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30th of January 2012 

37th Stanford 
Geothermal 
Workshop Context 
•  Future development of EGS as an alternative energy source 

•  Cogeneration 

•  Electricity (21% of energy cons.) 

•  Space heating and domestic hot water (40% of energy cons.)  

•  Conceptual energy conversion system design  

•  Economic competitiveness 

•  Conversion efficiency 

•  Environmental impacts 

➡  Systematic methodology for system design accounting for site-
specific conditions 
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30th of January 2012 

37th Stanford 
Geothermal 
Workshop Objectives 
•  Methodology integrates(1): 

•  Services to be supplied 

•  Geothermal resources with  
geological characteristics 

•  Energy conversion technologies 
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➡  Identify environomic optimal 
configurations for mature EGS technology  

•  Conversion technologies to be used 

•  Exploitation depth, district heating 
size 

‣  Average conditions for Switzerland 

(1): Gerber, L. and Maréchal, F. «Defining optimal configurations of geothermal systems using process design and process integration techniques», 
Applied Thermal Engineering, doi: 10.1016/j.applthermaleng.2011.11.033, 2011
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Performance  
calculation 

System  
resolution 

Physical models 

Computational framework  

Single-period 
performance 

indicators 

Combined 
performance 

indicators 

Multi-period 
decision 
variables 

Single Period Sequence 

New demand profile 

Objectives 
Evolutionary genetic algorithm for non-

linear multi-objective optimization 



30th of January 2012 

37th Stanford 
Geothermal 
Workshop Physical models 
•  Resources 

•  Hot Dry Rock , 3-wells system for EGS exploitation(1) 

•  Variable depth (3000-10000m) 

•  Expected mass flow rate (90 kg/s), gradient (0.035°C/m) 
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•  Technologies 
•  Database of conversion technologies: 

•  1&2-flash, ORC (simple, draw-off, 2-stages, supercritical), Kalina 

•  Model by flow-sheeting software 

•  Demand 
•  Seasonal profiles (GIS-based method for urban areas(2)) 

•  Space heating and hot water (district heating) as a constraint 

•  Variable design size (0-60 MW) 

(1): Tester, J. et al. «The Future of Geothermal Energy – Impact of Enhanced Geothermal Systems in the 21st Century», MIT technical report,  2006 
(2): Girardin, L. et al. «EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban 
areas», Energy,25, pp. 830-840, 2011 
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Workshop System design and performances 
•  Integration of 3 components for each period: 
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Inter-season (3942h) 

P = 16 bar 
T = 201°C 

P = 116 bar 

P = 9.1 bar 
T =  176°C 

Q = 12.25 MW 

E = 2600 MW 

z = 6000m 

Winter (4205h) 

E = 2500 MW 
T =  177°C 
P = 9.2 bar 

Q = 28.40 MW 

Extreme winter (88h) 

E = 730 MW 

T =  190°C 
P = 12.5 bar 

Q = 40.00 MW 

Summer (525h) 

E = 2600 MW 
T =  176°C 
P = 9.1 bar 

Q = 6.50 MW 

•  Investment cost 
• Operating cost 
• Profit 

• Exergy efficiency 
• Energy efficiency 
• Electrical efficiency 

• Environmental 
impacts 
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Workshop Life Cycle Assessment model(1) (1) 
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Chosen impact assessment methods: 
1. IPCC07 - Global Warming Potential, 100 years, in kg-CO2-eq 
2. Ecoindicator99-(h,a) - human health, ecosystem quality, non-renewable resources, aggregated in pts 

(1): Gerber, L. et al. «Systematic integration of LCA in process systems design: Application to combined fuel and electricity production from 
lignocellulosic biomass», Computers & Chemical Engineering, 35, pp. 1265-1280, 2011 

•  Impact quantification of a product/system/service on its overall life cycle and related to its 
function 

Ei: cumulated emission/extraction i from LCI 

Fi,j: impact factor to transform substance i in 
impact category j 

Iij: impact category j 

wii: weighting factor to add category i to single 
score impact Itot 
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Workshop Life Cycle Assessment model (2) 
•  From literature(1) and thermo-economic models: 
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(1): Frick, S. et al. «Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs», Energy, 35, 
pp. 2281-2294, 2010 
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Workshop Multi-Objective Optimization 
•  Calculate trade-off & identify optimal configurations 
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For each conversion technology: 

Decision variables: 
• xd: Temperatures, pressures, splitting 
fractions (EGS  & cycles) 
• z: EGS construction depth  
• rDH: design size of district heating 

1) min. investment costs: 

2) max. annual profits: 

3) max. system exergy efficiency: 

nw: number of technologies 
np: number of periods 
tp: operating time of period p 
E- : net electricity 

Q- : district heating 
co: operating cost 
ce-: electricity selling cost (0.16 USD/kWh) 
cq-: district heating selling cost (0.11 USD/kWh) 

Ta: cold source temperature 
Tlm: log-mean temperature of hot source 
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Workshop Selection of final optimal configurations 
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Other associated indicators: 
• exergy efficiency 

• avoided yearly CO2 emissions with IPCC07 (on life cycle basis) 

• avoided impacts with Ecoindicator99-(h,a) (on life cycle basis) 

Hundreds of solutions 
for each Pareto curve! 

Best technology at each potential depth (500m 
step) and DH design size (5MW step) 
‣ selected on the basis of the payback period: 

Lifespan (tyr): 30 years 
Interest: 6% 

eCO2.NGCC: emissions for electricity production with natural gas 
combined cycle (0.425 kgCO2-eq/kWh) 
eCO2.NGB: emissions for DH production with natural gas boiler 
(0.241 kgCO2-eq/kWh) 
IC/O/E.i: impact associated with construction/operation/end-of-life of 
element i of life cycle inventory 
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37th Stanford 
Geothermal 
Workshop Examples of Pareto curves 
•  Trade-offs between 3 objectives: 
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‣  Pareto curves for other 
technologies show 
similar behavior 
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Workshop Final optimal configurations 
•  Payback period (< 30 years) 
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‣  Best technology is function of 
depth & DH size 

‣  Payback period tends to decrease 
with depth 

‣  Effects of cogeneration 
•  Decreases payback in lowest range of depths 

(Kalina) 

•  No significant penalty for deep systems 

1. low depth & DH          Kalina cycle 
1 

2. mid. depth & DH          Flash systems 

2 

3. mid. depth & no DH         ORC, 2-stages 
5 

4. large depth & DH         ORC, draw-off 

3 

5. large depth & no DH         1-flash, & bottoming 
ORC, single-loop 

4 
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Workshop Detailed cost-benefit analysis 
•  5 typical configurations 
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‣  Costs dominated by  
•  EGS construction investment 

•  DH network investment 

‣  Efficient system design 
compensates higher investment  

•  Deeper EGS 

•  Larger DH systems 

๏  Potentially sensitive to: 
•  Geological conditions 

•  Drilling costs 

•  Energy services prices 

Payback (yrs) 

9.0 11.3 7.1 6.2 5.0 
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‣  Beneficial CO2 balance for all 
optimal economic configurations  

•  Increase with depth due to increased 
efficiency 

‣  Fossil CO2 emissions for flash 
systems decrease performance 

•  Effect mitigated by increased efficiency & 
use of bottoming ORC 

•  Favors large DH systems using ORC with 
intermediate draw-off 



30th of January 2012 

37th Stanford 
Geothermal 
Workshop Detailed CO2 balance 
•  3 typical configurations 

15 

1. Introduction      2. Methodology      3. Results       4. Conclusions 

‣  Efficient system design mitigates 
impacts from construction 

‣  CO2 balance linked with energy 
efficiency 

•  Though electricity avoids more CO2 than DH 
per kWh (0.425 kg vs 0.241 kg) 

•  Favors cogeneration over single electricity 
production 

‣  If emissions from EGS & flash 
comparable to hydrothermal: 

•  potentially not insignificant... 

‣  1-flash & bottoming ORC 
•  reduces size of flash, thus emissions 

•  increases avoided impacts from electricity 

๏  Potentially sensitive to: 
•  Geological conditions 

•  Substituted services (electricity mix!) 

Benefit:
109‘300 t/yr 33‘294 t/yr 70‘910 t/yr 

In Switzerland:  
1 inhabitant emits ~7 t/yr 
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Geothermal 
Workshop Conclusions 
•  Methodology for conceptual design of geothermal energy conversion systems 

combining thermo-economic optimization and LCA 

•  Identify promising configurations 

•  Orientate decision-making 

•  Determination of optimal EGS depths, technologies and DH size for average 
conditions of Switzerland 

•  Selection of technology depends on EGS depth and DH size 

•  Environomic performances increase with depth 

•  Beneficial environmental balance for all economic optimal configurations 

•  Interest of cogeneration 

•  Does not penalize economic performances 

•  Improves avoided CO2 emissions 
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Workshop Perspectives 
•  Inclusion of economic and geological uncertainties in economic & 

LCA model 

•  Drilling costs and technology 

•  Energy services prices and avoided impacts 
•  Importance of political decisions !  

•  Effects of EGS construction depth 
•  Reservoir enhancement ? 

•  Expected mass flow rate ? 

‣  Necessity to include data of future EGS to be built in models 

‣  Collaboration between geologists, energy systems engineers & 
environmental scientists 
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Thank you for your attention! 
Questions? 

Contact: leda.gerber@epfl.ch 


