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Abstract—We investigate the problem of exchanging a se-
cret key within a group of wireless devices. In particular, we
are interested in information theoretically secure key exchange
schemes that enable honest nodes of a multi-hop network to
establish a secret group key in the presence of an eavesdropping
adversary. Similarly to [1], the scheme presented here makes use
of erasures over the wireless channel. In essence, this work can
be seen as an extension of [1] for multi-hop networks instead of
a single-hop network. We extend the approach and investigate
the performance of our proposed protocol.
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I. INTRODUCTION

We consider information theoretically secure secret key
exchange over the wireless channel within a group of nodes. In
particular, a multi-hop wireless network is considered, where
a set of connected nodes wish to set up a common group key
securely in the presence of a passive eavesdropping adversary.

Compared to cryptographic alternatives, such a scheme
has significance because it does not rely on computational
assumptions, and provides guarantees against a computation-
ally unbounded adversary as well. Moreover, we also believe
that its computational complexity can be lower than that of
cryptographic counterparts that heavily rely on public key
operations in most cases.

We consider broadcast erasure channels and we take advan-
tage of the fact that spatially separated users have independent
channels. Packets sent over the wireless channel may or may
not be correctly received by other devices in the vicinity
and the probability of an erasure is different towards each
candidate receiver depending on the node’s location and the
current status of the particular channel. As a result, receivers
– including the adversary – receive correctly a different set
of transmitted packets. This property enables to benefit from
packets that are erased on the adversary’s channel but correctly
received by honest devices.

A key exchange scheme was built on this principle in [1]
for the setting where both honest nodes and the adversary are
able to overhear the broadcast communication of a selected
source node who initiates the key exchange. Here, we aim
to propose a scheme of the same vein that achieves group
secrecy in a multi-hop network, where the underlying topology
does not ensure that all nodes hear a selected source. We are
going to describe and analyze the key exchange scheme in a
specific circle topology as a canonical example and then argue
to applicability in more general networks.

The rest of the paper is organized as follows. In Section II
we describe the specific network we consider. In Section III

we give an overview of the one-hop key exchange scheme and
we present our multi-hop key exchange protocol in Section IV.
Section V provides the analysis of the scheme. We summarize
related work in Section VI. We discuss general applicability
of our scheme and draw conclusions in Section VII.

II. SYSTEM MODEL

We assume a multi-hop wireless network where the goal of
the nodes is to create a common group key that is perfectly
secret from the adversary. We do not assume any common
randomness available for them initially, however nodes can
generate random bits independently of each other.

a) Topology: Nodes are deployed in a circle topology
where nodes can communicate directly only with their left
and right neighbor along the circle. For ease of description
we assume an odd number of nodes, but this does not effect
our conclusions. Hence, in the circle topology the number of
nodes equals 2d+1, where d is the maximal distance between
two nodes in hops. See Figure 1 for illustration, when d = 3.

b) Channel: The wireless channel can be utilized either
as a reliable broadcast channel or as a broadcast erasure
channel. A packet sent over the erasure channel is either
correctly received or provides no information to the receiver.
To utilize the wireless channel as reliable nodes can apply
an error correcting code to their packets. From a cost point
of view, in our analysis we do not distinguish between the
two modes of channel usage, we treat the total number of all
wireless transmissions in the network as the communication
cost of the scheme. For simplicity, we assume that the prob-
ability δ that a packet is erased on the channel is the same
between honest nodes in the whole network and erasures are
independent for every receiver. We also assume that erasure
probabilities are known to participating nodes. Finally, when
using the erasure channel, the feedback of correctly received
packets play an important role. The size of this feedback is
considered negligible compared to the size of data packets.

c) Adversary: We aim to deal with an adversary, Eve,
who can eavesdrop on a selected link in the network. The
adversary is static and listens on a single link, but honest
nodes are not aware of the location of Eve. A packet sent over
the erasure channel can be received by Eve with probability
1 − δE . The probability of erasure towards the adversary is
also assumed to be independent from erasures towards any
other nodes. Of course, a packet sent over the reliable channel
can be correctly received by Eve as well.

d) Performance measure: We are going to investigate the
cost of creating a unit size secret key in the group in terms of
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the total number of wireless transmissions t in the network.
We refer to this as the cost of a secret key or simply the
cost of our scheme. This performance measure is inversely
proportional to the secrecy rate if the communication rate of
both channel modes are taken into account.

We will be interested in information theoretically secure
keys. Namely, we require that the group key is independent
of the information that the adversary may gain during the
protocol run: H(K) = H(K|A), where K is the group key
and A is the knowledge of Eve.

III. KEY EXCHANGE IN A SINGLE-HOP NETWORK

Our scheme crucially uses the following proposition that we
repeat here for convenience [1]. If Alice has N packets and
Eve has overheard an (unknown) subset of κ of them, then
Alice can create N − κ linear combinations of the N packets
that are information theoretically secure from Eve.

There are m nodes in the network, one of them is the source
node, who initiates the key exchange, and there are m − 1
receivers besides. The underlying topology is such that all
nodes can receive the transmissions of the source and they are
also able to send feedback to it. The channel is characterized
exactly as we described in the previous section. The protocol
has the following steps:
Single-hop protocol:

1) The source generates N random packets (x-packets) and
sends them over the erasure channel. All nodes send a
feedback to the sender of which packets were received
correctly. Nodes are expected to receive N(1 − δ)
x-packets, out of which NδE(1 − δ) packets are not
received by the adversary. These packets serve as a basis
for the common key.

2) Based on the feedback of the receivers, the source
can generate N(1 − δ(m−1))δE linear combinations of
x-packets that are ensured to be secret from the adver-
sary – this is the expected number of x-packets that
was correctly received by at least one honest node,
but not Eve. The coding scheme applied here relies
on the fact that Eve could receive only a fraction of
x-packets and does not depend on which x-packets are
those. The packets generated this way are referred as
y-packets. Every node is expected to be able to also
generate N(1 − δ)δE of the y-packets from the packets
it received through the erasure channel.

3) The source generates linear combinations of y-packets
(z-packets) such that all receivers can reconstruct all the
y-packets from the y-packets that they already have and
from the z-packets. z-packets are then sent by reliable
transmissions, so Eve can eavesdrop all of them. Now,
all nodes can reconstruct all y-packets.

4) Linear combinations of y-packets that are independent
of z-packets are used as the shared key in the group.
These packets – referred as k-packets – are perfectly
secure from the eavesdropper.

As we can see, the scheme builds on the feedback that
receivers give. The feedback needs to contain some indexes

Figure 1. Example for d = 3, k = 2. Local keys are created by up to the
k-hop neighbors of a node. As an example k3 is shown.

only, so the overhead of the feedback is considered negligible.

IV. KEY EXCHANGE IN MULTI-HOP NETWORKS

In the following, we describe an algorithm that achieves
secrecy with a cost of O(d) wireless transmissions per node.

A. Two special cases

To illustrate the difference between the multi-hop network
and the single-hop case, let us first consider two special cases.

1) Case 1: The simplest possible setting is when δE = 1
and δ = 0, i.e., honest nodes communicate reliably through
the erasure channel, while the adversary is not present at all.
Here, the problem of key exchange reduces to the problem
of one-to-all broadcast communication, because nodes can
send generated keys to each other without revealing any
information to the adversary. The problem of such broadcast
communication is analyzed in [2], [3]. It is shown that the most
efficient broadcast communication is achieved if all nodes have
a packet to broadcast. Using this protocol the key exchange
for this simple case is as follows :
Key exchange without the adversary:

1) Initially, every node generates a random key.
2) Nodes broadcast their keys to their two neighbors. This

way, every node receives two new keys.
3) Next, nodes transmit the xor of the keys they just

received. This allows both of their neighbor to decode
one novel key.

4) They repeat the previous step always with the newly
received keys until all nodes have received all keys. This
requires d transmissions from each node.

5) As a result nodes share 2d + 1 common keys.
From the optimality of this broadcast protocol, it follows
that this process provides the lowest possible cost of any
key exchange scheme, because the weakest possible adversary
against the strongest possible honest nodes was assumed.
Hence, the cost of a secret key with this method

t

key size
=

(2d + 1)d
2d + 1

= d

serves as a basis for comparison. Note that in the one-hop
case, for δE = 1, the corresponding cost is 1.



2) Case 2: Now, we discuss another special case, when the
adversary does not experience erasures at all, i.e. δE = 0. This
means that the eavesdropper overhears all communications that
are sent through the observed link whether it is a reliable
transmission or not. Clearly, in this case honest node can not
gain by using the erasure channel, so we can restrict ourselves
to the use of reliable transmissions only. Here, we can only
make use of the limitation of the adversary. Namely, that Eve
can not eavesdrop every communication, but a single link
only. However, the location of the adversary is not known, so
again we are looking for a broadcast scheme that minimizes
the maximal information that is sent through any link of the
network. The previously described broadcast protocol serves as
a solution for this problem also. Thus, a possible key exchange
protocol for this case is exactly the same as in the first case,
except for the last step, because the adversary now successfully
overhears some of the keys. During the broadcast protocol, the
adversary overhears d transmissions from both of its neigh-
bors, that means 2d independent combinations of the keys.
This reduces the achievable key size to (2d + 1) − 2d = 1.
Nodes can produce one linear combination of the keys (e.g. the
xor of them) as a group secret key. The cost of a secret key
is now

t

key size
=

(2d + 1)d
1

= (2d + 1)d.

In the one-hop network, no secrecy could be achieved if
δE = 1 resulting in infinite cost. Note that this case incor-
porates the worst possible case also, when δ = 1. These two
examples illustrate that moving from one-hop to the multi-
hop have significant consequences. The cost of a secure key
ranges within the interval (1;∞) for a one-hop network, while
within (d; (2d + 1)d) for the mutli-hop network. The second
example also shows that secrecy can be achieved by exploiting
the network topology only and not the benefit of the erasure
channel. In the general scheme we are going to exploit both
ways of achieving secrecy, combining them together.

B. General scheme

The two special cases already indicated that the best pos-
sible performance is achieved if all nodes of the network
generate a key and acts as source. This is a consequence of
the symmetry in the network. We can state in general that:

Lemma 1. There exists a scheme that achieves the optimal
performance and is symmetric.

Proof: Let us find the scheme with optimal performance.
If it is not symmetric, we can easily create a symmetric scheme
by repeating it with all possible different configurations. This
symmetric scheme has the same performance as the optimal.

For this reason, in our proposed scheme, every node per-
forms the same actions.

A high-level description of the our exchange scheme is the
following:

1) Local key exchange. Every node establishes a local key
with its k hop neighbors. For this purpose, they make

use of the erasure channel. This key generation for k = 1
is illustrated in Figure 1. We already note that possibly
these keys are not all perfectly secure from the adversary.

2) Dissemination of local keys. Nodes share the local keys
through reliable transmissions by performing d−k steps
of the described broadcast protocol.

3) Generating group keys. An appropriate number of linear
combinations of the local keys are created to establish
the secret group key.

The most straightforward approach is to create local keys
such that they are all perfectly secure from the adversary. In
this case all nodes assume the worst case possibility regarding
the location of the adversary. However, in reality there are
2(d − k) + 1 nodes in the network that are located more than
k hops away from the adversary, thus none of their y-packets
are eavesdropped and they could generate larger local keys
securely. We do not know which nodes could do so as the
location of the adversary is not known, but in the end we know
the expected number of eavesdropped packets and take it into
account in the final step, when the group key is generated. For
this reason, we introduce a parameter β ∈ (0; 1] that defines
the size of the generated local keys as a ratio between the
number of key packets and the number of y-packets they are
generated of. This way we may allow that not all local keys
are perfectly secure but achieve a larger key size and a better
performance in the end.

Next, we describe each step of the scheme in detail.
Local key exchange:

1) Every node generates N random packets, the x-packets.
These packets are transmitted through the erasure chan-
nel.

2) Nodes are expected to receive N(1− δ) x-packets from
each of their two neighbors, say x1

1, x
1
2, . . . , x

1
n and

x2
1, x

2
2, . . . , x

2
n. They xor the newly received x-packets

and transmit the resulting packets x1
1 ⊕ x2

1 . . . x1
n ⊕ x2

n

again through the erasure channel. This step is repeated
k times. Note that correctly received xor-ed packets can
always be decoded regardless of the previous erasures.

3) By the end of the previous step, from its i-hop neighbor,
a node is expected to receive N(1−δ)i x-packets. Nodes
generate y-packets as linear combinations of their own
x-packets. The number of y-packets they can securely
generate for sure (assuming a neighboring adversary) is
N(1 − δ2)δE just like in [1].

4) Nodes create linear combinations of y-packets
(z-packets) such that its two immediate neighbors
can reconstruct all its y-packets. The number of
required z-packets is NδE((1 − δ2) − (1 − δ)). The
z-packets are sent using reliable transmissions.

5) One-hop neighbors can now reconstruct all y-packets
of a node. However, they do not simply forward
z-packets, but they create new z-packets such that the
two hop neighbors can also reconstruct. This requires
NδE((1 − δ2) − (1 − δ)2) z-packets. Every node cre-
ates two sets of such z-packets, say z1

1 , z1
2 , . . . , z1

n′ and



z2
1 , z2

2 , . . . , z2
n′ , from the y-packets of the two one-hop

neighbors. The elements of the two sets are xor-ed and
resulting packets z1

1 ⊕ z2
1 . . . z1

n′ ⊕ z2
n′ are transmitted

reliably. Note that knowing the coefficients used to
create z-packets every node can decode the z-packets
of interest, as it can compute the other z-packets from
the already reconstructed y-packets.

6) The process of the previous step is performed until k-
hop neighbors also can reconstruct y-packets. In the ith
round, NδE((1 − δ2) − (1 − δ)i) packets are transmit-
ted per node. At the end of this phase, all nodes know
all y-packets of its 0 . . . k hop neighbors.

7) Linear combinations of y-packets of each node are gen-
erated as local keys. Nodes create NδEβ(1 − δ2) such
linear combinations. We call these packets k-packets and
they together serve as the local keys. All nodes have
1 + 2k such local keys.

Dissemination of local keys:
1) Nodes already have the keys generated from the

y-packets of up to their k-hop neighbors. They finish
disseminating the local keys according to the broadcast
protocol: they first transmit the xor of the local keys of
their two k-hop neighbors, then in the next round the
xor of the newly decoded two keys and so on until all
local keys are known by all nodes. This requires d − k
reliable transmissions per node.

Generating group keys:
1) This step is similar to the step when y-packets were gen-

erated of x-packets. With the same method, group keys
are generated as linear combinations of all k-packets
of the network. We have to take into account the
information that the adversary could learn of the space of
k-packets. Not all k-packets were generated perfectly se-
curely, moreover, during the previous step the adversary
could eavesdrop 2(d − k) local keys out of the (2d + 1)
local keys in the system. We compute the achievable
key size with respect to different values of β in the next
section.

Note that this scheme incorporates the two special cases as
well for k = 0 and for k = d. The coding schemes that we
use when creating secure y-packets and z-packets are known
and can be found in [1], [4].

C. Example key exchange

We illustrate the steps of the above scheme with a simple
example. Let us assume that d = 3, k = 2, β = 1 and δ = 0.7,
δE = 0.8. There are 7 nodes n1 . . . n7 in the network. We can
follow the example with the help of Figure 1.

a) Local key exchange: First, nodes generate x-packets,
say N = 10 of them (x1

1, x
1
2, . . . , x

1
10) . . . (x7

1, x
7
2, . . . , x

7
10),

and send them to their neighbors through the erasure channel.
Let us look at node n3. It expected to receive 3 x-packets
both from n2 and n4, say (x2

3, x
2
5, x

2
10) and (x4

1, x
4
3, x

4
7). As

k = 2, one more step is carried out over the erasure channel.
Node n3 produces xor-ed packets from the received x-packets:

(x2
3 ⊕ x4

1, x
2
5 ⊕ x4

3, x
2
10 ⊕ x4

7) and transmits them. From these,
n2 and n4 receive one, e.g. x2

3 ⊕ x4
1 and x2

5 ⊕ x4
3 respectively.

Knowing x2
3 and x4

3 they both can decode the unknown
packets. Every node does the same, so by the end of this step,
nodes have 10 x-packets of their own, 2 × 3 x-packets from
their one-hop neighbors and 2×1 form their 2-hop neighbors.

Let us look at node n3 and the packets generated by this
node. It can generate NδE(1 − δ2) ≈ 4 y-packets out of which
their one-hop neighbors n2 and n4 may know 3 and their
two-hop neighbors n1 and n5 1 – the ones generated from
x-packets they correctly received. So, it needs to send 1
z-packet to make its one-hop neighbors know all y-packets.
Meanwhile, n3 also receives the z-packet of n2 and n4 and
reconstructs their y-packets. One more step is needed, n3

needs to generate z-packets from the y-packets of n2 and n4

such that n2 may receive the y-packets of n4 and n4 may
receive the y-packets of n2. To that end 2 × 3 z-packets are
needed. These z-packets are sent xor-ed, both neighbors can
decode them and reconstruct the unknown y-packets. Now, n3

generates 4 linear combinations of its y-packets as k-packets.
The same k-packets are produced by n1, n2, n4, n6 as well.

Similarly, every node shares a set of common k-packets with
its one- and two-hop neighbors.

b) Dissemination of local keys: Let us call ki the set of
k-packets generated by node i from its own y-packets. So, n3

has k1, k2, k3, k4, k5. It produces the xor-ed packets k1 ⊕ k5

(element-wise) and transmits them. From this, node n2 can
decode k5 and n4 can decode k1. Node n3 receives k7 ⊕ k4

and k2 ⊕ k6. This way, it learns all k-packets and so does
every other node as well.

c) Generating group keys: Every node has 7 × 4 = 28
k-packets, while Eve overheard overall 10 linear combinations
of them (2 during the last step and 8 from the z-packets). So,
it is possible to create a secure group key consisting of 18
linear combinations of k-packets.

V. ANALYSIS

We investigate the performance of the scheme described in
the previous section. We consider the achievable key size and
the required number of transmissions separately.

Let us first look at the achievable key size. We have to
consider the amount of information that Eve may have of
the k-packets in the network. The y-packets are generated
such that they are perfectly secure from the adversary, hence
eavesdropped x-packets do not provide any useful information
for the adversary. Now, consider the number ai of z-packets
that Eve learns during the local key exchange from its i-hop
neighbor. The z-packets are transmitted reliably, hence Eve
learns all of them that go through the observed link. For the
i-hop neighbor, this equals

ai = NδE((1 − δ2) − (1 − δ)i)

overheard packets. This means that the ith hop neighbor of the
adversary could create NδE(1 − δ2) − ai k-packets securely.
In general, the knowledge of the adversary is equivalent to



knowing (()+ denotes the positive part of a number)

Ai = (NδEβ(1 − δ2) − (NδE(1 − δ2) − ai))+ =
= NδE(β(1 − δ2) − (1 − δ)i)+ (1)

of the k-packets generated by its i-hop neighbor. Thus, before
the dissemination of the local keys the information that the
adversary has of all k-packets in the network is equivalent to
know A = 2

∑k
i=1 Ai k-packets. Besides, during the dissem-

ination of the local keys it learns

2(d − k)NδEβ(1 − δ2)

further k-packets. Form this, the number of packets that can
be securely generated to serve as a group key is

K = (2d + 1)NδEβ(1 − δ2) − A − 2(d − k)NδEβ(1 − δ2).

The achieved key size is already given, now we compute
the number of required wireless transmissions. When dissem-
inating x-packets, k rounds are carried out, and the ith round
requires N(1 − δ)i−1 transmissions. This is overall

N
1 − (1 − δ)k

δ
(2)

transmissions per node, or simply Nk, if δ = 0.
Next, z-packets are disseminated, again in k rounds with

NδE((1 − δ2) − (1 − δ)i) transmissions per node in the ith
round. In this step

NδE

(
k(1 − δ2) − (1 − δ)

1 − (1 − δ)k

δ

)
(3)

packets are transmitted per node, or 0, if δ = 0.
In the last step local keys are sent performing d − k steps

of the broadcast protocol, that is

(d − k)NδEβ(1 − δ2) (4)

packets sent per node. The sum of (2), (3) and (4) results

C = N
(
δE(1 − δ2)(dβ + k(1 − β)) +

+
1 − (1 − δ)k

δ
(1 − δE(1 − δ))

)

packets sent per node overall. The total number of transmis-
sions in the network is t = (2d + 1)C, the cost of creating unit
size secret key with this the scheme is thus

(2d + 1)C
K . (5)

A. Towards understanding the algorithm parameters

There are two parameter of the scheme that affect the
performance of the key exchange. These are the number of
hops 0 ≤ k ≤ d over which the dissemination of x-packets
is performed and the local keys are established, and the size
of the generated local keys β. Interestingly, under different
settings of parameters δ and δE different values of k and β
give the lowest cost.

Our first observation is that when either δ goes to 1 or δE

goes to 0, then the achieved key size goes to zero while the

associated cost remains non-zero whenever k (= 0 due to (2).
This means that for these values the cost of a secret key goes
to infinity if k (= 0, thus there is a certain region where k = 0
gives the best performance. Of course, this region includes the
special case we analyzed, when δE = 0. To be more specific,
k = 0 gives the best performance – regardless of the value
of β – when (we omit the detailed deduction here)

δE ≤ 1
(2d + 1)(1 − δ)

. (6)

This result means that it is not worth exploiting the benefits of
the erasure channel if the quality of the adversarial channel is
over a certain threshold. It is interesting to note that the size
of this region decreases with increasing the number of hops d
in the network.

For other parameter values outside the region given by (6),
the analysis becomes more complicated, mainly because of (1).
Let us define the points where Ai become positive:

βi =
(1 − δ)i

1 − δ2
.

Further, let β0 = 1. We can see that within intervals [βj ;βj−1]
both the achieved key size K and the required number of
transmissions t are linear functions of β, if k is fixed. From
this it follows, that the minimum value for (5) is given by
a boundary of these intervals, i.e. the best performance is
achieved with β = βj for some 0 ≤ j ≤ k.

The assignment β = βj means that the adversary has no
information of the local key generated from the y-packets
of its 1 . . . j-hop neighbors, while has partial knowledge of
local keys generated from y-packets of its j + 1 . . . k-hop
neighbors. It is interesting to note that the further the adversary
is located from the source, the more information Eve gains of
the generated key. This is because of the z-packets, the further
a node is from the source, the more z-packets it receives and
so does the adversary.

To illustrate the various values that achieve the best perfor-
mance with the scheme we numerically evaluated which values
of k and β provide the lowest cost to establish a group key. We
plotted these figures for a relatively large d, in particular for
d = 50, to see a larger variety of these values. An example of
different values of k and β are shown for this case in Figures 2
and 3 respectively. We can see that for β, the higher values
dominate, only the 5 highest possible occurs. This means that
in most cases, it is not worth creating perfectly secure local
keys. On Figure 4 we can see the characteristic of the cost
function for the special case when δ = δE . For this figure we
set d = 5, which corresponds to 11 nodes in the network.

VI. RELATED WORK

The problem of achieving secrecy in the presence of an
adversary exploiting noisy broadcast transmissions over the
wireless channel was first considered in [5]. This schemes
achieve secrecy if the adversarial channel is worse than the
honest one. [6] showed that a public feedback to the sender
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Figure 2. Values of k that give the lowest cost in a network with d = 50.
The local key exchange is performed in the k-hop neighborhood of every
node.
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Figure 3. Values of β that give the lowest cost in a network with d = 50.
For i > j, βi < βj . With β = βj k-packets are secure from Eve up to its
jth neighbor.

increases significantly the achievable secrecy rate. With feed-
back available secrecy can be achieved even if the adversarial
channel is better than the channel between honest nodes.

The achievable secrecy rate between multiple nodes that
can use a public channel is given by [7]. The problem of
secrecy when both a public channel and an erasure channel
are available with multiple nodes in a one-hop network is
investigated by [8], [9], [10], [1]. Both an upper bound and
a computationally efficient scheme achieving the bound were
presented in [1]. To the best of our knowledge, for multi-hop
networks no bounds on achievable group secrecy are available.

VII. CONCLUSIONS AND DISCUSSION

We presented a group key exchange scheme for multi-
hop wireless networks that achieves unconditionally secure
group keys against an eavesdropping adversary. To that end
we make use of the wireless medium both as an erasure and
as a reliable channel. We analyzed the scheme in detail in a
circular topology under different parameter settings. As a cost

metric we used the total number of wireless transmissions in
the network required to achieve a unit size group key.

We presented and analyzed our multi-hop key exchange
protocol for a special circular topology, however we argue
that it can be extended for more general topologies as well.
We build our protocol from two components, one exploits the
topology of the network and relies on a forwarding protocol,
the other exploits the erasure channel and relies on another
forwarding scheme that disseminates packets to the k-hop
neighborhood over the erasure channel. Given such commu-
nication protocols, each step of our key exchange scheme
can be generalized easily. In a sense, the topology-dependent
part is encapsulated into the two communication protocols.
Of course, the achieved key size and the actual performance
highly depends on the current topology. Our future work
includes designing such general key-exchange schemes, as
well as investigating the optimality of our algorithms.
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Figure 4. Cost and k for d = 5. k = 0 in the region defined by (6).


