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Achieving accurate interpolation is an important requirement for many signal-processing
applications. While nearest-neighbor and linear interpolation methods are popular due to their native
GPU support, they unfortunately result in severe undesirable artifacts. Better interpolation methods
are known but lack a native GPU support. Yet, a particularly attractive one is prefiltered cubic-
spline interpolation. The signal it reconstructs from discrete samples has a much higher fidelity to
the original data than what is achievable with nearest-neighbor and linear interpolation. At the same
time, its computational load is moderate, provided a sequence of two operations is applied: first,
prefilter the samples, and only then reconstruct the signal with the help of a B-spline basis. It has
already been established in the literature that the reconstruction step can be implemented efficiently
on a GPU. This article focuses on an efficient GPU implementation of the prefilter, on how to apply

it to multidimensional samples (e.g. RGB color images), and on its performance aspects.
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1. INTRODUCTION

Digital signals commonly consist of data samples on a discrete
uniform (regular) grid. This is not only the case for images,
but also for a broad range of other types of signals (e.g.
audio [1]). The dimensionality of the grid typically depends
on the type of the signal (e.g. 1D: audio, 2D: still images, 3D:
video, volumetric data). The samples themselves can also be
multidimensional, for instance when dealing with stereo audio
or color images.

In many applications, such as signal processing [2],
visualization [3, 4], image registration [5, 6] and scientific
simulations, it is necessary to access signal values in between
the sample locations, which calls for interpolation. This, in
itself, is not a real hurdle since any bandwidth limited signal
can be reconstructed perfectly by using the sinc function as the
reconstruction basis. However, the slow decay of sinc makes
this approach utterly impractical. Instead, nearest-neighbor
and linear interpolation methods are favored because they are
computationally much less expensive, and they are supported
natively by the GPU.

Sigg and Hadwiger [7] have reported that using a cubic
B-spline as the reconstruction basis can also be performed

very efficiently by the GPU. Their method lacks some of the
imperfections that are associated with nearest-neighbor (block
artifacts) and linear interpolation (star-shaped artifacts), but also
introduces a smoothing or blurring of the signal. The smoothing
is caused by the fact that the cubic B-spline basis is a non-
negative function. In addition to this smoothing, a different issue
arises because the cubic B-spline is not itself interpolating, in
the sense that the sequence {. . . , 0, 0, 1

6 , 2
3 , 1

6 , 0, 0 . . .} resulting
from sampling a cubic B-spline at the integers differs from the
unit sample sequence {. . . , 0, 0, 0, 1, 0, 0, 0, . . .}. Therefore,
when used to directly reconstruct a signal, as was done in [7],
the reconstructed function does not necessarily pass through the
original sample points. This apparent drawback is shared by all
B-splines of second and higher degree. This is particularly of
importance when the filter is part of a processing chain.

An effective solution to the smoothing property has been
formulated by Thévenaz et al. [8], and consists of applying
the correct prefilter to the signal samples. In this paper,
a GPU-accelerated version of this prefilter is described,
implementation considerations are discussed and the resulting
performance is evaluated. The acceleration is achieved by
exploiting the massive parallelism available in modern graphics
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FIGURE 1. The box function (the B-spline basis of degree 0).

hardware [9]. The corresponding source code is available for
download [10].

This paper is organized as follows. Sections 2 and 3
provide the well-established theoretical background of B-spline
interpolation that is needed to understand the GPU code.
The implementation details and considerations are described
in Section 4. The resulting performance and precision
characteristics are discussed in Section 5.

2. B-SPLINE FILTERING

Uniform spline-based interpolation was introduced by
Schoenberg [11] and has been described exhaustively by
Thévenaz et al. and Unser [8, 12]. The foundation for B-spline
functions of any non-negative integer degree is given by the
B-spline basis of degree 0 (the box function; see Fig. 1)
defined by

β0(x) = 1

2

(
sgn

(
x + 1

2

)
− sgn

(
x − 1

2

))
. (1)

All other B-spline bases of higher integer degree n can be
obtained by the recursive continuous convolution of the box
function with the B-spline basis of degree (n − 1):

βn(x) = (
βn−1 ∗ β0) (x). (2)

Nearest-neighbor and linear interpolation, which are popular
because of their native GPU support, can be regarded as
B-spline filtering of the 0th and 1st degree, respectively. It is
straightforward to obtain explicit expressions of B-splines of
any degree from (1) and (2); in particular, the cubic B-spline β3

of x ∈ R can be written as

β3(x) =

⎧⎪⎨
⎪⎩

0, 2 ≤ |x|,
1
6 · (2 − |x|)3, 1 ≤ |x| < 2,
2
3 − 1

2 |x|2 · (2 − |x|), |x| < 1.

(3)

Given an appropriate sequence of coefficients c has been
derived from the available sequence f of the samples of a
signal, its spline-based reconstruction at a given position x can
be written as

s(x) =
∑
k′∈Z

c[k′] βn(x − k′). (4)

In other words, the value s(x) reconstructed at a given position
x is the sum of integer-shifted and weighted, centered B-spline

FIGURE 2. Cubic B-spline interpolation. The image coefficients c

are multiplied by the weights wn(ξ). The weights are determined by
the fractional amount ξ = x − i of the present coordinate and by the
B-spline basis function β3. In this figure, the index i is the integer part
of the coordinate.

bases βn of degree n. The weights are provided by the
coefficients c which are located on a uniform grid and reflect the
contribution of the original samples f . We illustrate this process
in Fig. 2 for the cubic B-spline. Since B-splines have a finite
support, the number of coefficients c[k′] that play a role in the
interpolation at position x is finite too. It turns out that, in the
1D case, this number is one more than the degree of the spline.

3. PREFILTER

A naive approach to reconstruct a continuous signal with (4)
would be to enforce that the reconstruction coefficients c take the
values of the original sequence f of samples. The corresponding
reconstructed function, however, would not necessarily pass
through the samples. Rather, it would present a smoothened
version that would only approximate them, which is generally
not desirable. Fortunately, as shown in [8], this can be overcome
by assigning the appropriate prefiltered version of the samples
to c. The objective of the prefilter is to obtain a sequence
of coefficients that yield a truly interpolating function s that
passes through the original samples f . Thus, the values for c[k]
should be collectively chosen such that the following equation
is fulfilled for all integers k ∈ Z:

f [k] = s(k) =
∑
k′∈Z

c[k′] βn(k − k′). (5)

This version of (4) has the general flavor of a convolution, but
is neither a discrete convolution nor a continuous one because it
mixes the discrete sequence c[·] with the continuously defined
function βn(·). However, it must be realized that the argument
of βn is always discrete in the special case (5). Therefore, it is
useful to define the sampled version of the continuously defined
signal βn as the discrete sequence bn, with

∀k ∈ Z : bn[k] = βn(x)
∣∣
x=k

. (6)

Only then we can safely rewrite (5) as the discrete convolution:

f [k] = (c ∗ bn) [k]. (7)
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In the discrete Fourier space [13], with z = ei ω, this can be
written as

F(z) = C(z) Bn(z). (8)

This leads to the conclusion that c can be obtained by a
convolution of the sequence f of samples with the inverse of
the B-spline function, which can be expressed in the discrete
Fourier space as

c[k] = (
f ∗ b−1

n

) [k] z←→ C(z) = F(z) B−1
n (z). (9)

The interpolated continuous signal s does not only pass
through the original discrete samples, but also delivers a
function that is maximally differentiable. It is worth mentioning
that this approach is equivalent to sinc interpolation for the
infinite-degree B-spline [12]. In the case of the 3rd degree
(cubic) B-spline, B3 is given by

B3(z) = 1

6

(
z−1 + 4 + z

)
, (10)

while its inverse is

B−1
3 (z) = 6

z−1 + 4 + z

= λ

1 − zp z−1

−zp

1 − zp z
, (11)

with λ = 6 and zp = √
3 − 2. The sequence f of samples f [k]

needs to be convolved with this inverse filter.
If you are familiar with the z-transform, the first term

λ/(1 − zp z−1) can be easily rewritten as a recursive filter.
The second term, however, seems to be more cumbersome,
since it contains an element z, which is looking into the future.
Fortunately, we are dealing with images—as opposed to time
signals. Thus, the whole sequence f is already known to us,
and there is no problem in traversing the data backward starting

FIGURE 3. The causal and anti-causal filters can be implemented as
recursive filters. The top drawing represents the causal filter and the
bottom drawing is the anti-causal filter, whereby l = N − 1 − k.

from the end. The filters (illustrated in Fig. 3) can therefore be
implemented as

k ∈ {1, 2, . . . , N − 1} :
c+[k] = λ f [k] + zp c+[k − 1], (12)

and

k ∈ {N − 2, N − 3, . . . , 0} :
c−[k] = zp

(
c−[k + 1] − c+[k]) . (13)

Compute United Device Architecture (CUDA) texture
lookups are clamped for non-normalized texture coordinates,
meaning that c[k] = c[0] ∀ k < 0 and c[k] = c[N − 1] ∀ k ≥ N .
We can use these boundary conditions to determine the starting
coefficients c+[0] and c−[N − 1]:

c+[0] = λ

(
f [0] + 1

1 − z2 N
p

N−1∑
k=0

(
zk+1
p + z2 N−k

p

)
f [k]

)
,

c−[N − 1] = − zp

1 − zp

c+[N − 1]. (14)

The initialization of the c+ series can be approximated by a
summation with M terms.

c+[0] = λ

(
f [0] +

M−1∑
k=0

zk+1
p f [k]

)
. (15)

It turns out that M = 12 samples are sufficient to reach the 24
bits of accuracy found in the mantissa of 32-bit floating point
numbers. However, when the length of a signal is smaller than M

samples, it is advisable to use the exact initialization of c+[0].
Meanwhile, the initial value of c−[N − 1] for the backward
recursion is exact and consistent with the clamping of the data
at their boundaries.

After both filters have been applied to the samples, the cubic
B-spline coefficients are available, with c[k] = c−[k]. A careful
analysis of (12) and (13) reveals that the whole process can be
realized in-place, if so desired. This is the approach that we
follow in Section 4.

4. CUDA IMPLEMENTATION

As mentioned in section 1, the samples often are multidimen-
sional in nature (e.g. RGB colors). The CUDA implementation
takes this into account by using templates [14], whereby the
sample type is represented by floatN. The compiler automati-
cally replaces floatN by float, float2, float3, depending on the
calling code. The function for converting a 1D signal can be
implemented in CUDA as

//pole for cubic b-spline
#define Pole (sqrt(3.0f)-2.0f)
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template<class floatN>
__device__ void ConvertToBSplineCoefficients(

floatN* c, uint DataLength)
{

//compute the overall gain
const float Lambda = 6.0f;

//causal initialization
c[0] = Lambda *

InitCausalCoeff(c, DataLength);
//causal recursion
for (uint k = 1; k < DataLength; k++) {

c[k] = Lambda * c[k] + Pole * c[k-1];
}
//anticausal initialization
c[DataLength-1] =

InitAntiCausalCoeff(c, DataLength);
//anticausal recursion
for (int k = DataLength-2; 0 <= k; k--) {

c[k] = Pole * (c[k+1] - c[k]);
}

}

where the causal and anti-causal coefficients are determined by

template<class floatN>
__device__ floatN InitCausalCoeff(

floatN* c, uint DataLength)
{

const uint Horizon = UMIN(12, DataLength);

float zk = Pole;
floatN Sum = c[0];
for (uint k = 0; k < Horizon; k++) {

Sum += zk * c[k];
zk *= Pole;

}
return(Sum);

}

template<class floatN>
__device__ floatN InitAntiCausalCoeff(

floatN* c, uint DataLength)
{

return((Pole / (Pole - 1.0f)) *
c[DataLength-1]);

}

The data are processed in place, which means that the
samples f [k] are passed as input argument and replaced by the
coefficients c[k]. For 2D images, at first, all rows are processed
by the 1D filter. Subsequently, all columns are passed to the
filter. For 3D data, the same has to be done in the z-direction.
The parallel processing units of the GPU are capable of handling
multiple rows or columns simultaneously, which accounts for
the acceleration reached by the GPU.

While the processing is trivial for the horizontal rows, where
all consecutive data elements lie next to each other in memory,

it needs some considerations for processing the data in the
remaining directions. Two approaches were explored:

(i) Copying the string of data to a temporary array, and passing
this to the functions above. While this seems a logical
approach on the CPU, it is not so straightforward on
the GPU since there is no way to dynamically allocate
memory in a GPU program. To circumvent this, an array
of fixed length was declared in-line in the CUDA routine:
float line[MAXSIZE];. This, however, makes it
impossible to process data that would be larger than
MAXSIZE along any particular axis.

(ii) Changing the routines such that they can handle data that
are not consecutive in memory. This is reached by passing
an argument step to the function, which tells us how far
two adjacent data elements are apart. So, step is 1 for the
x-direction, width for the y-direction and width×height

for the z-direction. As a result, the loops in the routines are
changed from

for (uint k = 1; k < DataLength; k++) {
c[k] = Lambda * c[k] + Pole * c[k-1];

}

to

for (uint k = 1; k < DataLength; k++) {
c += step;
*c = Lambda * *c + Pole * c[-step];

}

5. RESULTS AND DISCUSSION

We show in Fig. 4 the result of zooming a frame of a video
sequence using nearest-neighbor interpolation, linear inter-
polation, non-prefiltered cubic reconstruction and prefiltered
cubic interpolation. Especially for real-time video, it is of great
importance that the data can be processed on the fly. Computa-
tion times have to be modest in order to prevent latencies and
frame-rate drops. Nearest-neighbor and linear interpolation
clearly display the well-known blocking and star-shaped arti-
facts. Cubic B-spline filtering of the unprocessed texture data
does not show any distinct image artifacts, but evidently has a
smoothing effect on the image. While this may be acceptable
for some visualization applications, it is undesirable when the
operation is part of more generic signal- and image-processing
steps. The prefiltered cubic interpolation does not suffer from
the smoothing effect and delivers high-quality interpolation.

The effect of applying interpolation on multiple consecutive
processing steps is shown in Fig. 5. It is demonstrated how an
image is affected when it is repeatedly rotated (36 steps of 10
degrees each) using different types of filtering. The intermediate
results were stored in 32-bit floating point precision and served
as input for the next iteration. In the case of prefiltered cubic
interpolation, the filter was applied in every iteration before
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FIGURE 4. Upper image: a single frame from an AVI sequence
of 160 × 120 pixels. Middle left: fragment using nearest-neighbor
interpolation. Middle right: same fragment using linear interpolation.
Bottom left: cubic reconstruction without prefilter. Bottom right:
prefiltered cubic interpolation.

interpolating on the rotated grid. In practice, it is not necessary
to reapply the prefilter when the source data does not change.
Here this is only done to demonstrate the effect of applying
interpolation in multiple consecutive iterations.

Nearest-neighbor interpolation is clearly unsuited for
repeated interpolation steps. It is strikingly apparent that the
repeated unfiltered cubic reconstruction blurs the image even
stronger than its linear counterpart. The prefiltered cubic
interpolation, though, provides a nice crisp image even after
36 times of resampling. Also it is worth noting that since the
templated code can easily deal with multidimensional samples
(in this case, RGB), there is no problem to process full-color
data in one go. More precisely, it is not necessary to split the
data in to monochromatic red, green and blue images for the
prefilter.

The time it takes to prefiler a 3D voxel volume, depending on
its size, is given in Table 1 for the different proposed prefilter
implementations. The CUDA implementation is least efficient
when processing data in the x-direction. This is caused by the
fact that spatially adjacent samples are consecutive in memory

FIGURE 5. The Lena image is rotated repeatedly in 36 steps of 10
degrees each. For every iteration, the outcome of the previous step is
interpolated on a rotated grid. Top left: nearest-neighbor interpolation.
Top right: linear interpolation. Bottom left: cubic reconstruction
without prefilter. Bottom right: prefiltered cubic interpolation.

TABLE 1. Prefiltering of 3D voxel data using the two GPU
variants and a single-threaded CPU algorithm. The calculation times
are decomposed for filtering in the x-, y- and z-direction. All
measurements were taken on an Intel Xeon 3.6-GHz machine with
an nVidia GeForce 9800 GTX with 512 MB on-board memory.

Data size x y z Total
Algorithm (voxels) (ms) (ms) (ms) (ms)

CUDA temp array 323 0.7 0.5 0.5 1.7
CUDA step 323 0.7 0.5 0.5 1.6
CPU 323 0.6 0.7 0.9 2.3

CUDA temp array 2563 39 16 15 70
CUDA step 2563 125 8 8 142
CPU 2563 221 425 683 1329

CUDA temp array 5122 × 300 201 90 122 413
CUDA step 5122 × 300 550 40 54 644
CPU 5122 × 300 998 1992 43 204 46 194

for this direction, which leads to a lot of reading and writing to
the same memory banks. In the variant where the data are copied
to a local array, this could be partially overcome by addressing
the elements that are copied in a non-consecutive order. For the
y- and z-direction, the step approach is faster. This approach
also has the advantage that it is not limited by the fixed size of
a temporary array. Table 2 shows the average processing times
for prefiltering a frame in the AVI movie (the 160 × 120 frame
is also depicted in Fig. 4). Clearly, the filter is fast enough to be
used in real-time video rendering.
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TABLE 2. Prefiltering of an RGB color frame in an AVI video using
the two GPU variants. The calculation times were averaged from
timing 100 frames and are decomposed for filtering in the x- and
y-direction.

Data size x y Total
Algorithm (pixels) (ms) (ms) (ms)

CUDA temp array 160 × 120 1.7 1.4 2.1
CUDA step 160 × 120 0.5 0.2 0.8

CUDA temp array 10242 21 8 29
CUDA step 10242 30 2 31

Performance measurements of cubic B-spline reconstruction
using a data set of 2563 voxels with the hardware specified
in Table 1 delivered 356 × 106 reconstructions per second
by applying the techniques described in [15]. Straightforward
linear interpolation yielded 486 × 106 reconstructions per
second. The small difference between those measurements can
be explained by data caching; the tri-cubic weighting performs
eight times more lookups than linear interpolation, but these
are always located very close to each other, which means that
very often the data are still in the fast local cache memory. This
implies that the cubic reconstructions during visualization of 2D
data and cross sections through 3D data are negligible, and the
display process is rather limited by the refresh rate of the monitor
(typically 60 or 75 Hz for LCD displays). The performance
overhead of the cubic reconstruction may be noticeable only for
volume rendering, where the entire volumetric data set needs to
be sampled.

The source code that has been used to obtain all presented
results and measurements is available for download [10]. The
accuracy of the CUDA prefilter code is similar to a single-
precision floating-point CPU implementation. The precision
issues of cubic texture interpolation on the GPU by using
the hardwired linear-interpolation capabilities of the graphics
hardware are independent of the prefilter and are discussed in
detail in [15].
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