Design of Geothermal Energy Conversion Systems with a Life Cycle Assessment Perspective

Léda Gerber, François Maréchal

Industrial Energy Systems Laboratory, Ecole Polytechnique Fédérale de Lausanne, Switzerland 37th Stanford Geothermal Workshop, January 30 - February 1, 2012

- Future development of EGS as an alternative energy source
- Cogeneration
 - Electricity (21% of energy cons.)
 - Space heating and domestic hot water (40% of energy cons.)
- Conceptual energy conversion system design
 - Economic competitiveness
 - Conversion efficiency
 - Environmental impacts
- Systematic methodology for system design accounting for sitespecific conditions

 37th Stanford
 1. Introduction
 2. Methodology
 3. Results
 4. Conclusions

 Geothermal
 Objectives

- Methodology integrates⁽¹⁾:
 - Services to be supplied
 - Geothermal resources with geological characteristics
 - Energy conversion technologies
- Identify environomic optimal configurations for mature EGS technology
 - Conversion technologies to be used
 - Exploitation depth, district heating size
 - Average conditions for Switzerland

(1): Gerber, L. and Maréchal, F. «Defining optimal configurations of geothermal systems using process design and process integration techniques», *Applied Thermal Engineering*, doi: 10.1016/j.applthermaleng.2011.11.033, 2011

30th of January 2012

Process design environment

3. Results 4. Conclusions

2. Methodology

(1): Tester, J. et al. «The Future of Geothermal Energy – Impact of Enhanced Geothermal Systems in the 21st Century», MIT technical report, 2006

(2): Girardin, L. et al. «EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban

30th of January 2012

Demand

GEOTHERN

lacksquare

37th Stanford

Resources

Geothermal

Workshop

areas», Energy, 25, pp. 830-840, 2011

1&2-flash, ORC (simple, draw-off, 2-stages, supercritical), Kalina

Seasonal profiles (GIS-based method for urban areas⁽²⁾)

- Technologies
 - Database of conversion technologies:

Model by flow-sheeting software

Physical models

T: 433 15 k

Vap. Frac: 1.

T: 375.25 K

T: 375.25 K

4. Conclusions

P: 20 ha

939 kW

T: 299.25

T: 358.86 K Vap. Frac.: 0

• Integration of 3 components for each period:

1. Introduction 2. Methodology 3. Results 4. Conclusions 37th Stanford Geothermal Life Cycle Assessment model⁽¹⁾ (1) Workshop

Impact quantification of a product/system/service on its overall life cycle and related to its function

Chosen impact assessment methods:

1.IPCC07 - Global Warming Potential, 100 years, in kg-CO2-eq

E: cumulated emission/extraction i from LCI

 $F_{i,i}$: impact factor to transform substance i in impact category j

I.j. impact category j

wi: weighting factor to add category i to single score impact I_{tot}

2.Ecoindicator99-(h,a) - human health, ecosystem quality, non-renewable resources, aggregated in pts

(1): Gerber, L. et al. «Systematic integration of LCA in process systems design: Application to combined fuel and electricity production from lignocellulosic biomass», Computers & Chemical Engineering, 35, pp. 1265-1280, 2011

30th of January 2012

30th of January 2012

Calculate trade-off & identify optimal configurations

Exergy efficiency

Decision variables:

- • x_d : Temperatures, pressures, splitting fractions (EGS & cycles)
- •*z*: EGS construction depth
- •*r*_{DH}: design size of district heating

 n_W : number of technologies n_p : number of periods t_p : operating time of period p *E*-: net electricity

Q-: district heating

 c_o : operating cost

- ce-: electricity selling cost (0.16 USD/kWh)
- c_{α} -: district heating selling cost (0.11 USD/kWh)

 T_a : cold source temperature T_{lm} : log-mean temperature of hot source

 $T_{EGS,lm,p}(z)$

For each conversion technology:

1) min. investment costs:

$$C_{inv} = C_{i,EGS}(z) + \sum_{w=1}^{n_w} \max(C_{i,w,p}(z, r_{DH}), x_d)_{n_p} + C_{i,DH}(r_{DH})$$

$$P_{an} = \sum_{p=1}^{n_p} t_p \cdot (c_{e^-} \cdot \dot{E}_p^-(z, r_{DH}, x_d) + c_{q^-} \cdot \dot{Q}_p^-(r_{DH}) - c_{o,EGS}(z) - \sum_w^{n_w} c_{o,w}(z, r_{DH}, x_d))$$

3) max. system exergy efficiency:

$$\eta = \frac{\sum_{p=1}^{n_p} t_p \cdot (\dot{E}_p^-(z, r_{DH}, x_d) + \dot{Q}_p^-(r_{DH}) \cdot (1 - \frac{T_a}{T_{DH, lm, p}(z)}))}{\sum_{p=1}^{n_p} t_p \cdot \dot{Q}_{EGS, p}^+(z, x_d) \cdot (1 - \frac{T_a}{T_{EGS, lm, p}(z)})}$$

37th Stanford Geothermal Workshop

Selection of final optimal configurations

3. Results

Hundreds of solutions for each Pareto curve!

1. Introduction

2. Methodology

Other associated indicators:

•exergy efficiency

nvestment costs

avoided yearly CO2 emissions with IPCC07 (on life cycle basis)

•avoided impacts with Ecoindicator99-(h,a) (on life cycle basis)

Best technology at each potential depth (500m step) and DH design size (5MW step)

4. Conclusions

◆selected on the basis of the payback period:

Lifespan (*t_{yr}*): 30 years Interest: 6%

$$E_{CO2,av} = \sum_{p=1}^{n_p} (t_p \cdot (\dot{E}_p^- \cdot e_{CO2,NGCC} + \dot{Q}_p^- \cdot e_{CO2,NGB} - \sum_{i=1}^{n_{eo}} I_{O,i,p})) - (\frac{\sum_{i=1}^{n_{ec}} max(I_{C,i})_{n_p} + \sum_{i=1}^{n_{ee}} max(I_{E,i})_{n_p}}{t_{yr}})$$

e_{CO2.NGCC}: emissions for electricity production with natural gas combined cycle (0.425 kgCO2-eq/kWh)

e_{CO2.NGB}: emissions for DH production with natural gas boiler (0.241 kgCO2-eq/kWh)

 $I_{C/O/E,i}$: impact associated with construction/operation/end-of-life of element i of life cycle inventory

• Trade-offs between 3 objectives:

Geotherm

 Pareto curves for other technologies show similar behavior

• Payback period (< 30 years)

- Payback period tends to decrease with depth
- Effects of cogeneration
 - Decreases payback in lowest range of depths (Kalina)
 - No significant penalty for deep systems
- Best technology is function of depth & DH size
 - 1. low depth & DH \longrightarrow Kalina cycle
 - 2. mid. depth & DH \longrightarrow Flash systems
 - 3. mid. depth & no DH \longrightarrow ORC, 2-stages
 - 4. large depth & DH → ORC, draw-off
 - 5. large depth & no DH \longrightarrow 1-flash, & bottoming ORC, single-loop

5 typical configurations

- Costs dominated by
- EGS construction investment
- DH network investment
- Efficient system design compensates higher investment
- Deeper EGS
- Larger DH systems
- Potentially sensitive to:
- Geological conditions
- Drilling costs
- Energy services prices

- Beneficial CO₂ balance for all optimal economic configurations
 Increase with depth due to increased efficiency
- Fossil CO₂ emissions for flash
 systems decrease performance
 - Effect mitigated by increased efficiency & use of bottoming ORC
 - Favors large DH systems using ORC with intermediate draw-off

37th Stanford
Geothermal
Workshop

Detailed CO₂ balance

3. Results

2. Methodology

3 typical configurations

1. Introduction

- Output: Potentially sensitive to:
- Geological conditions
- Substituted services (electricity mix!)

 Efficient system design mitigates impacts from construction

4. Conclusions

- If emissions from EGS & flash comparable to hydrothermal:
 - potentially not insignificant...
- 1-flash & bottoming ORC
 - reduces size of flash, thus emissions
 - increases avoided impacts from electricity
- CO₂ balance linked with energy efficiency
 - Though electricity avoids more CO2 than DH per kWh (0.425 kg vs 0.241 kg)
 - Favors cogeneration over single electricity production

- Methodology for conceptual design of geothermal energy conversion systems combining thermo-economic optimization and LCA
 - Identify promising configurations
 - Orientate decision-making
- Determination of optimal EGS depths, technologies and DH size for average conditions of Switzerland
 - Selection of technology depends on EGS depth and DH size
 - Environomic performances increase with depth
 - Beneficial environmental balance for all economic optimal configurations
 - Interest of cogeneration
 - Does not penalize economic performances
 - Improves avoided CO₂ emissions

- Inclusion of economic and geological uncertainties in economic & LCA model
 - Drilling costs and technology
 - Energy services prices and avoided impacts
 - Importance of political decisions !
 - Effects of EGS construction depth
 - Reservoir enhancement ?
 - Expected mass flow rate ?
- Necessity to include data of future EGS to be built in models
 - Collaboration between geologists, energy systems engineers & environmental scientists

Thank you for your attention! Questions?

Contact: leda.gerber@epfl.ch