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Abstract

This paper considers function computation in a network where intermediate nodes
perform randomized network coding, through appropriate choice of the subspace
codebooks at the source nodes. Unlike traditional network coding for comput-
ing functions, that requires intermediate nodes to be aware of the function to be
computed, our designs are transparent to the intermediate node operations.
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1. Introduction

In sensor networks, the need for energy efficiency has stimulated research ef-
forts towards in-network aggregation and function computation, see for example
[1], [2], [3]. Recent work [4],[5] has also pointed out the need to have simple

coding schemes, since “systems are hard to develop and debug”. They advocate a
solution where most nodes in the network perform the same operations regardless
of the function to be computed, and the onus of guaranteeing successful compu-
tation is on a few special nodes that are allowed to vary their operation.

Motivated by the above considerations, we consider the problem of comput-
ing functions in a network where multiple sources are connected to a single sink
via relays. The sources may have several different possible codebooks, and can
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select which one to employ depending on the function to be computed. Given
a certain target function, each source transmits a codeword corresponding to its
observed message. The relay nodes, however, perform the same linear operations,
for example randomized network coding (which is a practical and efficient way
of transmitting data in a network [6]) irrespective of the target function, i.e., the
vectors inserted by the sources are randomly combined and forwarded towards the
sink, using linear coefficients that are unknown to both the sources and the sink.
The sink then proceeds to evaluate the target function of the source messages.

Following [7], [8], [9], we use subspace coding for computing functions in
our network model. Given a target function, we assume that each source uses a
codebook consisting of subspaces. Each source message is mapped to a subspace
in the codebook. When a source generates a message, it injects the basis vectors of
the corresponding subspace into the network. The network operation is abstracted
by assuming that the sink collects enough linear combinations of these vectors to
learn the joint span of the injected subspaces. Given this information, the sink then
attempts to compute the target function of the source messages. Our objective is
to design codebooks which minimize the number of symbols each source needs
to transmit, while guaranteeing successful function computation by the sink.

Thus, we envision a network architecture where intermediate network nodes
always perform the same operations for information transfer, which leads to a
simple implementation. At the same time, the sink has the flexibility to utilize the
network to learn different functions of the source data by informing the source
nodes to employ the corresponding codebooks. Here we focus on non-coherent
communication where we have no knowledge about the network transformation;
in [10] we look at the case where this transformation is fixed and known.

We note that a scheme which optimizes the intermediate node operations ac-
cording to the function to be computed might need fewer transmissions. However,
it would be more complex to implement, would require topology knowledge, and
might be sensitive to the employed communication protocol. In contrast, our
approach is transparent both to the topology and the employed communication
protocol: the only requirement we impose is that we gather sufficient linear in-
dependent combinations. As a result, our protocol would be very well suited to
dynamically changing topologies, and could be applied without change on top of
very different communication protocols.

The paper is organized as follows. Section 2 presents the problem formulation.
In Section 3, we present various lower bounds on the number of symbols each
source needs to transmit to evaluate an arbitrary function. In Section 4, we discuss
various example target functions. In particular, we provide lower bounds as well
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as near-optimal coding schemes for the identity, T -threshold, maximum and K-

largest values functions. Finally, in Section 3, we present a constructive scheme
to evaluate arbitrary functions.

2. Problem Formulation and Notation

x1∈A∪{φ}

x2

πx11 ⊆ Flq

xN

Network

N Sink

ρ

f (x1, . . . , xN )

N∑

i=1

πxii

We consider a set of N sources σ1, σ2, . . . , σN connected to a sink ρ via a
network N . Each source σi is either inactive or observes a message xi ∈ A,
where A is a finite alphabet. For ease of notation, when a source σi is inactive
we will set xi = φ. The sink needs to compute a target function f of the source
messages, where f is of the form

f : (A ∪ {φ})N −→ B.

Some example target functions are defined below.

Definition 2.1.

• The identity target function has B = (A ∪ {φ})N and is defined by

f (x1, . . . , xN) = (x1, . . . , xN) .

• For m ≥ 1, the arithmetic sum target function has A = {1, . . . ,m}, B =
{0, 1, . . . ,mN}, and is defined by

f (x1, . . . , xN) = x1 + x2 + · · ·+ xN

where ‘+’ denotes ordinary integer summation. For any a ∈ A ∪ {φ}, we
set a+ φ = a.
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• Let A be an ordered set. The maximum target function has B = A and is
defined by

f (x1, . . . , xN ) = max {x1, . . . , xN} .

For any a ∈ A ∪ {φ}, we set max{a,φ} = a.

• The parity target function has A = B = {0, 1}, and is defined by

f (x1, . . . , xN ) = x1 ⊕ x2 ⊕ . . .⊕ xN

where ⊕ denotes mod-2 addition. Again, for any a ∈ A ∪ {φ} we set
a⊕ φ = a.

• The majority target function has A = B = {0, 1}, and is defined by

f (x1, . . . , xN) =

{
1 if |{i : xi = 1}| > |{i : xi = 0}|

0 otherwise.

We consider operation using subspace coding. We denote a subspace by π and
the union of two subspaces π1, π2 is defined as π1+π2 = {x+y : x ∈ π1,y ∈ π2}.
We write π1 + π2 + ...πm as

∑m
i=1 πi. The network operates as follows.

• At each source, every alphabet symbol is mapped to a subspace, which
serves as the corresponding codeword. Thus, each source σi has an associ-
ated codebook Ci =

{
πj
i

}
j∈A

where πj
i is a d-dimensional subspace1 of an

l-dimensional vector space Fl
q where d, l ≥ 1 are design parameters. When

the source σi is active and observes a message xi ∈ A, it injects into the
network N a set of d vectors from Fl

q which span the subspace πxi
i . When

the source is σi inactive, it does not make any transmissions and hence we
set πφ

i = ∅.

• The sink ρ receives from the network N a set of vectors from Fl
q which span

the union of the input subspaces2 i.e., ρ observes
∑N

i=1 π
xi
i .

1Although restricting our code design to subspaces of equal dimension may not always be
optimal, it significantly simplies the design, and is a standard approach in the literature [7, 11].

2In practice, networks operate in rounds. The duration of a round can be chosen large enough
to ensure that the sink receives enough linear independent combinations to span the union of the
input subspaces.
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• The sink uses the received information to compute the value of f (x1, x2, . . . , xN ).

A (d, l) feasible code for computing f is a collection of codebooks {C1, C2, . . . , CN}
such that each πj

i in the codebooks is a d-dimensional subspace of Fl
q and the sink

can compute the value of f (x1, x2, . . . , xN) for any choice of input messages
x1, x2, . . . , xN where each xi ∈ A ∪ {φ}.

For a (d, l) feasible code for computing f , each source transmits at most d · l
symbols from Fq, and we thus consider the associated cost3 to be d · l. Our code
design seeks to achieve

Emin(f)=inf {d · l : ∃ a (d, l) feasible code for computing f} .

We begin by showing that for the purpose of minimizing the cost d · l, it suffices
to consider codes which use one-dimensional subspaces.

Theorem 2.2. Given any (d, l) feasible code for computing a target function f ,

there also exists a (1, d · l) feasible code for computing f .

Proof. Partition (A ∪ {φ})N into P1, P2, . . . , P|B| so that each Pi consists of all
the input vectors which result in the same function value. Then a necessary and
sufficient condition for successful computation is that the sink should receive dif-
ferent union subspaces for any two input vectors x and y if they belong to distinct
partitions.

Let {πj
i ⊆ Fl

q : i ∈ {1, . . . , N}, j ∈ A} denote the collection of d-dimensional
subspaces associated with the given (d, l) feasible code for computing f . The
above necessary condition implies that these subspaces satisfy a collection of in-
equalities, each of the form

N∑

i=1

πai
i *=

N∑

i=1

πbi
i (1)

where each ai, bi ∈ A ∪ {φ}. Now corresponding to each d-dimensional sub-
space πj

i in the above code, construct a one-dimensional subspace π̂j
i ⊆ Fd·l

q by

concatenating the d basis vectors of πj
i into a single vector. It can be verified that

the collection of one-dimensional subspaces {π̂j
i : i ∈ {1, . . . , N}, j ∈ A} con-

structed this way also satisfy all the inequalities that the original code satisfied,

3In this work, the field size q is considered to be fixed and hence not included in the cost.
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i.e., if (1) holds for some {ai}, {bi}, then

N∑

i=1

π̂ai
i *=

N∑

i=1

π̂bi
i . (2)

Since (1) holds, there exists at least one basis vector, say v1 ∈ πa1
1 , which is not

in
∑N

i=1 π
bi
i . This immediately implies that π̂a1

1 cannot be an element of
∑N

i=1 π̂
bi
i ,

which proves (2).
Thus the collection of one-dimensional subspaces {π̂j

i : i ∈ {1, . . . , N}, j ∈
A} ensures that for any two input vectors in distinct partitions, the sink receives
different union subspaces. Since this is sufficient for function computation, we
have shown that we can construct a (1, d · l) feasible code from any (d, l) feasible
code. !

In the sequel, we will only consider codes which use one-dimensional sub-
spaces. We will denote the dimension of any subspace π by dim(π). Also, for any
vector x, the j-th component will be denoted by (x)j . Consider a set of indices
I =

(
i1, i2, . . . , i|I|

)
⊆ {1, . . . , N}. For any a =

(
a1, a2, . . . , a|I|

)
∈ (A ∪ {φ})|I|

and any vector x ∈ (A ∪ {φ})N , let x(I, a) = (x1, x2, . . . , xN) denote a vec-
tor which is obtained from x by substituting the components corresponding to
the index set I with values from the vector a and retaining all the other compo-
nents. That is, for each j ∈ {1, . . . , |I|}, (x(I, a))ij = (a)j and for each k *∈ I ,

(x(I, a))k = (x)k . We conclude this section with a lemma that is often used in
the subsequent sections.

Lemma 2.3. If there exist one-dimensional subspaces π1, π2, . . . , πK ⊆ Fl
q and a

subspace π∗ ⊆ Fl
q such that

πi *⊆ π∗ +
∑

j<i

πj ∀ i ∈ {1, . . . , K} (3)

then l ≥ K.

Proof. (3) implies that the basis vectors for the K one-dimensional subspaces are
linearly independent. The result then follows. !
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3. Lower bounds

The number of d-dimensional subspaces of Fl
q for any d ≤ l, l ≥ 1 is given by

the gaussian binomial coefficient

[
l

d

]

q

=
(ql − 1)(ql−1 − 1) · · · (ql−d+1 − 1)

(qd − 1)(qd−1 − 1) · · · (q − 1)
. (4)

We have the following upper bound on the number of d-dimensional subspaces..

Lemma 3.1. The number of d-dimensional subspaces of Fl
q is at most 4qd(l−d) [7,

Lemma 4].

Recall that x(I, a) denotes a vector which is obtained from x by substituting
the components corresponding to the index set I with values from the vector a and
retaining all the other components. Consider a target function with the following
property.

Function property P : There exists k ∈ {1, . . . , N} and x ∈ (A∪ {φ})N such
that for any a, b ∈ A,

f(x({k}, a)) *= f(x({k}, b)).

Examples : The identity function and arithmetic sum function satisfy property P.
We have the following simple lower bound for functions which satisfy prop-

erty P.

Lemma 3.2. For any target function f which satisfies property P,

Emin(f) ≥ logq (|A| (q − 1)) + 1.

Proof. From the definition of property P, there exists k such that source σk must
assign a distinct one-dimensional subspace to each a ∈ A. From (4), we have

ql − 1

q − 1
≥ |A|

=⇒ l ≥ logq (|A| (q − 1)) + 1.

!

Consider a target function with the following property.
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Function property Q(k) : There exists x ∈ (A ∪ {φ})N and a collection
of k distinct indices i1, i2, . . . , ik such that for every j ∈ {1, 2, . . . , k}, we have
(x)j *= φ and

f (x({i1, . . . , ij−1}, {φ, . . . ,φ})) *= f (x({i1, . . . , ij−1, ij}, {φ, . . . ,φ})) . (5)

Example 3.3.

• The identity function satisfies property Q(N) by choosing each (x)j equal

to any element of the alphabet A.

• The arithmetic sum function satisfies property Q(N) by choosing each (x)j
equal to some non-zero element of the alphabet A.

• The parity function satisfies property Q(N) by choosing each (x)j equal to

1.

• The majority function satisfies property Q(N) by choosing (x)j equal to 1
if j is even and 0 otherwise when N is even and vice-versa when N is odd.

Lemma 3.4. For any target function f which satisfies property Q(k),

Emin(f) ≥ k.

Proof. Let

Πc =
∑

t $∈{i1,i2,...,ik}

π(x)t
t .

From (5), any feasible code for computing f should satisfy for every j ∈ {1, 2, . . . , k}

π
(x)ij
ij

+
k∑

m=j+1

π(x)im
im + Πc *=

k∑

m=j+1

π(x)im
im + Πc

=⇒ π
(x)ij
ij

*⊆
k∑

m=j+1

π(x)im
im + Πc.

Then using Lemma 2.3 for the collection of k one-dimensional subspaces π
(x)i1
i1 , . . . , π

(x)ik
ik

and the subspace Πc, the result follows. !

We borrow the following definition from [? ].
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Definition 3.5. For any target function f : (A ∪ {φ})N −→ B, any index set
I ⊆ {1, 2, . . . , N}, and any a,b ∈ (A ∪ {φ})|I|, we write a ≡ b if for every
x ∈ (A ∪ {φ})N , we have f (x(I, a)) = f (x(I,b)).

It can be verified that ≡ is an equivalence relation4 for every f and I .

Definition 3.6. For every f and I , let RI,f denote the total number of equivalence
classes induced by ≡ and let

ΦI,f : (A ∪ {φ})|I| −→ {1, 2, . . . , RI,f}

be any function such that ΦI,f (a) = ΦI,f (b) iff a ≡ b.

That is, ΦI,f assigns a unique index to each equivalence class, and

RI,f =
∣∣{ΦI,f (a) : a ∈ (A ∪ {φ})|I|

}∣∣ .

The value of RI,f is independent of the choice of ΦI,f .

Example 3.7.

• Let f be the identity target function. Then for every a,b ∈ (A ∪ {φ})|I| we

have a ≡ b if and only if a = b. The number of distinct equivalence classes

is

RI,f = (|A|+ 1)|I|.

• Let A = {1, . . . ,m} for some m ≥ 1 and let f be the arithmetic sum target

function. For a,b ∈ (A ∪ {φ})|I|, we have a ≡ b if and only if

|I|∑

i=1

(a)i =
|I|∑

i=1

(b)i

and the number of such possible sums is

RI,f = m |I|+ 1.

4Witsenhausen [? ] represented this equivalence relation in terms of the independent sets of a
characteristic graph and his representation has been used in various problems related to function
computation [? ? ]. Although ≡ is defined with respect to a particular index set I and a function
f , we do not make this dependence explicit – the values of I and f will be clear from the context.
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Lemma 3.8. For any target function f ,

Emin(f) ≥ max
I

max






√
logq (RI,f )

3
,
logq(RI,f )

3 |I|




 .

Proof. Consider any I = {i1, i2, . . . , i|I|}. For any a,b ∈ (A ∪ {φ})|I| such that
a *≡ b, any feasible code should satisfy

∑

j∈{1,...,|I|}

π
(a)j
ij

*=
∑

j∈{1,...,|I|}

π
(b)j
ij

. (6)

Note that for any I and a ∈ (A∪{φ})|I|, dim
(∑

j∈{1,...,|I|} π
(a)j
ij

)
≤ |I| since it is

composed of the union of at most |I| one-dimensional subspaces. Then from Defi-
nition 3.5 and (6), there exist at least RI,f distinct subspaces, each with dimension
at most |I|. From Lemma 3.1, we have

4 ·
min{l,|I|}∑

j=1

qj(l−j) ≥ RI,f . (7)

This implies that

4 ·
l∑

j=1

qj(l−j) ≥ RI,f

=⇒4l · q(
l
2)

2

≥ RI,f

=⇒ logq(4l) +

(
l

2

)2

≥ logq(RI,f ).

Since logq(4l) ≤ 2l2, we have

3l2 ≥ logq(RI,f )

=⇒ l ≥

√
logq(RI,f )

3
.
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From (7), we also have

4 ·
|I|∑

j=1

qj(l−j) ≥ RI,f

=⇒4 |I| · qd̂(l−d̂) ≥ RI,f with d̂ = argmax
j∈{1,|I|}

qj(l−j)

=⇒ logq(4 |I|) + d̂(l − d̂)+ ≥ logq(RI,f ).

Since logq(4 |I|) ≤ 2 |I| and d̂ ≤ |I|, we have

2 |I| l + |I| l ≥ logq(RI,f )

=⇒ l ≥
logq(RI,f )

3 |I|
.

!

Example 3.9.

• For the arithmetic sum target function f , we get

Emin(f) ≥

√
logq(N |A|+ 1)

3
.

Comment : Note that when |A| / N , the bounds in the above examples are
better than the ones presented earlier in the section.

4. Bounds for specific functions

Any target function can be computed by first reconstructing all the source
messages at the sink (i.e., computing the identity function f(x1, x2, . . . , xN) =
(x1, x2, . . . , xN ) with each xi ∈ A ∪ {φ}) and then deriving the function value.
Hence, the following lemma provides an upper bound on the cost for computing
any function f .

Lemma 4.1. There exists a (1, l) feasible code for computing the identity function

such that

l = N + 0logq |A|1.

11



Proof. It is easy to see that this can be achieved simply by using coding vectors
of length N , where each source σi when active uses the basis vector ei as its cod-
ing vector and appends this to the information packet that consists of 0logq |A|1
symbols. !

In the previous section, we provided lower bounds on Emin(f) for arbitrary
functions. Functions for which the lower bound is of the same order as N +
0logq |A|1 are hard to compute in the sense that it is almost optimal (up to a con-
stant factor) to first recover all the source messages and then compute the function.
For example, when N ≥ logq |A|, this is true for the arithmetic sum function, the
parity function, and the majority function. Next, we discuss some example target
functions.

4.1. T -threshold Function

Let A = {1}. The T -threshold function is defined as5

f (x1, x2, . . . , xN) =

{
1 if x1 + x2 + . . .+ xN ≥ T

0 otherwise.

Lemma 4.2. There exists a (1, l) feasible code for computing the T -threshold

function with T < (1− 1/q)N , such that

l ≤ NHq

(
T

N

)

where Hq is the q-ary entropy function defined as

Hq(x) = x logq

(
q − 1

x

)
+ (1− x) logq

(
1

1− x

)
∀ x ∈ (0, 1).

Proof. Consider the scheme in Figure 1. The scheme uses a l × N parity check
matrix of a q-code with minimum distance dmin = T + 1. From the Gilbert-
Varshamov bound [12? ], there exists such a matrix with

l ≤ NHq

(
T

N

)
.

5The function computes whether the number of active sources is at least T or not.
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• Let H be the l ×N parity check matrix of a q-ary

code with minimum distance dmin = T + 1.

• Source σi uses Ci = {hi}, where hi is a column of H.

• If the dimension of the subspace that the sink receives

is less than T , it outputs 0. Otherwise, it outputs 1.

Figure 1: A (1, l) code for the T -threshold function

!

Comment : For a constant T , O
(
NHq

(
T
2N

))
= O

(
T logq N

)
. Thus, while

computing the identity function requires the cost to grow linearly with the number
of sources N , the T -threshold function requires only logarithmic growth. We have
the following matching lower bound.

Lemma 4.3. For the T -threshold function f with T < N/2,

Emin(f) ≥
N

2
Hq

(
T

2N

)
.

Proof. Consider two possible input vectors (x1, x2, . . . , xN ) and (y1, y2, . . . , yN )
such that

xi = 1 ∀ i ∈ {1, 2, . . . , T} and xi = φ otherwise

yi = 1 ∀ i ∈ {2, 3, . . . , T} and yi = φ otherwise .

Note that
1 = f(x1, x2, . . . , xN ) *= f(y1, y2, . . . , yN ) = 0

and hence it is necessary for any feasible code for computing f that

π1
1 +

T∑

i=2

π1
i *=

T∑

i=2

π1
i =⇒ π1

1 *⊆
T∑

i=2

π1
i .

The same argument can be extended to get the following necessary condition. For
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any subset (i1, i2, . . . , iT ) of {1, 2, . . . , N},

π1
ij *⊆

∑

k $=j

π1
ik

for every j ∈ {1, 2, . . . , T}.

Denote a basis vector for π1
i by vi. From the necessary condition on the subspaces

π1
1, π

1
2, . . . , π

1
N , any collection of T vectors from v1,v2, . . . ,vN are linearly inde-

pendent. The l × N matrix with the vectors v1,v2, . . . ,vN as columns corre-
sponds to the parity check matrix of a q-ary linear code of length N and minimum
distance at least T + 1. Using the bounds in [12? ], for T < N/2 we have

l ≥ NHq

(
T

2N

)
−

1

2
logq

(
4T

(
1−

T

2N

))
.

The result then follows since

1

2
logq

(
4T

(
1−

T

2N

))
≤

N

2
Hq

(
T

2N

)
. (8)

For N ≤ 11, (8) can be verified numerically. Let N ≥ 12. Then (8) holds if we
show that for every 1 ≤ T < N/2,

N ·
T

2N
ln

(
2N

T

)
≥ ln(4T ) or equivalently,

T ln

(
2N

T

)
− 2 ln(4T ) ≥ 0. (9)

For T = 1, (9) holds since N ≥ 8. Differentiating the left-hand side of (9) with
respect to T , we get

ln(2N)− ln(T )− 1−
2

T

which is greater than zero since N ≥ 12 and T ≤ N/2. Thus, (9) is true for every
1 ≤ T < N/2 and thus (8) holds. !

4.2. Maximum Function

Lemma 4.4. There exists a (1, l) feasible code for computing the maximum func-

tion such that

l ≤ min
{
|A| , N + 0logq |A|1)

}
.
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Proof. Consider the following two schemes for computing the maximum func-
tion.
• A (1, |A|) scheme: Let v1,v2, . . . ,v|A| be linearly independent vectors of length
|A| each. For every source σi, let Ci =

(
v1,v2, . . . ,v|A|

)
. This scheme has

l = |A|.
• A (1, N + 0logq |A|1) scheme: We can compute the identity function with
l = N + 0logq |A|1 and hence can compute the maximum function also. This
scheme is useful if A ≥ N . !

Comment : Thus when |A| 3 N , the first scheme is much more efficient than
reconstructing all the source messages.

Lemma 4.5. For the maximum target function f ,

Emin(f) ≥ min{|A| , N}.

Proof. Let A =
(
a1, a2, . . . , a|A|

)
be an ordered set (in decreasing order) and let

M = min{|A| , N}. Consider an input vector x such that

(x)i = ai ∀ i ∈ {1, . . . ,M} and (x)i = φ otherwise

and a collection of M indices i1, i2, . . . , iM such that each ij = j. Then from
(5), it can be easily verified that the maximum target function f satisfies property
Q(M). The result then follows from Lemma 3.4. !

4.3. K-largest Values Function

Let A = (a1, a2, . . . , a|A|) be an ordered set (in increasing order). For any
given input vector (x1, x2, . . . , xN ), let (x̂1, x̂2, . . . , x̂N) denote the vector which
is a permutation of the input vector and satisfies x̂i ≥ x̂i+1 for each i. Then the
K-largest values function is given by

f (x1, x2, . . . , xN ) = (x̂1, x̂2, . . . , x̂K) .

Lemma 4.6. There exists a (1, l) feasible code for computing the K-largest values

function with K < N/2, such that

l ≤ |A| ·NHq

(
K

2N

)
.
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• Let H be the (l/ |A|)×N parity check matrix of a

q-ary code with minimum distance K + 1.

• If source σi takes value aj from the alphabet A, then it

transmits a vector which is all zero except the

(j − 1)× (l/ |A|) + 1 to j × (l/ |A|) elements,

which take values from the i-th column of H.

• Each vector in the union subspace Π that the sink

receives is parsed into |A| sub-vectors of length l/ |A|.

• Let Πj ⊆ F
l/|A|
q denote the subspace spanned by

collecting the j-th sub-vector of each vector in Π.

• Thus by calculating dim(Π|A|), dim(Π|A|−1) . . . ,

the sink can compute the K largest values.

Figure 2: A (1, l) code for K-largest values function

Proof. Consider the scheme in Figure 2.
Again from [12? ], there exists a parity check matrix such that

l

|A|
≤ NHq

(
K

2N

)
.

!

Comment : Again, for constant |A| and K, the cost only grows logarithmically
with the number of sources N .

Lemma 4.7. For the K-largest values target function f with K < N/2,

Emin(f) ≥
N

2
Hq

(
K

2N

)
.

Proof. If the receiver can correctly compute the K-largest values, then it can also
deduce if the number of active sources is greater than K or not. Thus, it can also
compute the T -threshold function with the threshold T = K. The result then
follows from Lemma 4.3. !
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5. A general scheme for computation

We now present a general method to compute functions under our network
model. We will illustrate the method for boolean functions of the form f :
(A)N → {0, 1}. For a general function, the output can be considered as a string
of bits and the above scheme can be used separately to compute each bit of the
output.

Since f has boolean output, it can be written as

f (x1, x2, . . . , xN) =
s∑

i=1

N∏

j=1

Bij

where s is some integer such that 1 ≤ s ≤ |A|N ; {Bij} are boolean variables
such that the value of Bij depends only on xj; and the sum and product represent
boolean OR and AND. By taking the complement, we have

f (x1, x2, . . . , xN) =
s∏

i=1

N∑

j=1

Bij.

Given any input xj , source j creates a vector vj of length s such that i-th compo-
nent is Bij . Each source j then sends the corresponding vector vj into the network
and the sink collects linear combinations of these vectors. If the i-th component
of any of the vectors in the union subspace at the sink is 1, then a boolean variable
Ai is assigned the value 1. This implies that

Ai =
N∑

j=1

Bij

and hence,

f (x1, x2, . . . , xN ) =
s∏

i=1

Ai.

Thus, we have a (1, s) scheme to compute any function f with binary output.
Comment : Since the cost associated with the above code is s, the above

scheme is efficient when the number of input vectors for which the function value
is 1 (or 0) is much smaller than the total number of possible input vectors.

We now present an example to illustrate the above method.
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Example 5.1. Let B = {1, 2, . . . , K} and let the source alphabet A be the power

set of B, i.e, A = 2B. Then the set cover function is defined as

f (x1, x2, . . . , xN) =





1 if B *⊆

N⋃

i=1

xi

0 otherwise.

In words, each source observes a subset of B and the sink needs to compute if

the union of the source messages covers B. Define the boolean variable A as

follows.

A =

{
1 if A is true

0 otherwise.

Then the function f can be rewritten as

f (x1, x2, . . . , xN) =
K∑

i=1

N∏

j=1

{i $∈xj}.

Then using the scheme described in this section, the set cover function can be

computed using a (1, K) code with d · l = log2 |A| = K. This scheme is in-fact

optimal in terms of the smallest possible cost for any feasible code.

6. Conclusions

In this paper we investigated function computation in a network where inter-
mediate nodes perform randomized network coding, through appropriate choice
of the subspace codebooks at the source nodes. Unlike traditional function com-
putation, that requires intermediate nodes to be aware of the function to be com-
puted, our designs are transparent to the intermediate node operations. Future
work includes finding tighter bounds for general functions as well as designing
more efficient schemes. Another direction of research would be to relax our as-
sumption that the sink is able to observe the joint span of the injected subspaces
and allow it to only learn some subspace of the union.
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