
Maximum Likelihood Estimation for Multiple-
Source Loss Tomography with Network Coding

Pegah Sattari1), Athina Markopoulou1), Christina Fragouli2)
1)EECS Department, University of California, Irvine, CA, USA

2)School of Computer and Communication Sciences, EPFL, Lausanne, Switzerland
E-mail: psattari@uci.edu, athina@uci.edu, christina.fragouli@epfl.ch

Abstract—Loss tomography aims at inferring the loss rate of
links in a network from end-to-end measurements. Previous work
in [1] has developed optimal maximum likelihood estimators
(MLEs) for link loss rates in a single-source multicast tree.
However, only sub-optimal algorithms have been developed for
multiple-source loss tomography [2]–[5]. In this paper, we revisit
multiple-source loss tomography in tree networks with multicast
and network coding capabilities, and we provide, for the first
time, low-complexity MLEs for the link loss rates. We also derive
the rate of convergence of the estimators.

Keywords—loss tomography; network coding; maximum like-
lihood estimation

I. INTRODUCTION

The successful design, control and management of networks
often requires knowledge about internal network character-
istics. Network monitoring can be done either by monitor-
ing every link and node of interest or by using end-to-
end measurements. The second class of monitoring problems,
which aims at inferring internal network characteristics from
measurements at the edge of the network, is known as network
tomography [6]. In this work, we are particularly interested in
loss tomography, i.e., at inferring the loss rates of individual
links using end-to-end probes. One of the earliest and most
influential woks in loss tomography is [1], which developed
MLEs of link loss rates in a single-source multicast tree.
Subsequent work provided sub-optimal algorithms, but not
MLEs, for loss tomography with multiple sources [2]–[5].

It has been shown that network coding can enhance tomog-
raphy, for example, using active probes to infer loss [4], [5],
[7]; or using passive inference to infer topology or failures [8]–
[10]. The key intuition in loss tomography [5] is that network
coding increases the information per probe since one coded
probe observes multiple paths. At the same time, network
coding reduces the bandwidth needed to cover a general graph
by making exactly one probe traverse each link. Another key
observation that we exploit in this paper is the symmetry
between a multicast tree and a reverse multicast tree with
network coding. In [5], we presented sub-optimal algorithms
to infer the link loss rates in networks with network coding.

In this paper, we extend [1] and we leverage network
coding to derive low complexity MLEs in trees with multiple
sources. We assume that the tree topology is known and we
use an active approach. Sequences of probes are sent and
collected between a set of sources and a set of receivers at

the edge of the network and the observations at the receivers
are used for inference. Intermediate nodes perform unicast,
multicast and simple coding operations, which need to be
set-up once, fixed for all probes sent and be known for
inference. Therefore, our approach requires more support from
the network than traditional tomography, for the benefit of
more accurate/efficient estimation. We develop, for the first
time, efficient MLEs for all link loss rates simultaneously.
We also provide their rate of convergence as the number of
measurements increases.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes the problem
statement. Section IV solves the likelihood equation for special
cases. Section V reduces the general problem to those special
cases. Section VI provides the MLEs, the rate of convergence,
and an illustrative example. Section VII concludes the paper.
Section VIII provides the proofs of theorems.

II. RELATED WORK

Within the large body of work on network tomography
[6], the most relevant to this paper is the work by Caceres
et al. [1]. It considers a single multicast tree with a known
topology and infers the link loss rates from the observations
at the receivers, by developing a low-complexity algorithm to
compute the MLE. Follow-up work proposed a sub-optimal
approach for general graphs by covering the graph with
multiple multicast trees and using an EM algorithm [2]. Other
approaches have been developed for unicast probes [11]–[13],
and joint inference of topology and loss rates [14].

In [7], we leveraged network coding to improve active
network monitoring. In [3], we studied sub-optimal methods
for link loss estimation in multiple-source tree topologies.
In [4], [5], we extended the approach to general graphs.
The following papers use random network coding for passive
network tomography. [8] passively distinguishes among failure
patterns. [9], [10] provide algorithms for passive topology
estimation and error localization. [15] uses subspace nesting
structures to discover local bottlenecks in peer-to-peer systems.

In this paper, we follow an active approach for loss tomog-
raphy. We build on the MLE for a multicast tree developed in
[1], referred to as MINC, and we extend it to multiple-source
trees with multicast and network coding capabilities.
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Fig. 1. A directed tree with multicast and network coding capabilities.

III. MODEL AND FRAMEWORK

A. Topology and Node Operation

Logical Tree. We consider a tree topology, like the one
depicted in Fig. 1, T = (V,L) consisting of V nodes and L
directed links. M leaf nodes, shown on top of the tree, act as
sources of probe packets. The remaining N leaves, shown at
the bottom of the tree, act as receivers. An intermediate node
is either a coding point (with multiple incoming links and one
outgoing link) or a branching point (with one incoming link
and multiple outgoing links). For each node j, we denote the
set of its parents (nodes with a link outgoing to j) by f(j) and
the set of its children (nodes with a link coming from j) by
d(j). The source nodes S = {S1, ..., SM} have no parent and
the receivers R = {R1, ..., RN} have no children. T , S,R are
considered known and fixed throughout the measurements.

We note that the tree topology we consider has the property
that all coding points are located above all branching points,
which is a mild assumption1. It is also a logical2 tree.

Operation of Sources. Each source Si sends a probe packet
xi, which is a vector of length M in the following form:

xi = [
M︷ ︸︸ ︷

0, · · · , 0, 1︸ ︷︷ ︸
i

, 0, · · · , 0], i = 1, 2, · · · ,M

Operation of Intermediate Nodes. Each coding point (bit-
wise) XORs all packets it receives from its parents, and for-
wards the result to its child3. Each branching point multicasts
the packet it receives from its parent to all its children.

One can see that there will be a node after which x1 +x2 +
· · · + xM flows thought the network. We denote this node by
C. Node C is the last coding point in the tree. Node C has
P parents f(C)1, · · · , f(C)P , and only one child, which we
denote by node D. Node D multicasts the packet it receivers
from node C to all its Q children d(D)1, · · · , d(D)Q.

1Indeed: starting from an undirected tree, one can choose the sources so as
to lead to a directed tree with this property.

2This is another common assumption in tomography: intermediate nodes
in a logical tree have degree at least three, and in-degree and out-degree at
least one. A logical link may consist of several physical links.

3We assume that the network is delay-free and all packet arrivals at a coding
point are synchronized. Link delays only affect where the probes would meet.

We use the notation that k < k′, k, k′ ∈ V when k is a
descendant of k′, and that k > k′ when k is an ancestor of k′.
Every node k > C has multiple parents and only one child,
while every node k < D has one parent and multiple children.
We are going to treat these two sets of nodes differently in the
rest of the paper. We name any link of the tree that is above
node C by its starting point, and we name any link that is
below node D by its end point. In other words, link k denotes
a link between nodes (k, j) if k > C and j > C, while link
k denotes a link between nodes (j, k) if j < D and k < D.

B. Loss Model

We model the loss rate of individual links by an i.i.d.
Bernoulli process, independent across links. In particular:

• A packet that traverses a link k above node C is lost with
probability αk = 1 − αk and arrives at j with prob. αk.

• A packet that traverses a link k below node D is lost
with prob. αk = 1 − αk and arrives at k with prob. αk.

• Finally, we denote the loss rate of link CD by αCD.
We use the notation α = 1−α for any quantity 0 < α < 1.
Let Xk denote the packet observed at node k, and let

X = (Xk), k ∈ V denote the set of all Xk’s. Xk is a binary
vector of length M . Its ith element, (Xk)i, represents the
probe packet of source i: (Xk)i = 1 indicates that the probe
packet of source i reaches node k, and 0 that it does not. For
the sources, XSi = xi, thus (XSi)i = 1 and (XSi)i′ = 0,
∀i′ $= i. For any node k ≥ C, if (Xj)i = 1 for j a parent
of k, (Xk)i = 1 with probability αj , and (Xk)i = 0 with
probability αj , independently for all the parents of k. For any
node k ≤ D, if Xk = [0, 0, · · · , 0] (the all-zero vector), then
Xj = [0, 0, · · · , 0], for the children j of k (and hence for all
descendants of k). If Xk $= [0, 0, · · · , 0], then for j a child of
k, Xj = Xk with probability αj , and Xj = [0, 0, · · · , 0] with
probability αj , independently for all the children of k.

C. Data, Likelihood, and Inference

In each trial, one probe is dispatched from each source.
The outcome of a single trial is a record of whether or not
each source probe was received at each receiver, which is
the set of vectors Xk observed at receiver k ∈ R. It is
denoted by X(R) = (Xk)k∈R and is an element of the space
Ω = {[· · · , 0, 1, · · · ]}N of all such outcomes. For a given
set of link loss probabilities α = (αk)k∈V \{C,D} ∪ αCD, the
distribution of the outcomes X(R) on Ω will be denoted by
Pα. The probability mass function for a single outcome x ∈ Ω
is p(x;α) = Pα(X(R) = x).

We perform n trials. Let n(x) denote the number of probes
for which the outcome x is obtained. The probability of n
independent observations x1, · · · , xn (each xt = (xt

k)k∈R) is:

p(x1, · · · , xn;α) =
n∏

t=1

p(xt;α) =
∏

x∈Ω

p(x;α)n(x) (1)

Our task is to estimate α using maximum likelihood, from
the data (n(x))x∈Ω. We work with the log-likelihood function:



L(α) = log p(x1, · · · , xn;α) =
∑

x∈Ω

n(x) log p(x;α) (2)

The MLE of the loss rates ᾰ is the α that maximizes L(α):

ᾰ = arg maxα∈[0,1]LL(α) (3)

IV. THE LIKELIHOOD EQUATION AND ITS SOLUTION

Candidates for the MLE are solutions α̂ of the likelihood
equation:

∂L
∂αk

(α) = 0, k ∈ V (4)

We define some additional variables to compute the MLEs.
For each node k ≥ D, let Ωr(k) be the set of outcomes x ∈ Ω
such that (xa)j $= 0 for at least one source j ∈ S that is an
ancestor of k and for any arbitrary set of receivers {a} ⊂ R.
Let γr

k = Γr
k(α) = Pα[Ωr(k)]; an estimate of γr

k is:

γ̂r
k =

∑

x∈Ωr(k)

p̂(x), where p̂(x) =
n(x)

n
(5)

is the observed proportion of trials with outcome x. γr
k

shows the probability of the set of outcomes Ωr(k) where
link k has definitely worked. Link k may have also worked
for some other outcomes that are not included in Ωr(k). γr

k can
be directly estimated from the observations at the receivers.

For each node k ≤ C, we define Ωm(k) to be the set of
outcomes x ∈ Ω such that xj $= [0, 0, · · · , 0] for at least
one receiver j ∈ R which is a descendant of k. Let γm

k =
Γm

k (α) = Pα[Ωm(k)]; an estimate of γm
k is:

γ̂m
k =

∑

x∈Ωm(k)

p̂(x) (6)

γm
k is the probability of the outcomes Ωm(k) in which link k

has definitely worked; it can be directly estimated from the ob-
servations. Our goal is to compute α̂ from γ̂ = (γ̂r

k ∪ γ̂m
k )k∈V .

A. Special Cases

1) Multicast Tree (MINC): If M = 1, the general model
turns into a multicast tree with a single source, which is the
case considered in [1]. We represent the source node by 0 ∈ V .
Each node j other than the source node, has one parent f(j),
and a set d(j) of children. We denote the link loss rates by
αk, where k is the end point. We simply assume that α0 = 1.

The outcome of each trial is X(R) = (Xk)k∈R, where each
Xk is a single binary value (instead of a binary vector of length
M in the general case), corresponding to whether the source
probe is observed at each receiver k ∈ R or not. The state
space of the observations X(R) is Ω = {0, 1}N . We say that
a link k is at level l(k) if there is a chain of l(k) ancestors
k < f(k) < f2(k) · · · < f l(k)(k) = 0 leading back to 0.

Only Ωm(k) is used for each node k in the multicast tree;
it is the set of outcomes x ∈ Ω where xj = 1 for at least one
receiver j ∈ R that is a descendant of k. γm

k is like before.

The MLE for the multicast tree is computed in [1]. Let
Am

k =
∏l(k)

i=0 αfi(k) show the probability that the path from the
source to node k works, which we denote by P (Y0→k = 1).
Its estimate Âm

k is as follows. For the source node, Âm
0 = 1,

for the leaf nodes k ∈ R, Âm
k = γ̂m

k , and for all other nodes
k ∈ V \{0, R}, Âm

k is the unique solution in (0, 1] of:

1 − γ̂m
k

Âm
k

=
∏

j∈d(k)

(1 −
γ̂m

j

Âm
k

) (7)

α̂k is then computed from γ̂m
k , α̂ = Γm−1(γ̂m), as follows:

α̂k =
Âm

k

Âm
f(k)

, k ∈ V \{0} (α̂0 = 1) (8)

We refer to Eq.(8) as MINC in the rest of the paper.
Note. Eq.(7) is obtained from the following relations, af-

ter some computations in [1], which we repeat here for
completeness. Let βm

k = P [Ωm(k)|Xf(k) = 1] denote the
conditional probability of Ωm(k) given that f(k) has observed
something. Failure can be due to either αk, or all paths towards
destinations failing. The βm

k obey the recursion:

β
m
k = αk + αk

∏

j∈d(k)

β
m
j , k ∈ V \R (9)

βm
k = αk, k ∈ R (10)

Eq.(7) then follows from the relation between α and γm:

γm
k = βm

k

l(k)∏

i=1

αfi(k) (11)

2) Reverse Multicast Tree (RMINC): If N = 1, the general
model turns into a reverse multicast tree with a single receiver,
which we denote by 0 ∈ V . Each node j other than 0 has one
child d(j), and a set f(j) of parents. We denote link loss rates
by αk, where k is the starting point. We assume that α0 = 1.

The outcome of each trial, XR, is a binary vector of length
M . Each of its elements, (XR)i, represents whether the probe
of source i is observed at the receiver or not. The state space
of the observations XR is Ω = {0, 1}M . We say that a link
k is at level l(k) if there is a chain of l(k) descendants k >
d(k) > d2(k) · · · > dl(k)(k) = 0 leading down to the receiver.

Only Ωr(k) is used for each node k in the reverse multicast
tree; it is the set of outcomes x ∈ Ω where xj = 1 for at least
one source j ∈ S that is an ancestor of k. γr

k is like before.
The MLE for the reverse multicast tree is similar to the

multicast tree. Let Ar
k =

∏l(k)
i=0 αdi(k) show the probability

that the path from node k to the receiver node works, which
we denote by P (Yk→0 = 1). For the receiver node, Âr

0 = 1,
for the source nodes k ∈ S, Âr

k = γ̂r
k, and for all other nodes

k ∈ V \{S, 0}, Âr
k is the unique solution in (0, 1] of:

1 − γ̂r
k

Âr
k

=
∏

j∈f(k)

(1 −
γ̂r

j

Âr
k

) (12)
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Fig. 2. Reducing the tree in Fig. 1 to multicast and reverse multicast trees.

We can then compute α̂k from γ̂r
k, i.e., α̂ = Γr−1(γ̂r):

α̂k =
Âr

k

Âr
d(k)

, k ∈ V \{0} (α̂0 = 1) (13)

We refer to Eq.(13) as RMINC in the rest of the paper.
Note. Eq.(12) results from the following relations. Let βr

k =
P [Ωr(k)|Yd(k)→0 = 1] denote the conditional prob. of Ωr(k)
given that the path from d(k) to the receiver works. We have:

β
r
k = αk + αk

∏

j∈f(k)

β
r
j , k ∈ V \S (14)

βr
k = αk, k ∈ S (15)

γr
k = βr

k

l(k)∏

i=1

αdi(k) (16)

3) Comparison of MINC and RMINC: The reader will
notice that the MLE for the multicast tree and the reverse
multicast tree have the same functional form. This is a special
case of the “reversibility” property, first observed in [4], [5].
Indeed, there is a 1-1 correspondence between the observable
outcomes in the two cases; furthermore the corresponding
outcomes have the same probability, as a function of αk’s,
thus leading to the same MLE.

V. MAXIMUM LIKELIHOOD ESTIMATION OF LOSS RATES

We now present how to “reduce” the original tree to a
multicast and to a reverse multicast tree, and how to estimate
αCD. These intermediate results are then used in the MLE
algorithm in Section VI.

A. Reductions

1) Reduction to a Multicast Tree (m): If we take the upper
part of the original tree in Fig. 1 and consider it as an aggregate
link, we obtain the reduced multicast tree in Fig. 2(a). The
aggregate link aggm summarizes the operation of all links
above C and link CD. Node D receives a packet if at least
one path from the sources to C works and link CD works.

More formally, we map the outcomes x ∈ Ω of the original
tree to the outcomes xm of the multicast tree, as follows.
Each x is a set of N binary vectors, each of length M , while
each xm is a single binary vector of length N . Any outcome
xm is obtained by taking a set of outcomes {x}, in all of

Algorithm 1 Computing the MLE of all link loss rates in the
original tree topology of Fig. 1.

1: for all links k, where k < D do
2: Reduce the original tree to a multicast tree. Use MINC [1]

(Eq.(8)) to compute the MLEs α̂m
k and α̂m

agg .
3: Let α̂k = α̂m

k .
4: end for
5: for all links k, where k > C do
6: Reduce the original tree to a reverse multicast tree. Use

RMINC (Eq.(13)) to compute the MLEs α̂r
k and α̂r

agg .
7: Let α̂k = α̂r

k.
8: end for
9: Use Eq.(20) to compute the MLE α̂CD .

which the same receivers have observed all-zero vectors and
the same receivers have observed non-zero vectors, and by
replacing each non-zero vector (that may contain any of the
source probes x1, x2, · · · , xM ) by value 1, and by replacing
each all-zero vector by value 0. I.e.:

∑

xRt %=[0,0,··· ,0],xRt′
=[0,0,··· ,0]

n(x) = nm(xm),

xm
Rt

= 1, xm
Rt′

= 0, t, t′ ∈ {1, · · · , N}, t $= t′ (17)

If the original tree has link loss rates α and an associated
probability distribution of outcomes Pα, then the multicast tree
is defined with parameters αm and Pm

α , such that:

αm
k = αk, k < D, αm

agg = αCD(1 −
P∏

i=1

β
r
f(C)i

) (18)

Pm
α can be directly calculated from Pα, since each event in

Pm
α is the union of a disjoint subset of events in Pα and has

probability equal to the sum of probabilities of those events.
2) Reduction to a Reverse Multicast Tree (r): Similarly, if

we consider the lower part of the original tree in Fig. 1 as an
aggregate link, we obtain the reduced reverse multicast tree in
Fig. 2(b), with parameters αr and P r

α, such that:

αr
k = αk, k > C, αr

agg = αCD(1 −
Q∏

j=1

β
m
d(D)j

) (19)

3) The Relation Between the Two Reduced Trees:
Lemma 5.1: We have that: γ̂r

C = γ̂m
D = 1− p̂([0, 0, · · · , 0]).

The proof directly results from the definition of γm
D in the

reduced multicast and γr
C in the reduced reverse multicast tree.

B. Estimating αCD

The MLE of αCD can be obtained from:

α̂CD =
Âr

C · Âm
D

γ̂r
C

=
Âr

C · Âm
D

γ̂m
D

(20)

The proof can be found in Section VIII.
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# Original (5-link) tree Reduced multicast tree Reduced reverse multicast tree
E F Prob. E F P m

α EF P r
α

1 - - p̂0 0 0 p̂0 [0,0] p̂0

2 x1 - p̂1

1 0 p̂1 + p̂2 + p̂3

[1,0] p̂1 + p̂4 + p̂7

3 x2 - p̂2 [0,1] p̂2 + p̂5 + p̂8

4 x1 ⊕ x2 - p̂3 [1,1] p̂3 + p̂6 + p̂9

5 - x1 p̂4

0 1 p̂4 + p̂5 + p̂6

[1,0] p̂1 + p̂4 + p̂7

6 - x2 p̂5 [0,1] p̂2 + p̂5 + p̂8

7 - x1 ⊕ x2 p̂6 [1,1] p̂3 + p̂6 + p̂9

8 x1 x1 p̂7

1 1 p̂7 + p̂8 + p̂9

[1,0] p̂1 + p̂4 + p̂7

9 x2 x2 p̂8 [0,1] p̂2 + p̂5 + p̂8

10 x1 ⊕ x2 x1 ⊕ x2 p̂9 [1,1] p̂3 + p̂6 + p̂9

(b) All possible observations and their probabilities in the 5-link tree topology as well as their corresponding
observations and probabilities in the reduced multicast and reverse multicast trees.

Fig. 3. The example 5-link tree topology (a) and the table of all observations in the original tree and its reduced multicast and reverse multicast trees (b).

I−1(α) =





αAαA
αBαCD(αE+αF −αEαF )

αAαB
αCD(αE+αF −αEαF )

−αAαB
αB(αE+αF −αEαF ) 0 0

αAαB
αCD(αE+αF −αEαF )

αBαB
αAαCD(αE+αF −αEαF )

−αAαB
αA(αE+αF −αEαF ) 0 0

−αAαB
αB(αE+αF −αEαF )

−αAαB
αA(αE+αF −αEαF ) I−1

33 (α) −αEαF
αF (αA+αB−αAαB)

−αEαF
αE(αA+αB−αAαB)

0 0 −αEαF
αF (αA+αB−αAαB)

αEαE
αCDαF (αA+αB−αAαB)

αEαF
αCD(αA+αB−αAαB)

0 0 −αEαF
αE(αA+αB−αAαB)

αEαF
αCD(αA+αB−αAαB)

αF αF
αCDαE(αA+αB−αAαB)





I−1
33 (α) =

1
αAαBαEαF (−αAαB − αB)(−αEαF − αF )

(−αCD(−αBαBαEαF − α2
AαBαE(−1 + αB(2 + αCD(−αEαF − αF )))αF

+ αA(−αEαF + α2
BαEαF (−3 + αCD(αE + αF − αEαF )) + αB(−αF αF + αE(−1 + 7αF − 3α2

F ) + α2
E(1 − 3αF + 2α2

F )))))

Fig. 4. The inverse of the Fisher information matrix for the confidence intervals in Eq.(21). The order of the coordinates is αA, αB , αCD, αE , αF .

VI. THE ANALYSIS OF THE MLE

A. MLE Algorithm

Algorithm 1 proceeds in the following steps: (i) it computes
α̂k for any link k below node D from the reduced multicast
tree using Eq.(8); (ii) it computes α̂k for any link k above
node C from the reduced reverse multicast tree using Eq.(13);
and (iii) it computes α̂CD from Eq.(20). These are indeed the
MLEs of all link loss rates, α̂, for the tree of Fig. 1.

Theorem 6.1: The estimates computed by Algorithm 1 are
the MLEs of the link loss rates in the original tree in Fig. 1.

The proof of Theorem 6.1 relies on the following lemmas,
whose proofs are given in Section VIII.

Lemma 6.2: The solutions of the likelihood equations of the
original tree and the reduced multicast tree are related via: (i)
α̂k = α̂m

k , k < D; and (ii) α̂CD = α̂m
agg/(1 −

∏P
i=1 β

r
f(C)i

).
Lemma 6.3: The solutions of the likelihood equations of the

original tree and the reverse multicast tree are related via: (i)
α̂k = α̂r

k, k > C; and (ii) α̂CD = α̂r
agg/(1 −

∏Q
j=1 β

m
d(D)j

).
We note that the likelihood functions of the original tree and
the reduced multicast (or reverse multicast) tree are different.
What the aforementioned lemmas establish is that they are
maximized for the same values of their common variables.

B. Complexity

Algorithm 1 is very efficient. In the first two steps, it calls
MINC and RMINC. MINC (and thus RMINC) is known to

be efficient by exploiting the hierarchy of the tree topology to
factorize the probability distribution and recursively compute
the estimates. The computation at each node is at worst
proportional to the depth of the tree [1]. The last step, α̂CD,
uses the estimates Âk, γ̂k already computed in the first 2 steps.

C. Rate of Convergence of the MLE

We now provide the rate of convergence of α̂ to the true
value α. The Fisher information matrix at α based on X(R)

is obtained from Ijk(α) = −E ∂2L
∂αj∂αk

(α) [1]. We have that:
Theorem 6.4: I(α) is non-singular, and as n −→ ∞,√
n(α̂− α) converges in distribution to N (0, I−1(α)).
The proof follows from the asymptotic properties of MLEs

[1], [16]. Therefore, asymptotically for large n, with prob. 1−δ
(for 1 − δ confidence interval), α̂k lies between the points:

αk ± zδ/2

√
I−1

kk (α)
n

(21)

D. Example: the 5-link tree

We illustrate our results through the 5-link tree in Fig. 3(a).
Maximum Likelihood Estimator. Sources A,B send x1 =

[1, 0], x2 = [0, 1] respectively. Ω consists of ten outcomes
shown in Fig. 3(b). The table also shows the corresponding
outcomes of the reduced trees. From Eq.(5), Eq.(6), we have:

γ̂r
A = p̂1 + p̂3 + p̂4 + p̂6 + p̂7 + p̂9



γ̂r
B = p̂2 + p̂3 + p̂5 + p̂6 + p̂8 + p̂9

γ̂r
C = γ̂m

D = p̂1+ p̂2+ p̂3+ p̂4+ p̂5+ p̂6+ p̂7+ p̂8+ p̂9 = 1− p̂0

γ̂m
E = p̂1 + p̂2 + p̂3 + p̂7 + p̂8 + p̂9

γ̂m
F = p̂4 + p̂5 + p̂6 + p̂7 + p̂8 + p̂9

We then solve Eq.(7), Eq.(12) for Âk, and we find α̂A, α̂B

from Eq.(13), α̂E , α̂F from Eq.(8), and α̂CD from Eq.(20):

α̂A =
γ̂r

A + γ̂r
B − γ̂r

C

γ̂r
B

, α̂B =
γ̂r

A + γ̂r
B − γ̂r

C

γ̂r
A

(22)

α̂E =
γ̂m

E + γ̂m
F − γ̂m

D

γ̂m
F

, α̂F =
γ̂m

E + γ̂m
F − γ̂m

D

γ̂m
E

(23)

α̂CD =
γ̂r

Aγ̂
r
B γ̂

m
E γ̂m

F

γ̂m
D (γ̂r

A + γ̂r
B − γ̂r

C)(γ̂m
E + γ̂m

F − γ̂m
D )

(24)

Confidence Intervals. Fig. 4 shows I−1(α) for the con-
fidence intervals in Eq.(21). The confidence intervals for
parameters α̂ can be obtained by inserting Eq.(22), Eq.(23),
and Eq.(24) into Fig. 4.

VII. CONCLUSION

In this paper, we proposed a low complexity algorithm to
compute MLEs of link loss rates in multiple-source tree net-
works with multicast and network coding capabilities. So far,
MLEs have only been computed for single-source multicast
trees [1], while sub-optimal algorithms were used for multiple-
source loss tomography.

VIII. PROOFS OF THEOREMS

Estimating αCD: We denote the outcomes in which link
CD works by xCD; the outcomes where at least one of the
upstream paths to C works by xup; the outcomes where at
least one of the downstream paths after D works by xdn. For
the intersection of any two of these outcomes, e.g., xup and
xdn, we use the notation xup,dn. The independence of link
loss rates indicates that xup, xdn, xCD are independent. Thus:

α̂CD = p̂(xCD) = p̂(xCD|xup,dn) =
p̂(xCD &xup,dn)

p̂(xup)p̂(xdn)
(25)

The numerator equals 1 − p̂([0, ..., 0]) = γ̂r
C = γ̂m

D . Also:

p̂(xdn) = p̂(xdn|xup,CD) = p̂(xdn|XD $= [0, ..., 0])

= 1 − p̂(xc
dn|XD $= [0, ..., 0]) = 1 −

Q∏

j=1

β
m
d(D)j

(26)

We can derive a similar expression for p̂(xup). Therefore:

α̂CD =
1 − p̂([0, 0, · · · , 0])

(1 −
∏P

i=1 β
r
f(C)i

)(1 −
∏Q

j=1 β
m
d(D)j

)
(27)

By writing Eq.(9) for β
m
D in Fig. 2(a), and by writing

Eq.(14) for β
r
C in Fig. 2(b), we conclude that:

1−
Q∏

j=1

β
m
d(D)j

=
βm

D

αm
agg

=
γm

D

Am
D

, 1−
P∏

i=1

β
r
f(C)i

=
βr

C

αr
agg

=
γr

C

Ar
C

(28)
Eq.(20) follows from replacing these results into Eq.(27).

!
Proof of Lemma 6.2: In [1], it is shown that the likelihood

function of the reduced multicast tree in Fig. 2(a), Lm(αm),
can be written as the sum of three distinct parts in which
the derivative ∂ log pm(xm)/∂αm

k is constant. These parts are
Ωm(k), the Ωm(f i(k))\Ωm(f i−1(k)), which we represent by
Ωm

2 for simplicity, for i = 1, 2, · · · , l(k), and (Ωm(0))c. The

derivative in these parts is 1
αm

k
, 1
β

m
fi−1(k)

∂β
m
fi−1(k)
∂αm

k
and 1

β
m
0

∂β
m
0

∂αm
k

,

respectively. Thus, the likelihood equation can be written as:

∂Lm

∂αm
k

=
1
αm

k

∑

xm∈Ωm(k)

nm(xm)

+
l(k)∑

i=1

{ 1
β

m
fi−1(k)

∂β
m
fi−1(k)

∂αm
k

∑

xm∈Ωm
2

nm(xm)}

+
1
β

m
0

∂β
m
0

∂αm
k

∑

xm∈(Ωm(0))c

nm(xm)

(29)

Similarly, we can split the likelihood function of the orig-
inal tree, L(α), into three parts in which ∂ log p(x)/∂αk is
constant. These parts will be similar to those of a multicast
tree, only with Ωm(k) as defined for the original tree in
Section IV, and with l(k) representing the number of ancestors
of node k up to node C (instead of 0 in the multicast tree).
∂ log p(x)/∂αk over these parts is also similar to the multicast

tree, i.e., 1
αk

, 1
β

m
fi−1(k)

∂β
m
fi−1(k)
∂αk

and 1
β

m
C

∂β
m
C

∂αk
. Thus, we have:

∂L
∂αk

=
1
αk

∑

x∈Ωm(k)

n(x)

+
l(k)∑

i=1

{ 1
β

m
fi−1(k)

∂β
m
fi−1(k)

∂αk

∑

x∈Ωm
2

n(x)}

+
1
β

m
C

∂β
m
C

∂αk

∑

x∈(Ωm(C))c

n(x)

(30)

(i) α̂m
k vs. α̂k, k < D. We first compare the solutions α̂m

k
of Eq.(29) and α̂k of Eq.(30) for k < D. From Eq.(17), we
have that:

∑

x∈Ωm(k)

n(x) =
∑

xm∈Ωm(k)

nm(xm) (31)



∑

x∈Ωm
2

n(x) =
∑

xm∈Ωm
2

nm(xm) (32)

∑

x∈(Ωm(C))c

n(x) =
∑

xm∈(Ωm(0))c

nm(xm) (33)

Therefore, for any link k located below node D, we have:

∂Lm

∂αm
k

=
∂L
∂αk

=⇒ α̂m
k = α̂k, k < D (34)

(ii) α̂m
agg vs. α̂CD. For αm

agg and αCD, Eq.(29) and Eq.(30)
consist of only the first and the last terms. We have that:

∂Lm

∂αm
agg

=
1

αm
agg

∑

Ωm(D)

nm(xm)+
1
β

m
0

∂β
m
0

∂αm
agg

∑

(Ωm(0))c

nm(xm)

(35)

∂L
∂αCD

=
1

αCD

∑

x∈Ωm(D)

n(x) +
1
β

m
C

∂β
m
C

∂αCD

∑

x∈(Ωm(C))c

n(x)

(36)
Thus, ∂Lm

∂αm
agg

$= ∂L
∂αCD

, but the definition of β
m
k indicates:

β
m
0 = 1 − αm

agg(1 −
Q∏

j=1

β
m
d(D)j

) (37)

β
m
C = 1 − (1 −

P∏

i=1

β
r
f(C)i

)αCD(1 −
Q∏

j=1

β
m
d(D)j

) (38)

From Eq.(31), Eq.(33), Eq.(37), and Eq.(38), we find out
that the solutions α̂m

agg of Eq.(35) and α̂CD of Eq.(36) are
related via:

α̂CD =
α̂m

agg

1 −
∏P

i=1 β
r
f(C)i

(39)

!
Proof of Lemma 6.3: is similar to the proof above.

!
Proof of Theorem 6.1: In [1], it is shown that α̂m

k in
Eq.(8) are the MLE of the multicast tree. Therefore, α̂k = α̂m

k ,
k < D, are also the MLE of the corresponding links in the
original tree. In addition, by following the same approach as
in [1], one can show that α̂k = α̂r

k, k > C, are also the
MLE of the corresponding links in the original tree. For α̂CD,
since α̂m

agg = Âm
D and using Eq.(28), one can obtain Eq.(20)

from Eq.(39). Therefore, Eq.(20) is a solution of ∂L
∂αCD

= 0.
Furthermore, from Eq.(36) and Eq.(38), we have that:

∂2L
∂α2

CD

=
−1
α2

CD

∑

x∈Ωm(D)

n(x)− 1

β
m
C

2 (
∂β

m
C

∂αCD
)2

∑

x∈(Ωm(C))c

n(x)

(40)
This is always negative. Therefore, L is concave in αCD

and Eq.(20) is the unique solution of the likelihood equation.

This solution is also in the desired range [0, 1), because from
Eq.(27) we have that:

α̂CD > 0 ⇐⇒ p̂([0, 0, · · · , 0]) < 1

i.e., not all packets are lost, which is the default assumption
in tomography: no inference can be made without data. Also:

α̂CD < 1 ⇐⇒ 1−p̂([0, · · · , 0]) < (1−
P∏

i=1

β
r
f(C)i

)(1−
Q∏

j=1

β
m
d(D)j

)

This is asymptotically true for αCD > 0, because as n −→
∞, the percentage of packets that are not lost approaches the
probability (1 −

∏P
i=1 β

r
f(C)i

)αCD(1 −
∏Q

j=1 β
m
d(D)j

).
Therefore, Eq.(20) is the MLE of αCD in the original tree.
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