation are also present at a single-trial level (Philiastides et al., 

2010), allowing to discriminate between switch/stay decisions, although the temporal 

aspects of this discrimination are not yet explored.  

In the present study, in order to investigate fine-grained temporal information, we 

carried out an EEG experiment while subjects were facing the 4-armed bandit problem 

with four classes (Daw et al., 2006; Bourdaud et al., 2008). In such a high-level cognitive 

task, inter-subject variability cannot be neglected as individual subjects employ different 

strategies (Daw et al., 2006), an effect also linked to genetic polymorphisms (Frank et al., 

2009). 

We therefore carried out analyses at the single-subject level, using a classification 

scheme, which allows to discover the neural correlates underlying decision-making that 

can best predict  subjects’  behavior  (see  Hampton  and  O’Doherty,  2007  and  Bourdaud  et  

al., 2008, for similar approaches based on functional magnetic resonance imaging –fMRI- 

and EEG, respectively). The main difference here is that prediction is not the goal of the 

study per se as in Bourdaud et al., 2008, but rather a strategy for evaluating statistically 

when enough information is available for accurately classifying future decisions, as 

measured by EEG.  Without making explicit assumptions about the neural underpinning 

of decision-making, we consider voltage topographies that best discriminate exploratory 

and exploitatory behaviours in a time-unlocked manner.  

Classification based on voltage topographies has been reported in lower-level tasks in 

the visual and auditory domains (De Lucia et al., 2007; Murray et al., 2009; Tzovara et al., 

2011). Here, we show in a more challenging context that EEG topographies can 
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accurately predict behaviour with the advantage of being neuropysiologically 

interpretable: any change in them is the result of a change in the underlying brain 

generators.  

 

2. Materials and Methods 

2.1 Experimental paradigm 

2.1.1 Participants 

Seven healthy individuals (2 females), aged from 25 to 27 years (mean age 26.4 years), 

participated. Data from these individuals have been previously published in an 

investigation on the role of EEG oscillatory activity on single electrodes during the 

exploration – exploitation task (Bourdaud et al. 2008). In the present study we further 

analyze the temporal aspects of these data, in association to reward evaluation.  

2.1.2 Procedure and Task 

The experimental protocol was adapted from a similar fMRI study (Daw et al. 2006). 

Participants were sitting in front of a computer screen where four squares were 

displayed representing four slot machines (Figure 1a), where each machine corresponds 

to a bandit arm. They were instructed to fixate on a red dot at the center of the screen to 

reduce ocular artifacts. On each trial participants had to choose one machine by pressing 

a key with their index or middle finger on the corresponding hand (left hand for 

machines 1 and 3, and right hand for machines 2 and 4). The payoff of the selected 

machine was displayed one second after the key press and remained on display for 

another second, followed by the beginning of a new trial. Participants were asked to 
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select the machines so as to maximize their total gain (i.e., sum of individual payoffs) 

over a session of 400 trials. Three sessions were recorded for each participant. 

The payoff of each machine, a numerical value between 0 and 100, was drawn from a 

Gaussian distribution whose mean changed slowly across the experiment. Before the 

experiment, nine random but common across participants examples of the payoff 

evolution for all the machines were shown to each of them (for such an example see 

Figure 1b). Participants,   knowing   that   the   machines’   payoffs   were   not   static,   had to 

regularly update their knowledge about them and were therefore encouraged to 

explore.  

2.1.3 EEG acquisition 

Continuous 64-channel EEG was acquired through a Biosemi Active II system with a 

sampling rate of 2048 Hz and was referenced to the CMS-DRL ground, which functions 

as a feedback loop driving the average potential across the electrode montage to the 

amplifier zero. EEG recordings were not performed inside a faraday cage, so as to ease 

reproducibility of any findings for possible future online applications in real-life 

conditions. The acquired signal was filtered offline by an eighth-order low-pass 

Chebyshev Type I filter with a cutoff frequency of 205 Hz and down-sampled to 512 Hz. 

The filters were applied in both the forward and reverse directions to remove all phase 

distortion, effectively doubling the filter order. In addition, electrooculogram was 

recorded using two electrodes located below and at the outer canthus of the right eye.  

2.1.4 Preprocessing 

Trials were extracted with respect to the display of payoff, spanning 100 ms before the 

display and 780 ms post-stimulus onset (Figure 1a, red thick line). Trials with blinks or 
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eye movements were rejected off-line. An artifact criterion of ±70 µV was applied at all 

electrodes, and each EEG epoch was also visually evaluated. Data from noisy electrodes 

from each subject and condition were interpolated using three-dimensional splines 

(Perrin et al., 1987). Each subject's data were 40 Hz low-pass filtered. No baseline 

correction was applied. Data at all time-instances were normalized by their 

instantaneous Global Field Power (GFP; Lehmann and Skrandies, 1980; Koenig and 

Melie-García, 2010) to eliminate any strength influence. 

2.1.5 Behavioral model  

A behavioral model is required to label each trial as corresponding to either an 

exploratory or exploitative decision. Here, we use the same behavioral model proposed 

in Daw et al. 2006 and Bourdaud et al. 2008, involving two steps for every trial: First, it 

provides an estimation of the payoff that users expect to receive from each machine and 

in a second step it estimates which machine subjects are supposed to choose. In the 

latter step each subject is considered separately in order to account for inter subject 

variability.  

Specifically, for the payoff tracking we use a Bayesian linear Gaussian rule (Kalman 

filter) whose parameters are computed using the available data from all subjects, while 

for the machine selection we use a softmax rule, separately applied for each of the 

subjects. In both steps, we estimate the required parameters by maximizing the model 

likelihood with respect to the subjects’ choices. 

In   order   to   label   the   subjects’   decisions   as   exploration   or   exploitation, we use the 

estimated payoffs of all the machines. When subjects choose the machine corresponding 

to the highest estimated payoff, their decision is labeled as exploitation. However, when 
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they choose the machine that did not correspond to the one with the highest estimated 

payoff the decision is labeled as exploration, but only if this reward differs from the 

highest one by a threshold value (set to 4).  Only exploratory trials corresponding to a 

machine change and exploitatory corresponding to a machine stay are kept for further 

analyses, in a similar way as was applied in another EEG study using the same task and 

subjects (Bourdaud et al., 2008). We used here exactly the same behavioral model in 

order to obtain comparable results.  

In the following, we use EEG activity during reward evaluation of trial n-1 to predict the 

subject’s  choice  in  trial  n. For that reason, we split the trials in conditions based on the 

label of the following decision. For example, trials referring to the exploration condition 

include the period of reward evaluation from trials preceding the actual exploratory 

decision. Overall the two categories (exploration and exploitation) were highly 

unbalanced and in order to avoid overfitting one of the two, we consider the same 

number of trials for both conditions by randomly selecting exploiting trials so as to 

cover the whole time-course of the experiment. 

 

2.2 Average ERP analysis 

We first examine whether there are any time-locked temporal periods, common across 

subjects, during which the relevant neural generators differentiate their responses 

between exploration and exploitation. To this aim, we compute event-related potentials 

(ERPs) by averaging peri-stimulus epochs. We then calculate the global dissimilarity 

(Lehmann and Skrandies, 1980), time-point by time-point, between exploratory and 

exploitatory trials. Global Dissimilarity computes configuration differences between two 
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electric fields, independent of their strength and is statistically analyzed by applying a 

Monte Carlo bootstrapping analysis procedure, colloquially known as topographic 

ANOVA (TANOVA; Murray et al., 2008). Electric field changes forcibly follow changes in 

the underlying brain generators, so the TANOVA analysis is a way of determining 

whether and when the generators of the two types of decisions differ statistically. 

Moreover, we examine the relevance of the temporal intervals identified from the 

TANOVA for predicting   the   subjects’   decisions   on   a   trial-by-trial level. We use an 

analogous approach to our single-trial analysis (that will be described bellow), by 

computing the spatial correlation of the voltage topographies observed at the average 

ERPs for exploration and exploitation with the topographies observed at the same 

latency at the single-trial level. Each trial is classified as belonging to exploitation if 

across the time interval identified by the TANOVA its topographies correlate more with 

the topographies observed on the exploitation condition; otherwise it is classified as 

exploration.  

 

2.3 Single-trial analysis 

Our first goal through the single-trial analysis is to identify those features of the EEG 

signal   that   best   account   for   the   subjects’   decisions   on   a   trial-by-trial basis. For this 

purpose we use a classification scheme based on single-trial voltage topographies, 

requiring minimal a priori assumptions (De Lucia et al., 2007; Murray et al., 2009; 

Tzovara et al., 2011). We hypothesize that there exists at least one set of underlying 

generators (or voltage topographies) per experimental condition (i.e. exploration or 
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exploitation) responsible for the subsequent decision. However, although there could 

exist more than one set of generators, our analysis is refined so as to detect exactly one.  

We develop an algorithm that extracts the two voltage topographies that best predict 

the  subjects’  decision based on modeling their statistical distribution of the entire set of 

single trials of each of the two conditions (see 2.3.1Model Estimation). Due to the nature 

of decision-making phenomena, these discriminant topographies are rather unlikely to 

be detected locked in time across trials, therefore our algorithm operates independently 

of the time point at which a given topography occurs. We select these voltage 

topographies by splitting the entire dataset for each subject in ten subsets of single-

trials. We carry out voltage topography estimation using nine splits of the data (on 

average 113 trials per subject; Training dataset), and test their prediction accuracy on 

the split that was left aside (on average 12 trials per subject; Test dataset). This 

procedure provides an estimation of the best discriminant topographies and an 

indication of the average prediction accuracy based on the test datasets. Finally, we 

further validate the prediction algorithm on a validation dataset. Trials used for the 

validation were kept separate from those used for estimating the two discriminant 

voltage topographies (on average 12 trials per subject). This validation dataset provides 

an indication of whether it is possible to generalize our findings not only on the test 

trials, but also on completely new data with similar levels of accuracy.  

At a second stage we aim at detecting, for each subject separately, the time-period along 

which the underlying generators have been sufficiently activated to lead to a correct 

prediction of the subsequent decision, across trials. This analysis gives an indication of 

the time-period by which the decisions have already been made across trials. 
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2.3.1 Model estimation  

The first step in the single-trial analysis comprises a modeling of the ensemble of 

topographies in the training dataset, for each experimental condition separately. All 

available topographies are pooled together, without taking into account their temporal 

order and are modeled using a Mixture of Gaussians Model (GMM) in a 64-dimensional 

space (since EEG was recorded using 64 electrodes). The technical details of the GMM 

implementation have been reported elsewhere (De Lucia et al., 2007; Murray et al., 

2009; Tzovara et al., 2011). Through this modeling procedure we can cluster all the 

recorded topographies in Q Gaussians in total. The mean of each Gaussian is a 

topography itself. Therefore, using the Gaussians we can extract a few representative 

topographies for the whole dataset. In the following, we will refer to the means of the 

Gaussians as template maps. The modeling of the data is performed separately for the 

two conditions, and we therefore obtain one set of template maps per experimental 

condition. We make an a priori  hypothesis about the total number of Gaussians in the 

model and we then optimize it so as to achieve the best prediction accuracy (a point to 

which we will return below). 

In order to assess the degree to which each topography is represented by the template 

maps within one model we use the posterior probabilities: 

 

(1) 

Where  refers to a recorded topography,  to a particular template within the GMM, 

 to the unconditional density function and  to the prior probability of the 

Gaussian k. 
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Our goal is to identify the pair of template maps that best discriminates between 

exploratory and exploitatory decisions.  For this purpose, we use the Bayes Factor 

(Raftery 1995): 

 

(2) 

where  1 is the Bayes Factor at latency h, for the t-th trial, and  is the observed 

topography of the t-th trial, at latency h.   and refer to the k-th Gaussian 

(or template map) within the GMM generated for exploitation and to  the  k’-th Gaussian 

within the model for exploration condition. k and  k’  range from 1 up to the total number 

of Gaussians in each of the models. The Bayes Factor is computed in the same way for 

topographies belonging to both conditions (see Figure 2 for an example).  

For all possible combinations of the template maps in the two models, we compute the 

Bayes Factor at every latency of every trial. Thus, we obtain a measure of the confidence 

with which we can assign a specific observation to the template map of the model for 

exploration or to the one for exploitation. A value of Bayes Factor at a specific latency 

and trial greater that 1 suggests that the topography recorded at that latency/trial is 

more likely to be represented by the template map of exploitation, and a value lower 

than 1 by exploration (see Equation 2). 

As discriminant function we consider the average of the  values along the trial: 

 

                                                           
1
 For  simplicity  we  do  not  include  k  and  k’  in  the  notation  of  the  left  side  of  the  equation  

2. 
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(3) 

where L is the length of the trial in time-points.  provides information about the 

relative degree of presence in time of two topographic maps, no matter at which specific 

latency within the trial they occur. At this stage the discriminant function is only 

computed  for  the  overall  trial,  (for  L  equal  to  the  trial’s  length).  However, at a later stage 

we compute an analog of this function for varying values of L, in order to investigate the 

temporal aspects of decision-making (see 2.3.3 Relevant time-periods for decision-

making). 

Our first goal is to identify two template maps, one that reflects the neural correlates of 

exploratory decisions and one of exploitatory. For this purpose we select within the 

computed GMMs those two maps that provide the highest levels of discrimination in the 

training dataset, using  as a discrimination function. The selection is done in the 

training dataset and then confirmed in the testing dataset, by only using those two maps 

for performing classification (see below). 

2.3.2 Model selection and Classification accuracy based on the overall trial 

In order to classify new trials from the test dataset, we compute their  for the two 

maps that have been identified from the training. In general, we measure classification 

performance as the area under the Receiver Operator Characteristic Curve (AUC; Green 

and Swets, 1966). The selection of the maps and the classification are repeated ten 

times, for every split of the data and the final values of AUC reported are the average 

values across the ten splits. 
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To define chance levels, we randomly shuffle the true labels of the test trials and then 

perform classification. This is repeated 100 times and chance levels are defined as the 

average AUC over these randomizations.  

We remind the reader that our algorithm requires an initial assumption about the total 

number of Gaussians in the models. To select this value we generate multiple models for 

each condition, with varying total number of Gaussians, ranging from three up to eleven. 

The whole procedure described above is repeated for every possible combination of 

models between the two conditions, providing us different values of classification 

accuracy. Finally, we select the pair of models that maximizes the mean AUC across the 

ten splits of the data.  

Finally, in order to obtain a more realistic measure of the performance of our method we 

perform one class classification on completely new trials, not used in any point 

(training/testing) so far. Due to the limited amount of trials for exploration we were 

obliged to use all of them for training the models. Therefore, the validation dataset 

consists only of exploitative trials. Using the  of the trials of the training datasets, we 

define the optimum threshold for discriminating between the two conditions for every 

data split. We compute the average ratio of true positives in the validation and in the test 

dataset and we compare the two for estimating a general classification performance. 

 

2.3.3 Relevant time-periods for decision-making 

Using the same number of Gaussians that has been selected as explained above, we 

further investigate the temporal behaviour of the extracted topographies. For each trial, 

we consider the expanding average of the Bayes Factor (ABF; Equation 4): 
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(4) 

where t refers to the t-th trial and  to a  generic latency within the trial. We compute 

for every time-point  within a trial, or the average of the Bayes Factor from the 

beginning (time-point 1) up to  , across trials. The ABF value is the equivalent of  

(Equation 3), but computed only up to a time-point  , with ≤L. 

Based on the ABF, we now compute the classification time-point by time-point, for all 

possible values of  (with 1 ≤  L)  and  obtain,   for  each  subject  separately,  the  time-

course of AUC values. This allows identifying, in a data-driven way, the time-periods that 

are relevant for the subjects’ decisions while taking full advantage of the fine temporal 

resolution of the EEG signal. 

This expanding average, ABF, is used as a way to examine the temporal patterns of 

discriminatory activity between exploration and exploitation at the single-subject level. 

This is an alternative to similar approaches employing fixed sliding windows for finding 

the period of interest (Philliastides et al., 2010), with the advantage that there is no bias 

induced by selecting the length of the window.  

As will be shown in the Results section, the typical temporal behaviour of the ABF 

reaches a plateau after a certain time period. After this plateau is reached, ABF remains 

relatively stable, although it is computed over a longer period, and consequently the 

classification accuracy does not statistically improve even when considering more time 

points. 
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In order to quantify that period of stability, starting from the end of the trial we move 

back in time, time-point by time-point. We assess for which time-point h* the difference 

between the AUC value at the end of the trial and the AUC value at a latency h* does not 

differ significantly from zero.  

2.3.4 Time-locked discrimination 

As an alternative to the abovementioned procedure, we also perform classification at 

every time-point. This is done in order to assess whether the extracted topographies 

start to differ at some specific, time-locked point in time (but potentially varying across 

subjects). Using the already-selected models and the selected template maps within 

them, we compute for every time-point the Bayes Factor for all trials, time-locked and 

use it as discrimination function.  

 

2.3.5 Source estimations 

Intracranial sources are estimated using a distributed linear inverse solution and Low 

Resolution Electromagnetic Tomography (LORETA) regularization approach (Pascal-

Marqui et al., 1994, Michel et al., 2004). The  sources’  current  distribution  is calculated in 

a discrete grid of 3005 solution points, regularly distributed within the gray matter of 

the cerebral cortex and limbic structures of the average brain provided by the Montreal 

Neurological Institute (MNI). The source estimations are performed on the average of 

the template maps that were extracted from all subjects. Paired t-tests are calculated at 

each solution point using the variance across subjects. Only points with values of p < 

0.05 (t(6)>2.61) and clusters of at least 9 contiguous nodes are considered significant.  

This spatial criterion is determined using the AlphaSim program (available at 
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http://afni.nimh.nih.gov).  The 10,000 Monte Carlo permutations performed on our 

current distribution matrix revealed a false positive probability of <0.05 for a cluster 

greater than 9 nodes. The results of the source estimations are rendered on the MNI 

brain with the locations named using the convention of Talairach and Tournoux (1988). 

2.3.6 Disentangling exploratory decision-making from other confounding factors 

Due to the nature of the task, several  factors can affect the subjects’ decisions and 

influence their behavior. It is therefore important to disentangle decision-making from 

reward evaluation (in terms of wins/losses) and machine switching. 

More specifically, we  expect  that  the  subjects’  decisions  on  trial  n  are  influenced  by  the  

received reward on trial n-1. It is not clear however whether our results are truly based 

on a prediction of the subsequent decision or are a reflection of the neural processes of 

reward evaluation. Using the same training phase and the same models as before, we 

split the test trials in terms of wins and losses, with respect to the reward prediction 

error. In general, those trials in which the received reward is lower than the expected 

one (losses) are more likely to lead to exploration and those where the received reward 

is higher than the expected (wins) to exploitation (see also 3.1Behavior). Therefore, we 

treat those trials accordingly and perform classification to examine whether the 

extracted template maps can also account for differences between wins and losses. 

Moreover, we assessed the influence of machine switching in our results. Because of the 

way we computed our behavioral models, exploration forcibly corresponds to a machine 

switch and exploitation to a machine stay, for all the trials we used for training and 

testing the GMMs. We now only include trials corresponding to switch and stay that 

were never used before during training and testing. For defining validation trials 
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corresponding to switch and stay, we dropped the constraint that forced all our 

exploitation trials to be stays (see 2.1.5 Behavioral model). Consequently, the ‘switch’  

trials were part of those exploitation trials which were previously labeled as unknown. 

We use this validation dataset to assess to which extent we can generalize our models 

also to these specific categories of trials and to examine the extent to which machine 

switching is influencing our results. Staying with the same machine is inherent to our 

definition of exploitation, so we expect to obtain high sensitivity but low specificity for 

this case. 

 

3. Results 

3.1 Behavior  

Overall, subjects were more likely to exploit than to explore: 61% of the trials were 

labelled by the behavioural model as exploitation and 13% exploration, the rest were 

unknown. The validity of the behavioural model employed here has already been 

demonstrated (Bourdaud et al., 2008) by comparing its results with the actual statistical 

parameters of the machines.  

There   was   no   significant   difference   between   the   subjects’   reaction   times   between  

exploratory and exploitatory decisions (paired t-test; t(6) = 2.17; p = 0.07), in 

accordance to what has been reported in similar tasks (Jepma and Nieuwenhuis, 2011). 

Through the behavioural model we extracted the reward that the subjects expected to 

receive for each machine. When subjects experienced a loss (i.e. the actual reward was 

lower than the expected one) they were most likely to explore on the next trial 
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(probability across subjects: 0.75 versus 0.16 for exploitation) and when they 

experienced a win (i.e. the actual reward was higher than the expected one) they were 

most likely to exploit (probability: 0.84 versus 0.25 for exploring instead). 

3.2 Average ERPs 

Figure 3 displays the group-average ERPs from a central midline electrode (Cz) for 

exploitation (blue line) and exploration (green line). ERPs refer to reward evaluation 

and are time-locked to the appearance on the screen of the payoff of the selected 

machine (time zero). The average waveform exhibits characteristic features of reward 

evaluation, the so called feedback-related negativity peaking at 135ms post-stimulus, 

with a baseline-to-peak amplitude of -0.6 and -0.68μV  for  exploitation and exploration, 

respectively. Another component, with a positive amplitude over Cz (2.5 and 2.9 μV for 

exploitation and exploration respectively), peaks at 225ms, corresponding presumably 

to a P300. At the same latencies the average scalp topographies are also displayed 

(Figure 4, blue frame for exploitation and green for exploration). Both components have 

been reported to be relevant with the evaluation of the displayed reward (Frank et al., 

2005; Wu and Zhou 2009).  

The TANOVA analysis was performed on an average, across subjects level. It revealed 

three distinct periods of topographic differences between exploration and exploitation: 

the first starting at 221ms and lasting up to 252ms, the second at 283-299ms and the 

third at 676 – 713ms, post-stimulus onset (Figure 3, red periods).  

We further tested the relevance of these three intervals for the trial-by-trial decision-

making. Only those intervals that were found in at least 8 out of ten training datasets are 

reported here. The accuracy of classification was computed for each of them separately, 
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according to the spatial correlation of single-trials with the voltage topographies 

observed on the average level. Across the ten splits of the data and across the seven 

subjects, we obtain average AUC values of 0.55±0.02, 0.56±0.03 and 0.55±0.02 (±s.e.m.), 

for each of the identified intervals, respectively. The low values of prediction accuracy 

demonstrate that even though topographic differences exist on an across subjects level, 

neither the identified intervals, nor the average ERP topographies carry enough 

information  for  predicting  individual  subjects’  decision  at  the  single-trial level, possibly 

due to crucial single-trial information that is lost when averaging. We speculate that 

these, relatively early, time-locked periods of difference are more specific to reward 

evaluation than to decision-making. 

 

3.3 Time-unlocked prediction 

The total number of template maps in the optimal GMMs was in the range of three to six 

for exploitation and three to eleven for exploration, across subjects. Within all the maps 

of the GMMs we extracted one template per condition (Figure 2a, for one exemplar 

subject) and computed the BF across trials (Figure 2b).  

Classification was based on the average of the BF across the whole trial (Equation 3). 

The average AUC values across the ten splits of the data are shown for each subject in 

Figure 4 (light gray bars). On average across subjects the AUC was 0.65, ranging from 

0.55±0.01 (±standard error across ten splits of the data) for the worst in terms of AUC 

performing subject (S6 in Figure 4) and up to 0.75±0.08 for the best (S4 in the same 

Figure). Importantly, the AUC was significantly higher than chance levels for six out of 

seven subjects (Figure 4, all but S5; t-test; t(9) > 3.2; p<0.05).  
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The ratio of true positives, on average across subjects and shuffles was 63±2% for 

exploitation trials of the test datasets and 61±2% for trials belonging to the validation 

datasets. The two accuracies did not differ significantly across subjects (paired t-test, 

t(6) = 0.99; p = 0.36) showing that our models can be generalized with comparable 

accuracy to new trials. 

 

3.4 Relevant time-periods for decision-making 

Based on the expanding average version of the ABF, we computed the classification 

along the trial (Figure 5). In general, the AUC vales increase over time (Figure 5, solid 

red lines), as we consider more evidence in the ABF. Note that the AUC values reported 

previously (3.3 Time-unlocked prediction; Figure 4), correspond to what was obtained 

at the end of the AUC time-courses, when the classification is based on the overall trial.  

We observed that after a certain time-period, the AUC values reach a plateau and remain 

relatively stable, even though they were computed over a larger amount of data, 

possibly   because   the   subjects’   decisions   across   trials   have   already   been   made. To 

quantify this time-period, we tested at which time-point h* the AUC values drop 

significantly across the ten splits of the data, when compared to the values we get using 

the whole trials (t-test, p<=0.05). This plateau was detected for every subject separately 

and on average it occurred at 508ms post-stimulus onset (Figure 5, gray vertical lines), 

or ~880ms before the subsequent button press. It is worth noting that this plateau is 

estimated in statistical terms although the absolute value of AUC may still increase for 

some subjects.  
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We assume that these plateaus show when the decisions have already been made across 

trials, for each subject separately. Interestingly, the onset of these plateaus for each 

subject was significantly  correlated  with  the  subjects’  average  reaction  times  on the task 

(Figure 6 ; Spearman correlation; rho = 0.68, p < 0.05). Similar correlation between 

reaction times and activations in brain regions have been demonstrated in auditory 

perceptual decision-making paradigms (Binder et al., 2004). 

Moreover, we examined whether the plateaus simply reflect the amount of time-points 

over which one needs to average in order to obtain significantly above chance levels 

results, irrespective of the temporal order of the BF. We therefore randomly permutated 

the BF within each trial, keeping the same random permutations across trials, but 

different across the ten test datasets. We then computed the ABF on the permuted trials 

and performed classification time-point by time-point (Figure 5, red dashed lines). In 

this case the AUC values were above chance levels on average already at 72ms post-

stimulus onset. The difference between classification based on the expanding average of 

ABF and each permuted version provides striking evidence that the results obtained by 

keeping the original temporal order within a trial is not a mere consequence of 

statistical power; accurate discrimination is a result of which points we average over, 

not how many. 

 

3.5  Time-locked discrimination 

When classification was performed at every time-point separately within the trial 

(Figure 5, green lines), the AUC was never higher that the AUC computed by averaging 

evidence over time (Figure 5, red solid lines). This was the case for all subjects except 
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those that had an AUC close to (but above) chance levels (S3 and S6 of the same Figure). 

This highlights the necessity of considering time-unlocked activity in order to establish 

an accurate prediction. 

 

3.6 Source estimations 

Source estimations were performed on the extracted template maps (one per subject 

and per experimental condition) and averaged across subjects. Both conditions included 

prominent sources along the frontal gyrus (BA 11) and middle temporal gyrus (BA 37 

for exploitation and BA 21 for exploration; Figure 7a,b). Statistical contrast of these 

source estimations identified no region more active during exploitation (Figure 7c), 

further supporting the theory that exploration overrides exploitatory tendencies (Daw 

et al., 2006). Regions that were significantly more activated during exploration included 

the right suppramarginal gyrus and the dorsolateral prefrontal cortex (DLPF; BA 9, 46, 

47; Figure 7c), known to be involved in decision-making and responsible for task-

switching as well as in modulating behavior under uncertainty and deriving conclusions 

(Hampton and O'doherty 2007; Reverberi et al., 2007; Christopoulos et al., 2009). In 

particular, the role of the right DLPF in risk-taking (Ernst et al., 2002; Gianotti et al., 

2009) and strategic decision making (Knoch et al., 2006) has been argued, here our 

results suggest that it is involved in risk taking during exploratory decisions. 

It is also worth noting that the source estimations were performed on the extracted 

template maps and not on the actual voltage topographies, as it is usually done in ERP 

analyses (Michel et al., 2004). As these template maps were extracted from the single-

trials irrespective of the time of their appearance it is not possible to assign them to any 



24 
 

specific latency. However, through the Bayes Factor (Figure 2b) we can have an estimate 

for each trial separately of when in time it is more likely to observe one template map 

instead of the other. 

3.7 Disentangling exploratory decision-making from other confounding factors 

To exclude the reward-related confounding factor, we separated the test trials according 

to wins and losses, but classified them using the exploration/exploitation models. 

Naturally, wins lead to exploitation and losses to exploration (see also 3.1 Behavior) and 

we  considered  the   ‘true’   labels  for  this  control  accordingly. Classification accuracy was 

on average 0.55 and at chance levels for all but two subjects (Table 1, second row). We 

remind the reader that the AUC values when classifying the same trials according to 

exploration-exploitation were on average 0.65 and above chance levels for all but one 

subject. Moreover, the AUC values when classifying wins/losses were significantly lower 

than when classifying exploration/exploitation (paired t-test, p < 0.05), for four out of 

seven subjects. 

In order to take into account the full range of rewards (which is a continuous variable) 

and not only binary wins/losses, we also computed the correlation between the 

discriminant function for every trial, t (  ; Equation 3) and the corresponding rewards 

(expected – received payoff) and also the corresponding absolute gain for that trial 

(received payoff). The correlation values were computed for every subject, across all test 

trials. In the first case, the absolute values of correlation were bellow 0.07 and not 

significant for any subject (Spearman’s   |rho| < 0.07; p>0.38). In the second case, the 

absolute values of correlation were bellow 0.09 and not significant for six out of seven 

subjects  (Spearman’s  |rho| < 0.09; p>0.17). The correlation for the last subject was 0.17 

(p = 0.01). 
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The abovementioned results suggest that the GMMs and the extracted template maps 

are specific to the decision-making and not to reward evaluation. This is consistent with 

the poor performance of the classifier when extracting the voltage maps at an average 

level, where the time-periods of differences between exploration/exploitation are likely 

linked to reward estimation. 

On average very few trials corresponded to exploration and also to staying on the same 

machine (8.7 ± 3 trials per subject during the whole experiment). However, subjects 

were exploiting while changing machines in a large number of trials (on average 125 ± 

31 trials per subject) and we therefore considered only those to eliminate the confound 

of machine switching. We considered exploitation trials of the validation dataset that 

forcibly correspond to staying with the same machine and also an equal number of trials 

that would correspond to exploitation and a change of machine (part of the trials that 

were labeled as unknown by our behavioral model).  Using the extracted template maps 

for exploration/exploitation we attempted to classify stays as exploitation and switches 

as exploration. We obtained AUC values above chance levels for 5 out of 7 subjects 

(paired t-test; t(9)>4.6 p<0.01) and an average AUC value of 0.59 across subjects (Table 

1, third row). However, this high AUC value was mainly driven by the ratio of correctly 

classified machine stays, which forcibly correspond to exploitation (Table 1, third row, 

sensitivity = 0.61). The ratio of machine switches that were classified as exploration 

(specificity) was lower than sensitivity for 5 out of 7 subjects and on average 0.51 (Table 

1, third row). This shows that there is possibly an overlap between exploratory decision-

making and switching among the machines. We therefore cannot fully dissociate 

exploration-exploitation from machine switching for all of the subjects, which is also 

possibly due to power limitations and to the different strategies followed by individual 

subjects. 
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4. Discussion 

We have shown that it is possible to predict the type of subjects’  decision  on   the  next  

trial using EEG topographic information during reward evaluation. Classification 

accuracy, measured as the AUC, was above chance levels for six out of seven subjects and 

on average 0.65. Importantly, our classification results were based on 

neurophysiologically interpretable features while taking full advantage of the high 

temporal resolution of EEG. We detected differences between exploratory and 

exploitative decisions measured as voltage topographies, time-point by time-point. 

Because different topographies are forcibly a consequence of a change in the 

configuration of underlying neural networks, we could infer the brain regions that best 

discriminate between these two types of decisions, while keeping a fine temporal 

resolution. 

For each subject we extracted one representative topography per experimental 

condition (exploration/exploitation) and performed classification by computing the  

probabilities over time of appearance of one of them with respect to the other. We 

observed that time-locked   information   across   trials   could   not   predict   the   subjects’  

decisions at any time-point (Figure 5, green lines). An accurate prediction was possible 

only when taking into account activity over a larger period of time, in accordance to the 

not time-locked nature of decision-making (Figure 5, red solid lines). 

Moreover, we could detect, for every subject separately, the crucial time-period for 

accurately    predicting  the  subjects’  decisions (Figure 5, gray vertical lines). Classification 
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accuracy did not statistically increase even when considering more activity, after this 

period. This finding provides a strong indication about the typical time at which the 

underlying generators of decision-making start differentiating their responses at the 

single-subject level. In addition, we found that these specific latencies positively 

correlate  with  each  subject’s  average  reaction   times  during   the  experiment (Figure 6 ; 

rho = 0.68, p < 0.05).   

In this high level cognitive task different subjects with varying levels of risk-taking can 

employ different strategies for task completion, and therefore inter-subject variability 

cannot be neglected. We assumed that the neural correlates underlying exploratory 

decision-making are similar across subjects, but that they are expressed at different time 

intervals. For that purpose, we computed and extracted the template maps for each 

subject separately, but estimated the underlying sources at the group level, revealing the 

common mechanisms across subjects and allowing us to derive general conclusions (see 

4.3  Localization of the relevant generators). 

Our results are compatible with what has been shown in similar EEG and fMRI tasks, 

both in terms of activation of the underlying neural networks (overlapping results with 

Daw et al., 2006) and of classification accuracy (similar to Hampton  and  O’Doherty,  2007  

based on fMRI and better than Bourdaud et al., 2008 based on EEG, where 

discriminating was above chance levels for only four out of eight subjects). The main 

added value of the present work relies on the detection of the relevant time-periods for 

the decisions; a point to which we will return below. 

4.1 Time-locked and unlocked components 
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The EEG signals were time-locked on the display of reward and thus average ERPs 

exhibited characteristic responses of prediction error evaluation, peaking at 135ms and 

225ms and corresponding to the feedback related negativity and a P300 (Nieuwenhuis 

et al., 2004; Frank  et al., 2005; Yeung et al., 2005; Wu and Zhou 2009). The trials 

however, are not split into conditions according to the prediction error (i.e. 

wins/losses), but according to the labels assigned from the behavioral model. Moreover, 

the   analysis   of   the   subjects’   behavior   revealed   that   the   received   reward   on   trial   n-1 

indeed  influences  the  subjects’  decision  on  trial  n.   

At the average ERP level we found three distinct intervals of topographic difference 

between trials leading to exploration and trials leading to exploitation, similar to what 

has been previously reported in other decision-making studies (Cohen and Ranganath 

2007). However, none of these intervals can lead to an accurate prediction of the 

subjects’   decisions   on   a   trial-by-trial basis (see 3.2 Average ERPs), indicating that, the 

neural correlates of single-trial decision-making cannot be found strictly time-locked, 

across subjects and that inter-trial variability cannot be ignored. We speculate that these 

time-locked intervals are in fact related to the reward evaluation; especially the two first 

(~220-250ms and 280-300ms post-stimulus), correspond to the typical latency of 

characteristic waveforms of such processes (Frank  et al., 2005). 

So far, other studies have also shown a strong relation between prediction errors and 

subsequent behavior, either in terms of reaction times, using EEG oscillatory activity 

(Cavanagh et al., 2010), or in terms of switch/stay decisions, using amplitude differences 

on average ERPs (Cohen and Ranganath 2007) or single-trial analysis based on linear 

combinations of  electrodes (Philiastides et al., 2010). However, none of them reports 
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quantitative  results  on  predicting  the  subjects’  decisions,  nor fully analyze the temporal 

aspects  of  discrimination  between  the  subjects’  decisions.   

4.2 Relevant time-periods for decision-making 

The typical   time   latencies   at   which   we   could   already   accurately   predict   the   subjects’  

decisions were on average at 510ms after the display of the reward. This does not mean, 

however, that decisions are made exactly at 510ms, but rather that they are already 

made at some point before. A stricter statistical threshold could have possibly detected 

an even earlier point, but this would still be consistent with our results. The periods 

detected here in fact corresponded to plateaus in the AUC values (see 3.4 Relevant time-

periods for decision-making) and appeared much later than sensory-evoked processing 

of the displayed payoff, and the reward-related activity (feedback-related negativity), 

which typically peaks around 150-300ms after feedback presentation (Holroyd and 

Coles, 2002). Although  these  plateaus  correlated  significantly  with  the  subjects’  average  

reaction times, they occurred on average at ~880ms before the subsequent button 

presses. Moreover, due to the task design, subjects were forced to wait for 1s after the 

display of reward so it is unlikely that the detected plateaus are trivially related to motor 

responses. 

In a previous study using the same subjects and paradigm (Bourdaud et al., 2008) it was 

shown that it is also possible to find discriminating oscillatory patterns of EEG activity of 

the current decision within 1000ms prior to button press. Consistently, we found an 

overlap between the time period that was used there with the time period that is used in 

the present study. However, our results provide finer temporal information, estimated 

at the single-subject level. Importantly, we showed that it is possible to discriminate 

between the two types of decisions already from ~510ms after the presentation of the 
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reward in the previous trial. We therefore exclude that all the crucial information for 

establishing that prediction is found right before the button-press. This finding provides 

a strong indication for future studies for defining an optimal trial duration when 

investigating decision-making.  

More generally, assessing the time when decisions are made has been the subject of 

previous studies, by means of fMRI (Soon et al., 2008), or pupil dilation (Einhäuserat al., 

2010). In perceptual decision-making it has been shown that the higher the degree of 

uncertainty, the longer it takes for subjects to reach a decision (Heekeren et al., 2004), 

similar to what is now known for cost-benefit-based decision making (Basten et al., 

2010). As a future direction, we can directly manipulate decision times by employing a 

similar paradigm in reward-based decision making and observe the the effects of such a 

manipulation on the EEG responses. Moreover, fMRI activations in relevant regions of 

interest in perceptual decision-making are   known   to   correlate   with   the   subjects’  

response times (Binder et al., 2004; McKeeff and Tong, 2006) and this correlation is 

used as a proof for the relevance of the regions of interest with decision-making 

processes. In a similar way, we demonstrate here a correlation between temporal 

features  of   the  EEG  and  subjects’   reaction   times,   to   further  support   the  validity  of  our  

results. 

The advantage of the present approach is that we can examine the variability across 

subjects, of the relevant time-periods for the decisions, even under identical 

experimental conditions. To the best of our knowledge this is the first EEG study to 

determine with minimal a priori temporal constraints, at the millisecond time-scale, the 

single-subject relevant time-periods for differentiating  neural activity for the following 

decisions. 
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4.3 Localization of the relevant generators 

Source estimations were performed on the extracted template maps and averaged 

across subjects. No region was more active during exploitation when statistically 

contrasting the two conditions. However, the right suppramarginal gyrus and the right 

DLPF were significantly more active during exploration. The DLPF has been previously 

linked with task-switching, decision-making and behavior under uncertainty (Hampton 

and O'doherty 2007; Reverberi et al., 2007; Christopoulos et al., 2009; Gianotti et al., 

2009). 

However, in a similar fMRI study (Daw et al., 2006), it has been shown that the 

frontopolar cortex and the intraparietal sulcus were more active during exploration. The 

frontopolar cortex has also been reported to be responsible of evidence integration and 

to be  functionally connected to parietal and premotor regions, during a similar decision 

making task (Boorman et al., 2009). A possible reason for this discrepancy between our 

study and fMRI results is that our sources are estimated relatively early in time and 

under a substantially different time-scale.  We speculate that the regions reported in 

Daw et al. and namely the frontopolar cortex, are responsible for gathering activations 

from the DLPF and the supramarginal gyrus, (the regions we obtain here) in order to 

eventually lead to exploratory decisions.  

4.4 Disentangling decision-making from other confounds  

As expected, when subjects experience a loss they are more likely to explore on the next 

trial and when they experience a win they are more likely to exploit. However, we 

demonstrated that our results are not only reflecting the discrimination between wins 
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and losses, as we were not able to accurately classify wins versus losses using the 

trained models for exploration/exploitation for most of the subjects (5/7).  

Our behavioral model was restricted so that exploration always corresponds to 

switching machine and exploitation to staying with the same machine, in order to obtain 

directly comparable results with the previous study using the same paradigm and 

subjects (Bourdaud et al., 2008). Machine switching and exploration/exploitation 

appear to be strongly   intermixed   as   it   was   also   clear   from   the   subjects’   behavior,   as 

exploration was combined with a machine stay in less than nine trials per subject during 

the whole experiment, for most of the subjects. 

 

Conclusions 

In summary, we show that by using EEG topographic activity during reward evaluation 

it is possible to accurately predict subsequent decisions. The neural correlates of the 

subjects’  decisions  can  be  detected  as  early  as  ~880ms  before the button press and are 

localized within the suppramarginal gyrus and the right DLPF.  
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Figure Captions 

 

Figure 1 

(a) Experimental protocol. Each trial is comprised of three phases. First the four 

machines are presented and participants have 1s to select one of them by pressing a key 

(choice phase). Once a machine has been chosen the rest of them are deactivated 

(grayed) for 1s (delay phase). Finally the payoff for the selected machine is displayed for 

1s (display phase).  

The red thick line shows how we define a trial for the current study: trials were 

extracted with respect to the display of reward, spanning 100 ms before the display and 

780 ms post-stimulus  onset.  Activity  from  this  period  was  used  to  predict  the  subjects’  

decision on the next trial. 

(b) Example of the payoff evolution across the experiment for the four machines.  

Figure 2 

Template maps and their Bayes Factor across trials for an exemplar subject. (a) 

Template maps for exploitation (left panel) and exploration (right panel), averaged 

across shuffles. (b) Bayes Factor for each trial. The Bayes Factor is computed for each of 

the topographies as the ratio of the posterior probability of the template map for 

exploitation divided by the posterior probability of the template map for exploration 

(see Equation 2).  

 

Figure 3 
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Average ERP waveforms across subjects of electrode Cz and characteristic scalp 

topographies at 135 and 225 msec for the two conditions (blue line exploitation, green 

line exploration). The periods of topographic difference between the two conditions 

identified by the TANOVA are highlighted in red on the x-axis. Only periods identified in 

at least 8 out of 10 splits of the data are displayed here. 

Figure 4 

Classification performance for each subject based on the overall trial (light gray bars), 

and chance levels (dark gray bars). The mean AUC value across subjects was 0.65.  

Chance levels were determined by randomly shuffling 100 times the true labels of the 

test trials and then classifying them. On average, chance AUC values were 0.5. Asterisks 

show the subjects whose AUC values were significantly above chance levels (all but S5). 

Figure 5 

Time-course of AUC values based on the expanding average version of the BF. In solid 

red we show the temporal evolution of the AUC values if, for every time-point, we take 

into account activity from the beginning of the trial up to that time-point. Acuracy 

increases in time as we add more evidence until a plateau is reached, then it no longer 

changes significantly (gray vertical lines). The gray lines indicate at what point in time 

the AUC values do no longer increase significantly. The red dashed lines correspond to 

the AUV values computed over a permuted version of the BF. In that case the plateau is 

reached much earlier (~72ms on average).  AUC values are at chance levels when 

computed time-point by time-point (green lines).  

Figure 6 
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Average reaction times for every subject versus the onset of the detected plateaus in 

AUC values. Even if we consider more activity after the onset of these plateaus the AUC 

values do not increase significantly, indicating that the decisions have already been 

made.   These   points   significantly   correlate  with   the   subjects’   reaction   times,   averaged  

across the experiment (rho = 0.68, p < 0.05). 

 

Figure 7 

Source estimations on the template maps across subjects for exploitation (a) and 

exploration (b). Results are rendered on the average MNI brain. Axial slice shows the 

activations for each of the two conditions in correspondence to the maximal t value at 

48, -50, 27 mm. (c) Results of the statistical contrast of the source estimations between 

exploration and exploitation (paired t-test, p < 0.05). 

Table 1 

Summary of the classification results, on average across subjects. The columns display 

AUC values, sensitivity, specificity, the number of trials per condition that entered the 

comparison and the number of subjects for which we obtained above chance levels 

results. The first line corresponds to discriminating between exploration and 

exploitation. The second line shows classification results when keeping the GMMs from 

exploration/exploitation but splitting the test trials according to wins/losses. In the 

third line we only consider exploitatory validation trials and keeping the GMMs from 

exploration/exploitation we classify switch/stays.  

 



 AUC  Sensitivity  Specificity  # trials  # above 
chance  

Exploration 
Exploitation  

0.65  0.63  0.56  (125/125)  6/7  

Wins 
Loses  

0.55  0.54  0.55  (133/109)  2/7  

Switch 
Stay  

0.59 0.61  0.51 (40/40)  5/7  
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