
Function Computation over Linear Channels
Lorenzo Keller∗ Nikhil Karamchandani† Christina Fragouli∗

∗School of Computer and Communication Sciences †Dept. of Electrical and Computer Engineering
EPFL, Switzerland UCSD, USA

{Email : lorenzo.keller@epfl.ch, nikhil@ucsd.edu, christina.fragouli@epfl.ch}

Abstract—We consider multiple non-colocated sources commu-
nicating over a network to a common sink. We assume that the
network operation is fixed, and its end result is to convey a fixed
linear deterministic transformation of the source data to the sink.
This linear transformation is known both at the sources and at the
sink. We are interested in the problem of function computation
over such networks. We design communication protocols that can
perform computation without modifying the network operation,
by appropriately selecting the codebook that the sources employ
to map their measurements to the data they send over the
network.

I. INTRODUCTION

We consider multiple non-colocated sources communicating
over a network to a common sink. We assume that the network
operation is fixed, and its end result is to convey a fixed linear
deterministic transformation of the source data to the sink.
This linear transformation is known in advance both at the
sources and at the sink. Examples of networks that fall in this
category are sensor protocols that convey the average value of
the sensor measurements at the sink by running a distributed
consensus algorithm, see for example [1]. The sink effectively
collects the sum of the values that the sensor nodes insert in
the network. Another category is networks that perform fixed
network coding operations. In this case, the sink observes the
vector of the source data multiplied by the transfer matrix of
the network.

We are interested in the problem of function computa-
tion over such networks. Our protocols perform computation
without modifying the network operation, by appropriately
selecting the codebook that the sources employ to map their
measurements to the data they send over the network.

This problem is motivated from practical considerations,
since it allows to decouple the function computation from the
intermediate node operations, leading to systems which are
easier to debug and more stable [2]. For example, we can
imagine a sensor network, where for the majority of the time
the sink collects the average value of the source measurements,
but in some particular circumstances is interested in collecting
all the node values, or in learning the maximum value. It can
achieve this without altering all the sensor node operations, by
simply informing the source nodes to use an appropriate code-
book. In other words, the routing protocol remains oblivious
to the particular function that is being computed.

Function computation over networks is a problem that has
attracted significant interest in the sensor network community,
both from a systems [3],[4] and a theoretical viewpoint [5],[6].
This problem has also been examined in the context of network

coding: for example in [7],[8] the authors examine the problem
of designing network codes that allow function computation at
designated sinks. However, in all these cases, the designed pro-
tocols require that the operation of the intermediate network
nodes are designed with the specific function computation task
in mind. In contrast, in our work, the function computation
is transparent to the intermediate network node operations,
and is achieved by only selecting appropriate encodings at
the sources. Function computation has also been examined
using information theoretical tools, see for example [9],[10]
and references therein. In our work, we are interested in com-
binatorial designs and bounds. In our parallel work in [11] we
study function computation when the network transformation
is unknown, and potentially changes over time. In this paper,
we consider the case where this transformation is fixed and
known to the sources and the sink.

We formulate several variations of this problem and intro-
duce our notation in Section II. In the successive two sections,
we study how to design codes when the network delivers the
sum of the symbols transmitted by the sources. We focus on
the sum channel, as calculating the average is a very popular
sensor application, well studied and deployed. In Section III,
we look at one timeslot computation, where we are allowed
to send only one symbol from each source. In Section IV, we
look at computation over multiple timeslots, where we use the
network multiple times to convey the required information to
the sink. In Section V, we show how to generalize the results
found in the previous sections to a broader class of networks.
Finally, we conclude the paper in Section VI.

II. PROBLEM FORMULATION AND NOTATION

Our network consists of a set of N sources σ1, . . . ,σN ,
an arbitrary number of relay nodes, and a sink. We assume a
synchronized operation of the network, where time is divided
into timeslots and rounds. Each round contains T timeslots.

At the beginning of each round, every source σi observes
a value ui ∈ A, where A is the source alphabet. Let u be the
vector (u1, . . . , uN) and K = |A| be the cardinality of the
source alphabet, then u can take KN values. At each timeslot
t, every source σi sends one symbol xi[t] ∈ Fq, where q is a
prime number. Let x[t] = (x1[t] . . . xN [t]) ∈ FN

q be the N ×1
vector containing the symbols injected by the N sources at
timeslot t. At each timeslot t, the sink receives an M × 1
output vector

y[t] = A · x[t] (1)

978-1-4244-7190-4/10/$26.00 ©2010 IEEE

where the channel matrix A is an M×N matrix over Fq
1. This

matrix is fixed and known in advance to both the sources and
the sink. Let (A)i,j denote the entry in the i-th row and the
j-th column of the matrix A. In every round, the sink collects
T output vectors, and is interested in computing a function
f : AN −→ B of the source observations, where B is a finite
alphabet. To compute this function, the sink uses the T output
vectors it received during the round.

In this work we assume that the channel matrix A has
been designed for a specific purpose and is pre-specified, e.g.
compute sum of values in the network. Some common channel
matrices A are as follows:

• A = (1 . . . 1) : the sink receives the (mod q) sum of the
input symbols. This channel matrix represents the case
where the sink calculates the average value of the source
measurements. We will call this the sum channel.

• (A)i,j ∈ {0, 1} for every i, j : the sink receives the sum of
multiple subsets of sources. This type of channel matrix
represents the case in which the sink collects averages of
(possibly non-disjoint) subsets of the sources.

• Matrices such that for every 1 ! j ! N , |{i|(A)i,j %=
0}| = 1, in other words matrices that have exactly one
non-zero entry per column. In this case the sink receives
the weighted sum of disjoint subset of the sources. This
type of channel matrix represents the case in which the
sources are partitioned in M disjoint sets and one sum is
computed for every partition.

Note that although these matrices are not likely to be
observed if A is drawn uniformly from all possible matrices,
they are very popular in sensor network applications.

Given a network, an associated channel matrix A as in (1),
and a specific function f of the source observations, our goal
is to design a communication protocol that allows the sink to
compute the function value at each round. Such a protocol
consists of two parts. The first part is an encoding function
that, given a set of observations u, determines the symbol xi[t]
each source σi transmits during timeslot t of that round. The
second part consists of a decoding function that maps the T
channel output vectors collected at the sink to the value f(u).

We distinguish between interactive and non-interactive com-
munication protocols. In non-interactive protocols, the symbol
that any source σi transmits in time slot t0 depends only
upon its own observation ui during that round; in interactive
protocols, what source σi transmits may additionally depend
on all the information it has received from the network until
timeslot t0.

It is easy to see that we can compute all functions provided
that either the field size q or the number of timeslots T is
sufficiently large. However, for a given channel matrix A and
number of timeslots T , it might not be possible to compute a
specific function f . Example 1 provides such a situation. In
particular, whether a specific function can be computed or not

1We underline that for simplicity we assume our network operates over a
field Fq , where q is a prime. However, for large enough q, such operations
can serve as approximations of real operations.

depends upon the field of operation Fq , the channel matrix A,
and the number of timeslots T .

Example 1 Assume that N = 2, A = {0, 1}, q = 2, T = 1
and A = (1 . . . 1). Let xj

i denote the symbol sent by the
source σi when ui = j ∈ {0, 1}. Consider the function
f(u1, u2) = u1 AND u2 that takes the value 1 if and only
if u1 = u2 = 1. Clearly, each source needs to send a different
symbol corresponding to observed values 0 and 1, i.e.,

x0
1 %= x1

1 and x0
2 %= x1

2. (2)

Moreover, we need that (x0
1 +x0

2) mod 2 %= (x1
1 +x1

2) mod 2,
and hence either x0

1 %= x0
2 or x1

1 %= x1
2 must hold, which

contradicts (2). The same argument extends to any arbitrary
number of sources N .

In this paper, we will study when it is possible2 to compute
specific functions f in three cases: (i) when T = 1, which
we call one timeslot computation, (ii) when T > 1 and we
have non-interactive communication and (iii) when T > 1 and
we have interactive communication. In the last two cases, we
will be interested in the minimum T that allows the function
computation.

In the next two sections, we examine whether specific
functions can be calculated over the sum channel. Then in
Section V, we will show how to translate achievability results
for the sum channel to a more general set of channels.

III. ONE TIMESLOT (T = 1) COMPUTATION

As we saw in Example 1, for a given channel A and field
size q, it may not be possible to calculate all functions f . In
this section, we first derive a simple necessary condition on
whether a function is computable or not on a given channel A.
We then design encoding and decoding schemes for specific
functions over the sum channel, i.e., when A is the all ones
vector.

A. A necessary condition

Proposition 1 provides a necessary condition that formalizes
the following simple observation. Rank properties of the
matrix A and the field size q limit the number of possible
output values that the sink observes in each timeslot. If for
a given function f , the number of outputs of the network is
smaller than the possible output values for the function, then
f cannot be computed in one timeslot.

Proposition 1 Let S ⊆ {1, 2, . . . , N} be a subset of the
source indices, and denote these indices as S = {i1, . . . , i|S|}.
Let ûi1 , . . . , ûi|S| ∈ A be a set of values sent by the sources
in S. Let A be a channel matrix over Fq and let Ā the matrix
obtained by deleting columns i1, . . . , i|S| from A. A function
f can be computed only if

|{f(u)|u ∈ AN : ui = ûi ∀ i ∈ S}| ! qrank(Ā)

2In this paper we study the feasibility of function computation for any pre-
specified field size q. An alternate approach would be to minimize some cost
metric by optimizing q, but this is not the objective of this work.

i.e., the number of possible outputs of the function when
fixing the values of σi1 , . . . ,σi|S| is smaller than the possible
different outputs of the channel when fixing xi1 , . . . , xi|S| .

Proof: Let i|S|+1, . . . , iN be the indices of the sources
not in S. Let Ã be the matrix obtained by keeping only the
columns i1, . . . , i|S| of A. Let x̃ = (xi1 , . . . , xi|S|) and x̄ =
(xi|S|+1 , . . . , xiN). The network output can be rewritten as

y = Ā · x̄ + Ã · x̃.

Notice that Ã · x̃ is fixed. Since the column space of Ā has
dimension rank(Ā) it contains qrank(Ā) vectors. Since y is a
possible output if and only if y− Ã · x̃ is in the column space
of Ā, we have exactly qrank(Ā) possible outputs. Clearly the
number of possible network outputs has to be bigger than
the number of possible outputs of the functions when fixing
ui1 , . . . , ui|S| .

Corollary 1 Let A be a channel matrix over Fq . A function
f can be computed only if qrank(A) " | range(f)|.

In several of the functions we will examine in the following,
the conditions in Proposition 1 are also sufficient. However,
Example 1 provides a function where this is not the case.

B. m-state function

Each source observes a value in the set A = {0, 1, . . . ,K−
1}, and maps3 it to one of m values, that we call “states”.
Let S be the set of possible states. The objective of the sink
is to learn the state of each source. That is, evaluating the
function f results in one of the mN possible outputs. The
m-state captures several interesting functions as special cases,
that include
• The membership function: A membership criterion is spec-
ified, for example, whether the observed value belongs to
a specific subset of the alphabet A. Each node determines
whether it is a member, and sends a message from the set
{member,not member}. In this case m = 2.
• The identity function: The sink wants to learn the message
ui that each source σi observes. In this case m = K.

The range of the m-state function is mN and therefore from
Corollary 1, for A = (1 . . . 1) it is necessary that q " mN .
This lower bound on q is also sufficient, and is achieved by
the following scheme.

Encoding xi = mi−1 · C(ui)
Decoding f(u) =

(
C−1

(⌊ y
m0

⌋
mod m

)
, . . . ,

C−1
(⌊ y

mN−1

⌋
mod m

))
.

where C : S → {0, . . . , m− 1} ∈ Fq is a one-to-one mapping
between the state values and elements in Fq .

To understand why this scheme works, first note that if we
express the symbol sent by every source σi in base m, it is a
number of the form C(ui) 0 . . . 0, i.e., a digit equal to value
C(ui) (which is less than m) followed by i−1 zeros. Now if we
compute the sum of the input symbols in base m, note that no

3This map can potentially be different for every source node.

carry ever occurs and that only one input symbol is influencing
the value of the i-th digit of the sum. This means that by
expressing the network output in base m, we can reconstruct
all the C(ui) that were sent by the sources. By inverting the
mapping C, we can therefore reconstruct the states in which
the sources are.

Note that, for m = K, we get an upper bound on the
required field size to calculate an arbitrary function f , since
we can first calculate the identity function at the sink and then,
having collected all the measurements, the function value.

C. Threshold function

Assume that A = {0, 1}, the threshold function is defined
as

f(u) =
{

1 if
∑N

i=1 ui " l
0 otherwise.

Note that the N -input OR and AND binary operations as well
as the majority function are special cases of the threshold
function. A scheme to compute the threshold function when
q > N is as follows:

Encoding xi = ui

Decoding f(u) = 1{y!l}.

We now show that any scheme to compute the threshold func-
tion over the (1 . . . 1) channel requires q > N . Let xj

i ∈ Fq be
the symbol sent by source σi when it observes j ∈ A. Then
for any collection of distinct indices I = {i1, i2, . . . , ik} (with
each ij ∈ {1, 2, . . . , N}), we have

∑

i∈I

x0
i %=

∑

i∈I

x1
i . (3)

To see why this is true, consider two distinct input vectors
u, v ∈ AN . Vector u has 1 as input for all source indices in I .
Additionally, it has 1 as input for a collection of max{0, l−|I|}
other sources indices, say J , each of which is not in I . All the
other inputs are set to 0. On the other hand, v has 1 as input
for only the indices in J and all the other inputs are set to 0.
Note that the number of inputs in J is always less than l. As
a result we have 1 = f(u) %= f(v) = 0 and hence we require

∑

i∈I

x1
i +

∑

i∈J

x1
i +

∑

i#∈I∪J

x0
i %=

∑

i∈I

x0
i +

∑

i∈J

x1
i +

∑

i#∈I∪J

x0
i

=⇒
∑

i∈I

x1
i %=

∑

i∈I

x0
i .

From (3), the sink should receive a distinct symbol (in Fq)
from the network for each of the following input vectors:

(0 0 . . . 0), (0 0 . . . 1), (0 0 . . . 1 1), . . . , (1 1 . . . 1).

Since the field size is q, this implies that q > N .

D. Histogram function

Let A = {0, 1, . . . ,K − 1}. The histogram function f(u) :
AN → {0, . . . , N}K is defined as follows:

f(u) = v where (v)j =
N∑

i=1

1{ui=j}.

The histogram function is very useful, since it can be used
to compute all symmetric functions of the node observations.
For instance, all statistical functions fall in this category, such
as the median, the mode and the maximum function.

When q > N(N + 1)K−2, this function can be computed
with the following scheme:

Encoding xi =
{

(N + 1)ui if ui ! K − 2
0 otherwise

Decoding f(u) =
(⌊ y

K0

⌋
mod(N + 1), . . . ,

⌊ y
KK−2

⌋
mod(N + 1), δ

)
,

where δ = N −
∑K−2

i=0

⌊ y
Ki

⌋
mod(N + 1).

The above scheme is similar to the scheme used for the identity
function. In this case, every node sends a number of the form
10 . . . 0 in base N+1. If we compute the output of the network
in base N + 1, we will never incur any carry bits, since for
each digit the number of 1’s summed is at most N . This
means that if we represent the output of the network in base
N + 1, the i-th digit is the number of sources that sent the
message 10 . . . 0, a 1 followed by i − 1 zeros. This gives the
number of sources which observed the value i and thus the
i-th coordinate of f(u). This method can be used to compute
the first K − 1 coordinates of f(u). The last coordinate can
be easily computed by noting that the sum of all coordinates
of f(u) is always N .

Using the total number of possible histograms [12] and
Corollary 1, for computing the histogram function we need

q "
(

K + N − 1
K − 1

)
.

When K is fixed and N grows, the above bound implies
that q = Ω(N(N + 1)K−2), which shows that the proposed
scheme is within a constant factor from the minimum required
q.

E. Maximum function

In this section, we are going to study the maximum function
which can be derived from the histogram. We will show that
despite the fact that this function has a much smaller range
than the histogram, computing the maximum over the sum
channel requires q to be as big (up to a constant factor) as that
for the histogram. Let A = {0, . . . , K − 1}. The maximum
function is defined as

f(u) = max
i

ui.

A scheme to compute the maximum function when q "
NK−N

N−1 is as follows:

Encoding xi = c(ui) =
∑ui−1

j=0 N j = Nui−1
N−1

Decoding f(u) =
∑K

i=1 i · 1{c(k)"y"c(k+1).

To understand why the above scheme works, first observe
that

c(i + 1) − N · c(i) =
(i+1)−1∑

j=0

N j − N ·
i−1∑

j=0

N j = 1.

This implies that N · c(i) ! c(i + 1). Let umax = max
i

ui and

S = {i|ui = umax}. Then

y =
N∑

i=1

c(ui) = |S| · c(umax) +
∑

i#∈S

c(ui).

This implies that

y ! |S| · c(umax) + (N − |S|) · c(umax)
! N · c(umax) ! c(umax + 1).

Further,

y " |S| · c(umax) " c(umax).

We will now prove a lower bound on the field size q required
to compute the maximum function over the sum channel. Let
xj

i be the symbol sent by source σi when it observes j ∈ A.
Let S ⊆ AN be the collection of all vectors w such that

wi " wi+1 for every i ∈ {1, 2, . . . , N − 1}. (4)

Let u, v ∈ S be two distinct vectors. Consider the maximal
set of indices I ⊆ {1, 2, . . . , N} such that for each i ∈ I ,
we have ui = vi. Let û (v̂ respectively) be the input vector
generated from u (v respectively) by setting all components
in I to 0 and retaining all others.

From (4), there exists j " 1 such that

ui = vi for every i ∈ {1, 2, . . ., j − 1}, uj %=vj ,

f (û) = uj , f (v̂) = vj =⇒ f (û) %= f (v̂) .

Thus the sink should receive different symbols for the input
vectors û, v̂, and hence we have

∑

i∈I

x0
i +

∑

j #∈I

x
uj

j %=
∑

i∈I

x0
i +

∑

j #∈I

x
vj

j =⇒
∑

j #∈I

x
uj

j %=
∑

j #∈I

x
vj

j

=⇒
∑

i∈I

xui
i +

∑

j #∈I

x
uj

j %=
∑

i∈I

xvi
i +

∑

j #∈I

x
vj

j

where the last inequality follows since for each i ∈ I , ui = vi.
Since u, v ∈ S are arbitrary, this implies that the sink should
receive a distinct symbol for every input vector in S.

The number of vectors in S is equal to the number of binary
sequences of length N + K − 1 with N zeroes and the rest
all one. Thus we have |S| =

(N+K−1
K−1

)
. Since the sink should

receive a different symbol for every distinct input vector in
S and the size of the field is q, to successfully compute the
maximum function we need q "

(N+K−1
K−1

)
which is same as

the lower bound for the histogram function.

IV. COMPUTATION OVER MULTIPLE TIMESLOTS

In the previous sections, we showed that some functions
cannot be implemented with only one channel use if the field
size q is not large enough. In this section, we will allow
multiple uses of the network.

A. Non interactive computation

Here, we analyze codes that do not require any feedback
from the sink to the sources. Our main observation is that
computing a function using T timeslots in a network with
underlying field Fq is equivalent to computing it in just
one timeslot over a network that operates with symbols of
an extension field FqT . In the previous section, we devised
schemes and proved bounds for computation over networks
operating over a prime field. To study computation over
multiple timeslots, we need to extend those results to general
finite fields. We illustrate this via the example of threshold
functions.

Example 2 Let q = pT for some prime p and let f be the
threshold function. Then equation (3) in Section III-C provides
a necessary condition for computation and implies that if we
create a vector v ∈ FN

q such that the i-th component vi =
x0

i − x1
i , then we have that for any I ⊆ {1, 2, . . . , N},

∑

i∈I

vi %= 0 (5)

where the sum is over the field Fq . Since q = pT , each element
vi can be viewed as a vector of length T over Fp. Let vi =
(vi1, vi2, . . . , viT). Given characteristic p, we want to find the
minimum T such that (5) holds. It can be easily checked that
T =)N/(p − 1)* suffices for any p. It remains to find if
this is optimal. For any p, consider the following system of T
polynomial equations in N variables, with each polynomial in
Fp [x1, x2, . . . , xN]:

N∑

i=1

vij · xp−1
i = 0 ∀ j ∈ {1, ..., T}.

It can be verified that if there exists any non-trivial solution to
the above system of polynomial equations, then it will imply
that the vectors v1, v2, . . . , vN violate (5). From the Chevalley-
Warning theorem [13, Theorem 3, Pg. 5], there exists a non-
trivial solution if T < N/(p − 1). Thus, the minimum T
such that the threshold target function f can be computed
in a network operating over the finite field of size q = pT is
equal to)N/(p − 1)*.

We now show that by appropriately using the sum channel
multiple times, we can create (at least) two different types
of equivalent channels, that are interesting (from a function
computation viewpoint) in their own merit.

1) Linear map channel: Let A = Fq , and let A be the sum
channel. We can implement the channel y = B ·u, where B is
any desired MB ×N matrix, and y is the vector that the sink
collects after T = MB timeslots, with the following scheme:

Encoding xi[t] = (B)t,i · ui

Decoding f(u) = (y[1] . . . y[MB]).

For example, if we select B to be any N×N invertible matrix
(i.e., T = N), we can calculate the identity function over Fq .
Moreover, if we have any information in advance about the
sensor measurement structure, we can select an appropriate

matrix B that allows to reconstruct the measurements u,
potentially using T + N . This is the case in compressed
sensing: if we know for example that the vector u is sparse, we
can select a “good” matrix B, so that we can efficiently recover
u [14]. Thus our formulation provides a novel application of
compressed sensing methods.

2) Sum vector channel: Let A = FT
q . Using the sum chan-

nel T times allows to also compute y = b1 ·u1 + . . .+bN ·uN

where bi ∈ Fq, an arbitrary linear combinations of T × 1
vectors produced at the sources.

To achieve this result, we use the following scheme:

Encoding xi[t] = bi · (ui)t

Decoding f(u) = (y[1] . . . y[T]).

Since the sink receives a linear combination of the vectors
inserted by the sources, we can use this as a building block
to translate the coding schemes that we developed in [11] to
this framework.

B. Interactive computation

In this section, we argue that using interactive communica-
tion may allow us to construct simpler codes. We will assume
that the network output is not presented only to the sink,
instead it is received by all sources as well. This assumption is
realistic in many cases; for example, protocols used to compute
averages and sums rely on flooding and the objective of their
operation is to disseminate the sum (or the average) to all
network nodes, see for example [1].

We will illustrate that interaction can lead to simpler pro-
tocols, by studying as an example the maximum function. We
note that function computation under this model is very close
to the work in [15], and thus the communication protocols and
bounds developed there can be translated to our framework.

1) Maximum function: To illustrate the possibilities in code
design when using feedback, we study the computation of the
maximum function (as defined in section III-E). We show that
if the source alphabet is A = {0, 1, . . . ,K − 1} and q >
(K − 1) ·N , the maximum function can be computed in K +
1 timeslots. Further, if the difference between the maximum
(umax) and the minimum (umin) component of the input vector
is at most uδ , then the maximum function can be computed
in uδ + 2 timeslots.

Let d[t] =)y[t − 1]/N*, the scheme is as follows:

Encoding xi[t] =
{

ui if t = 1 or ui > d[t]
d[t] otherwise

Decoding f(u) = y[tf]/N such that y[tf] = y[tf + 1].

We now analyze the above scheme. Let S[t] = {i|ui > d[t]}
be the set of sources that transmit their observed value as
codeword at time t. Then we have

d[t + 1] − d[t] =

⌈∑
i∈S[t] ui + (N − |S[t]|) · d[t]

N

⌉
− d[t]

=

1
N

∑

i∈S[t]

(ui − d[t])

.

If d[t] < umax, then there is at least one source in S[t]
and the value of this node is bigger than d[t]. Thus, d[t +
1] " d[t] + 1. On the other hand, when d[t] = umax the
set S[t] is empty and therefore d[t + 1] = d[t]. This implies
that d[t] will keep increasing in each timeslot until it equals
umax. Since d[t] " umin for all t, the scheme requires at most
umax −umin +2 timeslots to compute the maximum function.
Thus, the convergence time is at most K and hence does not
grow as the number of sources N increases.

V. COMPUTATION OVER LINEAR CHANNEL MATRICES

In the previous sections we focused on schemes for the sum
channel matrix A = (1 . . . 1). Here we introduce an ordering
of linear channels, such that if a function can be computed over
a specific channel, it can also be computed over all channels
with a higher ordering.

Consider a channel matrix A and observe that each source
σi can multiply the symbol it sends at each timeslot by a
constant. Moreover, the sink can multiply the vector it receives
at each timeslot by an arbitrary matrix. These two observations
lead to the following definition:

Definition 1 If given two channel matrices A and A′, we can
find matrices B and D such that A = B · A′ · D where D =
diag(d1, . . . , dN), then we write A # A′.

Proposition 2 If a function f is computable over a channel
A, then it is computable over any A′ such that A # A′.

Proof: Since A # A′, we know that there exists a matrix
B and a matrix D = diag(d1, . . . , dN) such that A = B·A′·D.
Each source maps the observed values to x̃i according to the
code used to compute f over channel A and sends xi = di ·x̃i.
Thus the vector sent over the channel is x = D · x̃ where
x̃ = (x̃1, . . . , x̃N). The sink receives the vector y = A′ ·D · x̃
and creates the vector ỹ = B ·y = B ·A′ ·D · x̃ = A · x̃. Since
x̃ is a codeword that allows to reconstruct the value of f over
the channel A, the sink can correctly compute the function.

The following proposition identifies channel matrices for
which we can use the codes for the channel (1 . . . 1).

Proposition 3 Let A an M × N channel matrix such that
there exists an M ×1 vector b over FM

q that is not orthogonal
to each column of A, then [1 . . . 1] # A.

Proof: Since b is not orthogonal to any column of A each
entry of b& · A is non-zero. This implies that

b& · A · diag((b& · A1)−1, . . . , (b& · AN)−1) = [1 . . . 1]

where Ai is the i-th column of A.
Using the above propositions, we now provide some exam-

ple channels where we can use codes for the (1 . . . 1) channel.

Example 3 Let q > 2M . Consider any matrix A over Fq such
that (A)ij ∈ {0, 1} and each column contains at least one
non-zero entry. Then we have [1 . . . 1] # A since the vector
[2021 . . . 2M−1] is not orthogonal to every column of A.

Example 4 Any matrix A over Fq with exactly one non-zero
entry per column is [11] # A. Indeed the vector [1 . . . 1]
is not orthogonal to all columns of A.

Example 5 For any 1 × N matrix A with non zero entries,
we have [1 . . . 1] # A. Indeed the vector [1] is not orthogonal
to each column of A.

VI. CONCLUSION

In this paper, we formulated the problem of function compu-
tation over linear deterministic channels. Such channels arise
for example, in networks employing fixed network coding
operations, or in networks that perform specific in-network
processing to compute a linear transformation of the source
measurements, such as the average value. We proposed several
models for this problem, calculated upper and lower bounds
on the required field size q and the number of channel uses T ,
and derived optimal code designs for a number of functions.

REFERENCES

[1] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” in Proceedings of the IEEE Symposium on
Foundations of Computer Science (FOCS), Oct. 2003, pp. 482–491.

[2] J. Paek, B. Greenstein, O. Gnawali, K.-Y. Jang, A. Joki, M. Vieira,
J. Hicks, D. Estrin, R. Govindan, and E. Kohler, “The tenet architecture
for tiered sensor networks,” To Appear in the ACM Transactions on
Sensor Networks (TOSN), 2010.

[3] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “Tag: A Tiny Ag-
gregation Service for Ad-Hoc Sensor Networks,” in Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Dec. 2002, pp. 131–146.

[4] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson, “Synopsis
diffusion for robust aggregation in sensor networks,” in Proceedings of
the ACM Conference on Embedded Networked Sensor Systems (SenSys),
Nov. 2004, pp. 250–262.

[5] A. Giridhar and P. R. Kumar, “Computing and communicating functions
over sensor networks,” IEEE Journal on Selected Areas in Communica-
tion, vol. 23, no. 4, pp. 755–764, Apr. 2005.

[6] ——, “Toward a theory of in-network computation in wireless sensor
networks,” IEEE Communications Magazine, vol. 44, no. 4, pp. 98–107,
Apr. 2006.

[7] A. Ramamoorthy, “Communicating the sum of sources over a network,”
in Proceedings of the IEEE International Symposium on Information
Theory (ISIT), Jul. 2008, pp. 1646–1650.

[8] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network coding for computing,” in Allerton Annual Conference on
Communications, Control, and Computing, Sep. 2008.

[9] V. Doshi, D. Shah, M. Medard, and S. Jaggi, “Distributed functional
compression through graph coloring,” in Proceedings of the Data
Compression Conference (DCC), Mar. 2007, pp. 93–102.

[10] N. Ma, P. Ishwar, and P. Gupta, “Information-theoretic bounds for mul-
tiround function computation in collocated networks,” in Proceedings of
the IEEE International Symposium on Information Theory (ISIT), Jun.
2009, pp. 2306–2310.

[11] N. Karamchandani, L. Keller, C. Fragouli, and M. Franceschetti, “Func-
tion computation via subspace coding,” EPFL Technical Report ARNI-
REPORT-2010-001, http://infoscience.epfl.ch/record/143339, Jan. 2010.

[12] R. P. Stanley, Enumerative Combinatorics. Cambridge University Press,
1997, vol. 1.

[13] J.-P. Serre, A Course in Arithmetic. Springer, 1973.
[14] S. Howard, A. Calderbank, and S. Searle, “A fast reconstruction al-

gorithm for deterministic compressive sensing using second order reed-
muller codes,” in Proceedings of the Conference of Information Sciences
and Systems (CISS), Mar. 2008, pp. 11–15.

[15] A. K. Dhulipala, C. Fragouli, and A. Orlitsky, “Silence-based commu-
nication,” IEEE Transactions on Information Theory, vol. 56, no. 1, pp.
350–366, Jan. 2010.

