
THE DADE GROUP OF A FINITE GROUP

CAROLINE LASSUEUR

Abstract. The aim of this paper is to construct an equivalent of the Dade group of a p-group

for an arbitrary finite group G, whose elements are equivalences classes of endo-p-permutation

modules. To achieve this goal we use the theory of relative projectivity with respect to a module
and that of relative endotrivial modules.

1. Introduction

The construction of the Dade group DpP q described by E. Dade in [Dad78a] is valid only in case
the group P is a p-group. This is linked to the facts that kP -permutation modules are indecom-
posable, whereas for an arbitrary group G, the kG-permutation modules are not indecomposable
in general, and moreover that their direct summands need not be permutation modules. The clas-
sification of endo-permutation modules via the complete description of the structure of the Dade
group DpP q was completed in 2004 by S. Bouc with [Bou06]. It had started about 25 years ear-
lier with the first papers and results by E. Dade in [Dad78a] and [Dad78b] in 1978, and the final
classification was in fact achieved through the non-effortless combined work of several (co)-authors
between 1998 and 2004, including J.L. Alperin, S. Bouc, J. Carlson, N. Mazza and J. Thévenaz.
Yet, for an arbitrary finite group G, no satisfying equivalent group structure to the Dade group on
a class of kG-modules has been defined so far.

One way to obtain a similar notion to that of the Dade Group for arbitrary groups is to con-
sider endo-p-permutation modules as described by J.-M. Urfer in [Urf06]. He shows that if P is
a p-subgroup of a group G, this notion induces a group structure, denoted by DP pGq, on a set
of equivalence classes of indecomposable endo-p-permutation kG-modules with vertex P . (The
equivalence relation being a generalisation of Dade’s compatibility relation.) However, the main
drawback of this approach resides in the fact that there is not a unique indecomposable representa-
tive, up to isomorphism, for the classes in DP pGq. More precisely, DP pGq classifies the sources of
the endo-p-permutation modules with vertex P , but not the modules themselves. Also note that if
P is a Sylow p-subgroup of G, then DP pGq – DpP,FP pGqq, where DpP,FP pGqq is the Dade group
of the fusion system FP pGq on P defined in [LM09].

The aim of this piece of work is to show how the notion of relative endotrivial module, that we
introduced in [Las11a], can generalise the Dade group in a more natural way. It is most interesting
to note that crucial building pieces for the classification of endo-permutation modules are indeed
the endotrivial modules, which are particular cases of endo-permutation modules. In some sense,
we turn the problem upside down, and show how one can regard an endo-permutation module as
an endotrivial module, of course not in the ordinary sense, but in the relative sense. This enables
us to endow a well-chosen set of isomorphism classes of endo-p-permutation modules with a group
structure, similar to that of the Dade group. We call this new group, the generalised Dade group
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of the group G, explicitly compute its structure and show how it is closely related to that of the
G-stable points of the Dade group of a Sylow p-subgroup of G.

2. Preliminaries and definitions

Unless otherwise mentioned, throughout this text k shall denote an algebraically closed field
of prime characteristic p, G a finite group whose order is divisible by p, all modules are finitely
generated, modpkGq denotes the category of finitely generated left kG-modules and stmodpkGq the
corresponding stable category. We write k for the one-dimensional trivial module. Moreover, b
denotes the ordinary tensor product over k, M˚ “ HomkpM,kq and ΩpMq the k-dual and the
kernel of a projective cover of the kG-module M , respectively.

2.1. Relative projectivity with respect to a module. Projectivity relative to a kG-module
was introduced by T. Okuyama [Oku91], then further developed and used in [Car96], [CP96],
[CPW98], and also by the author in [Las11a]. This is a generalisation of the more classic projectivity
relative to a subgroup widely used in the theory of vertices and sources. Moreover, it is also just
a special case of the relative homological algebra defined for a projective class of epimorphisms or
a pair of adjoint exact functors in [HS71, Chap. 10]. We recall here basic definitions and useful
properties.

Definition 2.1 ([Oku91]). Let V be a kG-module. A finitely generated kG-module M is termed
relatively V -projective, or simply V -projective, if there exists a kG-module N such that M is
isomorphic to a direct summand of V bk N .

Proposition 2.2 (Omnibus properties, [Las11a], Prop. 2.0.2). Let U, V be kG-modules.

(a) Any direct summand of a V -projective module is V -projective and if U P ProjpV q, then
ProjpUq Ď ProjpV q.

(b) If p - dimkpV q then ProjpV q “ modpkGq. In particular Projpkq “ modpkGq.

(c) ProjpU ‘ V q “ ProjpUq ‘ ProjpV q.

(d) ProjpUq X ProjpV q “ ProjpU b V q Ě ProjpUq b ProjpV q .

(e) ProjpV q “ ProjpV ˚q “ ProjpΩpV qq “ ProjpΩ´1pV qq “ ProjpV ‘ V q “ ProjpV b V q .

(f) If P P modpkGq is projective, then ProjpP q “ ProjpkGq, which is equal to the whole class
of projective modules in modpkGq. Moreover ProjpkGq Ď ProjpV q for any kG-module V .

Remark 2.3. The notion of relative projectivity with respect to a module encompasses the notion
of projectivity relative to a subgroup, used in the theory of vertices and sources. More precisely,
a kG-module M is projective relatively to the subgroup H of G if and only if M P Projpk ÒGHq.
Moreover, if H is a family of subgroups of G, then M is projective relatively to the family H if and
only if M is projective relatively to the kG-module V pHq :“

À

HPH kÒ
G
H .

In the sequel, we will state results concerned with projectivity relative to subgroups and families
of subgroups in terms of modules as described here. Translating projectivity relative to a subgroup
in terms of modules we have the following well-known properties (see e.g. [CR90, §19]):
- if H ď G, then ProjpkÒGHq “ ProjpkÒGgHq for every g P G;
- if K ď H ď G, then ProjpkÒGKq Ď ProjpkÒGHq.
Moreover, if H :“ tH1, . . . ,Hnu, n P N, is a family of subgroups of G, then, by the two preceding
properties and the omnibus properties above, assuming that Hi ęG Hj @ i ‰ j, 1 ď i, j ď n does
not alter ProjpHq.

In next subsection we describe how one can use projectivity with respect to a module to construct
groups of relative endotrivial modules. This essentially relies on the following theorem by Benson
and Carlson.
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Theorem 2.4 ([BC86], Thm. 2.1). Let k be an algebraically closed field of characteristic p (possibly
p “ 0). Let M,N be finite-dimensional indecomposable kG-modules, then

k |M bN if and only if

#

(1) M – N˚ ;

(2) p - dimkpNq.

Moreover, if k is a direct summand of N˚ b N then it has multiplicity one, i.e. k ‘ k is not a
summand.

Definition 2.5. A kG-module V P modpkGq is called absolutely p-divisible if p “ charpkq divides
the k-dimension of every indecomposable direct summand of V .

Proposition 2.6 ([Las11a], Prop. 2.2.2). Let V P modpkGq. Then, the following are equivalent:

(a) The trivial kG-module k is not V -projective;
(b) V is absolutely p-divisible;
(c) ProjpV q ‰ modpkGq.

2.2. Relative endotrivial modules. In [Las11a], we introduced and developed the notion of an
endotrivial module relative to a kG-module V .

Definition 2.7. Let V be an absolutely p-divisible kG-module. A module M P modpkGq is termed
endotrivial relative to the kG-module V or simply V -endotrivial if

EndkpMq –M˚ bM – k ‘ pV ´ projq .

This definition is equivalent to requiring that EndkpMq is isomorphic to a trivial module in the
relative stable category stmodV pkGq.

Lemma 2.8 ([Las11a], Lem. 3.1.2, 3.2.1, 3.2.2, 3.2.3, 4.1.1). Let V P modpkGq be an absolutely
p-divisible module. Let M,N P modpkGq be V -endotrivial modules. Then:

(a) dimkpMq
2 ” 1 mod p.

(b) The modules M˚, M bN and HomkpM,Nq are V -endotrivial.
(c) If M is indecomposable, then the vertices of M are the Sylow p-subgroups of G. Moreover,

if pP, Sq is a vertex-source pair for M , then S is a V ÓGP -endotrivial module, and S has
multiplicity one as a direct summand of M ÓGP .

(d) There is a direct sum decomposition M – M0 ‘ pV ´ projq where M0 is the unique inde-
composable summand of M that is V -endotrivial.

(e) If P is Sylow p-subgroup of G, then L P modpkGq is V -endotrivial if and only if L ÓGP is
V ÓGP -endotrivial.

Now, if V P modpkGq is an absolutely p-divisible module, one can set an equivalence relation
„V on the class of V -endotrivial kG-modules as follows: for M and N two V -endotrivial modules
let

M „V N if and only if M0 – N0 ,

where M0 and N0 are the unique V -endotrivial indecomposable summands of M and N , respec-
tively, given by part (e) of Lemma 2.8. This amounts to requiring that M and N are isomorphic
in stmodV pkGq. Then let TV pGq denote the resulting set of equivalence classes. In particular, any
equivalence class in TV pGq consists of an indecomposable V -endotrivial module M0 and all the
modules of the form M0 ‘ pV ´ projq.

Proposition 2.9 ([Las11a], Prop. 3.5.1). The ordinary tensor product bk induces an abelian group
structure on the set TV pGq defined as follows:

rM s ` rN s :“ rM bk N s

The zero element is rks and the opposite of a class rM s is the class rM˚s.
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Lemma 2.10 ([Las11a], Prop. 3.5.3). Let V P modpkGq be absolutely p-divisible. If W P ProjpV q,
then the group TW pGq can be identified with a subgroup of TU pGq via the injective group homomor-
phism TW pGq ÝÑ TV pGq : rM s ÞÝÑ rM s. By abuse of notation, we write TV pGq ď TU pGq .

Since ProjpkGq is ordinary projectivity, the group of endotrivial modules is T pGq “ TkGpGq.
Then, by the above and part (e) of Lemma 2.2, T pGq ď TV pGq for every absolutely p-divisible
V P modpkGq.

One-dimensional representations: If G is a finite group, denote by XpGq the abelian group
of all isomorphism classes of one-dimensional kG-modules endowed with the group law induced by
bk, which can also be identified with the group HompG, kˆq of k-linear characters of G. This is a
finite p1-group, isomorphic to the p1-part of the abelianisation G{rG,Gs of G.

Let V P modpkGq be an absolutely p-divisible module. Then any one-dimensional module χ is
V -endotrivial, because χ˚bχ – k. Therefore there is an embedding XpGq ÝÑ TV pGq : χ ÞÝÑ rχs.
Thus we can identify XpGq with a subgroup of TV pGq and there is always a chain of subgroups:

XpGq ď T pGq ď TV pGq

There are also several homomorphisms between groups of relative endotrivial modules induced
by a change of group.

Lemma 2.11 ([Las11a], Sect. 3.6).
1. Restriction. Let H be a subgroup of G and let V be an absolutely p-divisible kG-module, then
restriction to H induces a group homomorphism, called a restriction map:

ResGH : TV pGq ÝÑ TVÓGH pHq

rM s ÞÝÑ rM ÓGH s

Moreover, if H contains the normaliser NGpP q of a Sylow p-subgroup of G, then ResGNGpP q
is injec-

tive and sends the class of an indecomposable kG-module to the class of its kH-Green correspondents.

2. Inflation. Let N be a normal subgroup of a group G such that p | |G{N |. If V is an absolutely
p-divisible krG{N s-module, then inflation induces an injective group homomorphism:

InfGG{N : TV pG{Nq ãÑ TInfG
G{N

pV qpGq

rM s ÞÝÑ rInfGG{N pMqs

3. Isomorphism. Let ϕ : G1 ÝÑ G2 be a group isomorphism. If M is a kG1-module, then it
can be seen as a kG2-module via ϕ´1 and is denoted IsopϕqpMq. Let V be an absolutely p-divisible
kG1-module. Then there is a group isomorphism:

Isopϕq: TV pG1q ÝÑ TIsopϕqpV qpG2q

rM s ÞÝÑ rIsopϕqpMqs

Lemma 2.12. Let P be a Sylow p-subgroup of G and let H ď G be a subgroup containing NGpP q.
Let V P modpkGq be an absolutely p-divisible module.

(a) The restriction map ResGH : TV pGq ÝÑ TVÓGH pHq is injective.

(b) If ProjpV ÓGHq Ě ProjpV pYqq, where Y “ tgP X H | g P GzHu, then the restriction map

ResGH : TV pGq ÝÑ TVÓGH pHq is an isomorphism. Furthermore, the inverse map is induced

by induction, so that

TV pGq “ trM ÒGH s | rM s P TVÓGH pHqu – TVÓGH pHq .
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More accurately, on indecomposable V ÓGH-endotrivial modules, the inverse map is induced
by the Green correspondence, that is, if ΓpMq denotes the Green correspondent of an inde-
composable kH-module M , then

TV pGq “ trΓpMqs |M is an indecomposable V ÓGH -endotrivial kH-moduleu .

Lemma 2.13 ([Las11a], Lem. 4.4.1). Let G be a finite group with a normal Sylow p-subgroup P

and let V P modpkGq be an absolutely p-divisible module. Then kerpResGP q “ XpGq.

2.3. Relative syzygy modules. An important family of relative endotrivial modules is provided
by the relative syzygies modules of the trivial module. We refer to [Car96, Sect. 8] for definitions
of projective and injective resolutions with respect to a module V P modpkGq.

Definition 2.14. Let M P modpkGq, let pP˚, B˚q
ε
ÝÑ M and M

ı
ÝÑ pI˚, B

˚q be minimal V -
projective and V -injective resolutions of M , respectively. Define for all n ě 1: Ωn

V pMq :“ ker Bn´1,
Ω´n

V pMq :“ CokerpBn´1q. Define Ω0
V to be the V -projective free part of M . The module Ωm

V pMq,
m P N is called the m-th V -relative syzygy module of M .

Notation. We write ΩV pMq :“ Ω1
V pMq and simply ΩnpMq :“ Ωn

QpMq, ΩpMq :“ Ω1
QpMq if the

module Q is projective. Moreover, if H is a family of subgroups of the group G, then we write
ΩHpMq instead of ΩV pHqpMq. If V P modpkGq is absolutely p-divisible and W P ProjpV q, we write
ΩW for the class of ΩW pkq in TV pGq and we write Ω for the class of Ωpkq in TV pGq.

Lemma 2.15 ([Las11a], Lemmas 2.3.3, 2.3.4, 3.2.1). Let M,V,W P modpkGq.

(a) If ProjpV q “ ProjpW q, then Ωn
V pMq – Ωn

W pMq for every n P Z.
(b) ΩV ˝ ΩW pMq – ΩV‘W ˝ ΩVbW pMq and if H,K are families of subgroups of G, then this

formula reads ΩH˝ΩKpMq – ΩHYK˝Ω GHXKpMq where GHXK “ t gHXK |H P H,K P Ku.
(c) If M is a V -endotrivial kG-module and W P ProjpV q, then the kG-modules Ωn

W pMq are
V -endotrivial modules for every n P Z.

(d) If H ď G and V is absolutely p-divisible, then ResGHpΩV q “ ΩVÓGH
P TVÓGH pHq.

Lemma 2.16 ([Oku91], [Las11b] Lem. 3.8.1). Let n ě 2 be an integer and V1, . . . , Vn P modpkGq
be pairwise non isomorphic absolutely p-divisble modules.

(a) In TV1‘V2
pGq, we have ΩV1‘V2

“ ΩV1
` ΩV2

´ ΩV1bV2
and ΩV1bV2

“ rΩV1
˝ ΩV2

pkqs.
(b) More generally, in TV1‘...‘Vn

pGq:

ΩV1‘...‘Vn “

n
ÿ

i“1

ΩVi ´

n
ÿ

j“2

Ω
‘

j´1
r“1VrbVj

“

n
ÿ

s“1

p´1qs`1p
ÿ

1ďi1ă...ăisďn

ΩVi1
b¨¨¨bVis

q

(c) If H :“ tH1, . . . ,Hnu is a family of subgroups of the group G such that the kG-module
V pHq is absolutely p-divisible, then formula (b) reads

ΩH “

n
ÿ

i“1

ΩtHiu ´

n
ÿ

j“2

Ω GtH1,...,Hj´1uXtHju in TV pHqpGq .

2.4. Endo-permutation modules and the Dade group. If P is a p-group, then a kP -module
M is called an endo-permutation module if its endomorphism algebra EndkpMq is a permutation
kP -module. Furthermore, an endo-permutation module M is called capped if it possesses an inde-
composable summand with vertex P .
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Proposition 2.17 ([Dad78a]).
(a) The class of capped endo-permutation modules is closed under taking direct summands,

duals, tensor products (over k), Heller translates, restriction to a subgroup and tensor
induction to an overgroup.

(b) An endo-permutation kP -module M is capped if and only if the trivial module is a direct
summand of EndkpMq.

(c) If M is capped, then any two indecomposable summands of M with vertex P are isomorphic.
This unique summand, up to isomorphism, is called the cap of M and is written CappMq.

(d) An equivalence relation „ on the class of endo-permutation module is defined by: M „ N
if and only if CappMq – CappNq.

(e) Let DpP q denote the resulting set of equivalence classes. Then DpP q is an abelian group
for the following law:

rM s ` rN s – rM bN s

The zero element is the class rks of the trivial kP -module, while the opposite of a class rM s
is the class of the dual module rM˚s. This group is called the Dade group of the group P .

Note that in every equivalence class in DpP q, there is, up to isomorphism, a unique indecom-
posable module, namely the cap of any module in the class. Thus DpP q is in bijection with the
set of isomorphism classes of indecomposable endo-permutation kP -modules with vertex P which
becomes a group with the law rM s ` rN s :“ rCappM bNqs.

The classification of endo-permutation modules, through the description of the structure of the
Dade group, started with [Dad78a], [Dad78b], and independently [Alp77]. It was completed in 2004
by S. Bouc in [Bou06]. Inbetween, crucial steps for this classification include the classification of
the endotrivial modules of a p-group. All this was achieved through the work of [Pui90], [BT00],
[CT00], [CT04], [CT05], [Bou04] and [BM04].

In [Las11a], we noted that a main reason of interest in relative endotrivial modules comes from
the fact that they provide a way to define a group structure on collections of representations of
an arbitrary finite group G which gives a generalisation for the Dade group of a p-group. Indeed,
endo-permutation modules can always be seen as relative endotrivial modules in the following sense:

Theorem 2.18 ([Las11a], Thm 5.0.2). Let P be a p-group and let V pFP q :“
À

QňP k Ò
P
Q. The

Dade group DpP q can be identified with a subgroup of TV pFP qpP q via the canonical injective homo-
morphism

DpP q ÝÑ TV pFP qpP q

rM s ÞÝÑ rCappMqs .

3. Projectivity relative to the family of subgroups FG

Recall from the theory of vertices and sources that:
- If H is a subgroup of G and Q is a Sylow p-subgroup of H, then ProjpkÒGHq “ ProjpkÒGQq .

- If H ď G, then ProjpkÒGHq “ modpkGq if and only if H contains a Sylow p-subgroup of G .
Thus it follows from Remark 2.3 and Proposition 2.6 that a permutation module k ÒGR, for a
subgroup R ď G, is absolutely p-divisible if and only if R has a Sylow p-subgroup Q ňG P .

Notation. Given G a finite group, fix a Sylow p-subgroup P of G and set FG :“ tQ ň P u. Then
consider the associated module V pFGq “

À

QPFG
kÒGQ and notice that by the above ProjpV pFGqq

corresponds to projectivity relative to the family of all non maximal p-subgroups of G. We empha-
sise that ProjpV pFGqq does not depend on the choice of the Sylow p-subgroup P .

Lemma 3.1. Let H be a subgroup of G that contains a Sylow-p subgroup P of G. Then:
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(a) ProjpV pFGqÓ
G
Hq “ ProjpV pFHqq.

(b) V pFHq is absolutely p-divisible.

Proof. The Mackey formula yields

V pFGqÓ
G
H “

à

QPFG

kÒGQÓ
G
H –

à

QPFG

à

xPrHzG{Qs

kÒHxQXH “
` à

QňP

kÒHQ
˘

‘ X “ V pFHq ‘ X

where X is a direct sum of kH-modules of the form kÒHS with S ňG P , so that
kÒHS P ProjpV pFHqq. Thus by Proposition 2.2 we obtain first that ProjpXq Ď ProjpV pFHqq

and second that
ProjpV pFGqÓ

G
Hq “ ProjpV pFHq ‘Xq “ ProjpV pFHqq .

This proves (a). Now, by Green’s indecomposability Criterion, the modules k ÒPQ are indecompos-
able for every Q ň P , and moreover their dimension is divisible by p. In consequence, the module
V pFP q “

À

QPFP
k ÒPQ is absolutely p-divisible and therefore so are the modules V pFHq for every

P ď H ď G.

Indeed, .This proves (b).
�

Lemma 3.2. Let N be a normal subgroup of the group G such that p | |G{N |.Then

ProjpInfGG{N pV pFG{N qqq Ď ProjpV pFGqq .

Proof. Let P be a Sylow p-subgroup of G and PN{N the corresponding Sylow p-subgroup of G{N .
By definition,

V pFG{N q “
à

RňPN{N

kÒ
G{N
R .

Moreover, if R ň PN{N , there exists a subgroup Q such that P XN ď Q ň P and R “ QN{N .
Whence

InfGG{N pV pFG{N qq “
à

PXNďQňP

InfGG{N pkÒ
G{N
QN{N q “

à

PXNďQňP

kÒGQN .

Now, since Q is a Sylow p-subgroup of QN , ProjpkÒGQN q “ ProjpkÒGQq (see above). Whence

ProjpInfGG{N pV pFG{N qqq “ Projp
à

PXNďQňP

kÒGQN q “
à

PXNďQňP

ProjpkÒGQq Ď ProjpV pFGqq .

where the last inclusion is obtain by Proposition 2.2, parts (a) and (c), and by definition of the
family FG. �

4. V pFGq-endotrivial modules

Because the module V pFGq is absolutely p-divisible, we obtain a well-defined group TV pFGqpGq
of V pFGq-endotrivial modules. The following elementary properties of this group can easily be
deduced from the general theory of relative endotrivial modules that is developed in [Las11a].

Proposition 4.1. Let P be a Sylow p-subgroup of G and H be a subgroup of G such that P ď H ď G.

(a) There is a well-defined restriction map

ResGH : TV pFGqpGq ÝÑ TV pFHqpHq

rM s ÞÝÑ rM ÓGH s .

(b) If H contains NGpP q, then the restriction map ResGH : TV pFGqpGq
–
ÝÑ TV pFHqpHq is an

isomorphism, whose inverse is induced by the Green correspondence on the indecomposable
V pFHq-endotrivial modules.
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(c) kerpRes
NGpP q
P q “ XpNGpP qq.

(d) If ΓpXpNGpP qqq denotes the subgroup of TV pFGqpGq made up of the classes of the kG-Green

correspondents of the modules in XpNGpP qq, then kerpResGP q “ ΓpXpNGpP qqq, which is a
finite group isomorphic to XpNGpP qq.

Proof. (a) This follows from the definition of a restriction map (section 2.2) and part (a) of
Lemma 3.1.

(b) By Lemma 3.1 ProjpV pFGqÓ
G
Hq “ ProjpV pFHqq. Therefore part (b) of Lemma 2.12 applies

and yields the result. Indeed Y Ă FH (where Y is the family of subgroups in Lemma 2.12)
and thus by the omnibus properties of relative projectivity, ProjpV pFHqq Ě ProjpV pYqq.

(c) This is a straightforward application of Lemma 2.13.

(d) Since, by part (b), ResGNGpP q
is an isomorphism, (d) follows from (c).

�

Example 4.2. Thus far there are two obvious families of examples of V pFGq-endotrivial modules.

(a) The kG-Green correspondents of the one-dimensional representations of the normaliser
NGpP q, provided by part (d) of Lemma 4.1.

(b) The relative syzygies Ωn
W pMq with W P ProjpV pFGqq, n P Z and M a V pFGq-endotrivial

module as described in part (c) of Lemma 2.15. In particular if H is a family of subgroups
of G such that the associated module V pHq “

À

HPH k Ò
G
H (see Remark 2.3) is absolutely

p-divisible, then ProjpV pHqq Ď ProjpV pFGqq and therefore the relative syzygy modules
Ωn

Hpkq of the trivial module are all V pFGq-endotrivial modules.

It is known from [Alp01] that the relative syzygies Ωn
Hpkq, for families of subgroups H, are endo-

permutation modules when G is a p-group. In similar manner, [Urf06, Prop. 5.8] shows that they
are endo-p-permutation modules when G is arbitrary. We show in section 7 that the same is true for
the modules in ΓpXpNGpP qqq. Therefore there are strong connections between V pFGq-endotrivial
modules and endo-permutation modules as well as endo-p-permutation modules.

5. Endo-p-permutation modules and the Dade group of a finite group

An endo-p-permutation kG-module is a module M P modpkGq whose endomorphism algebra
EndkpMq is a p-permutation1 kG-module. I.e. if EndkpMq –

À

iPI Ni where each Ni is inde-
composable, then for every i P I, Ni | k Ò

G
Qi

for some p-subgroup Qi of G. Equivalently, M is

endo-p-permutation if and only if M ÓGQ is an endo-permutation kQ-module for every p-subgroup
Q of G. In addition, since p-permutation modules are preserved under conjugation and restriction,
it is enough to check that M ÓGP is an endo-permutation kP -module for P a fixed Sylow p-subgroup
of G. Other elementary properties of this class of modules are the following:

Lemma 5.1. Let M P modpkGq be an indecomposable endo-p-permutation module with vertex P .
Then:

(a) M ÓGP is capped endo-permutation.
(b) p - dimkM .
(c) k | EndkpMq with multiplicity 1.

Proof. (a) It is easy to see that M ÓGP is forced to have a summand with vertex P , thus it is
capped endo-permutation. See [Urf06, Chapter 2] for details.

1In English, a p-permutation module is also often termed a trivial source module.
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(b) Assume M were an indecomposable kG-module with k-dimension divisible by p, that is
absolutely p-divisible. Then, as a consequence of Theorem 2.4 (see [Las11a, Lem. 2.2.4]
for a fully developed argument), so would be M ÓGP , which contradicts statement (a).
Indeed, M ÓGP being capped, it has got at least one direct summand with k-dimension not
divisible by p, for according to the previous section, CappM ÓGP q is an indecomposable endo-
permutation module, hence V pFP q-endotrivial and thus dimk CappM ÓGP q ” ˘1 mod ppq.

(c) This is a consequence of (b) and Theorem 2.4.
�

It can be seen in [Urf07] that setting an equivalence relation on the whole class of endo-p-
permutation modules with vertex P given by a generalisation of Dade’s compatibility relation (cf
[Dad78a]) does not lead to a group structure induced by tensor product on the set of isomorphism
classes of indecomposable endo-p-permutation modules with vertex P . The idea is then to find a
subclass of this class which has more similarities with that of capped endo-permutation modules
for a p-group, and secondly to obtain a group structure induced by tensor product which embeds
naturally in TV pFGqpGq, generalising the embedding DpP q ď TV pFP qpP q of Theorem 2.18. In this
respect we focus on endo-p-permutation modules which are, at the same time, V pFGq-endotrivial.

Proposition 5.2. Let M P modpkGq be an endo-p-permutation module. The following conditions
are equivalent:

(a) M is V pFGq-endotrivial;
(b) M ÓGP is V pFP q-endotrivial;
(c) M has a unique indecomposable summand with vertex P , say M0 and, in addition, if

S P modpkP q is a source for M0, then the multiplicity of S as a direct summand of M ÓGP
is one;

(d) EndkpMq – k ‘ N where N is a p-permutation kG-module, all of whose indecomposable
summands have a vertex strictly contained in P .

Proof. (a)ô(b): By Lemma 3.1, ProjpV pFGqq Ó
G
P q “ ProjpV pFP qq, therefore statements (a) and

(b) are equivalent by part (e) of Lemma 2.8.

(a)ñ(c): Assuming (a), M admits a decomposition M – M0 ‘ pV pFGq ´ projq where M0 is the
unique indecomposable V pFGq-endotrivial summand of M . Then dimkpM0q ı 0 pmod pq and so
M0 is forced to have vertex P , whereas all the other summands of M have vertices strictly smaller
than P by definition of ProjpV pFGqq. Furthermore, by part (c) of Lemma 2.8, if S P modpkP q
is a source for M0, then S has multiplicity one in M0 Ó

G
P . In consequence, since M ÓGP is V pFP q-

endotrivial we have

M ÓGP–M0 Ó
G
P ‘pV pFP q ´ projq – S ‘ pV pFP q ´ projq

where the Krull-Schmidt Theorem forces S to be isomorphic to the unique V pFP q-endotrivial
summand of M ÓGP . Thus S has multiplicity one in M ÓGP as well.

(c)ñ(b): Write M “M0‘L with M0 indecomposoable with vertex P and L a module all of whose
indecomposable summands have a vertex strictly smaller than P . Thus L P ProjpV pFGqq and
restricting M to P yields

M ÓGP–M0 Ó
G
P ‘pV pFP q ´ projq .

Now M0 is endo-p-permutation as a direct summand of an endo-p-permutation module, therefore
M0 Ó

G
P is capped endo-permutation by Lemma 5.1. Moreover S |M0 Ó

G
P and because S has vertex

P too, we must have S – CappM0 Ó
G
P q, so that the fact that the multiplicity of S is one forces all

the remaining direct summands of M0 Ó
G
P to have a vertex strictly smaller than P , that is to be

V pFP q-ptojective. Hence M ÓGP is V pFP q-endotrivial.

(a)ô(d): Given that M is endo-p-permutation, then EndkpMq is a p-permutation module. Thus
M satisfies condition (d) if and only if it is V pFGq-endotrivial, by definition of the family FG. �
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Definition 5.3. An endo-p-permutation kG-module M is said to be strongly capped if it satisfies
the equivalent conditions of Proposition 5.2. Moreover, the unique summand of M with vertex P
given by condition (c) is called the cap of M and denoted by CappMq.

The cap of a strongly capped endo-p-permutation module is its unique indecomposable direct
summand which is itself strongly capped. Moreover, a strongly capped endo-p-permutation kG-
module has a direct sum decomposition of the form M – CappMq ‘ pV pFGq ´ projq where the
V pFGq-projective part is also an endo-p-permutation module, but not strongly capped.

Lemma 5.4. The class of strongly capped endo-p-permutation kG-modules is closed under taking
duals, tensor products and restrictions to a subgroup containing a Sylow p-subgroup.

Proof. Taking duals and tensor products are stable operations for both the classes of endo-p-
permutation modules and of V pFGq-endotrivial modules, therefore they are stable for strongly
capped endo-p-permutation modules. Now if H ď G contains a Sylow p-subgroup of G, then
the restriction to H of an endo-p-permutation module is an endo-p-permutation module and the
restriction to H of a V pFGq-endotrivial module is a V pFHq-endotrivial module by Lemma 4.1.
Thus the restriction to H of a strongly capped endo-p-permutation module is strongly capped. �

Using a similar approach to that used by Dade for endo-permutation modules, one can define an
equivalence relation „ on the class of all strongly capped endo-p-permutation modules by setting:

M „ N ô CappMq – CappNq

Write rM s for the equivalence class of the module M and let DpGq denote the resulting set of
equivalence classes.

Observe that this equivalence relation is the restriction to the class of strongly capped endo-p-
permutation of the equivalence relation „V pFGq on V pFGq-endotrivial modules defined in Section
2.2. Thus the classes do not have the same meaning in TV pFGqpGq and in DpGq, and in general
there are more representatives for a given class in TV pFGqpGq than in DpGq.

Corollary-Definition 5.5. The set DpGq with the composition law

prM s, rN sq ÞÝÑ rM s ` rN s :“ rM bN s ,

is an abelian group called the generalised Dade group of G, or simply the Dade group of G.
Moreover, DpGq can be identified with a subgroup of TV pFGqpGq through the natural embedding

ı : DpGq ÝÑ TV pFGqpGq
rM s ÞÝÑ rM s .

Proof. Lemma 5.4 and the uniqueness of the caps ensure that the assignment

prM s, rN sq ÞÝÑ rM bN s

is a well-defined composition law for DpGq. The zero element is the class rks of the trivial module,
while the opposite of a class rM s is the class rM˚s of the dual module. The map ı is well-defined
by the above observation on „ and „V pFGq and it is a homomorphism because the addition is
induced by bk on both sides. It is injective because kerpıq “ trksu. Indeed, if ıprM sq “ rks,
then M „V pFGq k which is equivalent to M „ k because both M and k are strongly capped
endo-p-permutation modules. �

We identify DpGq with its image ıpDpGqq and view DpGq as a subgroup of TV pFGqpGq.
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Remark 5.6. Notice that any ordinary endotrivial module is strongly capped, and in particular,
so is any one-dimensional kG-module. Therefore, up to identifications, the groups T pGq and XpGq
can also be viewed as subgroups of DpGq and we have a series of subgroup inclusions:

XpGq ď T pGq ď DpGq ď TV pFGqpGq

The group DΩpGq “ xΩHpkq |H Ď FGy is also a subgroup of DpGq because of the next Lemma.

Lemma 5.7. Let H Ď FG. If M is a strongly capped endo-p-permutation module, then ΩV pHqpMq
is a strongly capped endo-p-permutation kG-module.

Proof. Since M is assumed to be strongly capped, it is both endo-p-permutation and V pFGq-
endotrivial. In consequence, on the one hand ΩV pHqpMq is V pFGq-endotrivial by part (c) of Lemma
2.15, hence V pHq-endotrivial and on the second hand, it is shown in [Urf06, Proposition 5.8] that
it is endo-p-permutation, hence strongly capped, as required. �

Finally, note that DpGq can also be identified with set of isomorphism classes of indecompos-
able strongly capped endo-p-permutation kG-modules endowed with the group law rM s ` rN s :“
rCappM bNqs (where the square brackets denote the isomorphism class of a module).

6. Group operations

The operations of restriction and inflation induce group homomorphisms between the generalised
Dade groups, whereas, in contrast with ordinary Dade groups, tensor induction does not.

Lemma 6.1. Let P be a Sylow p-subgroup of G and let H be a subgroup of G such that P ď H ď G.
Then restriction induces a group homomorphism

ResGH : DpGq ÝÑ DpHq

rM s ÞÝÑ rM ÓGH s .

Furthermore, if H contains the normaliser NGpP q of the Sylow p-subgroup P , then the map ResGH
is injective.

Proof. As seen in 3.1, there is a restriction homomorphism for groups of relatively endotrivial
modules

ResGH : TV pFGqpGq ÝÑ TV pFHqpHq

rM s ÞÝÑ rM ÓGH s ,

which is an isomorphism if H contains NGpP q. In consequence, it suffices to check that it maps
DpGq to a subgroup of DpHq. In fact, if rM s P DpGq, then, M ÓGH is strongly capped by Lemma

5.4 and so rM ÓGH s P DpHq. Consequently, set ResGH : DpGq ÝÑ DpHq to be the restriction (of

maps) to DpGq of the map ResGH : TV pFGqpGq ÝÑ TV pFHqpHq. It is injective if H ě NGpP q. �

The injectivity of the map ResGNGpP q
: DpGq ÝÑ DpNGpP qq allows us to identify the Dade group

DpGq of a group G with a subgroup of the Dade group DpNGpP qq.

Lemma 6.2. Let N be a normal subgroup of the group G such that G{N has order divisible by p.
Then inflation induces a group homomorphism

InfGG{N : DpG{Nq ÝÑ DpGq

rM s ÞÝÑ rInfGG{N pMqs .



12 CAROLINE LASSUEUR

Proof. Consider the composite map

TV pFG{N q
pG{Nq

InfGG{N
ÝÝÝÝÑ TInfG

G{N
pV pFG{N qq

pGq
ı

ãÝÑ TV pFGqpGq

where the first map is given by section 2.2 and the second map is given by Lemma 2.10 because

ProjpInfGG{N pV pFG{N qqq Ď ProjpV pFGqq

by Lemma 3.2. This composite maps DpG{Nq (viewed as a subgroup of TV pFG{N q
pG{Nq) to DpGq.

Indeed, if rM s P DpG{Nq, then it only remains to check that InfGG{N pMq is endo-p-permutation.

But if we let ϕ : P {P XN
–
ÝÑ PN{N denote the canonical group morphism, then

ResGP ˝ InfGG{N pMq “ InfPP {PXN ˝ Isopϕ´1q ˝ Res
G{N
PN{N pMq

is endo-permutation because both isomorphism and inflation preserve endo-permutation modules.
Hence InfGG{N pMq is endo-p-permutation, as required. It follows that there is an inflation map

InfGG{N : DpG{Nq ÝÑ DpGq defined by restricting the map ı ˝ InfGG{N to DpG{Nq. �

Now, although the tensor induction of an endo-p-permutation module is an endo-p-permutation
module (see [Urf07, Prop. 1.2]), the tensor induction of a strongly capped endo-p-permutation
module is not necessarily strongly capped again.

Counterexample 6.3. Consider the 3-nilpotent group G :“ C7 ¸ C3 with k in characteristic 3.
(If C7 :“ă a ą and C3 :“ă u ą, then the action of C3 on C7 is given by uau´1 “ a2.) Then
consider the module Ωpkq P modpkC3q, which is endotrivial. However the tensor induced module

ΩpkqÒb
G

C3

is neither an endotrivial module nor a strongly capped endo-3-permutation module. In fact, there

exists no absolutely 3-divisible kG-module V such that the tensor induced module ΩpkqÒb
G

C3
is

V -endotrivial. See [Las11b, Lem. 7.6.5] for detailed computations.

7. The structure of DpGq

Key tools to describe the structure of the group DpGq are provided firstly by the following theo-
rem proven by Dade but never published, and secondly by a characterisation of endo-p-permutation
modules by Urfer.

Theorem 7.1 ([Dad82], Theorem 7.1). Let G be a finite group having a normal Sylow p-subgroup
P . Let M be an endo-permutation kP -module. Then M extends to a kG-module if and only if M
is G-stable.

Theorem 7.2 ([Urf07], Thm 1.5). Let G be a finite group. Let M P modpkGq be an indecomposable
module with vertex P and source S P modpkP q. Then M is an endo-p-permutation module if and
only if S is an endo-permutation module whose class rSs in the Dade group DpP q belongs to
DpP qG´st.

Recall thatDpP qG´st, the subgroup ofG-stable points ofDpP q, consists of the classes rM s P DpP q

such that ResPxPXP prM sq “ Res
xP
xPXP ˝ cxprM sq, where cx denotes the conjugation by x P G. In

particular, DpP qNGpP q´st “ DpP qNGpP q, the subgroup of fixed points of DpP q under the action of
the normaliser NGpP q by conjugation.
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Notation. If G is a finite group with a Sylow p-subgroup P , we write X :“ XpNGpP qq for the
group of one-dimensional representations of NGpP q, identified with a subgroup of DpNGpP qq by
Remark 5.6, and we write ΓpXq :“ ΓpXpNGpP qqq for the subgroup of TV pFGqpGq made up of the
classes of the kG-Green correspondents of the modules in XpNGpP qq defined in Lemma 4.1.

Theorem 7.3. Let G be a finite group with a non-trivial Sylow p-subgroup P .Then,

(a) restriction from NGpP q to P yields an exact sequence

0 ÝÑ X ãÝÝÑ DpNGpP qq
Res

NGpP q

P

ÝÝÝÝÝÝÝÝ� DpP qNGpP q ÝÑ 0 ;

(b) restriction from G to P yields an exact sequence

0 ÝÑ ΓpXq ãÝÝÑ DpGq
ResGP

ÝÝÝÝÝ� DpP qG´st ÝÑ 0 .

In the following proof, we denote by RG
H the map ResGH : TV pFGqpGq ÝÑ TV pFHqpHq and keep

the notation ResGH : DpGq ÝÑ DpHq for the restriction maps at the level of the Dade groups.

Proof. First, it follows from Theorem 7.2, ImpResGP q ď DpP qG´st. For if M is an indecomposable

strongly capped endo-p-permutation kG-module with source S P modpkP q, then ResGP prM sq “ rSs.

We claim that ImpResGP q “ DpP qG´st. Let rSs P DpP qG´st with S indecomposable. Notice that
DpP qG´st Ď DpP qNGpP q, so that by Dade’s Theorem S P modpkP q extends to a kNGpP q-module
rS. In other words, rS Ó

NGpP q
P – S and S is a source for rS. By construction rS is strongly capped

endo-p-permutation because its source is endo-permutation and has multiplicity 1 in its restriction.

Hence rrSs P DpNGpP qq and Res
NGpP q
P prrSsq “ rSs. This proves the surjectivity of the map Res

NGpP q
P

onto DpP qNGpP q.

Now if ΓprSq is the kG-Green correspondent of rS, then it has source S as well. Therefore ΓprSq is
endo-p-permutation by Theorem 7.2. It is moreover V pFGq-endotrivial by Lemma 4.1 because the
restriction map RG

NGpP q
is an isomorphism whose inverse is induced by Green correspondence on

indecomposable kNGpP q-modules. Thus rΓprSqs P DpGq and ResGP prΓp
rSqsq “ rSs P DpP qG´st, as

required.

Next we claim that the kernel of the restriction map ResGP : DpGq ÝÑ DpP q is ΓpXq. It was

established in Lemma 4.1 that kerpR
NGpP q
P q “ X. Therefore

kerpRes
NGpP q
P q “ kerpR

NGpP q
P q XDpNGpP qq “ X XDpNGpP qq “ X

because X ď DpNGpP qq as noticed in Remark 5.6. Furthermore,

kerpResGP q “ pResGNGpP q
q´1

´

kerpRes
NGpP q
P q

¯

“ pResGNGpP q
q´1pXq

“ pRG
NGpP q

q´1pXq XDpGq “ ΓpXq XDpGq

and it remains to show that ΓpXq ď DpGq, i.e. that the indecomposable representatives of the
classes in ΓpXq are endo-p-permutation modules. Indeed, if χ P X, then its kG-Green correspondent
Γpχq has the same source as χ, that is the trivial module k P modpkP q. Therefore Γpχq | k ÒGP , or
in other words, it is a p-permutation module and thus an endo-p-permutation module. Hence
kerpResGP q “ ΓpXq. �

Corollary 7.4. The generalised Dade group DpGq of a finite group G is finitely generated.

Proof. The group ΓpXq – X is finite. The group DpP qG´st is finitely generated as a subgroup of
DpP q, which is finitely generated by [Pui90]. Thus the exact sequence

0 ÝÑ ΓpXq ãÝÝÑ DpGq
ResGP

ÝÝÝÝÝ� DpP qG´st ÝÑ 0 .

of Theorem 7.3 implies that DpGq is finitely generated too. �



14 CAROLINE LASSUEUR

8. The generalised Dade group and control of p-fusion

The Dade group DpGq may always be identified, via restriction, with a subgroup of the Dade
group DpNGpP qq of the normaliser of a Sylow p-subgroup P of G. Then one may naturally ask
when these groups are equal. The control of p-fusion in G by a subgroup H gives a partial answer
to this question.

Proposition 8.1. Let H be a subgroup of G such that NGpP q ď H ď G. Then DpGq “ DpHq if
and only if DpP qG´st “ DpP qH´st.

Proof. Since H ď G, DpP qG´st ď DpP qH´st. Thus, there is a commutative diagram with exact
rows given by Theorem 7.3

0 // ΓGpXq

–

��

// DpGq
ResGP //

� _

ResGH

��

DpP qG´st //
� _

i

��

0

0 // ΓHpXq // DpHq
ResHP // DpP qH´st // 0

where i denotes the inclusion ofDpP qG´st inDpP qH´st as subgroup, and where ΓGpXq “ kerpResGP q

and ΓHpXq “ kerpResHP q. By part (d) of Proposition 4.1, ΓGpXq – X – ΓHpXq. Then, by the

five-lemma the map ResGH is surjective if and only if the map i is. Thus, up to identification,
DpGq “ DpHq if and only if DpP qG´st “ DpP qH´st. �

Links between control of p-fusion and the G-stable points of the Dade group of a p-group were
already established in [Urf07]:

Proposition 8.2 ([Urf07], Prop. 1.9). Let P be a p-subgroup of G and assume that p-fusion in G
is controlled by H ď G. Then DpP qG´st “ DpP qH´st.

Corollary 8.3. Assume that the p-fusion of G is controlled by a subgroup H ď G.

(a) If G ě H ě NGpP q, then DpGq “ DpHq.
(b) If NGpP q ě H ě P , then DpGq “ DpNGpP qq.

Proof. (a) is a straightforward consequence of Propositions 8.1 and 8.2.
(b) If NGpP q ě H ě P , and H controls p-fusion then so does NGpP q and part (a) yields the

result.
�

Example 8.4. For instance, if G is a group with an abelian Sylow p-subgroup P , then the nor-
maliser NGpP q controls p-fusion in G by Burnside’s Theorem. If G is a p-nilpotent group, then P
controls p-fusion. If p is odd and G is a group with a metacyclic Sylow p-subgroup P , then NGpP q
controls p-fusion in G too (because such p-groups are resistant to fusion). Therefore, in all these
cases it follows from the corollary that DpGq “ DpNGpP qq.

Example 8.5. An example in which DpGq ň DpNGpP qq is provided by G :“ GL3pF3q and its
extraspecial Sylow 3-subgroup P of order 27 which consists of the upper unitriangular matrices.
The subgroup of P generated by the matrix

x :“

¨

˝

1 0 1
0 1 1
0 0 1

˛

‚

is cyclic of order 3 and it is proven in [Urf07, Section 4] that the class in DpP q of the relative syzygy
module ΩkÒPăxą

pkq is NGpP q-stable but not G-stable. Thus DpP qG´st ň DpP qNGpP q and it follows

from Proposition 8.1 that DpGq ň DpNGpP qq.
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9. The p-nilpotent case

In this section, consider G is a p-nilpotent group. In other words, G is a semidirect product
G “ N ¸ P , with N “ Op1pGq and P a Sylow p-subgroup of G. Thus G “ NP , N X P “ t1u, and
we let ϕ : P “ P {N X P ÝÑ NP {N “ G{N be the canonical isomorphism. For the structure of
the groups TV pGq of V -endotrivial modules for an arbitrary absolutely p-divisible kG-module V ,
we refer to [Las11b, Chap. 6].

Theorem 9.1. Let G “ N¸P be a p-nilpotent group. The restriction map ResGP : DpGq ÝÑ DpP q
is split surjective. In consequence there is a group isomorphism

DpGq – XpNGpP qq ‘DpP q .

Proof. Since G is p-nilpotent, the Sylow p-subgroup P controls p-fusion in G, thus Proposition 8.2
yields DpP qG´st “ DpP qP´st “ DpP q. Now [Las11b, Thm. 6.2.2] states that the restriction map

ResGP : TV pFGqpGq ÝÑ TV pFP qpP q is split surjective and moreover that a section is provided by the
map

TV pFP qpP q
Isopϕq
ÝÝÝÝÑ TV pFG{N q

pG{Nq
InfGG{N
ÝÝÝÝÑ TV pFGqpGq .

By Section 6, both these maps can be restricted to the Dade groups so that
InfGG{N ˝ Isopϕq : DpP q ÝÑ DpGq is a section for ResGP : DpGq ÝÑ DpP q. In consequence, in

view of Theorem 7.3, DpGq decomposes as a direct sum

DpGq – ΓpXq ‘DpP qG´st “ ΓpXq ‘DpP q .

Finally, ΓpXq – X “ XpNGpP qq by Lemma 4.1. The result follows. �

10. The cyclic case

Consider G is a finite group with a non-trivial cyclic Sylow p-subgroup P – Cpn , n ě 1. In this
case, the classification provided in [Las11a, Sect. 8] for the groups of relative endotrivial modules
of G allows us to determine the generalised Dade group DpGq with ease.

Proposition 10.1. Let G be a finite group with a non-trivial cyclic Sylow p-subgroup P – Cpn ,
n ě 1, and for 0 ď r ď n´ 1 let Zr denote the unique cyclic subgroup of order pr of P . Then

DpGq “ TV pFGqpGq “ TkÒGZn´1

pGq “ăΓpXpNGpP qqq, tΩkÒGZs
| 0 ď s ď n´ 1uą .

Proof. Since P is abelian, NGpP q “: N controls p-fusion by Burnside’s Theorem. Therefore, by
Corollary 8.3, DpGq – DpNq. Next we claim that DpNq “ TV pFN qpNq. By definition V pFN q “
Àn´1

s“0 kÒ
N
Zs

so that

ProjpV pFN qq “

n´1
à

s“0

ProjpkÒNZs
q “ ProjpkÒNZn´1

q

because ProjpkÒNZs
q Ď ProjpkÒNZn´1

q for every s ď n´ 1 as pointed out in remark 2.3. Therefore

TV pFN qpNq “ TkÒNZn´1

pNq .

In addition, by [Las11a, Thm. 8.2.6], we have

TkÒNZn´1

pNq “ăXpNq, tΩkÒNZs
| 0 ď s ď n´ 1uą .
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Now, XpNq ď DpNq by Remark 5.6 and the relative syzygy modules ΩkÒNZs
pkq are endo-p-permutation

modules by Lemma 5.7. Whence DpNq “ TV pFN qpNq. Finally, TV pFGqpGq – TV pFN qpNq via re-
striction, by Lemma 4.1. Consequently, there is a commutative diagram:

0 // TV pFGqpGq
ResGN

–
// TV pFN qpNq

// 0

0 // DpGq
?�

OO

ResGN

–
// DpNq // 0

where the left-hand side vertical arrow is the inclusion as a subgroup of DpGq in TV pFGqpGq. Thus,
the equality DpGq “ TV pFGqpGq follows by the 5-Lemma. �

11. The Klein case

Consider G is a finite group with a Sylow 2-subgroup P – C2 ˆ C2 and assume that the
characteristic of the field k is 2.

Theorem 11.1 ([Las11a], Thm. 6.0.4). Let G be a finite group with a normal Sylow 2-subgroup
P – C2 ˆ C2. Let V be any absolutely 2-divisible kG-module. Then there is a group isomorphism
ϕ : TV pGq ÝÑ T pGq : rM s ÞÝÑ rM0s where M –M0‘pV ṕrojq with M0 the unique indecomposable
and V -endotrivial summand of M .

Proposition 11.2. Let G be a finite group with a Sylow 2-subgroup P – C2 ˆ C2.

(a) For any absolutely 2-divisible kG-module V , the group TV pGq identifies with a subgroup of
TV pFGqpGq – T pNGpP qq.

(b) Moreover DpGq “ TV pFGqpGq .

Proof. Set N :“ NGpP q.

(a) If V P modpkGq is absolutely 2-divisible, then, by Lemma 2.11, the restriction map

ResGN : TV pGq ÝÑ TVÓGN pNq is injective and sends the class of an indecomposable V -endo-

trivial kG-module to the class of its kN -Green correspondent. By Lemma 4.1, the map
ResGN : TV pFGqpGq ÝÑ TV pFN qpNq is an isomorphism whose inverse is induced by Green
correspondence on the indecomposable V pFN q-endotrivial modules. Furthermore, by The-
orem 11.1, TV pFN qpNq – T pNq – TVÓGN pNq. Therefore, the situation is as described in the

following diagram:

TV pFGqpGq

ResGN–

��

TV pGq� _

ResGN

��

? _oo_ _ _ _ _ _ _ _ _ _ _ _

TV pFN qpNq
oo – // T pNq oo

– // TVÓGN pNq

Thus, there is an injective group homomorphism TV pGq ÝÑ TV pFGqpGq : rLs ÞÝÑ rLs,
where L denotes an indecomposable V -endotrivial module.

(b) The series of embeddings T pNq ď DpNq ď TV pFN qpNq and Theorem 11.1, which identifies
T pNq with TV pFN qpNq, allow us to conclude that DpNq “ TV pFN qpNq. Then, to prove that
DpGq “ TV pFGqpGq, use the same argument as in the proof of Proposition 10.1 in the cyclic
case, because P is also abelian and thus NGpP q controls p-fusion in G.

�
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12. The group DΩpGq

If P is a p-group, with p odd, then one of the main results of the classification of endo-permutation
modules asserts that DpP q “ DΩpP q “ xtΩkÒPQ

|Q ň P uy (see [Bou06]). In this section we ask

whether or not a similar result holds for the generalised Dade group.

Recall from 5.6 and 5.7 that the group DΩpGq “ xΩHpkq |H Ď FGy is a subgroup of DpGq.

Lemma 12.1. The group DΩpGq is generated by the relative syzygies ΩkÒGQ
, where Q runs over the

proper subgroups of P , that is DΩpGq “ xtΩkÒGQ
|Q P FGuy .

Proof. If H Ď FG is a family of subgroups, set nH :“ maxt|H| |H P Hu. We claim that
ΩH P xtΩkÒGQ

|Q P FGuy for every H Ď FG and the proof proceeds by induction on the natural

number nH. First, if nH “ 1, then ProjpHq is projectivity relative to the trivial subgroup t1Gu,
which is projectivity in the usual sense. Hence

ΩH “ ΩkÒG
t1Gu

P xtΩkÒGQ
|Q P FGuy .

Then, let H :“ tH1, . . . ,Hnu, n P N be a subfamily of FG such that nH ě 2 and assume as induction
hypothesis that ΩF P xtΩkÒGQ

|Q P FGuy for every subfamily F Ď FG such that 1 ď nF ă nH.

Furthermore, according to Remark 2.3, we may assume that Hi ęG Hj @ i ‰ j, 1 ď i, j ď n. Then,
according to Remark 2.16 we can write

ΩH “

n
ÿ

i“1

ΩtHiu ´

n
ÿ

j“2

Ω GtH1,...,Hj´1uXtHju in TV pHqpGq .

The sum
řn

i“1 ΩtHiu P xtΩkÒGQ
|Q P FGuy. Moreover, for every 2 ď j ď n, the family of subgroups

GtH1, . . . ,Hj´1u X tHju is made up of the subgroups of the form gHi X Hj with g P G and
1 ď i ď j ´ 1, which all satisfy gHi X Hj ň Hj by the above assumption. In consequence, the
sum

řn
j“2 Ω GtH1,...,Hj´1uXtHju belongs to xtΩkÒGQ

|Q P FGuy by induction hypothesis, and the result

follows. �

Remark 12.2. If H is a subfamily of FG, then it follows from the preceding proof that
ΩH P xtΩkÒGQ

|Q ď H for some H P Huy.

Question: In case G “ P is a p-group and p is odd, then DpP q “ DΩpP q (see [Bou06]). Does a
similar result hold in general for DpGq when G is an arbitrary finite group?

Because the one-dimensional representations are always in DpGq this result obviously has to be
adapted when G is not a p-group. Nonetheless, we show that in the following cases, DpGq is DΩpGq
modulo the Green correspondents ΓpXq of one-dimensional representations of NGpP q (with P a
Sylow p-subgroup of G):
(a) when G has a cyclic Sylow p-subgroup;
(b) when p is odd and P is normal in G;
(c) when NGpP q controls p-fusion in P ;
(d) it is also true for G “ GL3pFpq with p odd.
The question of determining if this result holds in general is left open.

(a) The cyclic case. In case the group G has a cyclic Sylow p-subgroup P , then it was proven
in Proposition 10.1 that

DpGq – TV pFGqpGq “ TkÒGZn´1

pGq “ăΓpXpNGpP qqq, tΩkÒGZs
| 0 ď s ď n´ 1uą .
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Hence DpGq is indeed DΩpGq modulo ΓpXq.

(b) The normal odd case: In order to prove (b), we first recall that a set of generators for
DpP qG´st is provided in [Urf06]:

Proposition 12.3 ([Urf06], Cor. 3.7). Suppose that p is an odd prime and P is a Sylow p-subgroup
of the group G. Then the abelian group DpP qNGpP q is spanned by the elements

fQ :“
ÿ

gPrNGpP q{PNGpP,Qqs

ΩkÒPgQ

where NGpP,Qq “ tg P NGpP q |
gQ “ Qu and Q runs over FG.

In what follows, we consider that P Ĳ G, so that NGpP,Qq “ NGpQq for every subgroup Q ď P .
We still need another technical result on projectivity relative to p-subgroups.

Lemma 12.4. Let G be a group with a normal Sylow p-subgroup P and R be a proper subgroup of
P . Then

ProjpkÒGRÓ
G
P q “ Projp

à

xPrG{PNGpRqs

kÒPxRq .

Proof. The Mackey formula yields ProjpkÒGQÓ
G
P q “ Projp

À

xPrG{P s kÒ
P
xQq . Now, in order to obtain

the equality of the statement, recall from Proposition 2.2 that if V,W P modpkGq and ProjpV q “
ProjpW q then ProjpV ‘W q “ ProjpV q. Therefore, in

Projp
à

xPrG{P s

kÒPxQq “
à

xPrG{P s

ProjpkÒPxQq

it is enough to keep only one copy of the summands generating the same relative projectiv-
ity. Thus, compute that for x, y P G, Projpk ÒPxQq “ Projpk ÒPyQq if and only if there ex-

ists p P P such that pxQ “ yQ if and only if y´1x P PNGpQq (since P Ÿ Gq if and only if
y ” x mod PNGpQq. Whence ProjpkÒGQÓ

G
P q “ Projp

À

xPrG{PNGpQqs
kÒPxQq. �

Proposition 12.5. Let p be an odd prime and P be a normal Sylow p-subgroup of G. Then the
restriction map ResGP : DΩpGq ÝÝ� DpP qG is surjective.
More accurately, if Q ň P , then any generator fQ of DpP qG described in Proposition 12.3 can be
expressed as

fQ “
ÿ

gPrG{PNGpQqs

ΩkÒPxQ
“ ResGP pΩkÒGQ

q `X

where X P xtfR P DpP q
G |R ň P and |R| ă |Q|uy.

Proof. The proof proceeds by induction on the order of the subgroup Q.

Case |Q| “ 1: by part (d) of Lemma 2.15, ResGP pΩkÒG
t1u
q “ ΩkÒG

t1u
“ ft1u. Hence ft1u P ResGP pD

ΩpGqq.

Induction step: Let Q ň P such that |Q| ą 1 and assume as induction hypothesis that for every
subgroup S ň P such that |S| ă |Q|, the generator fS “

ř

xPrG{PNGpSqs
ΩkÒGxS

of DpP qG belongs

to ResGP pD
ΩpGqq. Again by part (d) of Lemma 2.15, in DpP q we have

ResGP pΩkÒGQ
q “ ΩkÒGQÓ

G
P
“ ΩV

where V :“
À

xPrG{P s k Ò
P
xQ, so that the second equality follows from the Mackey formula. Taking

the vision of P -sets, ΩV “ ΩY where Y is the P -set defined by Y :“
Ů

xPrG{P s P {
xQ. Then [Bou00,

Lem. 5.2.3] yields the formula

ΩY “
ÿ

U,V PrsP s

UďPV

Y V
‰H

µP pU, V qΩP {U



THE DADE GROUP OF A FINITE GROUP 19

where rsP s is a set of representatives of conjugacy classes, under the action of P , of subgroups in
P and µP is the Möbius function of the poset prsP s,ďP q. Translating this in terms of kP -modules
yields:

ΩV “
ÿ

UPrsP s

UďGQ

´

ÿ

V PrsP s

UďPVďGQ

µP pU, V q
¯

ΩkÒPU
“

ÿ

UPrsP s

U“GQ

ΩkÒPU
`

ÿ

UPrsP s

UňGQ

´

ÿ

V PrsP s

UďPVďGQ

µP pU, V q
¯

ΩkÒPU

“
ÿ

xPrG{PNGpQqs

ΩkÒPxQ
`

ÿ

UPrGzrsP ss

UăGQ

˜

´

ÿ

V PrsP s

UďPVďGQ

µP pU, V q
¯

ÿ

xPrG{PNGpUqs

ΩkÒPxU

¸

“ fQ `
ÿ

UPrGzrsP ss

UăGQ

´

ÿ

V PrsP s

UďPVďGQ

µP pU, V q
¯

fU

where rGzrsP ss denotes a set of representatives of conjugacy classes of classes of subgroups in rsP s
under the left action of G. Then set

X :“ ´
ÿ

UPrGzrsP ss

UăGQ

´

ÿ

V PrsP s

UďPVďGQ

µP pU, V q
¯

fU P xtfR P DpP q
G |R ň P, |R| ă |Q|uy .

By induction hypothesis X P ResGP pD
ΩpGqq. It follows that fQ “ ResGP pΩkÒGQ

q`X P ResGP pD
ΩpGqq,

as required. �

Theorem 12.6. Let p be an odd prime and G a finite group having a normal Sylow p-subgroup.
Then

DpGq “ XpGq `DΩpGq .

Proof. By Theorem 7.3 the restriction map ResGP : DpGq ÝÑ DpP qG induces an isomorphism

DpGq{XpGq – DpP qG. Moreover the previous proposition states that restriction of ResGP to DΩpGq
is surjective onto DpP qG. Hence the result. �

Notice that the sum DpGq “ XpGq `DΩpGq of Theorem 12.6 need not be direct. A counterex-
ample is provided by taking G to be a group with a normal Sylow p-subgroup isomorphic to a
cyclic p-group Cpn with p, n ě 3. Indeed, Theorem 10.1 states that DpGq “ TkÒGZn´1

pGq, and it

can be seen from the description by generators and relations of this group given in [Las11a, Thm.
8.2.6] that there exists a class rνs P XpGq, rνs ‰ rks, such that 2ΩkÒGZn´1

“ rνs and thus rνs belongs

to both XpGq and DΩpGq.

(c) DΩ and control of fusion.

Lemma 12.7. Let H be a subgroup of G containing the Sylow p-subgroup P of G and assume
that H controls p-fusion in G. Then the restriction map ResGH : DΩpGq ÝÑ DΩpHq is surjective.
Moreover, if H contains NGpP q, then restriction induces an isomorphism DΩpGq – DΩpHq.

Proof. The proof is similar to that of Proposition 12.5. We claim that for every subgroup Q ň P ,
ResGHpΩkÒGQ

q “ ΩkÒHQ
`X with X P xtΩkÒHR

P DΩpHq |R ň P, |R| ă |Q|uy. We proceed by induction

on the order of the subgroup Q.

Case |Q| “ 1 : ΩkÒGQ
“ Ω so that by Lemma 2.15, part (d), ResGHpΩq “ Ω “ ΩkÒH

t1u
P ResGHpD

ΩpGqq.

Induction step: Let Q ň P be a subgroup such that |Q| ě 2 and assume that ResGHpΩkÒGS
q has

the required form for every subgroup S ň P such that |S| ă |Q|. Compute, by part (d) of Lemma
2.15, that

ResGHpΩkÒGQ
q “ ΩkÒGQÓ

G
H
“ ΩV ,



20 CAROLINE LASSUEUR

where by the Mackey Formula one can set V :“
À

xPrHzG{Qs kÒ
H
xQXH . Then decompose

V “
à

xPrHzG{Qs

kÒHxQXH “
à

xPrHzG{Qs
xQďH

kÒHxQ ‘
à

xPrHzG{Qs
xQęH

kÒHxQXH .

Write V1 :“
À

xPrHzG{Qs, xQďH k ÒHxQ and V2 :“
À

xPrHzG{Qs, xQęH k ÒHxQXH . Then, by part (a) of

Lemma 2.16, ΩV “ ΩV1 ` ΩV2 ´ ΩV1bV2 .

Now, firstly, since H controls fusion, for every x P rHzG{Qs such that xQ ď H, there exists h P H,
such that xQ “ hQ. In consequence ProjpV1q “ Projpk ÒHQ q by Proposition 2.2 (c) and (e), and

thus by part (a) of Lemma 2.15 we have ΩV1
“ ΩkÒHQ

.

Secondly, ProjpV2q corresponds to projectivity relative to the family of subgroups
H :“ t xQ X H |x P rHzG{Qs, xQ ę Hu, all of whose elements have order strictly smaller than
|Q|. Therefore Remark 12.2 states that

ΩV2
“ ΩH P xtΩkÒGS

|S ň P, |S| ă |Q|uy .

Thirdly, by (b) of Lemma 2.15, ΩV1bV2 “ ΩHXHtQu. Since H consists of subgroups all of order

strictly smaller than |Q|, so does the family HX HtQu. Thus, the same argument as above yields

ΩV1bV2 “ ΩHXHtQu P xtΩkÒGS
|S ň P, |S| ă |Q|uy .

Therefore set X :“ ´ΩV2 ` ΩV1bV2 so that

ΩkÒHQ
“ ResGHpΩkÒGQ

q `X

with X P xtΩkÒHR
P DΩpHq |R ň P, |R| ă |Q|uy, as required. Then, by induction hypothesis,

X P ResGHpD
ΩpGqq and thus so does ΩkÒHQ

. In conclusion all the generators of DΩpHq are in

ResGHpD
ΩpGqq and the surjectivity of ResGH : DΩpGq ÝÑ DΩpHq follows.

Finally, if NGpP q ď H ď G, the map ResGH : DpGq ÝÑ DpHq is injective by Lemma 6.1. Hence
the isomorphism follows. �

Corollary 12.8. Let p be an odd prime. If P is a Sylow p-subgroup of G and NGpP q controls
p-fusion in G, then the Dade group decomposes as

DpGq “ DΩpGq ` ΓpXq .

Proof. Theorem 7.3 provides us with the exact sequence

0 ÝÑ ΓpXq ãÝÝÑ DpGq
ResGP

ÝÝÝÝÝ� DpP qG´st ÝÑ 0 .

Thus it suffices to prove that the map ResGP : DΩpGq ÝÑ DpP qG´st is surjective. Indeed, since

NGpP q controls p-fusion, DpP qNGpP q “ DpP qG´st by Proposition 8.2. Therefore, the map ResGP :
DΩpGq ÝÑ DpP qG´st is equal to the composition

DΩpGq
ResGNGpP q

ÝÝÝÝÝÝÝÝ� DΩpNGpP qq
Res

NGpP q

P

ÝÝÝÝÝÝÝÝ� DpP qNGpP q “ DpP qG´st

where ResGNGpP q
is surjective by the previous lemma and Res

NGpP q
P is surjective by Proposition 12.5.

Hence the result. �
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(d) The example of GL3pFpq. Let G “ GL3pFpq with p an odd prime. This group has an
extraspecial Sylow p-subgroup P of order p3 consisting of the upper unitriangular matrices and
generated by the three matrices

x :“

¨

˝

1 0 1
0 1 1
0 0 1

˛

‚, y :“

¨

˝

1 1 1
0 1 0
0 0 1

˛

‚ and z :“

¨

˝

1 0 1
0 1 0
0 0 1

˛

‚ .

Since fusion in P is the same under the action of GL3pFpq or under the action of PSL3pFpq,

DpP qG´st “ DpP qPSL3pFpq´st. This last group was computed in [LM09, Example 6.6], by the
following general method:

DpP qG´st “ DpP qNGpP q X
č

EďP
E p-essential

DpP qNGpEq´st.

(This is actually a consequence of Alperin’s fusion Theorem.) In the current case GL3pFpq has
exactly two p-essential subgroups, namely E1 :“ă x, z ą and E2 :“ă y, z ą. Moreover

NGpE1q “

¨

˝

GL2pFpq
˚

˚

0 0 F˚p

˛

‚“: Hp and NGpE2q “

¨

˝

F˚p ˚ ˚

0
0

GL2pFpq

˛

‚“: Kp .

which are the two maximal parabolic subgroups in GL3pFpq and both of which contain NGpP q.
Hence

DpP qG´st “ DpP qHp´st XDpP qKp´st .

Proposition 12.9. Let p be an odd prime. Let G :“ GL3pFpq and let Hp and Kp be as above.

Then the three restriction maps ResGP : DΩpGq ÝÑ DpP qG´st, Res
Hp

P : DΩpHpq ÝÑ DpP qHp´st,

and Res
Kp

P : DΩpHpq ÝÑ DpP qKp´st are surjective.

Proof. Detailed computations for the proof of this proposition can be found in [Las11b, Sect. 7.11].
The method is to find sets of generators for the groups DpP qHp´st and DpP qKp´st and thus for
DpP qG´st “ DpP qHp´stXDpP qKp´st, and then show that all these generators are in the image of
the corresponding restriction map.

�

Note that, in particular, the computations in [Las11b, Sect. 7.11] prove that the set of generators
for DpP qPSL3pFpq´st computed in [LM09, Example 6.6] misses one generator to be complete.

Finally, as above, the surjectivity of the three restriction maps ResGP , Res
Hp

P , and Res
Hp

P of
Proposition 12.9 imply that

DpGq “ DΩpGq ` ΓpXpNGpP qqq ;

DpHpq “ DΩpHpq ` ΓpXpNHppP qqq ;

DpKpq “ DΩpKpq ` ΓpXpNKppP qqq .
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