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On Capacity of Line Networks
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Abstract—We consider communication through a cascade of
discrete memoryless channels (DMCs). The source and destination
node of this cascade are allowed to use coding schemes of arbi-
trary complexity, but the intermediate relay nodes are restricted
to process only blocks of a fixed length. We investigate how the
processing at the relays must be chosen in order to maximize
the capacity of the cascade, that is, the maximum achievable
end-to-end rate between the source and the destination. For
infinite cascades with fixed intermediate processing length at the
relays, we prove that this intermediate processing can be chosen
to be identical without loss of optimality, and that the capacity of
the cascade coincides with the rate of the best zero-error code of
length equal to the block length of the intermediate processing. We
further show that for fixed and identical intermediate processing
at all relays, convergence of capacity as the length of the cascade
goes to infinity is exponentially fast. Finally, we characterize how
the block length of the intermediate processing must scale with
the length of the cascade to guarantee a constant end-to-end
rate. We prove that it is sufficient that the block length scales
logarithmically with the network length in order to achieve any
rate above the zero-error capacity. We show that in many cases of
interest logarithmic growth is also necessary.

Index Terms—Capacity, network coding, zero-error capacity.

I. INTRODUCTION

COMMUNICATION systems today are organized in large-
scale networks, the Internet being the most conspicuous

example, where information needs to traverse multiple hops to
reach a destination. Each of the hops may introduce errors that
become more and more pronounced as the size of the network
grows. Two main approaches are used for error correction: au-
tomatic repeat request (ARQ) schemes and packet-level for-
ward error correction (FEC) schemes. The schemes employed
today are end-to-end: error correction is only performed at the
source and destination node (by retransmission of packets in
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the ARQ case, and by coding and decoding in the FEC case),
while intermediate nodes are only allowed to replicate and for-
ward packets. This end-to-end approach can lead to a signifi-
cant waste of resources, that is becoming increasingly less ac-
ceptable as multimedia applications become more popular and
bandwidth demanding.

From a theoretical point of view, it is well known that de-
coding and re-encoding the information sent by the source node
(without imposing computational restrictions) at all interme-
diate nodes achieves the “min-cut capacity,” as rigorously de-
scribed in [1]. Such a scheme imposes heavy computational re-
quirements on the intermediate nodes of the network, especially
since these nodes typically need to accommodate a large number
of traffic connections. Moreover, it incurs large delay, which is
prohibitive for real-time applications.

Recently, it was demonstrated that even for lossless links, al-
lowing intermediate nodes to process information can increase
the achievable rate in a multicasting scenario [2], [3]. The pro-
posed approach, termed “network coding” requires intermediate
nodes to perform linear combinations over a finite field. The
complexity of the computations is proportional to the size of
the finite field, which in term is bounded as a function of the
number of receivers [4]–[6]. The interesting observation is that
allowing intermediate nodes to perform finite complexity pro-
cessing may not only increase the achievable end-to-end rate,
but actually achieve the min-cut capacity of the network. More-
over, the emergence of network coding helped to realize that in-
termediate node processing is plausible and compelling for new
protocols, designed, for example, for overlay networks.

Motivated by these observations, we investigate in this paper
what benefits finite complexity processing at intermediate nodes
may offer. We restrict our attention to unicast communication,
i.e., a single source–destination pair. In fact, today in the In-
ternet, almost all traffic, including multicasting, is implemented
via multiple unicast sessions.

We consider a communication network where a source node
transmits information to a destination node along a path that
comprises consecutive links of the network. We assume that
each link corresponds to a discrete memoryless channel (DMC).
In other words, we model the communication path between the
source and the destination as a line network consisting of
cascaded identical DMCs. This model captures both physical
layer and application layer communication.

To measure complexity, we allow each intermediate node to
process blocks of symbols, and use as our complexity
measure. This definition of complexity allows to bound not
only processing complexity, but also delay and memory re-
quirements at intermediate nodes. Moreover, it is well suited
to an environment where information is transmitted in packets.
We allow the source and the destination to possibly code
and decode over an unbounded number of length- blocks.

0018-9448/$25.00 © 2007 IEEE
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This assumption reflects the strong motivation of the source
and the destination to devote resources toward their own
communication.

We are interested in the maximum information-theoretic rate
at which the source can reliably transmit data to the destination
as a function of the block length and the network length .
The main contributions of this work are as follows. We show
that, if the network length increases but the block
length is fixed, the optimal processing is identical at each
relay and corresponds to a zero-error code. The capacity of the
cascade is the rate of this zero-error code. The zero-error ca-
pacity is the maximum rate at which we can communicate over
a channel with zero probability of error [7]. An intuitive inter-
pretation of this result is that, as , the zero-error capacity
is the only part of the transmitted information rate that we may
hope to preserve. This limiting result, apart from its theoretical
interest, applies to large networks where a packet needs to tra-
verse a large, but not infinite, number of relays and the relays
use the same fixed processing. For example, in wireless ad hoc
networks with nodes, the average path length scales as ,
and it is a standard assumption that the nodes are simple iden-
tical devices [8]. In the case of identical processing at each relay,
we show that the rate of convergence to the limiting end-to-end
rate is exponential in the number of cascaded channels. We also
examine how fast the block length needs to grow with the
network length in order to achieve a constant fraction of the
min-cut (as opposed to the zero-error) capacity as . We
show that logarithmic growth is sufficient to achieve any frac-
tion of the min-cut capacity above the zero-error capacity and is
also necessary in many cases of interest.

Cascades of DMCs without processing at the intermediate
nodes have been considered also in [9]–[11]. FEC schemes, that
employ intermediate processing, but designed assuming

are proposed in [12], [13].
The work in [9] gives an expression for the capacity of a cas-

cade of identical channels without intermediate processing in
terms of the eigendecomposition of the channel transition ma-
trix, which is assumed diagonalizable and nonsingular. It is im-
plicit in [9, eq. (10)] that in the limit of long cascades, only terms
associated with eigenvalues of modulus one determine the lim-
iting end-to-end rate. Here, we consider cascades of identical
channels with general transition matrices, not necessarily diag-
onalizable and nonsingular, and with intermediate processing.
For the case without intermediate processing, we make explicit
the dependency of the limiting capacity on the eigenvalues of
modulus one, and we characterize the asymptotic rate of con-
vergence to the limiting capacity in term of the second largest
eigenvalue modulus.

The work in [10] considers the capacity and the error proba-
bility of a cascade of identical binary channels, not necessarily
symmetric, with “delayless operation of the intermediate sta-
tion,” i.e., intermediate processing of length . It identifies
which binary channel gives the lowest error probability in a cas-
cade. In the appendix of [10], it is also shown that the number
of Z-channels which can be cascaded while still guaranteeing
some constant (but small) end-to-end rate is inversely propor-
tional to the probability of error over one link. The techniques
used in [10] depend crucially on the properties of a Z-channel

Fig. 1. A line network with two channels and one relay .

and are only valid for repetition coding at the relays, that is, the
approach does neither directly carry over to other channels nor
extend for rates bigger than . Here, we develop a theory for
general intermediate processing and general DMCs.

The work in [11] considers the optimal ordering of different
binary channels, not necessarily symmetric, such that the ca-
pacity of the overall cascade is maximized. The optimal or-
dering is found for the special cases of binary channel “when
all channel matrices have positive determinant, and when rela-
beling of inputs and outputs is allowed between channels in a
cascade,” i.e., with processing of length . Theorem 9
in [11] gives the rate of convergence to the limiting capacity
of cascades of nonbinary channels with a single eigenvalue of
modulus one in terms of the second largest eigenvalue modulus.
Here, we develop a theory for general intermediate processing,
not necessarily , and for general DMCs not necessarily
for DMCs with a single eigenvalue of modulus one.

In this paper, we restrict our attention to cascades of DMCs.
Our approach and employed tools are not directly applicable to
cascades of continuous channels with intermediate processing.
Indeed, optimizing the capacity for cascades of continuous
channels depends not only on the length of the cascade and of
the intermediate processing, but also on constraints, such as
power constraints, that can significantly impact the problem’s
optimal solution.

This paper is organized as follows. Section II formally in-
troduces the network model and briefly summarizes the main
results of the paper. Section III calculates the capacity of an in-
finite cascade of identical channels without intermediate pro-
cessing. Section IV identifies the optimal finite length interme-
diate processing for an infinite cascade. Section V derives upper
and lower bounds on the capacity. Section VI determines how
the length of the processing must scale with the length of the cas-
cade in order to achieve a fraction of the min-cut capacity above
the zero-error capacity. Finally, Section VII concludes the paper
and briefly discusses open problems and future work directions.

II. NETWORK MODEL AND MAIN RESULTS

A. Network Model, Notation, and Basic Concepts

We consider line networks with relays as depicted in
Fig. 1. The source sends information to the destination
via relays . Each link corresponds to the same DMC
with finite input alphabet , finite output alphabet , and ar-
bitrary transition probability matrix . We impose that all the
DMCs in the cascade are identical.

We use the following notational conventions. We denote by
the set of stochastic matrices of dimension . We use

boldface to indicate probability mass functions and transition
probabilities, represented as vectors and matrices, respectively.
All logarithms are with respect to the natural basis, with the
exception of plots, where capacities are in bits per channel use.
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We restrict the relays to perform operations from
blocks of exactly symbols in to blocks of exactly sym-
bols in in a memoryless way across blocks. Using times
the channel between and , amounts to connecting
and through an equivalent DMC with input alphabet ,
output alphabet , and transition probability matrix

where denotes the Kronecker product. We denote by
the output of channel (observed by relay ) and by
the input of channel (sent by relay ). is then a (not
necessarily deterministic) function of . This function can be
described by a transition probability matrix
specifying for each realization of and of the proba-
bility .

We allow the source and the destination to perform
coding and decoding of arbitrary complexity, across an arbitrary
number of symbols in and .

We are interested in identifying the set of processing
performed at the relays that maximizes the achiev-

able rate between the source and the destination. This is exactly
the capacity of the overall channel

(1)

that includes the intermediate processing as part of
the channel transition probability matrix. Our goal is to deter-
mine

the capacity of the overall channel (1) normalized by , the
number of uses of the underlying channel . Here and in the
following:

where is the mutual information between the input
and the output when and .

Intuitively, the processing at the relays can be understood as
a decoder followed by an encoder for an inner code of length

used over the channel . More precisely, we can show [14]
that for every relay , the optimal processing corresponds
to a deterministic function and that it implements a decode–re-
encode operation for some code of rate1 .

In this paper, we will make connections between
and the zero-error capacity of the underlying channel . Re-
call that the zero-error capacity is defined as the maximum rate
at which communication is possible with zero probability of
error. The notion of zero-error capacity was introduced in [7]
(see [15] for further details). It can be computed as follows.
For a channel with transition matrix , we call two input let-
ters and adjacent if there exists an output letter such that

1A matrix is said to be binary if all its entries are in . A stochastic
matrix corresponds to a deterministic processing if it is binary. For such
a processing, is the number of inputs of the channel in the
cascade that are actually used.

and . We then construct a graph
corresponding to the stochastic matrix having as vertex set
the possible inputs of and in which two vertices are con-
nected if the corresponding input letters are adjacent. Denote by

the largest number of vertices in no two of which
are connected by an edge (or, equivalently, the largest number
of input letters of no two of which are adjacent). In graph
theory, is called the independence number of .
The zero-error capacity of is then given by

(2)

It can be shown that for all ,
and hence, that the limit in (2) is equal to the supremum over all

[15].
Clearly, for any DMC with transition probability matrix ,

any intermediate processing of length , and any network
length , we have

(3)

where the lower bound is achievable by using the same zero-
error code of length at each node in the network and the upper
bound is the network min-cut capacity [1, Theorem 14.10.1].

B. Main Results

Our main result states that the capacity of an infinite cas-
cade of identical DMCs with transition probability matrix ,
and with intermediate nodes restricted to process only blocks of

symbols, cannot exceed the zero-error capacity of the under-
lying channel. More precisely, it states that the lower bound in
(3) is tight as .

Theorem II.1: The capacity of an infinite cascade of iden-
tical DMCs with channel matrix and optimal intermediate
processing of finite length is

(4)

This theorem is proved in Section IV. It tells us that in the
limit as , the optimal intermediate processing is iden-
tical at each relay and corresponds to the best, in the sense of
highest rate, zero-error code of length for the channel .
Hence, the capacity of the infinite cascade equals the rate of this
zero-error code and is always upper-bounded by the zero-error
capacity of . Notice that, by (2), any rate strictly below the
zero-error capacity is achievable with finite length processing.

The next result illustrates the behavior of long cascades of
identical channels, arising, for example, when the intermediate
nodes perform the same processing independent of .

Theorem II.2: For any square stochastic matrix

where is the number of eigenvalues of modulus (magni-
tude) one of .

This theorem is proven in Section III. It tells us that
exists and can be easily computed as the
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logarithm on the number of eigenvalues of modulus one of .
In Section III, we also show that convergence to the limiting
capacity in Theorem II.2 is exponentially fast in , and we
provide tight bounds on the exponent as a function of the
second largest eigenvalue modulus of .

For finite and , the relays can use a capacity-
achieving code and communicate reliably as long as the rate
of this code is below the capacity of the channel . That no
other coding strategy can do better than this is clear from either
the min-cut bound [1, Theorem 14.10.1], or directly from the
data processing inequality. Hence, the capacity of the cascaded
channel with infinite complexity processing at the relays is

(5)

i.e., the upper bound in (3) is tight. From Theorem II.1, we have
that for and finite , the lower bound in (3) is tight.
The limits in (5) and (4) might differ quite substantially. It is
thus natural to ask what happens if both and are allowed to
grow. Our last result tells us how fast needs to grow with
in order to achieve rates above the zero-error capacity.

Theorem II.3: For any , define

where

For every channel matrix there exists such that2 for

and for

as .

This theorem is proved in Section VI. The derivation of these
results is founded on upper and lower bounds on (de-
rived in Section V) that are valid for all values of and .
These bounds have merit on their own, as they increase our un-
derstanding of achievable rates for finite values of and .

From Theorem II.1, we know that, for any network length ,
any rate below the zero-error capacity can be achieved with a
processing of finite length . Theorem II.3, on the other hand,
tells us that for rates above the zero-error capacity, needs to
increase at most logarithmically with the length of the network

. Moreover, in many cases of interest, logarithmic growth is
also necessary. This is the case in the following example that
illustrates the use of Theorems II.1, II.2, and II.3.

Example II.1. Line Network of Binary Symmetric Channels:
Consider a cascade of (binary symmetric channels
with crossover probability ), where . The capacity
of a is

2We use Knuth’s notation: means that there exists a con-
stant and integer such that for ;
denotes that .

Fig. 2. Capacity of cascaded with simple forwarding (optimal
for ) , optimal intermediate processing of block length
three , and optimal infinite length processing at the relay .

where is the binary entropy
function. The zero-error capacity is .

Theorems II.1 and II.2 yield , that is,
as finite-length processing does not offer any benefits.
In other words, whether we use finite-length processing or no
processing at all, we cannot reliably transmit information from
the source to the destination at any positive rate. Moreover, if all
intermediate nodes perform the same processing independent of

then this limit is reached exponentially fast in .
Now assume that we need to transmit information through

this network at a strictly positive rate, our next question is how
should scale with in order to achieve this. Theorem II.3 tells

us that logarithmic growth of with is sufficient to achieve
any positive fraction of the min-cut capacity, i.e.,

for all . Furthermore, as we will show in
Example VI.2, for a network of binary symmetric channels, the
constant in Theorem II.3 is equal to zero, and hence loga-
rithmic growth of with is also necessary to achieve any pos-
itive fraction of the min-cut capacity, i.e.,
for all .

Note that, for finite , finite complexity processing at the in-
termediate nodes can benefit the overall end-to-end achievable
rate. To see this, consider the case where the intermediate nodes
simply forward the incoming bits to the next node without fur-
ther processing. For a cascade of , forwarding is clearly
the optimal processing for . In fact, since a cascade of

is itself a binary symmetric channel with parameter
, the end-to-end achievable rate for equals

Forwarding is also the optimal processing for and
, that is, . Fig. 2 illustrates, for
cascaded , the forwarding capacity

and the min-cut capacity . The same figure also shows the
achievable end-to-end rate when the intermediate node decodes
and re-encodes a repetition code of length . By exhaus-
tive search, for and , the optimal processing can
be found to be either forwarding (small ) or repetition coding
(large ).
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III. CAPACITY OF A CASCADE OF IDENTICAL CHANNELS

In Section IV, we will prove that identical processing at the
relays is optimal for an infinitely long cascade of channels. In
this section, we hence focus on the capacity of an infinite cas-
cade of a DMC with input and output alphabets of the same
cardinality and transition matrix , that is, we compute

(6)

In other words, the channel is cascaded with itself without any
intermediate processing, or can be the result of applying the
same intermediate processing at each relay, that is, ,
for some independent of .

In Section III-A, we briefly review the canonical decomposi-
tion of nonnegative matrices, and we compute the limit and rate
of convergence of as . We use these results in Sec-
tion III-B to characterize the limiting capacity of an arbitrary
channel cascaded times with itself, and in Section III-C, to
characterize the rate of convergence to the limiting value.

A. Canonical Form of Stochastic Matrices

Our exposition closely follows [16]. Let be an
square stochastic matrix and denote by the set
of its (row and column) indices. We say that the index leads
to index , and write , if for some . If

and , we say that and communicate. An index
is called essential if implies . Otherwise is called
inessential. This partitions the set of indices into the set of es-
sential indices and inessential indices . The set of essential
indices can furthermore be partitioned into communicating
classes , such that all indices communicating with
each other are in the same class. The canonical form of a ma-
trix is obtained by relabeling its indices in such a way that all
indices of the same essential communicating class are consec-
utive, and every inessential index is greater than any essential
index. Formally, this corresponds to pre- and post-multiplying

by some permutation matrix . This results in a matrix of the
canonical form

...
...

. . .
...

... (7)

The square matrix in (7) contains the transition probabilities
within the th essential communicating class, the square matrix

contains the transition probabilities between the inessential
indices , and the (not necessarily square) matrix contains
the transition probabilities from the inessential indices to the th
essential communicating class. The submatrices are by
construction irreducible.

The period of an index is defined as the greatest common
divisor of those for which . All indices in the same
communicating class have the same period, which is referred
to as the period of the class. Denote by the period of the
submatrix . If , then is called primitive, i.e., it is
irreducible and aperiodic. If , then can be written in a

canonical form (again by permuting indices) such that, for any
integer , is of the form

...
...

. . .
...

(8)

where the square matrices on the main diagonal are
primitive, i.e., irreducible and aperiodic.

The following lemma gives the limiting expression of
when for certain . As we shall see, the class of
covered by the theorem is general enough for the purposes of
computing the capacity in (6).

Lemma III.1: Let be a square stochastic matrix in the
canonical form (7) with primitive diagonal submatrices

(i.e., has aperiodic essential communicating
classes). Then

...
...

. . .
...

...

(9)
where the row vector is the unique stationary distribution of

, i.e., , and the column vector equals
( indicates the identity matrix and the column

vector of all ones).
Proof: The proof follows from [16, Theorems 4.1, 4.2, 4.3,

and 4.7]

The speed of convergence of to the limiting expres-
sion in (9) is exponential in , with the exponent related to

, , the ordered (written without repetition)
eigenvalues of such that

Note that for a stochastic matrix , . Moreover,
a primitive stochastic matrix has exactly one eigenvalue of mod-
ulus one. This eigenvalue, referred to as Perron–Frobenius root,
has an algebraic and geometric multiplicity of one [16, Theorem
1.1]. The next lemma provides detailed information about the
speed at which convergence in Lemma III.1 takes place.

Lemma III.2: Let be a square stochastic matrix in the
canonical form (7) with aperiodic essential communicating
classes. The entries of converge to the entries of in
(9) exponentially fast3 in , with exponent not smaller than

.
Proof: From [16, Theorems 1.2 and 4.2], the entries of

converge to the entries of exponentially fast, all with expo-
nent .

From [16, Theorem 4.3] and [17, Corollary 5.6.14], the en-
tries of converge to zero exponentially fast, with exponent

3 converges exponentially to with exponent not smaller than
if and . If

then converges exponentially fast
with exponent .
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not smaller than . Note that and thus
the exponent is positive.

From the proof of [16, Theorem 4.7], the entries of
(the position of the matrix in is

the same as the position of the matrix in ) converge to
the entries of exponentially fast, with exponent not smaller
than .

Hence, all entries of converge to their respective limit with
exponent not smaller than

(10)

Since the eigenvalues of the block lower triangular matrix are
the union of the eigenvalues of its diagonal blocks [18, Exercise
4, p. 64], and since because is a stochastic ma-
trix, (10) equals , thus yielding the desired result.

An immediate consequence of Lemma III.1 is as follows.

Corollary III.3: Let be a square stochastic matrix with
aperiodic essential communicating classes. Then

where is the multiplicity (algebraic and also geometric)
of .

Proof: That the rank of is follows imme-
diately from inspection of (9).

That is also the multiplicity of is a conse-
quence of the following facts. First, the eigenvalues of a block
lower triangular matrix are the union of the eigenvalues of its
diagonal blocks [18, Exercise 4, p. 64]. Second, each stochastic
matrix on the main diagonal of is primitive and thus has
exactly one eigenvalue of maximum modulus .
Third, all the eigenvalues of are in modulus strictly less than
one [16, Theorem 4.3]. Hence, the eigenvalue of of maximum
modulus has multiplicity given by the
number of primitive stochastic matrices on the main diag-
onal of , which is by definition.

The following example illustrates these definitions and re-
sults.

Example III.1: Let , . Consider the DMC

which has essential indices , inessential in-
dices , and two essential communicating classes

. The canonical form, which we shall denote
again by for ease of notation, is

(11)

with

and

Both matrices and have period . Hence, the matrix
falls into the category covered by Lemmas III.1 and III.2 as well
as Corollary III.3. The eigenvalues of take the values

, and has multiplicity .
From Lemma III.1

(12)

and, from Lemma III.2, the speed of convergence is exponential
with exponent not smaller than

(13)
From Corollary III.3, the rank of is .

In this specific example, we could also have computed di-
rectly the limiting value in (12) and the exponent in (13) from
the following explicit expression for :

(14)

with and .

B. Capacity of an Infinite Cascade of Identical Channels

We now use the results from Section III-A to find the capacity
of an infinite cascade of an arbitrary channel without interme-
diate processing.

Theorem III.4: For any square stochastic matrix

(15)

where is the multiplicity of eigenvalues of modulus one
of .

Proof: For any square stochastic matrix , the limit
exists since the sequence is nonin-

creasing in (by the data processing inequality) and bounded
below (by nonnegativity of mutual information). The existence
of the limit implies that for any

(16)

By continuity of capacity in the channel transition probability
matrix (shown in Appendix I, Lemma I.1) and if
exists (which, for appropriately chosen , will be shown to hold
in the next paragraph)

(17)

Without loss of generality, assume that is in the canonical
form (7). The notation is the same as in Section III-A. Let
be the period of the irreducible matrix and denote by the
least common multiple of the . By (16), we can limit our
attention to the powers of . From (8), we know that is
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block diagonal, since is a multiple of , and it has exactly
primitive square matrices on the main diagonal. Hence, has
the form of (7) with aperiodic essential communicating
classes. Hence, is given by (9) in Lemma III.1,
where the number of aperiodic essential communicating classes
is .

Since capacity is upper-bounded by the logarithm of the rank
of the channel transition probability matrix [19] and from Corol-
lary III.3, we have that

(18)

where the last equality in (18) follows since the number of eigen-
values of modulus one of is the same as the number of eigen-
values of modulus one of for any integer . It is easy to see
that equality in (18) is achievable by using one input per essen-
tial communicating class of with uniform probability. This
shows that (15) holds, concluding the proof.

C. Convergence to Asymptotic Value

We showed in the last subsection that the capacity of an infi-
nite cascade of identical DMCs can be easily computed in terms
of the number of eigenvalues of modulus one of the channel
transition probability matrix. In this subection, we show that
convergence to this limiting expression is exponential in the
length of the cascade. This implies that for long, but still finite,
cascades of identical channels, the limiting result derived in the
previous section is meaningful.

We define the exponential rate at which capacity decays as

The following theorem asymptotically bounds in terms
of the eigenvalues of the channel matrix .

Theorem III.5: Let be a stochastic matrix, and define as
the stochastic matrix obtained by deleting all inessential indices
from . Then

(19)

where denotes the second largest eigenvalue modulus
of the channel matrix .

Moreover, if , then exists and is equal
to the upper bound in (19).

Proof: The proof, due to its length and technicality, is re-
ported in Appendix II.

Interestingly, the speed of convergence of in Theorem
III.5 is not necessarily the same as the speed of convergence of

, which was derived in Lemma III.2 and was found to be
equal to .

We illustrate the use of Theorem III.5 by further developing
Example III.1. This example shows that both the upper and the
lower bounds in Theorem III.5 can be tight.

Example III.2: For the channel in Example III.1, we have
and .

The matrices , , and are given in (11), (14), and (12),
respectively. Theorem III.5 says that the convergence of
to is exponentially fast in with exponent

(20)

We now show that with the right choice of the parameters
and , both the upper and the lower bound in (20) can be

achieved. To do that, we will directly derive the speed of conver-
gence as follows. The capacity of in (14) can be computed
for every as the channel is the sum of a binary symmetric
channel with parameter , with capacity

as , and a Z-channel with parameter ,
with capacity

as . Hence, for large

for some constants and independent of . We conclude
that

Thus, if , the upper bound in (20) is tight; if
neither the upper nor the lower

bound is tight; if , the lower
bound is tight.

IV. CAPACITY OF AN INFINITE CASCADE OF CHANNELS WITH

INTERMEDIATE PROCESSING

In this section, we characterize the optimal finite-length in-
termediate processing for an infinite cascade and establish con-
nections with the zero-error capacity. We start by showing that,
similar to the usual capacity, the zero-error capacity obeys a sort
of data processing inequality. This result is then used to show
that the optimal finite-length processing for an infinite cascade
is a zero-error code.

Proposition IV.1: Consider a cascade of channels .
Then for any

(21)
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Remark: Equation (21) implies that

Proof: By definition, if is the maximum number
of inputs of the channel that can be distinguished from the
output with zero error, then for every (and for
no ) there exist two binary stochastic matrices, an
encoder and a decoder , such that is the
identity matrix of dimension . Conversely, if there exist two
binary stochastic matrices and such that is
the identity matrix of dimension , then .

Let be the optimal encoder and decoder for

the matrix . By the properties of the Kronecker
product [18, Thoerem 4.2.10], we have

where is the identity matrix of dimension

and

Hence, there exists at least one pair of randomized zero-error en-
coder and decoder (i.e., and ) for the channel
yielding the same rate as .

It remains to show that we can find a nonrandomized (i.e.,
binary stochastic) zero-error encoder and decoder for .
Note that the set of all stochastic matrices of fixed dimension
is closed, bounded, and convex. An easy argument shows
that its extreme points are binary stochastic matrices. Hence,
every pair of stochastic matrices may be written
as a convex combination of binary stochastic matrices [20,
Corollary 18.5.1]

where is the set of all binary stochastic matrices of
appropriate dimension for and . Then

Each term is a stochastic matrix, and hence, in par-
ticular, nonnegative with at least one positive entry in each row.
Hence, their sum can only be equal to if
whenever . Since at least one such must exist,
we can choose and as nonrandomized zero-error encoder
and decoder for the channel , proving the result.

The next theorem shows that for an infinite cascade of iden-
tical DMCs, identical processing at the relays is optimal. This
theorem is crucial as it allows us to optimize over only one inter-
mediate processing instead of having to optimize over an infinite
sequence of processing .

Theorem IV.2: For a cascade of identical DMCs, identical
processing at the relays is optimal as , i.e.,

Moreover, the maximization on the right-hand side can be re-
stricted to be over all binary stochastic matrices.

Proof: Recall that is the channel transition
probability matrix of the equivalent DMC between any pair of
relays, and that is the processing at the relays. With

for , the overall
channel between the source and the destination node is

An interval chain of length is defined to be a sequence
of intervals , where the are each integer intervals

and have the property that for
all . Consider the product and define

for any integer interval .
We will use [21, Lemma 2.4], a result originally due to Erdős
and Szekeres, to show that, as , there exists an interval
chain of arbitrary length such that all are almost iden-
tical. More precisely, for every there exists an sat-
isfying and such that

(22)

for some stochastic matrices and and with as
.

For a fixed , construct from by quantizing every
component of to the closest of the points . The set
of all possible quantized matrices (which are, in general, not
stochastic) has cardinality , with .
By [21, Lemma 2.4], we have that if then there
exists an interval chain of length such that for
all . Note that is defined as the quantized
version of and hence, and differ componentwise
by at most .

We now show, by induction over , that this implies that the
product and differ componentwise at most by
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. The result trivially holds for . Assume then it
holds for , and let , . Consider an
arbitrary component of and , say . We have

concluding the induction step.
Let denote the -fold logarithm of . Choosing

we have , and at the same time
for all and . By Appendix

I Lemma I.1, is uniformly continuous, and hence

proving (22), where

By the data processing inequality, the capacity in (22) can be
upper-bounded by

But any stochastic matrix resulting from this procedure can
be written as the product for some stochastic matrix
and, hence, can be constructed from a cascade of channels

by using the same processing at each relay. Thus

It remains to show that can be restricted to be a binary
stochastic matrix without loss of optimality. As argued before
(see the proof of Proposition IV.1), every matrix may be
written as a convex combination of binary stochastic matrices

, where is the set of all binary sto-
chastic matrices of appropriate dimension. The maximization
over can then equivalently be written as a maximization over
all valid weights . By convexity of mutual information
in the channel argument

(23)

We can interpret the weights as a probability distri-
bution on . Then the argument of the right-hand side
maximization in (23) is the expected value of capacity resulting
from choosing intermediate processing from inde-
pendently at random and according to the probability distribu-
tion . We will break this argument into two terms, with
one term containing all the events where a particular appears
at least times in succession, and the other term containing the
remaining events.

Let denote the index corresponding to the maximum value
of , i.e., . Clearly, . Thus, for the

corresponding the probability that it occurs times in suc-
cession during the experiment is at least . Define to
be the set of -tuples of indices such that the value
(and correspondingly ) appears at least times in succession
in (23)

s.t.

For a fixed , , and assuming for some , we
have

s.t.

and therefore

With this, we can further upper-bound (23) by

(24)
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where we have used the data processing inequality. Choosing
and , the second term

on the right-hand side in (24) goes to zero as while
, proving the result.

With this last result, we are now in position to find the op-
timal intermediate processing of block length for an infinite
cascade of identical channels and to compute the resulting ca-
pacity of the cascade. Theorem IV.3 shows that the optimal in-
termediate processing at the relays corresponds to using the best
zero-error code of block length for the channel . The re-
sulting capacity of the cascade equals the rate of this zero-error
code.

Theorem IV.3: The capacity of an infinite cascade of iden-
tical DMCs with channel matrix and optimal intermediate
processing of finite length is

Proof: Decompose the intermediate processing
, for some stochastic matrices , . The main

steps of the proof are as follows:

(25a)

(25b)

(25c)

(25d)

(25e)

Equality in (25a) follows from Theorem IV.2. The next step is
to show that the limit and the maximization operation in (25a)
can be exchanged, thus giving (25b). We postpone the proof
of this technical step to a later stage. Equality in (25c) fol-
lows from Theorem III.4, where is the number
of eigenvalues of modulus one of . Call the least
common multiple of the periods of the essential communicating
classes of . From Lemma III.1, the limiting channel

has nonadjacent in-
puts, and hence (25c) is the rate of the best zero-error code of
length one for the limiting channel ,
thus giving (25d). Finally, equality in (25e) follows by applying
Proposition IV.1, which states that

with equality if is an optimal zero-error code for
, as in this case for any

integer .
In order to complete the proof, we need to show that the limit

and the maximization operation in (25a) can be interchanged.
Clearly

Fig. 3. The channel in Example IV.1 and its graph .

On the other hand, let be a se-
quence of optimal processings. By Theorem IV.2, every pair

can be assumed to be binary matrices. Since
there are only finitely many binary matrices, there exists an in-
finite subsequence such that all
are identical (equal to , say). Hence

proving (25b).

Theorem IV.3 states that the zero-error capacity is the only
part of the transmitted information rate that can be preserved as
the length of the cascade . Another interpretation of this
result can be obtained by considering the concept of common
information [22]. The common information between the pair of
random variables is defined as the entropy of the func-
tion of maximum range. In other words,
can be computed from either or with probability one. If

has distribution and has conditional distribution , we
denote the common information between them as

As is shown in [23], [24], the zero-error capacity can be defined
through common information in a similar manner as ordinary
capacity can be defined through mutual information. More pre-
cisely

and thus Theorem IV.3 can equivalently be written as

Hence, as , the only part of mutual information we
can preserve between the input and the output of the cascade
is exactly the common information between them.

The following examples illustrate the use of Theorems IV.2
and IV.3.

Example IV.1: Consider , where is given in (11) in
Example III.1. The corresponding transition matrix and graph

are depicted in Fig. 3.
For this channel
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Fig. 4. The “pentagon” channel and its graph .

that is, the zero-error capacity is achieved by a zero-error code
of block length one (this code for example might use and
that are nonadjacent). Theorem IV.3 states that for an infinite
cascade of these channels, for any finite

In other words, if is restricted to be finite, is optimal.
The limiting capacity can be achieved by using at all interme-

diate nodes the decoder

followed by the encoder

Notice that, for this specific example, the product is
actually equivalent to forwarding. In fact, a decoder cannot dis-
tinguish between and , and between and . Nonethe-
less, or are never mistaken for or . Moreover, in the
limit for large , can be used at the source and can
be used at the destination without loss of optimality. Hence, for
long line networks of channels , the intermediate nodes need
not to perform any processing at all, the source conveys the bits
with value zero by sending, for example, or , and the bits
with value one by sending or . The destination decodes a
bit to be zero if either or is received, and one otherwise.
This scheme does not incur any delay, does not require any in-
termediate processing, and is optimal provided the length of in-
termediate processing is restricted to be finite while .

The simplest nontrivial DMC for which the zero-error ca-
pacity is achieved by a zero-error code of length larger than one
is the so-called “pentagon” channel [7], which we analyze in
more detail in the next example.

Example IV.2. The Pentagon Channel: Consider the “pent-
agon” channel whose transition matrix , for , is

The corresponding graph is depicted in Fig. 4.
For this channel, we have (for example, and
are nonadjacent) and (for example, ,

, , , and are nonadjacent). It
was conjectured in [7] and shown in [25] that for this channel
the zero-error capacity is

that is, a zero-error code of block length two is optimal.
Theorem IV.3 states that for an infinite cascade of “pentagon”

channels

and

Moreover, for any other finite , we can never achieve more
than . Hence, for an infinite cascade of “pentagon” chan-
nels, an intermediate processing of length is optimal if

is restricted to be finite. The optimal limiting capacity can
be achieved by using at all intermediate nodes and at the source
a zero-error encoder of length , and at all intermediate nodes
and at the destination a zero-error decoder of length . Notice
that in this example, if the intermediate nodes simply forward
the incoming data (i.e., they perform a suboptimal processing of
length ) then the limiting capacity is

(by Theorem III.4), and this limit is approached exponentially
fast with exponent

(by Theorem III.5). In other words, intermediate processing is
necessary if a nonvanishing rate is to be achieved in a long line
network of pentagon channels, but even an optimal one-symbol
processing suffices to achieve a strictly positive end-to-end rate.

V. BOUNDS ON CAPACITY

We derive an upper and a lower bound on , the ca-
pacity of the cascade with optimal intermediate processing at
the relays, that apply for all values of and .

A. Upper Bound

In this subsection, we derive an upper bound for ex-
pressed as a convex combination of the min-cut capacity and of
a term reminiscent of the zero-error capacity. The basic idea is
to decompose the channel transition matrix into a convex
combination of two stochastic matrices, one of which has rank
as close as possible to . We also discuss efficient al-
gorithms to determine such a decomposition.

Theorem V.1: For any stochastic matrix and any integer
, if there exist two stochastic matrices and , and

such that

(26)

then

(27)
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Remark: If then, for large
enough, the bound in (27) is strictly better than the min-cut
upper bound .

Proof: Assume (26) holds, then

(28a)

(28b)

where (28a) follows from the convexity of mutual information
in the channel matrix, and (28b) from the data processing in-
equality. By repeating the same argument, we get

(29)

We can further upper-bound in (29) with the logarithm
of the rank of [19] to yield (27).

The following example illustrates the use of Theorem V.1.

Example V.1: Consider again , where is given by
(11) in Example III.1. Then, we can choose

and , where is given by (12). In this case,
. Setting ,

Theorem V.1 yields

(30)

For this channel for any finite
, as already pointed out in Example IV.1. Moreover, we see

from (30) that the decay of to is exponential
in with exponent lower-bounded by

In order to obtain the best bound for any given , should
be chosen to have the smallest rank possible. A possible choice
is to take and as in Example V.1. With
this the bound in (27) reduces to

TABLE I
MAXIMUM INDEPENDENT SET PROBLEM, SET COVER PROBLEM, AND THEIR

LP RELAXATIONS

since . However, the choice
does not give the best possible bound for in (27)

in general, as we show in Example V.2.

Example V.2: Consider again the “pentagon” channel intro-
duced in Example IV.2. For we can find a matrix
with . However, for we can find a matrix

with .

Note that for any matrix such that (26) holds, we have

(31)
If for some we find (like in
Example V.1), then Theorem V.1 implies that the decay of

to is exponentially fast in .
We have already seen in Section III-C that if we impose the
constraint that all are identical and independent of
then the limiting capacity is approached exponentially fast in ,
and we gave tight upper and lower bounds on the exponent. If

for some , then exponential decay
also applies to nonidentical processing. The lower bound on
the exponent that can be derived from Theorem V.1, namely,

, is, however, not tight in general.
The problem of finding the matrix with minimum rank is

equivalent to the Set Cover Problem described as follows [26].
Given a universe of elements, a collection
of subsets of , and a cost function for each subset in , find a
minimum cost subcollection of that covers all the elements in

. This problem can be formulated as an integer program. As-
sign a variable for each set , where if set
takes part in the subcollection and otherwise. The con-
straint is that every element in must belong to at least one of
the picked sets . The set cover problem and its linear program
(LP) relaxation (primal) are provided in Table I, for the special
case where the cost of all sets is one, which is the case of interest
here. A variety of approximation algorithms are available in the
literature for the set cover problem [26]. These algorithms run
in polynomial time in and provide approximations with gap
at most from the optimal solution.

In our case, the universe is the set of inputs of
the channel . The set of outputs defines , in
that the subset contains the inputs that result with nonzero
probability in output , for . The next theorem
shows that this set cover problem is equivalent to the problem
of finding the matrix of minimum rank.

Proposition V.2: The minimum rank matrix has rank
if and only if is the minimum cost of the pre-

viously described set cover problem.
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Proof: Consider a solution of the set cover problem with
cost . This provides us with a set of outputs that cover
all inputs. We can construct a matrix that has rank
as follows. Take the binary matrix , where the ceiling
operation is component-wise. To construct matrix , replace
with the all-zero columns those columns of that corre-
spond to outputs where in the set cover problem. Then
normalize all rows so that they sum to one. The matrix con-
tains at most linearly independent nonzero columns
and all-zero columns, and thus,

. Moreover, is a valid stochastic matrix because its
nonzero columns “cover” all inputs, i.e., each row has at least
one nonzero element, and all rows sum to one. Choose to be
the largest number such that the matrix

is a valid stochastic matrix. It is easy to see that this
is at least as large as the minimum of the entries of
that correspond to a nonzero entry in . We conclude that

.
For the reverse direction, note first that by nonnegativity of

, we can assume without loss of generality that the columns
of are linearly independent (linearly dependent columns do
not affect the rank, and correspond to sets with already cov-
ered elements). Set if the th column of is nonzero
and otherwise. Since is a stochastic matrix, this de-
fines a valid cover of with cost equal to . Therefore,

.

By using one of the available approximation algorithms, we
can calculate in polynomial time in a matrix that
has rank bigger than the minimum by a factor of at most

. As we are really interested in this
implies that the loss we incur by using these approximation al-
gorithms to find an matrix goes to zero as as

.
The problem of finding the matrix with minimum rank

is closely related to computing . To see this, con-
sider the (strong) LP dual of the set cover LP relaxation de-
scribed in Table I. The dual LP is the LP relaxation of the Max-
imum Independent Set Problem. The maximum independent set
problem takes as input a graph adjacency matrix and calculates
the graph independence number. We already pointed out in Sec-
tion II-A that is the independence number of the
graph . This maximum independent set problem can
be formulated as an integer program as follows. Assign a vari-
able for each vertex of the graph, if the vertex takes
part in the independent set and otherwise. The constraint
is that no two picked vertices are connected with an edge.

For our purposes, we use the adjacency matrix corresponding
to the graph . The solution of the maximum indepen-
dent set problem for directly leads to the construction
of an optimal zero-error code of length for the channel .
Denote by this optimal solution. Obviously,
is lower-bounded by . In fact, is the minimum
number of outputs such that all inputs are covered. Since all
inputs are covered, this implies that any inputs

have at least one output in common. Thus, ,
yielding another proof of (31).

The integrality gap between the set cover problem and its LP
relaxation is subexponential in [26]. Hence, if the integrality
gap between the maximum independent set problem and its LP
relaxation is also subexponential in , then there exists a matrix

such that , i.e., the
inequality in (31) becomes an equality.

B. Lower Bound

We next derive a lower bound on . To do so, we
choose a particular (possibly suboptimal) communication
scheme and find a lower bound on the rate achievable with this
scheme. Assume we use an inner encoder
(for some ) at the source and a corresponding
maximum-likelihood decoder at the relay

. At the message is then re-encoded using again
and transmitted over the second channel. We continue in the
same manner at every , and the destination uses an
inner decoder . This corresponds to using intermediate
processing for all . The rate of this inner
code is determined by , through

Note that this scheme constructs an overall channel between the
source and the destination node

with . The source and the desti-
nation then use an outer code over the channel .

Using random coding arguments, we know that there exist
good codes (defined by the tuple ) in the sense that
the average probability of decoding error is bounded by

where is the random coding error exponent for the
channel as a function of the rate [27, Theorem 5.6.2]. We
use such a good code as our inner code. With this, the trace of
is lower-bounded by , but unfortunately this result
gives no information about the off-diagonal entries of . To get
a lower bound on the achievable rate, we construct the worst
cascade such that satisfies the trace constraint. This worst
cascade is found in Appendix III Lemma III.1. The resulting
lower bound for is given in the next theorem.

Theorem V.3:

(32)

with equality as , i.e.,

(33)

Proof: Let be the set of stochastic matrices such
that , i.e.,
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and be the set of stochastic matrices such that
, i.e.,

For any with , we have by Jensen’s
inequality

where . Hence, and therefore

(34)

for any . In particular, let be the uniform distribution on
. The minimization in (34) can be solved using Ap-

pendix III Lemma III.1 and the example following it. If
, the worst channel is , and capacity is

(trivially) lower-bounded by . Else, the worst channel has di-
agonal entries equal to and all other entries equal
to . In both cases, the minimizer is
a symmetric channel, for which the uniform distribution is ca-
pacity achieving and the capacity is

where is the first row of the minimizing channel matrix [1,
Theorem 8.2.1]. Thus, the lower bound in (34) can be calculated
as

(35)

where the above bound is valid for all values of the inner code
rate such that

If then (35) becomes

Hence, (35) is also (trivially) valid in this range, and we can
maximize over , thus, showing that

(36)

(37)

Fig. 5. Lower bounds on capacity of the cascade of two for different
values of block length (from bottom to top in the figure).
Also shown are the min-cut upper bound and . Note that the
lower bound derived in this section is not very good for small values of .
Indeed, for the forwarding lower bound yields better results for some
values of . The bound becomes, however, tight as and converges to
the min-cut capacity.

Fig. 6. Lower bounds on capacity of the cascade of two for different
values of crossover probability (from top to bottom in
the figure, solid lines) as a function of the block length of intermediate pro-
cessing. Also shown are the corresponding limiting expressions (dashed
lines).

We now show that the bound is tight as . As
is strictly positive for all [27, Theorem 5.6.4], we
have for every and with

As is arbitrary, (33) follows.

Example V.3: Consider a cascade of . Fig. 5
compares for this channel the lower bound derived in this sec-
tion with and the min-cut capacity (achievable
when ). It can be seen that, while the lower bound is
not very good for small values of , it is quite good for larger
values of and tight as .

How fast the convergence of the lower bound to the upper
bound takes place, is depicted in Fig. 6 as a function of

and for various values of crossover probability . It can be
seen that the lower bound is already quite close to the limiting
expression for .

VI. SCALING LAWS

In this section, we investigate how the block length needs
to scale with the network length in order to achieve a constant
fraction of the min-cut capacity (as opposed to the zero-error
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capacity). We will show that logarithmic growth of with is
sufficient, and in many cases also necessary.

From (2), any rate strictly below the zero-error capacity can
be achieved with finite block length processing. Here we are in-
terested in rates that indeed need an infinite block length. Hence,
for any we define

where

The next theorem gives an upper bound on , es-
tablishing that logarithmic growth of with is sufficient to
achieve .

Theorem VI.1: For all

(38)

Proof: Theorem V.3 asserts that for any

by using the fact that for all . Thus

Since this is true for all , we can minimize
over to get the tightest bound.

Notice that by solving the bound of Theorem V.3 (see (36))
for , we get also that for fixed to guarantee a rate we can
cascade up to

channels. That is, for a fixed , , and , the number of chan-
nels cascaded scales at least like . This last result is
interesting as it recovers, as a special case, the same

scaling derived in [10] for cascades of binary Z-channels with
repetition coding at the relays.

The next theorem establishes that logarithmic growth of
with is necessary to achieve for all where
is a nonnegative constant.

Theorem VI.2: Let , , and
such that

and . Then

for all

(39)

Proof: From Theorem V.1 (for for some )

Now as , we have

For every , let be the matrix of minimal rank
among all decompositions of in Theorem VI.2. Define

We obtain the following corollary of Theorems VI.1 and VI.2.

Corollary VI.3: As , for

and for

Example VI.1: Consider again the “pentagon” channel intro-
duced in Example IV.2. Theorem VI.1 asserts that logarithmic
growth of with is sufficient to achieve rate for any

. In Example V.2, we showed that a decomposition
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with exists. Here ,
, and hence

For example, for , we get , showing that
logarithmic growth of with is necessary to achieve any

with . With , Theorem VI.2 does not
in this case allow to state that logarithmic growth is necessary
in the range .

Example VI.2. Scaling Laws for Line Networks of Binary
Symmetric Channels: Consider a cascade of as
in Example II.1. We know that any finite-length processing
performed at every node in the network will result in a zero
end-to-end rate as .

From Theorem VI.1, we see that logarithmic growth of
with is sufficient to achieve any fraction of the
min-cut capacity. We now show that logarithmic growth is also
necessary to achieve any positive fraction of the
min-cut capacity. Decompose as

for some stochastic matrix , and where is the all-one
column vector of length . Applying Theorem VI.2 with ,
we get that

with . Hence, logarithmic growth of with is neces-
sary for all positive rates.

VII. DISCUSSION AND CONCLUSION

In this paper, we investigated communication through a
cascade of channels, where intermediate nodes can perform
processing of finite complexity (measured by the processing
length ).

When is fixed, goes to infinity, and all relays use the
same processing independent of , we showed that the lim-
iting capacity can be easily computed as the logarithm of the
number of eigenvalues of maximum modulus of the equivalent
channel transition probability matrix that comprises the inter-
mediate processing as part of the channel. We also showed how
the rate of decay to the limiting capacity is related to the second
largest eigenvalue modulus of the equivalent channel transition
probability matrix.

When is fixed and goes to infinity, we showed that the
optimal finite complexity processing is identical at each relay
and corresponds to an optimal zero-error code of block length

for the underlying channel. The resulting limiting capacity is
then the rate of this zero-error code and can never exceed the
zero-error capacity of the underlying channel.

We also derived bounds on the capacity of finite length cas-
cades and used them to show that logarithmic growth of with

is sufficient to achieve any constant fraction of the min-cut
capacity above the zero-error capacity. Moreover, we showed

that for rates above some threshold, logarithmic growth is also
necessary. We conjecture that logarithmic growth is in fact nec-
essary to achieve any fraction of the min-cut capacity above
the zero-error capacity. To prove our conjecture, a tighter upper
bound on capacity is needed.

The fact that for a fixed intermediate processing the decay
to the limiting capacity is exponential contrasts the logarithmic
scaling law found for the optimal as a function of and
emphasizes the importance of a well-chosen intermediate pro-
cessing at the relays.

In this work, we did not address the problem of identifying
the optimal processing for any finite pair , which is very
interesting and combinatorial in nature. We have also restricted
attention to cascades of identical channels. The problem of op-
timal communication over a nonhomogeneous cascade of chan-
nels is in general as difficult as the problem of finding the op-
timal processing for finite discussed above. To see this,
consider a cascade consisting of identical channels, followed
by an infinite number of noiseless channels. Finding the optimal
processing reduces to finding the optimal processing for the ini-
tial channels.

We view this work as a first step toward a more comprehen-
sive understanding of how we should efficiently use limited net-
work resources to achieve reliable communication. Extending
this work for more general (other than line) networks, and more
general traffic configurations and resource constraints is part of
ongoing work [28], [29].

APPENDIX I
UNIFORM CONTINUITY OF CAPACITY

Lemma I.1: is uniformly continuous.
Proof: Mutual information

is continuous, and, as its domain is compact, also uniformly
continuous [30, Theorem 4.19].

Consider now

By uniform continuity of mutual information, for any
there exists such that for all and all we
have

Assume without loss of generality that

Then

thus proving the theorem.
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APPENDIX II
PROOF OF THEOREM III.5

The proof of Theorem III.5 is broken up into two lemmas.
The first lemma proves the lower bound in Theorem III.5. For
both of these lemmas we will use some common initial steps
that we will now review.

Assume without loss of generality that is in the canonical
form (7) with diagonal irreducible submatrices with pe-
riods . Recall that is the number of eigen-
values of modulus one of the matrix . For simplicity of nota-
tion, we will use in the following. Call the least
common multiple of the , and let

(40)

By construction, has primitive (irreducible and ape-
riodic) submatrices , with corresponding stationary
distributions , and thus . From
Lemma III.1

(41)

From Lemma III.2, the components of converge to zero
exponentially fast in with exponent not smaller than

(42)

We will also use that, as is decreasing in , we have

(43)

and that, from Theorem III.4

(44)

Lemma II.1: For any square stochastic matrix

where .
Proof: We start from the initial steps (40)–(44), and at-

tempt to bound the quantity

To do so, we will bound using an upper bound on ca-
pacity from [31], that states

Let and use (41). It is easily seen that the maximum
entry of every column of lies in the corresponding diag-
onal block. Moreover, the exponents of the entries in are
all lower-bounded by (42). Thus, for some subexponential4

4We call a function subexponential if

where we used the fact that the stationary distribution of each
diagonal block of sums to one. Then

where and we used that . Thus,
we obtain

As a next step, we restrict attention to stochastic matrices
without inessential indices, for which we can find the exponent

exactly.

Lemma II.2: If is a stochastic matrix without inessential
indices then

where .
Proof: Again start from the initial steps (40)–(44), and de-

fine the probability distribution

(45)

We first show that

by upper-bounding the capacity . Define the set

where is the dimension of , and where de-
notes that whenever . From (41),

for some subexponential . In
particular, for

. We can now use the minimax for-
mula for capacity in [32, Problem 2.3.1] and substitute for
to obtain
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where is the row of corresponding to . Let denote
the essential indices of corresponding to . Call ,
for some . By symmetry of the set , the last max-
imization over all can equivalently be expressed as
maximization over all , under the following con-
straints, for all , : i) , ii) if , iii)

, and iv) . The last constraint is automati-
cally satisfied assuming large enough, because is primitive
and hence . With this, we can continue the above chain
of inequalities

where we used that . Call

Note that since all components of are strictly positive
for all (all are primitive). We conclude that

We now show that

To do that, we use the lower bound

where is defined as in (45).
Let be a row of , where the row index is an es-

sential index for the primitive matrix with stationary dis-
tribution , and is the set of all essential indices corre-
sponding to . Using (41) we have

if
else

with

(46)

for some subexponential . Note that since both and
in (41) are stochastic

(47)

Using the fact that in (45) satisfies , the inequality
which is valid for all for some

, and (47), we get that

Since all are primitive, all are strictly positive and
hence, for large enough, . Moreover, the

term dominates the term for large , and thus we con-
clude using (46) that

Theorem III.5 follows from the two lemmas by noting that we
can lower-bound by restricting the support of the input
distribution to contain only essential indices of . Or, equiva-
lently, by reducing to the stochastic matrix , containing only
the essential indices of .

APPENDIX III
WORST CHANNEL UNDER A TRACE CONSTRAINT

The next lemma provides conditions for a channel to be
the worst under certain constraints. Consider a set of
pairs and define

for some constant .
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Lemma III.1: is the solution to the minimization
problem

if and only if is feasible (i.e., ) and satisfies the
following conditions:

if
if

(48)

for all , , for some vector , and for some
such that

(49)

Proof: The set of matrices is defined by linear inequal-
ities and equalities and is hence a convex set. This implies, to-
gether with the fact that mutual information is convex in the
channel transition probability matrix, that

is a convex minimization problem in , and the Kuhn–Tucker
conditions are necessary and sufficient for optimality [33, Ch.
5.5.3]. The Lagrangian of the minimization problem is given by

(50)

The derivative of (50) with respect to is

(51)
The Kuhn–Tucker conditions for optimality require then that
(51) is equal to zero for all , , and for ,
together with the constraint that . Moreover, we have
complementary slackness, that is, (49) and

(52)

for all . As all the are nonnegative, (51) and (52)
can be combined to yield (48).

Example III.1: Consider the set of stochastic
matrices with , and .

If , then

is an element of and satisfies the Kuhn–Tucker conditions
given in Appendix III Lemma III.1. Hence, is the worst
channel in the set .

If , then the worst channel is (trivially)
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