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Abstract—We consider the Gaussian N -relay diamond net-
work, where a source wants to communicate to a destination node
through a layer of N -relay nodes. We investigate the following
question: What fraction of the capacity can we maintain by
using only k out of the N available relays? We show that in
every Gaussian N -relay diamond network, there exists a subset
of k relays which alone provide approximately k

k+1
of the total

capacity. The result holds independent of the number of available
relay nodes N , the channel configurations and the operating
SNR. The result is tight in the sense that there exists channel
configurations forN -relay diamond networks, where every subset
of k relays can provide at most k

k+1
of the total capacity. The

approximation is within 3 logN + 3k bits/s/Hz to the capacity.
This result also provides a new approximation to the capacity

of the Gaussian N -relay diamond network which is up to a
multiplicative gap of 1

k+1
and additive gap of 3 logN + 3k.

The current approximation results in the literature either aim
to characterize the capacity within an additive gap by allowing
no multiplicative gap or vice a versa. Our result suggests a new
approximation approach where multiplicative and additive gaps
are allowed simultaneously and are traded through an auxiliary
parameter.1

I. INTRODUCTION

Consider a source that communicates to a destination with

the help of relays in a wireless Gaussian network. The question

we ask in this paper is, can we simplify the network by re-

moving a (significant) number of the relays, while maintaining

(a good part of) the capacity?

There are a number of important motivations, both practical

and fundamental, to consider this question. Information theory

traditionally aims to characterize the best communication rate

we can achieve by optimally utilizing a set of available relay

nodes [1], [3], [2], [4], [5]. However, complexity constraints in

practice often limit the number of relay nodes we can employ

in our relaying strategy. This necessitates to understand how

closely we can achieve the capacity of the wireless network

by using only a (small) subset of (perhaps a large number

of) available relay nodes, for various network topologies. On

the other hand, wireless networks are characterized by limited

resources such as battery life, power and bandwidth. We

can optimally utilize these resources if we know how much

each relay node contributes to the end-to-end capacity. This

introduces the notion of “capacity per relay use” as opposed to

1This work was supported by the ERC Starting Grant Project NOWIRE
ERC-2009-StG-240317.
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Fig. 1. The Gaussian N -relay diamond network. The source is connected
to the relays through a broadcast channel, while the relays are connected to
the destination through a multiple-access channel.

the traditional capacity notion, a better understanding of which

can allow efficient resource utilization in wireless networks.

In this paper we consider a source that communicates to

a destination over the Gaussian N-relay diamond network

depicted in Fig. 1. This is a two-stage network, where the

source node is connected to N relays through a broadcast

channel and the relays are connected to the destination through

a multiple-access channel. The question we are asking is, what

is the loss in the capacity if we simplify the network by

removing all but k of the N relays (for example, if we remove

all but one of the relays).

The performance loss can depend on the channel gains.

Indeed, consider for example the diamond network (N = 2),
and the example in Fig. 2. For the identical channel gains in

Fig. 2(a) we can show that the communication rate achieved

using only one of the relays is only 1 bit/s/Hz away from the

cut-set upper bound on the capacity of the network; while for

the anti-symmetrical channel gains as in Fig. 2(b) using only

one of the relays achieves (within 1 bit/s/Hz) only half of the

cutset upper bound on the capacity of the network.

To avoid channel-specific results, we can try to find what is

the largest capacity loss, universally for all possible channel

gains. For example, is it possible that, we can always find a

single relay to use and still achieve half of the capacity of the

diamond network within 1 bit/s/Hz (as was the case for the

two examples in Fig. 2). We prove in this paper that this is

indeed always the case. In fact, we show that even if we have

an arbitrary number N of relays, we can remove all but one
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Fig. 2. Two instantiations of a diamond relay network.

of them and still achieve approximately half of the capacity.

Our main result is to show that in every Gaussian N -relay
diamond network, there exist a k-relay sub-network whose
capacity Ck satisfies

Ck ≥
k

k + 1
C −G (1)

where C is the cut-set upper bound on the

capacity of the N -relay diamond network and

G = max
(

3 logN − log 27
4 , 2 logN

)

is a universal constant

independent of the channel gains and the operating SNR.

Intuitively, this holds because if all k-relay subnetworks have
small capacity, the capacity of the whole network cannot

be too large. As k increases, the difference between the

capacity of the best k-relay subnetwork and that of the whole
network naturally decreases. The surprising and interesting

outcome here is that the fraction of the capacity we can

get with k relays is independent of the number of available
relay nodes N . Moreover, it increases quite quickly with
k: in the high-capacity regime, we can get at least half-the
capacity of every N -relay diamond network by simply routing
information over the best relay, using 2 relays we achieve a
fraction of 2/3, etc.
We also show that the lower bound in (1) is tight in

the multiplicative fraction, i.e., it is possible to find N -relay
diamond networks where the capacity of every k-relay sub-
diamond network is at most Ck ≤ k

k+1C + G′, where C is

the capacity of the whole network and G′ is a constant linear

in k and independent of everything else. For the case k = 1
and N = 2, one such example is in Fig. 2 case (b).

II. RELATED WORK

Two lines of work have previously looked at a form of net-

work simplification for wireless network. First, relay selection

techniques in [10], [11], [12], design practical algorithms that

allow to select the best single relay in an N-relay diamond

network, and show that such algorithms provide cooperative

diversity. Second, work in [8], [13], [14], [15] looks at

selecting a subset of the best relays when restricted to utilize

an amplify and forward strategy. Our work differs in that we

do not restrict our attention to specific strategies (or number

of relays) but instead provide universal capacity results for

arbitrary strategies.

Our result can also be regarded as a new approximation to

the capacity C of the Gaussian N -Relay diamond network.
We show that

k

k + 1
C −3k−

k

k + 1
G ≤ C ≤ C ∀k, 1 ≤ k ≤ N−1, (2)

where C denotes the cut-set upper bound. The earlier approx-

imation results in [4], [7] yield

C − 3N ≤ C ≤ C. (3)

for the N -Relay diamond network. Note that the lower bound
we provide in (2) is tighter than (3) in the regime where N is

large. The auxiliary parameter k in (2) allows us to optimize
our lower bound as a function of C andN to make it tightest in

different regimes. WhenN is large, choosing a small k reduces
the additive gap from O(N) in (3) to O(logN). When C is

large and N is small increasing k to N we recover (3). Our

result also suggests a new approximation approach to wireless

networks where multiplicative and additive gaps are allowed

simultaneously and are traded through an auxiliary parameter

(in our case k). Earlier works in the literature either aim to

characterize the capacity within an additive gap by allowing

no multiplicative gap [4], [7], or vice-a-versa [8].

III. MODEL

We consider the Gaussian N -relay diamond network de-
picted in Fig. 1 where the source node s wants to communicate
to the destination node d with the help of N relay nodes. Let

Xs[t] and Xi[t] denote the signals transmitted by the source
node s and the relay node i ∈ {1, . . . , N} respectively at time
instant t ∈ N. Let Yd[t] and Yi[t] denote the signals received
by the destination node d and the relay node i ∈ {1, . . . , N}
respectively at time instant t. The transmitted signal Xi[t] by
relay i is a causal function of the corresponding received signal
Yi[t]. The received signals relate to the transmitted signals as

Yi[t] = hisXs[t] + Zi[t],

Yd[t] =
N
∑

i=1

hidXi[t] + Z[t],

where his denotes the complex channel coefficient between

the source node and the relay node i and hid denotes the

complex channel coefficient between the relay node i and the
destination node. Zi[t], i = 1, . . . , N and Z[t] are independent
and identically distributed white Gaussian random processes

of power spectral density of N0/2 Watts/Hz. All nodes are
subject to an average power constraint P and the narrow-

band system is allocated a bandwidth of W . Note that the

equal power constraint assumption is without loss of generality

as the channel coefficients are arbitrary. We assume that the

channel coefficients are known at all the nodes.

IV. MAIN RESULT

The main result of this paper is summarized in the following

two theorems.

Theorem 1: In every Gaussian N -relay diamond network,
there exists a subset of k relays, such that the capacity Ck
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of the corresponding Gaussian k-relay diamond sub-network
satisfies

Ck ≥
k

k + 1
C (4)

− 3k −
k

k + 1
max

(

3 logN − log
27

4
, 2 logN

)

,

where C denotes the cut-set upper bound on the capacity of

the N -relay network. Moreover, there exist configurations of
Gaussian N -relay diamond networks such that the capacity of
every k-relay sub-network satisfies,

Ck ≤
k

k + 1
C + 3k +max

(

3 log k − log
27

4
, 2 log k

)

, (5)

where C is the capacity of the N -relay network.
Remark 1: For the case k = 1, we have the following

tighter bound,

C1 ≥
1

2
C −

1

2
max

(

3 logN − log
27

4
, 2 logN

)

.

This result is shown in two steps: We first show that in every

Gaussian N -Relay diamond network, there exists a subset
of k-relay nodes such that the cut-set upper bound on the
capacity of the corresponding k-relay sub-network is larger
than k

k+1C − G. This step only involves the cut-set upper
bound on the capacities of the corresponding networks. The

second step uses the approach in [4], [7]. Namely, performing

the quantize-map-and-forward strategy of [4], [7] with these

k relay nodes and keeping the remaining N − k relays silent,
we can achieve the cut-set upper bound of the k-relay network
within 3k bits/s/Hz.

V. APPROXIMATING THE CUT-SET UPPER BOUND

In this section we derive upper and lower bounds on the cut-

set upper bound, that essentially reduce calculating its value

to a combinatorial problem.

Let [N ] =̇{1, 2, · · · , N} and for a subset Λ ⊆ [N ], Λ=̇ [N ]\
Λ. By the cut-set upper bound [6, Theorem 14.10.1], the

capacity C of the network is upper bounded by,

C ≤ C=̇ max
Xs,X1,...,XN

min
Λ⊆[N ]

I(Xs, XΛ;Yd, YΛ |XΛ), (6)

where the maximization is over the joint probability distribu-

tion of the random variables Xs and X1, . . . , XN satisfying

the power constraint P . For a set S ⊆ [N ],XS denotes the cor-

responding collection of random variables, i.e XS=̇{Xi}i∈S .

A. An Upper Bound for the Cut-Set Upper Bound

The cut-set upper bound in (6) can be upper bounded by

exchanging the order of maximization and minimization in

(6). For each cut Λ, the resulting maximization of the mutual
information can be upper bounded by the capacities of the

SIMO (single input multiple output) channel between s and

nodes in Λ and the MISO (multiple input single output)

channel between nodes in Λ and d. We have,

C ≤ min
Λ⊆[N ]

sup
X,XΛ,X

Λ

I(X,XΛ;Y, YΛ |XΛ)

= min
Λ⊆[N ]

sup
X

I(X ;YΛ) + sup
XΛ

I(XΛ;
∑

i∈Λ

hidXi + Z),

≤ min
Λ⊆[N ]

CSIMO(s;Λ) + CMISO(Λ; d).

The capacities of the corresponding SIMO and MISO channels

are well-known [9]. Plugging these expressions yields

C ≤ min
Λ⊆[N ]

log
(

1 + SNR
∑

i∈Λ

|his|
2
)

+ log
(

1 + SNR
(

∑

i∈Λ

|hid|
)2
)

, (7)

where SNR=̇ P
N0W

. We will further develop a trivial upper

bound on this expression by setting each summand in the

above summations to the maximum of the variables that are

summed. This gives us the upper bound,

C ≤ min
Λ⊆[N ]

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

+G, (8)

where Rid = log
(

1 + SNR |hid|2
)

and Ris =
log

(

1 + SNR |his|2
)

are the capacities of the corresponding

point-to-point channels and

G=̇max

(

3 logN − log
27

4
, 2 logN

)

.

A detailed derivation of this upper bound can be found in [16].

B. A Lower Bound on the Cut-Set Upper Bound

Consider a subset Γ ⊆ [N ] of the relay nodes such that
|Γ| = k. Let CΓ be the capacity of the k-relay diamond sub-
network where the source node s wants to communicate to the
destination node d with the help of these k relay nodes. The
rest N − k relay nodes are not used. The cut-set upper bound
on the capacity of the k-relay network yields

CΓ ≤ CΓ =̇ sup
X,XΓ

min
Λ⊆Γ

I(X,XΛ;Y, YΛ |XΛ), (9)

where we slightly abuse notation by assuming that Λ =Γ \
Λ when Λ ⊆ Γ. The cut-set upper bound CΓ above can be

lower bounded by choosing X, {Xi}i∈Γ to be independent

circularly-symmetric Gaussian random variables of variance

P , in which case

I(X,XΛ;Y, YΛ |XΛ)

= log
(

1 + SNR
∑

i∈Λ

|hid|
2
)

+ log
(

1 + SNR
∑

i∈Λ

|his|
2
)

.

Retaining only the maximum terms in the summations, we

obtain

CΓ ≥ min
Λ⊆Γ

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

. (10)

Note that for Γ = [N ], this lower bound for C differs from the

upper bound in (8) only by the gap term G. This implies that
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Fig. 3. A (k + 1)-relay diamond network where every subset of k relays
achieve approximately k

k+1
of the capacity. The labels indicate the capacity

of the corresponding links.

within a factor of G, the cut-set upper bound on the network
capacity behaves like the lower bound in (10). This simpler

form of the cut-set upper bound in terms of the point-to-point

capacities of the individual channels is easier to work with

and allows us to express our main problem in a combinatorial

form in the next section.

Among all Γ ⊆ [N ] with |Γ| = k, consider the one that
has largest cut-set upper bound CΓ. Let Ck denote the cut-set

upper bound on the capacity of this best k-relay sub-network,

Ck = max
Γ⊆[N ]
|Γ|=k

CΓ. (11)

Combining (10) and (11), we have

Ck ≥ max
Γ⊆[N ]
|Γ|=k

min
Λ⊆Γ

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

. (12)

VI. k RELAYS APPROXIMATELY ACHIEVE k
k+1 FRACTION

OF THE CAPACITY

In this section, we prove the Theorem 1. The proof is based

on the following two technical lemmas.

Lemma 1: Let Rid and Ris be arbitrary positive real num-

bers for i = 1, 2, · · · , N . For k ∈ [N ], let

rk=̇

max
Γ⊆[N ]
|Γ|=k

min
Λ⊆Γ

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

min
Λ⊆[N ]

(

max
i∈Λ

Rid +max
i∈Λ

Ris

) . (13)

Then, rk ≥ k
k+1 .

Lemma 2: Let Ris = i R and Rid = (k+2− i)R for every

i ∈ [k + 1] where R is an arbitrary positive number. Then,

rk =
k

k + 1
.

The configuration in Lemma 2 is depicted in Fig. 3.

Proof of Theorem 1: From (8) and (12), we have

Ck

C −G
≥ rk.

Combining this with the result of Lemma 1, we obtain

Ck ≥
k

k + 1
C −

k

k + 1
G. (14)

This proves that in every N relay diamond network, there

exists a subset of k relays, such that the cut-set upper bound
on the capacity of the corresponding k relay subnetwork is
lower bounded by approximately a fraction k

k+1 of the cut-

set upper bound on the capacity of the whole network. Let

Ck be the actual capacity of this k-relay sub-network, i.e. the
maximizing term in (11). It is shown in [7] that CΓ ≥ CΓ−3k,
for any k-relay network via demonstrating that the quantize-
map-and-forward strategy of [4] is able to achieve this rate.

Therefore,

Ck ≥ Ck − 3k.

Together with (14) this yields the result (4) in Theorem 1.

Next, in order to prove the existence of a diamond N-relay

network satisfying the inequality (5) for each of its k-relay

subnetworks, we require an upper bound on Ck and a lower

bound on C. The lower bound on C follows by applying (10)

for Γ = [N ] to obtain

C ≥ min
Λ⊆[N ]

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

, (15)

and C ≥ C − 3(k + 1) by [7]. On the other hand, applying
(8) for Γ ⊆ [N ], we obtain

CΓ ≤ min
Λ⊆Γ

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

+Gk,

where Gk=̇max
(

3 log k − log 27
4 , 2 log k

)

. Therefore,

Ck ≤ max
Γ⊆[N ]
|Γ|=k

min
Λ⊆Γ

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

+Gk. (16)

Combining (15) and (16) with the result of Lemma 2, we

obtain
Ck −Gk

C + 3(k + 1)
≤ rk =

k

k + 1
.

This proves that there exist k + 1 relay diamond networks
such that each k-relay subnetwork satisfies the bound (5) in
Theorem 1. To extend the proof for any N > k, simply
consider augmenting the k+1 relay diamond network of Fig. 3
by adding relay nodes with zero capacities. !

We will next prove Lemma 1 for the case where k = 1 and
k = 2. The proof of Lemma 1 for k > 2 and the proof of
Lemma 2 are provided in [16].

Proof of Lemma 1:We introduce the following notation. Let

ω(Γ)=̇min
Λ⊆Γ

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

(17)

ω̄=̇ min
Λ⊆[N ]

(

max
i∈Λ

Rid +max
i∈Λ

Ris

)

, (18)
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and ωk=̇maxΓ⊆[N ]
|Γ|=k

ω(Γ). Note that rk in Lemma 1 is defined

as rk = wk

ω̄
.

The first thing we note is that rk ≤ 1. This follows from the
fact that every subset of Γ is necessarily contained in a subset
of [N ]. More precisely, let Γ∗ ⊆ [N ] be such that |Γ∗| = k
and ωk = ω(Γ∗). Any Λ ⊆ [N ] can be expressed in the form
Λ = SΛ ∪ TΛ such that SΛ ⊆ Γ∗ and Λ = SΛ ∪ RΛ where

Λ = [N ] \ Λ and SΛ = Γ∗ \ SΛ. Therefore,

ω̄ = min
Λ⊆[N ]

(

max
i∈SΛ∪TΛ

Rid + max
i∈SΛ∪RΛ

Ris

)

≥ min
Λ⊆[N ]

(

max
i∈SΛ

Rid +max
i∈SΛ

Ris

)

= ω(Γ∗).

The same reasoning also implies that for k1 ≥ k2 we

have rk1
≥ rk2

, which is intuitively trivial; by allowing

greater subsets we can not have smaller sums in the form

maxi∈ΛRid +maxi∈Λ Ris.

• For k = 1, the lemma claims that w1 ≥ 1
2 ω̄. Since

w1 = max
i∈[N ]

min (Rid, Ris) ,

this is equivalent to saying that ∃ y ∈ [N ] s.t. Rid ≥ 1
2 ω̄ and

Ris ≥ 1
2 ω̄. We will prove this by contradiction. Assume

∀i ∈ [N ] , Rid <
1

2
ω̄ or Ris <

1

2
ω̄.

Let Λ0 =
{

i ∈ [N ] : Rid < 1
2 ω̄

}

. Note by the assumption

above we have Ris < 1
2 ω̄, ∀i ∈ Λ0. Note that the cut-

set upper bound in (18) can be further upper bounded by

considering only the cut Λ0 among all possible cuts Λ ⊆
[N ]. We obtain

ω̄ ≤ max
i∈Λ0

Rid +max
i∈Λ0

Ris < ω̄

since each of the two terms are strictly smaller than 1
2 ω̄.

This contradiction proves the lemma for k = 1.

• For k = 2, the lemma claims that w2 ≥ 2
3 ω̄. We can

prove this by establishing the following three properties for

a network with ω̄.
Property 1: ∃ p ∈ [N ] s.t. Rps ≥ 2

3 ω̄ and Rpd ≥ 1
3 ω̄. We

prove this by contradiction. Assume

∀i ∈ [N ] , Ris <
2

3
ω̄ or Rid <

1

3
ω̄.

Consider the cut Λ1 =
{

i ∈ [N ] : Rid < 1
3 ω̄

}

. Then Ris <
2
3 ω̄, ∀i ∈ Λ1. Considering only the cut Λ1 we obtain

ω̄ ≤ max
i∈Λ0

Rid +max
i∈Λ0

Ris < ω̄,

which is contradiction.

Property 2: Rpd < 2
3 ω̄. Otherwise the proof of the lemma

is complete for k = 2, since in such a case we have w2 ≥
w1 ≥ 2

3 ω̄.

Property 3: ∃m ∈ [N ], m )= p s.t. Rms ≥
1
3 ω̄ and Rmd ≥

2
3 ω̄. We can again prove this by contradiction. Assume the
contrary and consider Λ2 =

{

i ∈ [N ] : Rid < 2
3 ω̄

}

. Note

that p ∈ Λ2 by Property 2 and Ris < 1
3 ω̄, ∀i ∈ Λ2. The

value of the cut Λ2 is strictly smaller than ω̄, which is a
contradiction.

Consider the 2-relay sub-network composed of m and p. It
can be easily verified that ω({m, p}) ≥ 2

3 ω̄, completing the
proof of the lemma for k = 2.

The proof of the lemma for the general case follows similar

lines. The main idea is that if all k-relay subnetworks have
value smaller than k

k+1 ω̄, this allows us to construct a cut of
the network which has value strictly smaller than ω̄. !

VII. CONCLUSIONS

We showed that in an N -relay diamond network we can
use k of the N relays and approximately maintain a k

k+1
fraction of the total capacity. In particular, we can use a

single relay and approximately achieve half the capacity. Our

proof was based on reducing the network simplification to a

combinatorial problem.
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