
Distributed Rate Allocation for
Network-Coded Systems

Amin Jafarian, Sang Hyun Lee, and Sriram Vishwanath
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, TX 78712, USA

Email: {jafarian,shlee,sriram}@ece.utexas.edu

Christina Fragouli
School of Computer and Communication Sciences
Ecole Polytechnique Federale de Lausanne (EPFL)

Lausanne, Switzerland
E-mail: christina.fragouli@epfl.ch

Abstract—This paper addresses the problem of distributed rate
allocation for a class of multicast networks employing linear
network coding. The goal is to minimize the cost (for example,
the sum rates allocated to each link in the network) while
satisfying a multicast rate requirement for each destination in the
network. In essence, this paper aims to achieve network capacity
while ensuring that the cost of operation (equivalently, the rate
allocated per link in the network) is minimal.

This paper uses a belief propagation framework to obtain a
distributed algorithm for the rate allocation problem. Simulation
results are presented to demonstrate the convergence of this
algorithm to the optimal rate allocation solution.1

I. INTRODUCTION

It is well known that linear network coding achieves the
capacity of a multicast network [3]. However, there may be
multiple rate allocation strategies (rates assigned to each link
in the network) that all achieve network capacity. An important
problem is determining that rate allocation which achieves
multicast capacity as “efficiently” as possible. By associating a
cost with each link of the network (which is proportional to the
rate allocated to each link), the problem of efficient rate alloca-
tion translates to determining the minimum cost rate allocation
strategy for the network. Associating costs with network links
is especially relevant in wireless communications, where it
is important that energy and/or bandwidth be as efficiently
utilized as possible.

The problem of network coding with cost, where a cost is
associated with each link in the network has been extensively
studied [6], [7]. It has been shown that the minimum cost
solution can be formulated as a linear programming (LP),
and for more general utility functions, a convex program. In
general, this LP must be solved using a centralized solver. The
goal of this paper is to derive a belief propagation (BP) based
decentralized algorithm to solve this optimal rate allocation.

For networks employing routing instead of network coding,
rate allocation is often formulated as an integer linear program-
ming (ILP) [2], [5], [8]. In general, this ILP is computationally
hard to solve. In recent years, both centralized and distributed
(approximate) solvers for ILP’s have been developed [1]. The

1We thank the generous support we receive from the DARPA IAMANET
program, the ARO Young Investigator Program and the Department of
Defense.

distributed solver based on BP in [9] for ILP’s forms the basis
for our work in this paper.

As stated earlier, in the network coding setting, the rate
allocation problem is an LP, and can be solved using cen-
tralized solvers. In addition, primal-dual and gradient-descent
based techniques can be used to solve LP’s efficiently over
distributed networks. In this paper, we use a BP based mech-
anism for determining an (approximate) optimal solution to
this LP. This work is unique in the following respects:

a. The BP solution is inherently lower in complexity
than its other counterparts [10] and thus, when it converges,
presents a more efficient mechanism for resource allocation
than simplex/interior-point based LP solvers.

b. It is distributed in nature requiring local transfer of mes-
sages among nodes in the network. As the network topology
evolves over time, this enables the discovery of a new rate
allocation strategy efficiently in a distributed fashion.

c. Finally, the algorithm presented in this work is a
non-trivial generalization of traditional BP algorithms for
ILP’s. Specifically, this work generalizes the traditional “sum-
product” algorithm for BP’s to an “integrate-product” algo-
rithm. This new BP algorithm may prove useful in solving a
much larger class of LP problems beyond rate allocation.

The rest of this paper is organized as follows: the next sec-
tion describes the network mode. Two BP based rate allocation
algorithms are presented in Section III. Finally, simulation
results are presented in Section IV, and the discussion of the
obtained results follows in Section V. This paper concludes
with Section VII.

II. NETWORK MODEL

The system of interest is a two-hop network as depicted in
Figure 1. The network consists of one source node (denoted
as T ), one intermediate node S and a bipartite graph with
two classes of set of nodes A1 = {Ui} and A2 = {Va},
consisting of N and M nodes, respectively. As a motivating
example for our topology, we can say that nodes Ui’s are
local base stations, node S is a data sender (such as a
satellite) communicating through the wireless medium with
the local base stations, and nodes Va’s are local users. As users
corresponding to Va’s move or channel conditions change, the

978-1-4244-3938-6/09/$25.00 (c)2009 IEEE

1
Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 30, 2009 at 04:55 from IEEE Xplore.  Restrictions apply. 



Fig. 1. Network Model

bipartite topology may change. Nodes Ui’s perform broad-
casting to all nodes in their local area. We are interested in
optimizing the cost over all wireless links in the network.
Network state (its bipartite topology) evolves in a quasi-static
manner. In other words, we assume that its bipartite topology
is in a state lasting for an extended period of time, and it
subsequently changes to another bipartite topology and so
on. Thus, the bipartite topology is unknown to nodes in the
network. However, in a particular time period, we assume that
each node knows its own neighbors. In our network model,
we restrict each link to have a capacity (maximum rate of
transmission) of one.2

We desire to multicast over the network configuration il-
lustrated in Figure 1, meaning that each destination node Vi

in A2 receives identical information from the single source
T . To this end, we employ linear network coding as encoding
strategy at each node in this network. It is well known that, for
multicasting, linear network coding is sufficient for achieving
network capacity [3].

A glance at the network in Figure 1 indicates that the min-
cut capacity from the source to each destination is one. Thus,
for simplicity, we consider the cost function to be optimized
in this paper to equal the sum of rates allocated to each link
in the network. Note again that this cost function is chosen
both for practical relevance and simplicity, and it in no way
constrains the algorithms derived in the paper.

Our ultimate aims are to develop algorithms that assign rates
to each link in a distributed manner such that they satisfy the
following two properties:

1) Each destination node receives data at the multicast
capacity of the network (one).

2) The overall cost incurred (sum of rates in the network)
is minimized.

We further assume that there are local feedback links available
so as to enable message-passing between adjacent nodes.
Those messages are exchanged each time the network con-

2This is for simplicity only. Our algorithms generalize in a straightforward
manner for more general capacity constraints.

figuration changes to determine a new set of rates per link in
the network.

III. DISTRIBUTED ALGORITHMS FOR RATE ALLOCATION

In this section, we present two distributed algorithms for the
rate allocation problem of the network described in Section
II. Both algorithms are based on BP which is an iterative
statistical inference technique widely used for constraint sat-
isfaction problems. To match the terminology used in the
existing framework of BP, the nodes in the set A1 and A2 will
be called “variable nodes” and “constraint nodes,” respectively.
N(Ui) (N(Va)) denotes the neighbors of the node Ui ∈ A1

(Va ∈ A2). Also, m(l)
Ui→Va

(x) (M (l)
Va→Ui

(x)) denotes the
message transferred from a variable node Ui (a constraint node
Va) to a constraint node Va (a variable node Ui) in the lth
iteration, given the assumption that the rate value allocated to
Ui by the intermediate node S is x.

A. Algorithm I

This algorithm dictates that each message be a valid prob-
ability distribution. For the initial outgoing message from
each variable node, any probability distribution with a “peak”
at zero is a viable choice. For simplicity of representation,
we set the outgoing message from each variable node to
equal a Gaussian f(x) = 1

Z exp(−βx2) over possible rate
values x, where Z is a normalization factor (also referred
to as the partition function in statistical physics), and β is
a constant that determines the resulting algorithm’s speed
of convergence (also referred to as temperature in statistical
physics). Although the range of valid rate values is only
[0, 1], the initial message defined as above (over the range
of (−∞,∞)) is empirically shown to work well and also
facilitates the representation.
1. Initialization: Set the outgoing message from each vari-
able node to a Gaussian function of the form f(x) =
1
Z exp(−βx2).
2. Constraint node updates: The outgoing message from a
constraint node Va to one of its adjacent variable node Ui is
updated using the following equation:

M (l)
Va→Ui

(x) (1)

=
1
Z1

∫

ui

I




∑

k "=i

uk ≥ 1 − x




∏

k "=i
Uk∈N(Va)

m(l)
Uk→Va

(uk) dui,

where ui ! (u1, . . . , ui−1, ui+1, . . . , u|N(Va)|) is a vector of
rate values assumed by other adjacent variable nodes of Va,
and Z1 is an appropriate normalization factor. Also, I is the
indicator function whose output is one if the input constraint
is satisfied, otherwise zero.
3. Variable node updates: The outgoing message from a
constraint node Va to one of its adjacent variable node Ui

is updated using the following equation:

m(l+1)
Ui→Va

(x) =
1
Z2

∏

b "=a
Vb∈N(Ui)

M (l)
Vb→Ui

(x) exp(−β|x|), (2)

2
Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 30, 2009 at 04:55 from IEEE Xplore.  Restrictions apply. 



where Z2 is an appropriate normalization factor.
4. Belief calculation: Repeat Step 2 and Step 3 until the
following (marginal) probability distribution converges to a
fixed distribution:

p(l+1)
Ui

(x) =
1
Z3

∏

Va∈N(Ui)

M (l)
Va→Ui

(x) exp(−β|x|), (3)

where Z3 is an appropriate normalization factor.

B. Algorithm II

In this algorithm, each message is assumed to be from a
Gaussian distribution.3 Since the mean and the variance are
sufficient statistics for the Gaussian probability distribution,
those parameters are transferred back and forth as a (vector)
message. Let f(x;µ,σ2) denote the pdf of a Gaussian distri-
bution with the mean µ and the variance σ2 and let a function
Q(x;µ,σ2) be defined as

Q(x;µ,σ2) =
∫ ∞

x
f(z;µ,σ2) dz. (4)

Also, for a pdf f(x), let we define a (vector) functional
MV (f(x)) =

(
Ef [x] , Ef [x2] − Ef [x]2

)
, i.e. the two dimen-

sional vector consisting of the mean and the variance of the
random variable associated with f(x).
1. Initialization: Set the outgoing message of each variable
node to the vector (µ(0)

Ui→Va
,σ2(0)

Ui→Va
) = (0, 1

2β ), where β is a
constant determining convergence speed as in Algorithm I.
2. Constraint node updates: The outgoing message from a
constraint node Va to one of its adjacent variable node Ui is
updated using the following equation:

(
µ(l)

Va→Ui
,σ2(l)

Va→Ui

)
=

∑

k "=i
Uk∈N(Va)

m(l)
Uk→Va

. (5)

3. Variable node updates: The outgoing message from a
constraint node Va to one of its adjacent variable node Ui

is updated using the following equation:

m(l+1)
Ui→Va

= MV
(
g(l+1)

Ui→Va
(x)

)
, (6)

where

g(l+1)
Ui→Va

(x) =
1
Z4

∏

b "=a
Vb∈N(Ui)

Q(x;µ(l)
Vb→Ui

,σ2(l)
Vb→Ui

) exp(−βx2),

and Z4 is an appropriate normalization factor.
4. Belief calculation: Repeat Step 2 and Step 3 until the
following (marginal) probability distribution converges to a
fixed distribution:

f (l+1)
Ui

(x) = f(x;µ(l+1)
Ui

,σ2(l+1)
Ui

), (7)

where(
µ(l+1)

Ui
,σ2(l+1)

Ui

)
= MV

(
g(l+1)

Ui
(x)

)
,

g(l+1)
Ui

(x) =
1
Z5

∏

Vb∈N(Ui)

Q(x;µ(l)
Vb→Ui

,σ2(l)
Vb→Ui

) exp(−βx2),

3Note that this is an approximation, and the real distribution is not
necessarily Gaussian.

8 10 15 20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

12

14

16

18

20

Number of Check Nodes

N
um

be
r 

of
 It

er
at

io
ns

Average number of iterations until convergence

Fig. 2. Average number of iterations taken by Algorithm I until convergence

8 10 15 20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of Check Nodes

N
um

be
r 

of
 It

er
at

io
ns

Average number of iterations until convergence

Fig. 3. Average number of iterations taken by Algorithm II until convergence

and Z5 is an appropriate normalization factor.

IV. SIMULATION RESULTS

In this section, we present simulation results for the two
algorithms described in Section III. Incidence matrices of
dimensions {7 × 8, 8 × 10, 10 × 12, 15 × 18, 17 × 20, 18 ×
21, 20× 24, 23× 27, 25× 30, 27× 32, 30× 36, 33× 40, 35×
42, 38×45, 40×48, 42×50, 47×56, 50×60} were simulated
for both algorithms. The matrices were generated so that their
associated graphs do not contain cycles of length four for
smaller dimensions and of length up to 10 for larger dimen-
sions using cycle removal techniques introduced in LDPC
code generation literature [4]. The degree of variable nodes
was chosen to be three, and the degrees of constraint nodes
were chosen randomly so that no degree-one constraint node
happens which can be trivially removed for reducing the graph.
The probability density function resolution was set so that a
total range of [−1, 3] is represented with 1024 points, instead
of [−∞,∞] for ease of computation. The algorithms were set
to stop when there is no significant change in the distribution
obtained in Step 4. Figure 10 illustrates an instance for the
evolution of the distribution of one variable node with an

3
Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 30, 2009 at 04:55 from IEEE Xplore.  Restrictions apply. 



8 10 15 20 25 30 35 40 45 50 55 60
10

−3

10
−2

10
−1

10
0

Number of Check Nodes

N
or

m
al

iz
ed

 E
rr

or
 (

E
)

Normalized error of Algorithm I on convergence to correct solution

Fig. 4. Normalized error of Algorithm I on convergence to the correct
solution

10 15 20 25 30 35 40 45 50 55 60
10

−3

10
−2

10
−1

10
0

Number of Check Nodes

N
or

m
al

iz
ed

 E
rr

or
 (

E
)

Normalized error of algorithm I on convergence

Fig. 5. Normalized error of Algorithm I on convergence

8 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Check Nodes

F
ra

ct
io

n 
of

 g
ra

ph
s 

w
he

re
 c

or
re

ct
 s

ol
ut

io
n 

w
as

 fo
un

d

Fraction of graphs where Algorithm I converged to correct solution

Fig. 6. Fraction of graphs where Algorithm I converged to the correct solution

8 10 15 20 25 30 35 40 45 50 55 60
10

−3

10
−2

10
−1

10
0

Number of Check Nodes

N
or

m
al

iz
ed

 E
rr

or
 (

E
)

Normalized error of Algorithm II on convergence to correct solution

Fig. 7. Normalized error of Algorithm II on convergence to the correct
solution

8 10 15 20 25 30 35 40 45 50 55 60
10

−3

10
−2

10
−1

10
0

Number of Check Nodes

N
or

m
al

iz
ed

 E
rr

or
 (

E
)

Normalized error of Algorithm II on convergence

Fig. 8. Normalized error of Algorithm II on convergence

8 10 15 20 25 30 35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Check Nodes

F
ra

ct
io

n 
of

 g
ra

ph
s 

w
he

re
 c

or
re

ct
 s

ol
ut

io
n 

w
as

 fo
un

d

Fraction of graphs where Algorithm II converged to correct solution

Fig. 9. Fraction of graphs where Algorithm II converged to the correct
solution

4
Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 30, 2009 at 04:55 from IEEE Xplore.  Restrictions apply. 



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
P

ro
ba

bi
lit

y 
de

ns
ity

Evolving Distribution

 

 

Initial Dist.
After Iter. 1
Iter. 2
Iter. 3
Iter. 4
Iter. 5
Iter. 6
Final Iter. 14

Fig. 10. An example of the evolution of probability distribution of a variable
node

50 × 60 incidence matrix which converged in 14 iterations.
We see from this figure that the peak of the distribution goes
from zero to the region close to the solution, moves around
the solution and finally converges to the solution.

In Figures 2, 4, 6, and 5, we present, for Algorithm I, the
average number of iterations until convergence, the normalized
error between the true value and the algorithm’s output when
the algorithm converges to the correct solution, the normalized
error when the algorithm converges to a fixed point, and
the fraction of graphs in the ensemble where the algorithm
converges to the correct solution, respectively. The horizontal
axis represents classes of matrices by the number of columns
of matrices in the class. From Figure 2, we see that Algorithm
I converges in around 15 iterations for most cases. The
normalized error is defined by

e(uBP) =
‖uBP − uLP‖1

‖uLP‖1
,

where uBP is the output of the proposed algorithm, and uLP

is the solution of original formulation. The difference between
the normalized error shown in Figure 4 and Figure 6 shows that
there exists a collection of “ill-conditioned” matrices where
Algorithm I fails to find the correct solution. Also, we see from
Figure 5 that, for smaller dimension of incidence matrices, it
is more likely that those “ill-conditioned” matrices happen.

In Figures 3, 7, 8, and 9, the average number of iterations
until convergence, the normalized error when the algorithm
converges to the correct solution, the normalized error when
the algorithm converges to a fixed point, and the fraction of
graphs in the ensemble where the algorithm converges to the
correct solution are respectively depicted for Algorithm II.
There are several interesting observations about Algorithms
II as follows: i) Algorithm II converges in 2 iterations in
most cases, while the number of iterations for Algorithm I
varies from 12 to 20. ii) the normalized error of (correct)
solutions obtained by Algorithm II is smaller than those

obtained by Algorithm 1. iii) the fluctuation in the fraction
of “ill-conditioned” matrices along the dimension is smaller
than that for Algorithm I. Therefore, we see that Algorithm II
is more robust in a randomly chosen graph.

V. DISCUSSION

In this section, we explain the relationship between the
algorithms derived in Section III and the LP that defines the
original problem. The LP (after a few simple manipulations)
can be expressed as:

min
{xUi}

N∑

i=1

xUi

subject to (8)

Constraint Va :
∑

Uk∈N(Va)

xUk ≥ 1 for 1 ≤ a ≤ M,

0 ≤ xUi ≤ 1 for 1 ≤ i ≤ N,

which can be written in terms of a an standard LP:

min
x

1T
Nx

subject to (9)

Ax ≥ 1M ,

where xUi denotes the rate value allocated to node Ui ∈ A1,
x = [x1, . . . , xUN ]T , 1k is the k-dimensional all-one column
vector, and A is the M ×N incidence matrix where the entry
at (i, j) is one if there is an edge between the node Vi ∈ A2

and the node Uj ∈ A1; otherwise the entry is zero.
Since there is an explicit constraint that all xUi’s be non-

negative, we can relax this constraint by changing the cost
function to

N∑

i=1

|xUi |. (10)

Also, let us define a function that is associated with each
constraint Va ∈ A2 as follows:

I




∑

Uk∈N(Va)

xUk ≥ 1



 , (11)

where I(·) is the indicator function. In other words, the output
value of this function is one if the variable nodes Ui in the
N(Va), otherwise zero. Using (10) and (11), the LP problem
can be converted to the following unconstrained optimization
problem:

max
{xUk

}

M∏

a=1

I




∑

Uk∈N(Va)

xUk ≥ 1



 exp

(
−β

N∑

k=1

|xUk |
)

,

(12)

where β is a nonnegative parameter that involves the conver-
gence speed. The optimization problem like (12) can be solved
using BP based message-passing techniques [9].

The messages defined in the Section III are updated ac-
cording to the rules which are based on the probability of the

5
Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 30, 2009 at 04:55 from IEEE Xplore.  Restrictions apply. 



event that each variable node takes a specific value at each
time instant. Let XUi denote a (continuous) random variable
associated with the rate value xUi . Here, there is an important
underlying assumption: All messages on different edges in the
network are independent. Thus, each type of messages has its
own probabilistic interpretation: The message M (l)

Va→Ui
(x) can

be interpreted as the probability density of XUi being forced
to take a value x in order for the constraint Va to be satisfied.
Subsequently, the message m(l)

Ui→Va
(x) can be interpreted as

the probability density of XUi being equal to x in order to
satisfy all adjacent constraints when the constraint Va is absent
from the network, i.e. a priori knowledge for the probability
density of XUi provided by other adjacent constraint nodes.
Thus, the belief calculated in the algorithms corresponds to
the marginal probability density of each variable node. Also,
the probability density of XUi being x in the event that the
constraint Va is satisfied is straightforwardly calculated as:

f (l)
Ui

(x|
∑

Uk∈N(Va)

XUk ≥ 1,XUk = uk)

=
1
Z1

∫

ui

I




∑

k "=i

uk ≥ 1 − x




∏

k "=i
Uk∈N(Va)

f (l)
Uk

(uk) dui, (13)

where f (l)
Uk

(uk) is a priori probability density of XUk , which
also corresponds to the message m(l)

Ui→Va
(x). Here, the distri-

butions at variable nodes are assumed to be independent. Since
(13) corresponds to the definition of the message M (l)

Va→Ui
(x),

this message takes such form as (1). Moreover, the message
m(l)

Ui→Va
(x) is calculated by taking the product of probability

density of XUi transferred from other constraint nodes in the
sense of a prior knowledge. These update rules form Algorithm
I. Although Algorithm I basically uses the probability densities
as its messages, the algorithm can be simplified by a further
assumption that the message distribution be Gaussian-like with
a (minor) change in the objective function to:

N∑

i=1

x2
Ui

. (14)

Then, the corresponding unconstrained optimization problem
is given as

max
{xUk

}

M∏

a=1

I




∑

Uk∈N(Va)

xUk ≥ 1



 exp

(
−β

N∑

k=1

x2
Uk

)
. (15)

Note that the “local potential” term for XUi is a Gaussian
function, and the constraint function basically involves a
series of convolution operations followed by the calculation
of Gaussian integral. Therefore, we can approximate messages
transferred along the network to be Gaussian functions. Since,
as mentioned in the previous section, the mean and the
variance are sufficient statistics of Gaussian probability density
under the approximation, the same procedure as Algorithm I
can be performed by transferring only two parameters. Hence,
Algorithm II is given as such.

VI. COMPLEXITY ANALYSIS

Here, we discuss the complexity of the proposed algorithms.
Let L denote the number of points for the FFT operation to
perform a convolution operation of two message distributions.
For Algorithm I, a single edge processing at the constraint
node update for a degree-dc constraint node involves dc − 2
convolutions and one integration, which are computationally
equivalent to dc − 1 FFT’s and dc − 2 products of message
distributions. Since there are mdc edges connected to con-
straint nodes, the complexity for constraint node updates is
O(md2

cL log L). Likewise, the complexity for variable node
updates of degree dv is O(nd2

vL). Therefore, the overall
complexity of Algorithm I is O(nd2

vL log L).
For Algorithm II, the constraint node updates are simple

because all operations can be replaced by addition operations.
Since one integration and 2(dc − 2) additions are required
for a single edge processing, the number of addition required
for constraint node updates is O(mdc(dc + L)). If we use a
lookup table for Q(x;µ,σ2), the number of additions reduces
to O(md2

c). Since variable node updates involve direct cal-
culation of the first and second moment of message distribu-
tions, the overall number of multiplications and additions are
O(nd2

vL) and O(ndvL), respectively. Therefore, the overall
complexity of Algorithm II is O(nd2

vL).

VII. CONCLUSION

In this work, we presented two distributed algorithms for the
rate allocation problem over a coded multicast network. We
provided simulation results which illustrates the convergence
rate and correctness of these algorithms.

REFERENCES

[1] M. Bayati, C. Borgs, J. Chayes, and R. Zecchina. Belief-
propagation for weighted b-matchings on arbitrary graphs and its
relation to linear programs with integer solutions. Available at
http://arxiv.org/abs/0709.1190, Feb. 2008.

[2] D. Bertsekas and R. Gallager. Data networks. Prentice Hall, 1992.
[3] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and

B. Leong. A random linear network coding approach to multicast. IEEE
Trans. on Info. Theory, 52(10):4413–4430, Oct. 2006.

[4] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold. Regular and irregular
progressive edge-growth tanner graphs. IEEE Trans. Inform. Theory,
51(1):386–398, Jan. 2005.

[5] J.M. Jaffe. Bottleneck flow control. IEEE Trans. on Comm., 29(7):954–
962, Jul. 1981.

[6] M. Kim, M. Médard, V. Aggarwal, and U. M. O’Reilly. On the coding-
link cost tradeoff in multicast network coding. Milit. Comm. Conf.
(MILCOM), pages 1–7, Oct. 2007.

[7] D. S. Lun, M. Médard, T. Ho, and R. Koetter. Network coding with a
cost criterion. Int. Symp. on Info. Theory and its Appl. (ISITA), pages
1232–1237, Oct. 2004.

[8] J. Mosely. Asynchronous Distributed Flow Control Algorithms. PhD
thesis, Dept. of Elec. Eng. and Comp. Sci., MIT, Cambridge, Mass,
Jun. 1984.

[9] S. Sanghavi, D. Shah, and A. Willsky. Message-passing for maximum
weight independent set. Available at http://arxiv.org/abs/0807.5091, Jul.
2008.

[10] N. Sommer, M. Feder, and O. Shalvi. Low-density lattice codes. IEEE
Trans. Inform. Theory, 54(4):1561–1585, Apr. 2008.

6
Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 30, 2009 at 04:55 from IEEE Xplore.  Restrictions apply. 


