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Abstract

A long-standing open question in information theory is to characterize the unicast capacity of

a wireless relay network. The difficulty arises due to the complex signal interactions induced in

the network, since the wireless channel inherently broadcasts the signals and there is interference

among transmissions. Recently, Avestimehr, Diggavi and Tse proposed a linear deterministic model

that takes into account the shared nature of wireless channels, focusing on the signal interactions

rather than the background noise. They generalized the min-cut max-flow theorem for graphs to

networks of deterministic channels and proved that the capacity can be achieved using information

theoretical tools. They showed that the value of the minimum cut is in this case the minimum rank

of all the adjacency matrices describing source-destination cuts.

In this paper,we develop a polynomial time algorithm that discovers the relay encoding strategy

to achieve the min-cut value in linear deterministic (wireless) networks, for the case of a unicast

connection. Our algorithm crucially uses a notion of linear independence between channels to

calculate the capacity in polynomial time. Moreover, we can achieve the capacity by using very

simple one-symbol processing at the intermediate nodes, thereby constructively yielding finite length

strategies that achieve the unicast capacity of the linear deterministic (wireless) relay network.

I. I

Let G = (V, E) denote a directed graph with unit capacity edges. We can think of each edge

of this graph as a channel orthogonal to all other channels, where each channel (edge) has a

single input and a single output, and can be used to send a single symbol from the input to the

output (unit capacity). We can then depict a node with multiple incoming and outgoing edges

as having multiple inputs and multiple outputs, as determined by its adjacent edges, where

inputs and outputs can be arbitrarily connected to each other within the node. For example,

Fig. 1(a) depicts a node in a directed graph, and Fig. 1(b) the equivalent representation of

this node.



Wireless relay networks cannot be represented as graphs, due to the inherently shared nature

of the wireless medium that causes complex signal interactions. In the wireless medium,

transmissions are broadcasted, and may be received by multiple receivers at different signal

strengths depending on path loss parameters. Moreover, there is interference between trans-

missions, and the signal from different nodes in the network can be received at very different

power at a given receiver (high dynamic range of received signals). The characterization

of the unicast capacity of a wireless relay network has been an open problem for decades,

mainly due to these complex signal interactions.

Recently, Avestimehr, Diggavi and Tse [4], [5] proposed a linear deterministic network

model (we will call this ADT model) that takes into account the interactions between the

signals in a wireless network, i.e., broadcasting and interference, and represents the noise

by a deterministic threshold rather than a random variable. The symbols received below the

noise threshold are discarded. The argument is that for high Signal-to-Noise-Ratio (SNR),

it is the signal interactions that will dominate the performance, and thus the capacity of the

deterministic could be very close to that of the noisy network. Thus networks of deterministic

channels could be used as approximate models for wireless networks.

The ADT model is based on the intuition of dividing the transmitted and received signals

into symbols, where each symbol is transmitted at a different power level, and assuming

that only symbols above a deterministic noise threshold will be successfully received. Deter-

ministic networks can be over over an arbitrary field Fq. In the following, when we do not

explicitly specify the field, we will imply that the network operates over the binary field.

As an example, consider a point-to-point AWGN channel: y = 2α/2x + z, and assume that

input bits x1, x2, .., xn are transmitted from a node A, while a node B observes the signal y.

The capacity is log(1 + 2α) ≈ α log(2), assuming z is unit variance noise (α represents the

channel gain in dB scale α↔ #log(S NR)$). The ADT model over F2 in this case is obtained

by truncating the received signal and assuming that the α most significant bits (MSB) of

x are always above the deterministic noise threshold and received successfully at node B.

The parameter α captures the path loss and determines how many of the MSB bits of x are

received at y.

When broadcasting, each receiver node Bi will receive the mi MSB from the transmitted

bits x1, x2, .., xn, with 0 ≤ mi ≤ n. For example, when in Fig. 2 node S transmits, node A1
receives both the transmitted bits, while node A2 receives only the MSB that was transmitted
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with the higher power. The difference between the bit index at the transmitter and the bit

index at the receiver represents path loss.

Interference in the ADT model is modeled through bit-wise binary addition, unlike Gaus-

sian networks, where interfering signals are added through regular addition. In Fig. 2 the bit

y6 equals the binary addition (xor) of bits x3 and x4. Again, the signal from different nodes

in the network can be received at different power at a given receiver. For example, node D

observes at y9 the xor of x5 and x7, i.e., the MSB from node B1 and the 2nd MSB from node

B2. The generalization over an arbitrary field Fq is straightforward, by substituting binary

addition with addition over Fq.
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Fig. 1. (a) A node in a directed graph, (b) equivalent representation through orthogonal channels, and (c) a
node in a network of deterministic channels.

In the ADT model, unlike graphs, channels are no longer orthogonal. Each input might

be connected to multiple outputs belonging in different nodes, and the relationship between

these inputs and outputs is determined by a set of linear equations. In Fig. 2, the channel

between the nodes A1, A2 and B1, B2 can be described through the equations y6 = y7 = x3+x4.

A generic node of deterministic channel networks is depicted in Fig. 1(c). Loosely speaking,

in deterministic networks, we can have Linear Dependence (LD) relationships between edges

(we will make this precise in the following section), even though these edges might not be

adjacent. For example, in Fig. 2, the edges (x3, y6) and (x4, y7) are linearly dependent. This

makes challenging the task of calculating the min-cut value between a source-destination

(S-D) pair and of identifying the node operations.

Avestimehr, Diggavi and Tse generalized the min-cut max-flow theorem for graphs to

networks of deterministic channels and proved that the capacity can be achieved using

information theoretical tools. They showed that the value of the minimum cut is in this

case the minimum rank of all the adjacency matrices describing source-destination cuts. For

example, in Fig. 2 the minimum cut value equals
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Fig. 2. An example of a linear binary deterministic network.
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Note that there exists an exponential number of cuts, and thus identifying the capacity

through exhaustive search becomes infeasible. In this paper, we develop a constructive

polynomial-time algorithm which allows to efficiently calculate the min-cut value between a

S − D pair, and to achieve this value using simple operations at relay nodes.

To construct our algorithm, it is easy to see that, attempting to directly extend the Ford-

Fulkerson (FF) algorithm [2], or other path-augmenting algorithms developed for graphs, is

not straightforward. Indeed, assume that in Fig. 2 we have at a first iteration identified the

path highlighted in bold. The FF algorithm may attempt to employ the path consisting of

the edges (x1, y3), (x4, y7), (x7, y9), which in fact is vertex disjoint (excluding the S, D nodes)

from the already identified path. However, because edges (x3, y6) and (x4, y7) are LD, this

path cannot bring innovative information to the destination; in fact, the min-cut value in this

network equals one. Given that channels can interact in multiple ways, it is not clear that a

polynomial algorithm does exist.

Even in regular graphs, the number of cuts between an S-D pair is exponentially large.

However, polynomial time algorithms do exist in that case. One way to understand this is
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by observing that, in the FF algorithm for example, we are allowed to make “mistakes”

when selecting a path, where a mistake in this case is when a path crosses a minimum

cut more than once. The strength of the algorithm comes from the fact that such mistakes

can be “corrected”, by allowing to use employed edges in the opposite direction. What these

corrections do is effectively “rewiring” already identified partial-paths. For example in Fig. 3,

a first iteration identifies the path that uses the edges AB, BC and DE. This path crosses a

min-cut twice. A subsequent iteration can use edge CA in the opposite direction to find a

new S-D path. This amounts to, no longer using edge BC and having two rewired paths: The

first part of the first path arrives at node B, and is then complemented by the second path

S
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D

S
A
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E

D

Min Cut

Fig. 3. Correcting a “mistake” in the Ford-Fulkerson algorithm can be thought of as “rewiring paths”.

from B to D. The second path arrives from S to E, and from E to D is complemented by

the first path.

In deterministic networks, we cannot avoid making “mistakes” when selecting which paths

to use, where now a mistake amounts to using the wrong edges between a set of linearly

dependent edges; thus, to find a polynomial time algorithm, we need to put in place some

simple mechanisms to “correct” such mistakes. As we will see in following sections, now

using edges in opposite directions is no longer sufficient or helpful; we may in fact have to

“jump” across nodes, and change the inputs or outputs employed by already identified paths.

The interesting and surprising point is that, there exists a method to perform such corrections

in polynomial time, and thus, no “mistake” is catastrophic.

We close this section by noting that in [4], it was observed that to study coding strategies

and achievable rates, we can reduce an arbitrary network into a layered network, through a

time-expansion technique, with asymptotically no rate-loss. Thus in this paper we will also

focus our attention in layered networks, which will be defined formally in the next section.
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This paper is based on the work in [11]. The algorithm in [11] was presented over binary

fields. Moreover, the proof of the algorithm presented in [11] applies under some assumptions

on the structure of the linear dependency between inputs and outputs. In this paper, we provide

a simple modification of [11] that holds with no assumptions on the linear dependency of

the channels. Moreover, we present the algorithm over an arbitrary finite field Fq. The paper

in [11] was followed up by a very nice connection with matroids and the development of

alternative algorithms for this problem [12].

This paper is organized as follows. Section II introduces our notation and basic definitions.

Section III describes our algorithm, provides a number of examples, and proves that it

identifies a minimal value cut. Section IV concludes the paper.

II. M  D

In this section, we start by defining the layered deterministic network model for a unicast

connection over a network.

Definition 1: (Layered Deterministic Network). A layered deterministic network model

over a finite field Fq, consists of a set of nodes and a set of channels (or edges) with the

following properties:

1) Each node consist of two sets, the set of inputs and the set of outputs of the node. We

will generally denote inputs using the variable x and outputs using the variable y. We

will denote by A(x) and A(y) respectively, the node where input x (output y) belongs

to. Let Itotal be the total number of inputs in the network and Ototal the total number of

outputs in the network.

2) The nodes of the deterministic model are partitioned in parts. Each part is called a

layer of the network. We assume that each layer has at most M nodes, and denote by

Vi the set of nodes in layer i. The layers are labeled by i = 1, 2, . . . ,Λ, where Λ is the

number of layers.

3) Layer 1 and layer Λ each has only one node in it. The node of the first layer is called

“source node” and is denoted by S and the node of the last layer is called “receiver

node” and is denoted by D. The source node has only outputs and the receiver node

has only inputs.

4) Each channel is a link between an input of a node in layer i to an output of a node

in layer i + 1 where 1 ≤ i ≤ Λ − 1. A fixed nonzero value over a finite field Fq is

associated with each link.
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5) Let x denote a vector that collects all inputs in layer i, and y a vector that collects all

outputs in the next layer i+ 1. Then these vectors are connected through a given linear

transformation over Fq, i.e., y = Tx, where each nonzero value in the transformation

matrix T corresponds to a channel and its associated value. !

We can define a transformation matrix between an arbitrary subset of inputs and outputs

in adjacent layers. Let V be a subset of all inputs in layer i and W be a subset of all outputs

in layer i + 1 (for simplicity we do not include the i indices).

Definition 2: (Transfer Matrix).We define T(V,W) to be the matrix whose rows are labeled

with the elements of V , the columns with the elements of W and the entry (v,w) is nonzero

if and only if there is a channel between input v and output w. T(V,W) is called the transfer

matrix between V and W. !

We will describe the extension of a given transformation matrix T(V,W) by adding a

row corresponding to an input x ! V as T({V, x},W) and the extension by adding both a

row corresponding to an input x and a column corresponding to an output y (not already

contained in V and W) as T({V, x}, {W, y}).

The maximum information S can send to D depends on the minimum cut value in the

network, defined as follows.

Definition 3: (Cut and Cut-Value) By an S − D cut VC we mean a partition of the nodes

into two parts V1 and V2 in such a way that S ∈ V1 and T ∈ V2. We define the value of

VC to be rankT(A1, A2) log2 q, where rank refers to matrix rank, A1 is the set of all inputs

in the nodes in V1, A2 is the set of all outputs of the nodes is V2, and q is the size of the

employed finite field. The minimum cut value equals minVC rankT(A1, A2) log2 q, where the

minimization is over all S − D cuts. !

We will sometimes distinguish between a layer-cut and a cross-cut. There exist exactly

Λ − 1 layer cuts, one between every two consecutive layers. For example, the j-layer cut is

V1 = V1 ∪ . . . ∪ Vj and V2 = Vj+1 ∪ . . .∪ VΛ for 1 ≤ j ≤ Λ − 1. A cross-cut involves several

layers. The transfer matrix for a cross-cut is block diagonal, with the nodes in each layer

belonging in a different block.

Next, we will define the notion of linear dependency between channels.

Definition 4: (LI and LD Channels). Suppose that H is a subset of channels between layers

i and i + 1. Let V be the set of all inputs that are the head of a channel in H and W be the

set of tails of these channels. We say H is a set of Linearly Independent (LI) channels if
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rankT(V,W) = |H|. Otherwise we say H is a set of Linearly Dependent (LD) channels. !

Our algorithm will send information from S to D using S − D paths, defined in the

following. Through every path S sends one symbol over Fq to D.

Definition 5: (S −D Path). An S −D path is a disjoint set of edges (e1, e2, . . . , eΛ−1) where

e1 starts from S , eΛ−1 finishes at D, and ei finishes at the same node where edge ei+1 starts.

All S −D paths have the same length Λ− 1, because of the structure of the layered network.

!

Essentially, selecting paths amounts to appropriately selecting sets of “used” inputs V and

outputs W in each layer. To ensure that the information send through different paths can be

decoded at the destination we need to use linearly independent (LI) paths, defined as follows.

Definition 6: (LI-Paths). Suppose that P is a set of S − D paths. We say these paths are

linearly independent if and only if the set of edges of these paths in every layer form a set

of linearly independent edges. !

Note that each x and y can take part in at most one of the LI paths; in this case we will

say that it is used by that path. That is, we will say that a channel input x is used, if there

exists a path that uses a channel (x, y′) for some y′. Similarly, we will say that a channel

output y is used, if there exists a path that uses a channel (x′, y) for some x′.

III. T U A

A. Main idea

In our algorithm, we will find linearly independent paths one after another, in iterations.

The first iteration identifies a path P1. This is always possible if the source is connected to the

destination, otherwise the capacity is zero. Each subsequent iteration identifies an additional

path such that all selected paths are LI (as by definition 6). For example at iteration K + 1,

the algorithm takes as input the LI paths P = {P1, . . . ,PK} and attempts to find path PK+1
such that the paths {P1, . . . ,PK+1} are also LI (as by definition 6). Each iteration finishes

once we reach the destination. The algorithm stops when an iteration cannot complete, at

which point the algorithm outputs the set of identified LI paths P.

To find a new path, we start from the source and select one channel at each layer until we

reach the destination if possible. At each layer we need to select a valid channel, in the sense

that it is linearly independent from the set of the channels of the identified paths in that layer

in previous iterations. A main tool that we use to achieve this is that we allow the algorithm
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to perform some type of “rewiring” inside one layer at a time. Assume for example that we

have K + 1 “partial” paths from the source to nodes in layer i, and K “partial” paths from

nodes from layer i + 1 to the destination. Rewiring refers to that we change the mapping

between the starting and finishing paths by changing the channels we employ, while still

preserving LI across the i-layer cut. These rewiring are achieved through two functions, the

L-function and the φ-function, which we describe in detail later.

Note that, instead of selecting channels (or paths), we can equivalently think of our

algorithm as appropriately selecting a subset of inputs and outputs to be used in each layer.

Each node internally simply maps each of its used inputs to a used output (the specific

mapping is not important). That is, selecting K paths amounts to selecting K inputs Ux at

each layer i and K outputs Uy at the corresponding layer i + 1 such that the transfer matrix

Ti = T(Ux,Uy) is full rank for each i.

Each of the LI paths that the algorithm outputs will be used to convey an independent

symbol over the field Fq from the source to the destination. Let x collect the K used outputs

of the source and y collect the K used inputs of the receiver. The overall transfer matrix

T = T1 · T2 . . .TΛ−1 is full rank and therefore x can be recovered at the receiver by solving

the system of linear equations

y = Tx = T1 · T2 . . .TΛ−1x.

That is, although we send one symbol through each path, due to the linear combining the

deterministic model imposes, the receiver will still need to solve equations to retrieve the

data. By the choice of paths, that is, by selecting at each node the edges we use to collect

and transmit information, we preserve the “degrees of freedom”, the number of independent

linear equations the receiver decodes.

B. Algorithm Description

Assume we are at iteration K + 1, that takes as input the LI paths P = {P1, . . . ,PK} and

attempts to find path PK+1 such that the paths {P1, . . . ,PK+1} are also LI (as by definition 6).

During this iteration, we explore nodes, starting from the source node S . We will use

the terminology of exploring a node A to indicate that we have found a path from S to A

(LI from the paths in P) and attempt to continue this path from node A to D in order to

complete PK+1. Note that which input yi ∈ A we use to reach the node A does not play a
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role; to explore a node it is sufficient that we arrive at it using any of its inputs. Once we

reach a node, we mark the node as visited, and attempt to explore all edges emanating from

it, as potential candidates for the path PK+1. We use an indicator variable M with values

{T, F}, to mark whether a node or edge has been explored (T) or not (F). We need explore

(according to operations to be defined) each node during each iteration at most once, and we

will do that calling a function EA. Exploring a node reduces to exploring all unused inputs

that it contains; exploring an input is achieved by calling a function Ex. Each edge may be

explored during each iteration multiple times, for reasons we will explain in the following,

but no more than a finite number of times. This ensures that each iteration terminates after

a finite number of steps.

Assume that we have found a partial path PK+1 from S to a node A in the i-layer and

we explore input xi ∈ A, with the goal of extending the path PK+1 to the i + 1-layer. Let

U = {(xi, y j)} denote the set of K used edges in the i-layer cut, Ux and Uy denote the set of

used inputs and outputs respectively, and T(Ux,Uy) be the K × K full rank transformation

matrix associated with U. We describe the steps we take to explore a specific input in the

following. We illustrate these steps through a number of examples in Section III-C.

Steps in exploring input xi at node A

1) If xi ∈ Ux, i.e., xi is already used by a path, do nothing. Note that although node A

will be marked as explored (M(A) = T), this particular xi ∈ A will not be marked

(M(xi) = F will remain).

2) If xi ! Ux, i.e., xi is not used, then for each y j, such that the channel (xi, y j) exists, we

distinguish two cases.

a) y j ! Uy, i.e., y j is not used. Consider the (K+1)×(K+1) matrix T({Ux, xi}, {Uy, y j})

associated with the used edges and the new edge (xi, y j). We again consider two

cases.

i) If the matrix T({Ux, xi}, {Uy, y j}) is not full rank, do nothing.

ii) If the matrix T({Ux, xi}, {Uy, y j}) is full rank, use edge (xi, y j) to go to node

A(y j). If this node has not been visited before, we attempt to continue from

node A(y j) by calling the function EA(G,P,M, A(y j)).

Additionally, for each yk ∈ Uy, with A(yk) = A(y j), perform what we call the

φ-function. The idea is that, in this case there exists a path from the source
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to the destination identified during a previous iteration that goes through node

A(y j). This path uses an edge (xk, yk) ∈ U to reach node A(y j). We can then use

our newly identified partial path that uses the edge (xi, y j) to reach from the

source the node A(y j), and “connect” this new partial path with the existing

partial path from A(y j) to destination. Thus, we have the opportunity to again

perform rewirings and visit new nodes.

More precisely, the φ-function performs the following. Remove from the ma-

trix T({Ux, xi}, {Uy, y j}) the column corresponding to yk with A(yk) = A(y j).

Let

C " T({Ux, xi}, {Uy, y j} − {yk})

denote the resulting (K + 1) × K matrix. Consider each of the K square

submatrices of C resulting by deleting each of the first K rows. Let Cm denote

the submatrix resulting from deleting row xm, i.e.,

Cm " T({Ux, xi} − {xm}, {Uy, y j} − {yk}).

If Cm is not full rank, do nothing. If it is full rank, perform a rewiring of the

existing K paths using Cm. If A(xm) is not marked as visited, explore A(xm).

If A(xm) is marked as visited, then explore input xm even if it is marked. Note

that the φ-function may be executed at most as many times as the number of

outputs in that layer, and thus when it is executed, at most K already visited

inputs might be revisited. Examples 2-4 illustrate the use of the φ function.

b) y j ∈ Uy, i.e., y j is used. We can then not immediately use the channel (xi, y j),

unless we perform some rewiring. This rewiring is captured by what we call

the Lx-function. This function will be executed at most once for every input. To

ensure that, we keep in the algorithm for each input an indicator variable ML

with values {T, F}.

The Lx-function operates as follows. Consider the extended transformation matrix

T({Ux, xi},Uy). Define Lxi ⊆ Ux to be the smallest subset of Ux, of size |Lxi | =

s ≤ K, such that the matrix T({Lxi , xi},Uy) has rank s. Using proposition 2 this

set can be identified in polynomial time. Proposition 3 proves that removing any

one of the rows of T({Lxi , xi},Uy) still results in a full rank matrix. Equivalently,
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removing any row of T(Ux,Uy) corresponding to a xk ∈ Lxi , and substituting it

with the row corresponding to xi, results in a full rank matrix, that can be used to

rewire the paths identified in the previous iterations. That is, using Proposition 1,

we can use the row T(xi,Uy) to substitute any of the already employed T(xk,Uy),

xk ∈ Lxi that are LD with xi row, while still maintaining the same number of paths

as identified from the previous iterations. We will then be left with a partial path

arriving at the node A(xk), and we can attempt to use any of the available x’s in

this node to proceed. We now distinguish to subcases:

i) A(xk) is already marked as explored. In this case we will not visit this node

again. However, we will explore input xk, although this input might have been

explored before. Note that, at each execution of the Lx function, at most K

inputs will be re-examined.

ii) A(xk) is not marked, i.e., during this iteration we visit this node for the first

time. Then the algorithm explores this node. Additionally, if there exists a

path identified during a previous iteration that utilizes (at the previous layer)

an output y′ at node A(xk) we will execute on this node the φ-function that

we described previously.

Examples 1 and 4 illustrate the use of the Lx-function.

The previous steps are the main ingredients of two recursive functions EA and EX that

implement our proposed algorithm and are summarized in Table I. The first function, Ex,

checks if we can continue from a current input x to reach the destination by a sequence of

channels which are linearly independent to the previous identified paths. The input of this

function is the network, a family of identified paths and already visited nodes and current

input. It returns true if there is a sequence of channels with the described properties and

returns false, otherwise. The second function, EA, does a similar job as the first function

except that it works for the current node instead of the current channel. So, as one might

guess, this function, essentially, calls the first function for all of its inputs and if none of

them returns true, it also returns false. We illustrate the algorithm steps through a number of

examples in Section III-C.



Three Propositions Used in the Algorithm

We here provide some useful propositions that were used in our algorithm. The first is a

known property [9], that allows to “match” inputs and outputs through LI channels, and that

that we repeat for completeness.

Proposition 1: If the K × K binary matrix T(Ux,Uy) is full rank, then there exist K LI

edges with x ∈ Ux and y ∈ Uy.

Proof: Since T(Ux,Uy) is full rank matrix, it has nonzero determinant. Now if we

expand the determinant using the sum of product- expansion, we should have at least one

non-zero product and this product corresponds to a perfect matching in the bipartite graph

with adjacency matrix T(Ux,Uy).

Proposition 2: Let T(Ux,Uy) be a full rank K × K matrix and xi " T(xi,Uy) a vector

in its span. Then, we can find the smallest Lxi ⊆ Ux of size s = |Lxi | ≤ K such that

rank(T({Lxi , xi},Uy)) = rank(T(Lxi ,Uy)) = s using O(K3) operations.

Proof: Since the matrix A " T(Ux,Uy) is full rank, there exists a unique vector c such

that xi = cA. Solve these equations to find c. Lxi are the indices corresponding to nonzero

values in c.

Proposition 3: Let Lxi be the smallest subset of Ux, |Lxi | = s, such that rank(T({Lxi , xi},Uy}) =

rank(T(Lxi ,Uy)) = s. Then for each x j ∈ Lxi , rank(T({Lxi − x j, xi},Uy}) = s.

Proof: Consider the vectors x j " T(x j,Uy). From minimality of Lxi , xi =
∑

j∈Lxi
α jx j with

α j " 0, otherwise, we could have found a smaller set to replace Lxi . Thus, for any xk ∈ Lxi ,

xi = βkxk +
∑

x j∈Lxi , j"k

β jx j

for some nonzero coefficients β’s over the finite field. Since the vectors {x j} with x j ∈ Lxi
are LI, and since given xi and all other x j apart xk we can still retrieve xk, the matrix

T({Lxi − x j, xi},Uy}) has full rank.

C. Examples

Example 1: Exploring an input and the Lx-function. Consider the layer cut in the left

Fig. 4 and assume that, during iterations 1 and 2, we have identified the two LI paths P1
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Fig. 4. Assume that bold depict edges in paths P1, P2 identified through previous iterations. At iteration 3 a
partial path P3 arrives at node A4, and we explore the edge (x5, y1). We perform rewiring using the Lx function.
Left: marked nodes and paths before the Lx function. Middle: marked nodes and paths when substituting x4
with x5. Right: marked nodes and paths when substituting x3 with x5.

and P2 that use the bold edges in the figure. Thus,

U = {(x3, y1), (x4, y3)}, Ux = {x3, x4}, Uy = {y1, y3}, T(Ux,Uy) =
y1 y3

x3
x4



















1 1

0 1



















.

In iteration 3, assume that we reach node A4. We mark this node as visited, and examine the

channel input x5. There are three possible edges we need to explore: {(x5, y1), (x5, y4), (x5, y5)}.

• We first examine the edge (x5, y1). This is depicted in the left Fig. 4. Since y1 ∈ Uy, we

are at step (2 − b) of the algorithm. We thus consider the matrix

T({Ux, x5},Uy) =

y1 y3
x3
x4
x5

































1 1

0 1

1 0

































,

and find the set Lx5 = {x3, x4}.

We can attempt to substitute each of the x ∈ Lx with x5.

– If we substitute x3, we mark A2 and find another matching: {(x5, y1), (x4, y3)}. This

is depicted in the middle Fig. 4. Since it is the first time we visit node A2, and

since there is path arriving at it, we will perform the φ-function at this node. We

will not describe these steps here, see for such a case example 11. We then call

E(G,P,M, A2). Assume this function returns F, i.e., fails to find a path to the

destination. We restore the original path matching and continue.
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Fig. 5. Continuing from the example in Fig. 4. Failing to use the edge (x5, y1), we will next explore the edges
(x5, y4), and (x5, y5). Left: marked nodes and paths. Middle: marked nodes and paths when exploring the edge
(x5, y4). Right: marked nodes and paths when exploring the edge (x5, y5).

– If we substitute x4: We mark A3 and find another matching: {(x5, y1), (x3, y3)}. This

is depicted in the right Fig. 4. We again perform the φ-function at node A3, bit

described in this example. We then call E(G,P,M, A3). Again assume it fails to

find a path to the destination. We restore the original path matching and continue.

• We proceed with (x5, y4), as depicted in the middle Fig. 5. Since y4 ! UY , we examine

the rank of the matrix

T({Ux, x5}, {Uy, y4}) =

y1 y3 y4
x3
x4
x5

































1 1 0

0 1 1

1 0 1

































.

Because rank(T({Ux, x5}, {Uy, y4})) = rank(T(Ux,Uy)) = 2 we are at step (2 − a − i) of

the algorithm, and we do not need to take any actions.

• Finally, for the edge (x5, y5), with y5 ! Uy, we examine the rank of the matrix

T({Ux, x5}, {Uy, y5}) =

y1 y3 y5
x3
x4
x5

































1 1 0

0 1 1

0 0 1

































Since rank(T({Ux, x5}, {Uy, y5})) = rank(T(Ux,Uy)) + 1 = 3, we are at step (2 − a − ii) of

the algorithm, and we can use the edge (x5, y5) in the path P3. We thus mark node B4
as visited and continue from there.

That is, we update P, and we call the function E(G,P,M, B4). Note that since P1 and
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Fig. 6. Continuing from the example in Figs. 4 and 5.

P2 do not use node B4, we will not perform the φ-function at this node. This is depicted

in right Fig. 5.

!

We next provide two examples for the φ-function.

Example 2: First example for φ-function.

Continuing the previous example, assume that we have failed to find a path when exploring

A4. Suppose that the algorithm continues and suppose that, through some different path, we

reach and mark node A1, as depicted in the left Fig. 6 (we maintain the marked nodes from

the previous algorithm steps during this iteration). We will now explore inputs x1 and x2.

Assume we start by edge (x2, y2). We can use this edge to reach and mark B1, as depicted

in the middle Fig. 6. Since this is the first time we visit node B1, we will perform the

φ-function.

T(Ux ∪ {x2},Uy ∪ {y2} − {y1}) = T({x2, x3, x4}, {y2, y3}) =

y1 y3
x3
x4
x5

































1 1

0 1

0 1

































.

Consider the transfer matrix where we remove the output y1, and use the inputs {x2, x3, x4}

and the outputs {y2, y3}. Both submatrices T({x2, x3}, {y2, y3, }) and T({x2, x4}, {y2, y3, }) are full

rank, and thus we can explore inputs x4 and x3 respectively. We will here describe the steps

when selecting the submatrix T({x2, x3}, {y2, y3, }.

We find a matching for T({x2, x3}, {y2, y3, }, as depicted in the right Fig. 6, and proceed to

examine input x4. Note that since node A3 = A(x4) is already marked, we do not need to
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Fig. 7.

explore it again. We observe that we can use the edge (x4, y4), and thus we mark node B3
and we can further proceed from there. !

Example 3: Second example for φ-function. Consider the layer cut in Fig. 7. Assume

during the first three iterations we have identified the paths depicted with bold edges, that is,

U = {(x1, y1), (x3, y3), (x4, y4)}, Ux = {x1, x3, x4},Uy = {y1, y3, y4}, T(Ux,Uy) =

y1 y2 y3
x1
x2
x3

































1 1 0

1 1 1

0 1 1

































.

During iteration 4, we attempt to use edge (x2, y2). Since node B1 has not been used before,

we perform the φ-function. We thus consider the matrix

T({x1, x2, x3, x4}, {y2, y3, y4}) =

y2 y3 y4
x1
x2
x3
x4

















































1 1 0

1 0 0

0 1 1

0 1 1

















































which has the full rank submatrices T({x1, x2, x3}, {y2, y3, y4}) and T({x1, x2, x4}, {y2, y3, y4}).

Using the T({x1, x2, x3}, {y2, y3, y4}) and the matching depicted in the middle Fig. 7, we can

visit node A3 and explore input x4. Note that since A3 has not been visited before, we need

perform the φ-function on the node A3 itself.

If instead we start by utilizing the submatrix T({x1, x2, x4}, {y2, y3, y4}) and the matching

depicted in the right Fig. 7, we visit node A2. Again, since A2 has not been visited before,

we need perform the φ-function on the node A2 as well. !

17



x1

x2
S

y1 x3

A1

y2 x4

A2

y3 x5

A3

y4 x6

B1

y5 x7

B2

y6

y7
D

Fig. 8. Path P1 identified during the first iteration is depicted in bold. During the second iteration, path P2
reached node A3.

The next example illustrates how the algorithm runs and performs rewirings across several

layers.

Example 4: Example of rewiring across layers. Consider the network depicted in Fig. 8

and assume that the first iteration identified the path P1 = {(x2, y2), (x3, y6), x5, y9)}. During

the second iteration, path P2 reaches and marks node A3, as depicted in Fig. 8. Assume that

the algorithm then explores the edge (x5, y4) and performs the Lx function. In this case we

have that

T({x4, x5}, {y4}) =
y4

x4
x5



















1

1



















, and Lx5 = {x4}.

We thus visit node A2 = A(x4). Since it is the first time we visit this node, we perform the

φ-function at node A2. That is, at the first layer, where we now have

U = {(x1, y2), (x2, y3)}, Ux = {x1, x2},Uy = {y2, y3}, T(Ux,Uy) =
y2 y3

x1
x2



















1 1

0 1



















we no longer need to use the output y2, and thus can explore inputs x1 and x2. From x2
we cannot proceed. From x1 we can use the edge (x1, y1) and reach node A1 as depicted in

Fig. 9. We do not need perform the φ function at A1 as there is no additional path using this
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Fig. 9. Continuing from Fig. 8. Resulting configuration after performing the Lx function for edge (x5, y4) and
the φ-function at node A2. The potential path P2 now reaches node A1.

node. We proceed to explore the edge (x3, y4) and perform the Lx function for x3.

Given that

T({x3, x5}, {y4}) =
y4

x3
x5



















1

1



















, and Lx5 = {x3},

we proceed to re-examine x5. Because

T({x3, x5}, {y4, y5}) =
y4 y5

x3
x5



















1 0

1 1



















we can now use this edge and proceed to node B2. From node B2 we can use edge (x7, y7)

to reach the destination and complete path P2.

Note that this is the second time during this iteration that we examine edge (x5, y5). The

first time we could not use this edge, due to LD with the used edge (x4, y4). However, after

the rewiring, the used edge in this layer became instead (x3, y4), which is LI from (x5, y5).

!

Example 5: Operations over a non-binary field. Consider the network depicted in Fig. 11,

which is similar to the network in Fig. 2, only now there is a fixed coefficient associated with

each edge over F4. We assume that all these coefficients equal 1, apart from the coefficient
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Fig. 10. Continuing from Fig. 9. Resulting configuration after performing the Lx function for edge (x3, y4), and
continuing P2 from node A3 to node B2 and D.
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Fig. 11. An example of a nonbinary linear deterministic network. Each edge is associated with a coefficient
over F4. All these coefficients equal 1, apart from the coefficient associated with the edge (x4, y7) that equals 2.

associated with the edge (x4, y7) that equals 2. Operations are now over the field F4. For

example, y7 = 2x4 + x3.

Assume that the first iteration identified the path P1 = {(x2, y2), (x3, y6), (x5, y9)}. During

the second iteration, assume that we use at the first layer the edge (x1, y3), and arrive at layer

2. At this layer, Ux = {x3} and Uy = {y6}. To use edge (x4, y7), we examine whether the matrix

T({x3, x4}, {y6, y7}) =
y6 y7

x3
x4



















1 1

1 2
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Fig. 12. A layer-cut and (a) the traditional approach where interference is treated as noise, (b) the approach
where interference is allowed.

is full rank over F4. As indeed it is, we can reach node B2, and from there using edge (x6, y8)

complete P2. Note that in the binary example in Fig. 2, we could only identify one path. !

We conclude with an example that shows the benefits of not treating interference as noise.

Example 6: Benefits from constructive use of interference. The traditional approach adopted

today in wireless networks is that if one or more transmitted signals interfere with a received

signal, they are treated as noise. Such interference is avoided through scheduling. This

approach can lead to significant loss of capacity. Consider a network that has the layer-cut

depicted in Fig. 12. Fig. 12(a) depicts the traditional solution: treating interference as noise

implies that we cannot simultaneously have two broadcast transmissions that interfere, and

thus we can have at most one broadcast transmission. Fig. 12(b) shows that, if interference is

allowed, we can in fact use four LI edges through this cut (the example is easily generalized

to N nodes leading to O(N) benefits). Indeed, the transfer matrix associated with this cut,

T({x1, x2, x3, x4}, {y1, y2, y3, y4}) =

















































1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

















































has rank four. This matrix coincides with the transformation matrix of the highlighted edges.

!

D. Main Result

Our main result is the following theorem.

Theorem 1: The unicast algorithm identifies C LI paths, where C is the min-cut value

between the source-destination pair in a linear deterministic network.

In particular, the number of the paths identified by the algorithm equals the rank of the
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transfer matrix between the inputs in V1 and the outputs in V2, where V1 are the marked and

V2 are the unmarked nodes when the algorithm stops.

Proof: Based on the algorithm, it is clear that when the algorithm stops, the provided

output is a set of linearly independent source-destination paths P.

Let K denote the number of these paths; this implies that the algorithm stops, i.e., fails

to find an additional path, during iteration K + 1. Since K can never exceed the rank of a

source-destination cut, i.e., K ≤ C, it suffices to find a cut whose capacity is not bigger than

the number of paths identified by our algorithm. Let V1 be the set of all marked (visited)

vertices and V2 be the other vertices during iteration K+1, when the algorithm stops. Clearly,

(V1,V2) is a source destination cut.

Consider now the matrix T(V1,V2), where, by a slight abuse of notation, the set of rows of

this matrix correspond to the inputs x in V1 and the set of columns to the outputs y in nodes

in V2 respectively. By appropriate ordering of these inputs and outputs we can bring the

transfer matrix in to a block diagonal form, in which every block corresponds to a layer of

the network. More precisely, if Wi (W ′i ) is the set of visited (unvisited) nodes in the i-th layer

then T(V1,V2) can be regarded as a block diagonal matrix whose i-th block is T(Wi,W ′i+1).

For clarity we have collected all the notation we use in this proof in Table III-D.

We will show in Lemma 1 that for every integer 1 ≤ i ≤ Λ it holds that,

rank(T(Wi,W ′i+1)) ≤

|{e = vv′ ∈ E(G)|v ∈ Wi, v′ ∈ W ′i+1, e ∈ U}| − |{e = vv
′ ∈ E(G)|v ∈ W ′i , v′ ∈ Wi+1, e ∈ U}|

(1)

where recall that we denote by U the set of used edges by paths in P at layer i. That is, if

e ∈ U, then it belongs in some path j, i.e., e ∈ P j (and more generally e belongs in the set

of all used edges in the graph, i.e., e ∈ P). Also, from the structure of the layer network, the

total number of paths equals the number of used edges in each layer, namely, |U | = K. Now

rank(T(V1,V2))

(a)
=

Λ
∑

i=1
rank(T(Wi,W ′i+1))

(b)
≤ |{e = vv′|v is visited but v′ is not visited, e ∈ P}| − |{e = vv′|v is not visited but

v′ is visited, e ∈ P}|
(c)
= K.

(2)
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Equality (a) holds from the fact that the rank of any block diagonal matrix is the sum of

the rank of its blocks. Inequality (b) follows directly from Lemma 1 that will prove in the

following. Finally, equality (c) holds because for each source-destination path Pi the “used”

edges by Pi contribute exactly one in the difference, that is,

|{e = vv′|v is visited but v′ is not visited, e ∈ Pi}|−

− |{e = vv′|v is not visited but v′ is visited, e ∈ Pi}| = 1
(3)

Indeed, given a cut (V1,V2), with S ∈ V1 and D ∈ V2, for Pi to connect S to D, it must cross

at least one time from V1 to V2. If it crosses m ≥ 1 times from V1 to V2, then it also has to

cross m − 1 times from V2 to V1.

Lemma 1: For every integer 1 ≤ i ≤ Λ it holds that,

rank(T(Wi,W ′i+1)) ≤

|{e = vv′ ∈ E(G)|v ∈ Wi, v′ ∈ W ′i+1, e ∈ U}| − |{e = vv
′ ∈ E(G)|v ∈ W ′i , v′ ∈ Wi+1, e ∈ U}|

(4)

Proof: Fix an integer 1 ≤ i ≤ Λ. Recall that we denote by U the set of used channels

in this layer (dropping the index i for simplicity), Ux their inputs and Uy their outputs.

Additionally, let UBx be the set of all the inputs of the nodes in Wi and U′Bx be the set

of all the visited inputs in the current layer which appear in some identified path. That is,

U′Bx = UBx ∩ Ux. Let UBy be the set of all the outputs that are in the i + 1-st layer and are

not visited and U′By be those outputs of UBy which appear on some identified path (i.e., used

outputs). That is, U′By = UBy ∩ Uy. The notation is summarized in Table III-D.

We are interested in calculating the rank of the matrix T(Wi,W ′i+1) = T(UBx,UBy). Note

that we can split the columns of T(UBx,UBy) into two parts, one corresponding to the used

and unmarked outputs, i.e., U′By, and the other corresponding to the unused and unmarked

outputs, UBy−U′By. Similarly, we can split the rows again into two parts, one corresponding to

the used and marked inputs, U′Bx, and the other to the unused and marked inputs, UBx −U′Bx.

Our proof proceeds as follows. Lemmas 3 and 4 prove that all the rows of T(UBx,UBy)

that belong to the second part (in UBx − U′Bx ) are in the span of the rows corresponding to

the inputs in the first part (in U′Bx). As a result,

rankT(UBx,UBy) = rankT(U′Bx,UBy). (5)
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Lemma 5 builds on this result to prove that

rankT(UBx,UBy) = |U′Bx| − (|Uy| − |U′By|). (6)

Showing that (6) holds is the main technical part of this proof. Now we distinguish three

cases for each edge e = (x, y) ∈ U:

1) x ∈ U′Bx and y ! {Uy − U′By}: the edge contributes value “one” only in |U′Bx|,

2) x ! U′Bx and y ∈ {Uy − U′By}: the edge contributes value “one” only in (|Uy| − |U′By|)

3) x ∈ U′Bx and y ∈ {Uy −U′By}: then the edge contributes value “one” both in |U′Bx| and in

(|Uy| − |U′By|) and thus does not affect the quantity |U′Bx| − (|Uy| − |U′By|).

Thus

|U′Bx| − (|Uy| − |U′By|) =

|{e = vv′ ∈ E(G)|v ∈ U′Bx, v′ ∈ U′By, e ∈ U}| − |{e = vv′ ∈ E(G)|v ! U′Bx, v′ ∈ UBy, e ∈ U}|

= |{e = vv′ ∈ E(G)|v ∈ Wi, v′ ∈ W ′i+1, e ∈ U}| − |{e = vv
′ ∈ E(G)|v ∈ W ′i , v′ ∈ Wi+1, e ∈ U}|

and our proof is concluded.

Before we continue, we need to introduce some additional notation.

When iteration K + 1 starts, at the layer we are examining, we have identified from the

previous iterations a set of used edges U, with corresponding set of inputs and outputs Ux

and Uy respectively. As the algorithm attempts to find the K + 1 path, it may perform some

rewirings inside this layer (due to consecutive executions for example of several Lx and φ-

functions). Thus, when input xi gets marked and starts to be explored by the algorithm, this

input might perceive as used a different set of edges than U. We will denote by R(i) the set

of edges that input xi perceives as used (by the K paths), and R(i)x , R(i)y the corresponding sets

of used inputs and outputs. Note that, while all the edges emannating from xi are examined,

for all of them the algorithm will assume the same set of used edges R(i).

Now, from assumption, the iteration K +1 fails to find a path from S to D. Thus, although

several rewirings might be attempted, because iteration K +1 fails, when the algorithm stops

we have reverted to the original set U.

Lemma 2: For all xi ∈ UBx − U′Bx it holds that

rankT({R(i)x , xi}, {R(i)y ,UBy − U′By}) = rankT(R(i)x , {R(i)y ,UBy − U′By})
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In particular, there exists a minimal set of rows Lxi ⊆ R
(i)
x such that

rank(T({Lxi , xi}, {R(i)y ,UBy − U′By})) = rank(T(Lxi , {R(i)y ,UBy − U′By})). (7)

Proof: For this proof only we also use the following notation. Assume that rank(T({R(i), xi}, Z)) =

rank(T(R(i), Z)) for some set of columns Z. Define Lxi (Z) to be the smallest subset of R(i)

that contains xi in its span, i.e.,

rank(T({Lxi (Z), xi}, Z)) = rank(T(Lxi (Z), Z)).

We will use for abbreviation Lxi = Lxi (R
(i)
y ).

Decompose the column indices of the matrix T(R(i)x , {R(i)y ,UBy − U′By}) in the following 4

nonoverlaping parts: [R(i)y , W1, WL, W0]. Here

• R(i)y contains all the used y’s,

• W1 contains all y j such that the edges (xi, y j) exist but cannot be used due to LD,

• WL contains all the remaining yk ∈ WBy that have at least one nonzero value in each column

(i.e., the set of all y columns where at least one edge (xk, yk) with xk ∈ Lxi (WBy) exists, but

xi has zero value), and

• W0 contains all zero columns (this is the set of y’s associated with x’s not in the set

{Lxi (WBy), xi}).

We underline that the set of columns UBy−U′By = {W1, WL, W0} is the set of unmarked

unused outputs at the end of the iteration K + 1, and is the same independently of the set

of outputs in R(i)y . Note that, because R(i)y can contain either outputs that belong in Uy (that

thus are used) and/or outputs obtained through the execution of the φ-function (and thus are

marked), has by definition zero overlap with the set UBy − U′By which contains outputs that

are both unmarked and not used.

To prove the lemma, it is sufficient to prove that the following equation holds.

Lxi = Lxi (R(i)y )
(a)
= Lxi({R(i),W1})

(b)
= Lxi ({R(i),WL})

(c)
= Lxi ({R(i),W0}).

(8)

(a) : To prove (a) we need to show that Lxi(R
(i)
y ) = Lxi (R

(i)
y ,W1), that is,

rank(T({Lxi , xi}, {R(i)y ,W1})) = rank(T(Lxi , {R(i)y ,W1})).
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Since the matrix T(R(i)x ,R(i)y ) is full rank, the row T(xi,R(i)y ) belongs in the span of this

matrix, and thus there exist nonzero coefficients {α j} in Fq such that

T(xi,R(i)y ) =
∑

x j∈Lxi (R
(i)
y )

α jT(x j,R(i)y ). (9)

Note that for each y j ∈ W1, there also exist nonzero coefficients {β j} in Fq such that

rank(T({R(i)x , xi}, {R(i)y , y j}) = rank(T(R(i)x , {R(i)y , y j}) (10)

otherwise the node A(y j) would have been visited and marked and y j ! W1. Thus T(xi, {R(i)y ,W1})

belongs in the span of T(R(i)x , {R(i)y ,W1}), and

T(xi, {R(i)y ,W1}) =
∑

x j∈Lxi (R
(i)
y ,W1)

β jT(x j, {R(i)y ,W1}). (11)

Expurgating from both sides of (11) the columns of W1 results in an equation that still

holds for the expurgated vectors and has only columns corresponding to R(i)y . From LI of all

vectors T(x,R(i)y ), x ∈ R(i)x , none of these expurgated vectors is identically zero. Moreover,

from minimality of Lxi (R
(i)
y ) the expansion (9) is unique. We thus conclude that α j = β j and

Lxi = Lxi(R
(i)
y ) = Lxi(R

(i)
y ,W1).

(b) : We will now argue that Lxi (R
(i)
y ) = Lxi ({R

(i)
y ,WL}). Consider a specific yk ∈ WL that

has a nonzero value in a row xk ∈ Lxi . That is, there exists an edge (xk, yk) with xk ∈ Lxi and

yk ∈ WL.

During the algorithm, we will at some point “release” xk from the set of used edges and

replace it with xi. We will then attempt to explore xk, assuming the set of used edges R(i).

Note that xk might have already been explored before using a different set of used edges

R(k). However, our algorithm will for each xi explore all inputs in the set Lxi using R(i) again,

even though these might have been explored before.

If the matrix T({R(i)x , xi}, {R(i)y , yk}) is full rank, then the node A(yk) will be visited and

yk ! UBy which is a contradiction. Thus the matrix T({R(i)x , xi}, {R(i)y , yk}) is not full rank.

Consider then the set Lxi ({R
(i)
y , yk}). Applying a similar argument as in (a), we have that

T(xi,R(i)y ) =
∑

x j∈Lxi (R
(i)
y )

α jT(xi,R(i)y ) (12)
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and

T(xi, {R(i)y , yk}) =
∑

x j∈Lxk (R
(i)
y ,yk)

β jT(xk, {R(i)y , yk}). (13)

Expurgating the column corresponding to yk we conclude that Lxi (R
(i)
y ∪ {yk}) = Lxi (R

(i)
y ).

Repeating for all yk ∈ WL concludes (b).

(c) : Clearly it also holds that

rank(T({Lxi , xi},R(i)y )) = rank(T(Lxi , {R(i)y ,W0})),

which concludes the proof of this lemma.

Lemma 3: For each xi ∈ UBx −U′Bx, the vector T(xi, {U
(i)
y ,UBy −U′By}) belongs in the span

of the matrix T(U′Bx, {U
(i)
y ,UBy − U′By}), where U

(i)
y denotes the set of unmarked outputs in

the set Uy.

Proof: Note that all unmarked outputs in Uy are included in R(i)y , and thus,U(i)
y ⊆ R

(i)
y ∩Uy.

Order the inputs xi ∈ UBx − U′Bx according to the order with which they are for the first

time visited. That is, x1 is the first unused input that is explored inside layer i and during

iteration K + 1, x2 the second one, etc. We will prove our claim through induction.

Induction Step 1: When x1, the first input, gets visited, clearly R(1) = U, and U(1)
y = Uy since

to perform a rewiring using a new output, we need to have already explored at least one

input. From lemma 2 we know that the vector T(x1, {Uy,UBy − U′By}) belongs in the span of

the matrix T(Ux, {Uy,UBy−U′By}) and in particular from (7) belongs in the span of the matrix

T(Lx1 , {Uy,UBy − U′By}).

It is then sufficient to prove that the inputs in Lx1 belong in marked nodes, i.e., Lx1 ⊆ U′Bx.

But this holds, because of the algorithm steps when we visit x1. In particular, when x1 is

explored, all nodes with x ∈ Lx1 are visited, marked, and explored assuming the set of used

edges U. Thus Lx1 ⊆ U′Bx, and

rank(T({U′Bx, x1}, {Uy,UBy − U′By}) = rank(T(U′Bx, {Uy,UBy − U′By}) (14)

Induction Step k: Assume that for 1 ≤ i ≤ k T(xi, {U(i)
y ,UBy − U′By}) belongs in the span of

the matrix T(U′Bx, {U
(i)
y ,UBy − U′By}).

Induction Step k+1: From lemma 2, we know that the vector T(xk+1, {R(k+1)y ,UBy − U′By})

belongs in the span of the matrix T(R(k+1)x , {R(k+1)y ,UBy − U′By}), and in particular in the span
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of the matrix T(L(k+1)x , {R(k+1)y ,UBy −U′By}), where L
(k+1)
x ⊆ R(k+1)x . Removing the columns that

are not in U(i)
y , we get that the row T(xk+1, {U(i)

y ,UBy − U′By}) is in the span of the rows

T(L(k+1)x , {U(i)
y ,UBy − U′By}). Now, all x ∈ L

(k+1)
x are visited and marked during the algorithm.

For each such x, if x ∈ Ux, then x will appear in U′Bx. If on the other hand x ∈ R
(k+1)
x but

x ! Ux, then x is one of {x1, . . . , xk} since R(k+1)x can only differ from Ux on marked inputs.

From induction, for each xi ∈ {x1, . . . , xk} the row vector T(xi, {U(i)
y ,UBy − U′By}) belongs in

the span of the matrix T(U′Bx, {U
(i)
y ∩ Uy,UBy − U′By}). Moreover, U

(k+1)
y ⊆ U(i)

y , i < k + 1,

since, if some outputs are unmarked during iteration K + 1, they also are unmarked during

the previous iterations. This concludes this proof.

Lemma 4: In the matrix T(UBx,UBy) each row corresponding to unused marked inputs,

i.e., xi ∈ UBx − U′Bx, is in the span of the rows corresponding to inputs in U′Bx, and thus

rankT(UBx,UBy) = rankT(U′Bx,UBy).

Proof: From Lemma 3, for each xi ∈ UBx−U′Bx, we know that the row vector T(xi, {U
(i)
y ,UBy−

U′By}) belongs in the span of the matrix T(U′Bx, {U
(i)
y ,UBy − U′By}). That is,

T(xi, {U(i)
y ,UBy − U′By}) =

∑

x j∈U′Bx

α jT(x j, {U(i)
y ,UBy − U′By}) (15)

for some α j ∈ Fq. Next, note that U′By is a subset of U
(i)
y for each i. This is because, at each

rewiring, U(i)
y can differ from Uy only on marked outputs. But U′By is the set of used and

unmarked outputs, and thus U′By ⊆ U
(i)
y . Removing some columns from both sides of (15)

we get that

T(xi,UBy) = T(xi, {U′By,UBy −U′By}) =
∑

x j∈U′Bx

α jT(x j, {U′By,UBy −U′By}) =
∑

x j∈U′Bx

α jT(x j,UBy)

and the claim follows.

Lemma 5: The rank of the matrix T(UBx,UBy) can be upper bounded as

rankT(U′Bx,UBy) ≤ |U′Bx| − (|Uy| − |U′By|).

Proof: Consider the matrix A " T(U′Bx, {Uy,UBy − U′By}). This matrix has less rows

than T(UBx,UBy) as it does not contain the rows in UBx − U′Bx, and has more columns than

T(UBx,UBy) as it contains the additional columns corresponding to the outputs Uy − U′By.

The idea in this proof is to gradually change matrix A, by sequentially adding rows and

by removing columns, until we create the matrix T(UBx,UBy), taking into account how each
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operation affects the rank.

Order the marked outputs in Uy, i.e., the outputs in Uy−U′By that we need remove, according

to the time they got marked, i.e., y1 is the output that got marked first when node A(y1) is

visited, y2 the one that got marked second, etc. Now, assume that at the time when output

y1 is visited, j1 unused inputs (not in Ux) have already been visited and marked (note that

j1 ≥ 1, if j1 = 0 it is not possible to mark y1). In general, when output yk is visited, we will

have that jk inputs in UBx −U′Bx are marked, with j1 ≤ j2 ≤ j3 . . . ≤ jL and L " |UBx|− |U′Bx|.

Our starting point is that the matrix A has rank |U′Bx|, i.e., all its rows are linearly

independent. Indeed, since the K × K matrix T(Ux,Uy) is full rank and U′Bx ⊆ Ux, the

rows T(U′Bx,Uy) are LI, and as a result so are the rows T(U′Bx, {Uy,UBy − U′By}).

We are going to perform L = |Uy| − |U′By| steps, creating a sequence of matrices {A0 = A,

A1, . . . ,AL} where at step k, k = 1, . . . L, we first add to matrix Ak−1 the rows {x jk−1+1 . . . x jk }

and then we remove the output yk in (Uy − U′By) to create the matrix Ak.

Step 1: Removing output y1.

Let R( j1) be the set of perceived used edges when y1 is marked. Since this is the first time

an output in Uy is marked and the φ function is executed, R( j)y = Uy, for all j ≤ j1.

We know from lemma 3 that the rows T(xi, {Uy,UBy −U′By}), 1 ≤ i ≤ j1 belong in the span

of the matrix T(U′Bx, {Uy,UBy −U′By}). Thus adding these rows to matrix A does not increase

its rank.

From lemma 6, there exist a set of rows S (y1) with S (y1) ⊆ {R( j1)x , x1, . . . , x j1} such that,

removing the column y1 drops the rank of the matrix T(S (y1), {R( j1)y ,UBy −U′By}) from |S (y1)|

to |S (y1)|−1. In other words, the column T(S (y1), y1) is LI from all the columns of the matrix

T(S (y1), {R( j1)y − y1,UBy − U′By}).

Notice that when the node A(y1) gets visited during iteration K + 1, we will execute the

φ-function for output y1. As a result, all the nodes with inputs in S (y1) will be visited and

marked by the algorithm during iteration K+1. Thus we know that S (y1) ⊂ {U′Bx, x1, . . . , x j1},

that is, they form part of the set of marked inputs by the algorithm.

Since the “partial” column T(S (y1), y1) is LI from the columns in the matrix T(S (y1), {Uy−

y1,UBy − U′By}), it follows immediately that the column T({U′Bx, x1, . . . x j1}, y1) is LI from

the columns in the matrix T({U′Bx, x1, . . . x j1}, {R
( j1)
y − y1,UBy − U′By}). Thus if we drop the

column y1 from the matrix T({U′Bx, x1, . . . x j1}, {Uy,UBy − U′By}) the resulting matrix A1 "

T({U′Bx, x1, . . . x j1}, {R
( j1)
y − y1,UBy − U′By}) has rank |U′Bx| − 1.
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Step k: Removing output yk.

We start from the matrix Ak−1 " T({U′Bx, x1, . . . x jk−1}, {R
( j1)
y − y1 − . . . − yk−1,UBy − U′By}) that

has rank |U′Bx| − (k − 1). From lemma 3 the rows T(x j, {Uy − y1 − . . . − yk−1,UBy − U′By}),

jk−1 ≤ j ≤ jk belong in the span of the matrix T(U′Bx, {Uy − y1 − . . . − yk−1,UBy −U′By}). Thus

adding these rows to matrix Ak−1 does not increase its rank.

On the other hand, from lemma 6 there exists a set of LI rows S (yk) ⊆ {R( jk)x , x1, . . . x jk−1}

such that removing the column yk from the matrix T(S (yk), {R( jk)y ,UBy −U′By}) drops the rank

of this matrix from |S (yk)| to |S (yk)| − 1. In other words, the column T(S (yk), yk) is LI from

all the columns of the matrix T(S (yk), {R( jk)y −yk,UBy−U′By}). But R
( jk)
y contains all the outputs

in Uy − y1 − . . . − yk−1, and thus the column T(S (yk), yk) does not belong in the span of the

columns T(S (yk), {Uy − y1 − . . . − yk−1,UBy − U′By}).

Similar to before because the φ-function will be executed at yk, all the inputs in S (yk)

are marked and S (yk) ⊂ {U′Bx, x1, . . . , x jk}. It again follows immediately that the column

T({U′Bx, x1, . . . x jk }, yk) is LI from the columns in the matrix T({U′Bx, x1, . . . x jk }, {R
( j1)
y − y1 −

. . .−yk,UBy−U′By}). Thus if we drop the column yk from the matrix T({U′Bx, x1, . . . x jk }, {Uy−y1−

. . .−yk−1,UBy−U′By}) the resulting matrix Ak " T({U′Bx, x1, . . . x jk }, {R
( j1)
y −y1−. . .−yk,UBy−U′By})

has rank |U′Bx| − k.

Final step.

At the end of this procedure, the matrix AL " T({U′Bx, x1, . . . x jL}, {R
( j1)
y −y1−. . .−yL,UBy−U′By})

has rank |U′Bx| − L and the required column set UBy. Now to create the matrix T(UBx,UBy)

we may need to add to AL some additional rows. From Lemma 4 adding these rows cannot

increase the rank of the matrix as they belong in the span of T(U′Bx,UBy). This completes

our proof.

Lemma 6: Let j denote the number of already marked inputs when output y gets marked,

and let R( j)y denote the preceived set of used outputs from previous iterations at that time.

Then there exists a set of rows S (y) in the set {R( j)x , x1, . . . , x j} such that

rankT(S (y), {R( j)y ,UBy − U′By}) = |S (y)|, while

rankT(S (y), {R( j)y − y,UBy − U′By}) = |S (y)| − 1.
(16)

That is, removing the column y drops the rank of the matrix by one, and makes the rows

S (y) LD.
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Proof: Consider iteration K + 1 and layer i. Assume that the node where an output y in

Uy belongs gets visited for the first time. This can happen in two ways:

• Case 1: The node A(y) gets visited while we perform an Lx-function at layer i + 1 (see

examples 3 and 4). Note that sice we have arrived at layer i + 1, we have identified at

layer i an edge (x′, y′) that is LI from the K edges identified from previous iterations.

• Case 2: The node A(y) gets visited when we find an edge (x′, y′) in layer i with

rankT({R( j)x , x′}, {R( j)y ), y′} = K + 1 (see examples 2 and 3).

The arguments in these two cases are very similar, and we treat them together. In both cases,

at layer i, we start with the (K +1)× (K +1) full rank matrix T({R( j)x , x′}, {R( j)y , y′}). When we

remove the column y clearly the resulting (K + 1) × K matrix has some linearly dependent

rows. As a result, a subset of the rows becomes linearly dependent. Define S (y) to be the set

of inputs in {R( j)x , x′} corresponding to the minimally linearly dependent rows in the matrix

T({R( j)x , x′}, {R( j)y − y, y′}), where by minimally linear dependent we mean that the vectors in

the set are linear dependent but any proper subset of them is a linearly independent set of

vectors. Note that the inputs in S (y) are exactly the inputs that are going to be visited when

the algorithm performs the φ-function for output y, as, removing any of the rows in S (y)

from the matrix T({R( j)x , x′}, {R( j)y − y, y′}) results in a full rank K × K submatrix.

Now, since T({R( j)x , x′}, {R( j)y , y′}) is a full rank matrix then there is no set of rows of this

matrix which are linearly dependent. In particular, the rows in S (y) are linearly independent.

The matrix T(S (y), {R( j)y , y′,UBy − UBy′}) contains the full rank submatrix T(S (y), {R( j)y , y′})

and thus has also rank |S (y)|. That is

rankT({R( j)x , x′}, {R( j)y , y′}) = rankT({R( j)x , x′}, {R( j)y , y′,UBy − UBy′}) = K + 1, and

rankT(S (y), {R( j)y , y′}) = rankT(S (y), {R( j)y , y′,UBy − UBy′}) = |S (y)|.
(17)

Moreover, from construction,

rankT({R( j)x , x′}, {R( j)y − y, y′}) = K, and

rankT(S (y), {R( j)y − y, y′}) = |S (y)| − 1.
(18)

We will next argue that

rankT({R( j)x , x′}, {R( j)y − y, y′,UBy − UBy′}) = K, and

rankT(S (y), {R( j)y − y, y′,UBy − UBy′}) = |S (y)| − 1.
(19)
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that is, adding the columns in UBy − UBy′ does not increase the rank.

Let y0 be a column in UBy−UBy′ , and consider the matrix T({R( j)x , x′}, {R( j)y −y, y′, y0}). If this

square matrix has rank K+1, then the rows T(S (y), {R( j)y −y, y′, y0}) must be LI. Since the rows

T(S (y), {R( j)y − y, y′}) are LD, there exists row x0 ∈ S (y) with a nonzero value in the column

y0. But when we run the φ-function, as we already mentioned, all inputs in S (y) including x0
are visited and explored. Thus if the T({R( j)x , x′}, {R( j)y − y, y′, y0}) were full rank, the output y0
would get marked and not appear in UBy −UBy′ . We conclude that for every y0 in UBy −UBy′ ,

the column T({R( j)x , x′}, y0}) belongs in the span of the columns T({R( j)x , x′}, {R( j)y − y, y′}), and

thus, the matrix T({R( j)x , x′}, {R( j)y − y, y′,UBy − UBy′}) has rank K.

Next note that, the rows in matrix T(S (y), {R( j)y − y, y′}) do not belong in the span of

the LI rows T(R( j)x − S (y), {R( j)y − y, y′}). Let y0 be a column in UBy − UBy′ . Clearly, the

rows T(S (y), {R( j)y − y, y′, y0}) do not belong in the span of the LI rows T(R( j)x − S (y), {R( j)y −

y, y′, y0}). Thus, if the rows T(S (y), {R( j)y −y, y′, y0}) were LI, the matrix T(R( j)x , {R( j)y −y, y′, y0})

would have rank K +1, which is not possible from our previous argument. We conclude that

rankT(S (y), {R( j)y − y, y′,UBy − UBy′}) = |S (y)| − 1. We have thus proved that

rankT(S (y), {R( j)y , y′,UBy − UBy′}) = |S (y)|, while

rankT(S (y), {R( j)y − y, y′,UBy − UBy′}) = |S (y)| − 1.
(20)

Removing the column y′ from the last equation, we also get that

rankT(S (y), {R( j)y − y,UBy − UBy′}) ≤ |S (y)| − 1. (21)

We now distiguish two cases:

1) S (y) ⊆ R( j)x , i.e., the set of rows S (y) does not contain x′. Then

rankT(S (y), {R( j)y ,UBy − UBy′}) = |S (y)| − 1, (22)

since these rows are LI, and (20)-(22) imply (16).

2) x′ ∈ S ′(y), we have two subscases:

a) if rankT(S (y), {R( j)y ,UBy − UBy′}) = |S (y)|, this together with (21) implies (16).

b) if rankT(S (y), {R( j)y ,UBy−UBy′}) = |S (y)|−1, then given (20) the column y′ does not

belong in the span of the columns {R( j)y ,UBy−UBy′}. Similarly, again from (20), the

column y does not belong in the span of the columns {R( j)y − y, y′,UBy −UBy′}. We

conclude that rankT(S (y), {R( j)y −y,UBy−UBy′}) = |S (y)|−2, and thus rankT(S (y)−
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x′, {R( j)y − y,UBy − UBy′}) ≤ |S (y)| − 2. But rankT(S (y) − x′, {R( j)y ,UBy − UBy′}) =

|S (y)| − 1. For the set S ′(y) = S (y) − x′, the claim in (16) follows.

E. Algorithm Complexity

Proposition 4: The complexity of the algorithm in Table I is O(C5(Ototal +∆I Itotal)), where

C is the capacity of the network, Itotal equal the total number of inputs and Ototal is the total

number of outputs in the network.

Proof: At iteration K, the complexity of the function “FindL(T)” is O(K3), “Match(T)”

is O(K3), to find which inputs to visit with the φ-function is O(K3), and the rank calculations

are O(K3). When we visit each input we will perform at most ∆I rank calculations, where

∆I is the maximum outdegree of an input. This results in complexity O(∆IK3). Moreover,

we will perform the “FindL” function at most once for every input. Performing the “FindL”

function at the K iteration might result in at most K inputs to be revisited. For each of

the revisited inputs, the associated complexity will be O(∆IK3). Thus, the total complexity

when visiting each input is O(∆IK4). These operations will be repeated at most Itotal times.

An upper bound for Itotal is |E|, where E is the set of all edges in the network, but this

bound might be very loose, if the inputs have small outdegree. To conclude, examining the

inputs results in complexity of O(∆IK4Itotal). When each output is marked, we will perform

exactly once the φ-function. Thus, this function will be performed at most once for every

output (if the output gets marked during the iteration), and contributes complexity O(K4Ototal),

where (again, a loose upper bound for Ototal is |E|). After C iterations the total complexity

is O(C5(Ototal + ∆I Itotal)).

IV. C

In this paper we develop a polynomial time algorithm for unicast connections that allow

to achieve the min-cut capacity in networks of linear deterministic channels over a finite

field Fq. Such networks have recently found applicability as approximate models for wireless

Gaussian networks, by modeling broadcasting and interference through linear operations over

a finite field. Our scheme allows to identify the min-cut value in polynomial time, and to

achieve this value using very simple one symbol mapping operations at the intermediate

network nodes.
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Algorithm III.1:    EA  Ex(.)

{(T, F)} = EA(G,P,M, A)
if M(A) == T return (F)
else


















M(A) = T
U ← {used edges in L(A)-layer cut}, Ux ← {xi ∈ U}, Uy ← {y j ∈ U}, X← {xi ∈ A}
∀xi ∈ X, if xi ! Ux and M(xi) == F and Ex(G, P,M, xi) == T return (T)
return (F)

{(T, F)} = Ex(G,P,M, xi)
if M(xi) == T return (F)
else


























































































































































































































































































































M(xi) = T
∀y j : (xi, y j) ∈ E

if y j ∈ Uy















































































































if ML(xi) == F% (we perform this function only once per input)






































































































ML(xi) = T
Lx = FindL(T({Ux, xi},Uy))
∀ xk ∈ Lx






































































Match(T({Lx − xk, xi}, Ly))
Update(P)
if M(A(xk)) == F
{

∀ yk ∈ A(xk) perform φ-function(yk) (see description following)
if EA(G,P,M, A(xk)) == T return (T)

else
{

if M(xk) == T
{

Set M(xk) = F
if Ex(G,P,M, xk) == T return (T)

Restore(P)

if y j ! Uy



































































































































































if rank(T({Ux, xi}, {Uy, y j})) = 1 + rank(T(Ux,Uy))






















































































































































if A(y j) == Destination return (T)
if M(A(y j)) == F


































































































































∀yk ∈ Uy with A(yk) == A(y j) and (xk, yk) ∈ U

φ − function(yk) :















































































































∀xk ∈ Ux
if T({Ux − xk, xi}, {Uy − yk, y j})) is full rank
Uy = {Uy − yk, y j},Ux = {Ux − xk, xi}
Update(P)
if M(A(xk)) == F
{

∀ y$ ∈ A(xk) perform φ-function(y$)
if EA(G,P,M, A(xk)) == T return (T)
else

if M(xk) == T
{

Set M(xk) = F
if Ex(G,P,M, xk) == T return (T)
Restore(P)

if EA(G,P,M, A(y j)) = T return (T)
return (F)

TABLE I
T  EA(·)  Ex(·)           . T 
“M(T)”            T     1.
T  “FL(T)”         LD      T   
 2. T  “U(P)”          ( 

        ,    φ-),  “R(P)”  P 
     . T   M(·)  T    ( )   ,
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Fq finite field of operation
S the source node
D the destination node
Λ number of network layers
M maximum number of nodes per layer
A(x) node where input x belongs
A(y) node where output y belongs
T(V,W) transformation matrix whose rows are labeled with the elements of V

and the columns with the elements of W
|U | number of identified LI paths in previous iterations
U set of used channels between layers i and i + 1 (we drop the index i for simplicity)
Ux set of used inputs at layer i corresponding to the channels in U
Uy set of used outputs at layer i + 1 corresponding to the channels in U
R(i) the set of edges that input xi perceives as being used from previous iterations
R(i)x set of inputs that input xi perceives as being used from previous iterations
R(i)y set of outputs that input xi perceives as being used from previous iterations
Lxi (Z) the smallest subset of R(i) in the matrix T(R(i), Z)

that contains xi in its span
Wi set of visited nodes in the i layer
W ′i set of unvisited nodes in the i-th layer
UBx set of all the inputs of the nodes in Wx
U′Bx set of all the visited inputs in the layer i which are used, i.e. UBx′ = UBx ∩ Ux.
UBy set of all the outputs in W ′i+1
U′By set of all the outputs of UBy which are used, i.e., UBy′ = UBy ∩ Uy.
Itotal total number of inputs in the network.
Ototal total number of outputs in the network.

TABLE II
S  N
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