THE DADE GROUP OF A FINITE GROUP

CAROLINE LASSUEUR

ABSTRACT. The aim of this paper is to construct an equivalent of the Dade group of a p-group
for an arbitrary finite group G, whose elements are equivalences classes of endo-p-permutation
modules. To achieve this goal we use the theory of relative projectivity with respect to a module
and that of relative endotrivial modules.

1. INTRODUCTION

The construction of the Dade group D(P) described by E. Dade in [Dad78a] is valid only in case
the group P is a p-group. This is linked to the facts that kP-permutation modules are indecom-
posable, whereas for an arbitrary group G, the kG-permutation modules are not indecomposable
in general, and moreover that their direct summands need not be permutation modules. The clas-
sification of endo-permutation modules via the complete description of the structure of the Dade
group D(P) was completed in 2004 by S. Bouc with [Bou06]. It had started about 25 years ear-
lier with the first papers and results by E. Dade in [Dad78a] and [Dad78b] in 1978, and the final
classification was in fact achieved through the non-effortless combined work of several (co)-authors
between 1998 and 2004, including J.L. Alperin, S. Bouc, J. Carlson, N. Mazza and J. Thévenaz.
Yet, for an arbitrary finite group G, no satisfying equivalent group structure to the Dade group on
a class of kG-modules has been defined so far.

One way to obtain a similar notion to that of the Dade Group for arbitrary groups is to con-
sider endo-p-permutation modules as described by J.-M. Urfer in [Urf06]. He shows that if P is
a p-subgroup of a group G, this notion induces a group structure, denoted by Dp(G), on a set
of equivalence classes of indecomposable endo-p-permutation kG-modules with vertex P. (The
equivalence relation being a generalisation of Dade’s compatibility relation.) However, the main
drawback of this approach resides in the fact that there is not a unique indecomposable representa-
tive, up to isomorphism, for the classes in Dp(G). More precisely, Dp(G) classifies the sources of
the endo-p-permutation modules with vertex P, but not the modules themselves. Also note that if
P is a Sylow p-subgroup of G, then Dp(G) = D(P, Fp(G)), where D(P, Fp(G)) is the Dade group
of the fusion system Fp(G) on P defined in [LMO09].

The aim of this piece of work is to show how the notion of relative endotrivial module, that we
introduced in [Lasllal, can generalise the Dade group in a more natural way. It is most interesting
to note that crucial building pieces for the classification of endo-permutation modules are indeed
the endotrivial modules, which are particular cases of endo-permutation modules. In some sense,
we turn the problem upside down, and show how one can regard an endo-permutation module as
an endotrivial module, of course not in the ordinary sense, but in the relative sense. This enables
us to endow a well-chosen set of isomorphism classes of endo-p-permutation modules with a group
structure, similar to that of the Dade group. We call this new group, the generalised Dade group
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of the group G, explicitly compute its structure and show how it is closely related to that of the
G-stable points of the Dade group of a Sylow p-subgroup of G.

2. PRELIMINARIES AND DEFINITIONS

Unless otherwise mentioned, throughout this text k shall denote an algebraically closed field
of prime characteristic p, G a finite group whose order is divisible by p, all modules are finitely
generated, mod(kG) denotes the category of finitely generated left kG-modules and stmod(kG) the
corresponding stable category. We write k£ for the one-dimensional trivial module. Moreover, ®
denotes the ordinary tensor product over k, M* = Homy(M, k) and Q(M) the k-dual and the
kernel of a projective cover of the kG-module M, respectively.

2.1. Relative projectivity with respect to a module. Projectivity relative to a kG-module
was introduced by T. Okuyama [Oku91], then further developed and used in [Car96], [CP96],
[CPW98], and also by the author in [Las11a]. This is a generalisation of the more classic projectivity
relative to a subgroup widely used in the theory of vertices and sources. Moreover, it is also just
a special case of the relative homological algebra defined for a projective class of epimorphisms or
a pair of adjoint exact functors in [HS71, Chap. 10]. We recall here basic definitions and useful
properties.

Definition 2.1 ([Oku91]). Let V be a kG-module. A finitely generated kG-module M is termed
relatively V -projective, or simply V -projective, if there exists a kG-module N such that M is
isomorphic to a direct summand of V ®; N.

Proposition 2.2 (Omnibus properties, [Laslla], Prop. 2.0.2). Let U,V be kG-modules.

(a) Any direct summand of a V-projective module is V -projective and if U € Proj(V'), then
Proj(U) < Proj(V).
) If ptdimg (V) then Proj(V) = mod(kG). In particular Proj(k) = mod(kG).
(c) Proj(U@® V) = Proj(U)® Proj(V).
(d) Proj(U) n Proj(V) = Proj(U®YV) 2 Proj(U) ® Proj(V).

) Proj(V) = Proj(V*) = Proj((V)) = Proj(Q=*(V)) = Proj(V@®V) = Proj(V®V).

) If P e mod(kG) is projective, then Proj(P) = Proj(kG), which is equal to the whole class
of projective modules in mod(kG). Moreover Proj(kG) < Proj(V) for any kG-module V.

Remark 2.3. The notion of relative projectivity with respect to a module encompasses the notion
of projectivity relative to a subgroup, used in the theory of vertices and sources. More precisely,
a kG-module M is projective relatively to the subgroup H of G if and only if M € Proj(k1%).
Moreover, if H is a family of subgroups of G, then M is projective relatively to the family # if and
only if M is projective relatively to the kG-module V(H) := @y k15

In the sequel, we will state results concerned with projectivity relative to subgroups and families
of subgroups in terms of modules as described here. Translating projectivity relative to a subgroup
in terms of modules we have the following well-known properties (see e.g. [CR90, §19]):
- if H < G, then Proj(k1§) = Proj(k1$y) for every g € G;
- if K < H < G, then Proj(k1%) < Proj(k1%).
Moreover, if H := {Hy,...,H,}, n € N, is a family of subgroups of G, then, by the two preceding
properties and the omnibus properties above, assuming that H; £¢ H; Vi # j,1 < 1,7 < n does
not alter Proj(H).

In next subsection we describe how one can use projectivity with respect to a module to construct
groups of relative endotrivial modules. This essentially relies on the following theorem by Benson
and Carlson.
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Theorem 2.4 ([BC86], Thm. 2.1). Let k be an algebraically closed field of characteristic p (possibly
p=20). Let M,N be finite-dimensional indecomposable kG-modules, then

(1) M ~ N*;

(2) ptdimg(N).

Moreover, if k is a direct summand of N* ® N then it has multiplicity one, i.e. k@® k is not a
summand.

Definition 2.5. A kG-module V € mod(kG) is called absolutely p-divisible if p = char(k) divides
the k-dimension of every indecomposable direct summand of V.

k| M ® N if and only zf{

Proposition 2.6 ([Lasllal], Prop. 2.2.2). Let V € mod(kG). Then, the following are equivalent:
(a) The trivial kG-module k is not V -projective;
(b) V is absolutely p-divisible;
(c) Proj(V) # mod(kQG).

2.2. Relative endotrivial modules. In [Laslla], we introduced and developed the notion of an
endotrivial module relative to a kG-module V.

Definition 2.7. Let V be an absolutely p-divisible kG-module. A module M € mod(kG) is termed
endotrivial relative to the kG-module V' or simply V-endotrivial if

Endy(M) =2 M*Q@M = k® (V — proj) .

This definition is equivalent to requiring that Endy (M) is isomorphic to a trivial module in the
relative stable category stmody (kG).

Lemma 2.8 ([Laslla], Lem. 3.1.2, 3.2.1, 3.2.2, 3.2.3, 4.1.1). Let V € mod(kG) be an absolutely
p-divisible module. Let M, N € mod(kG) be V-endotrivial modules. Then:

(a) dimp(M)?=1 mod p.

(b) The modules M*, M ® N and Homy (M, N) are V-endotrivial.

(¢c) If M is indecomposable, then the vertices of M are the Sylow p-subgroups of G. Moreover,
if (P,S) is a vertez-source pair for M, then S is a V lg—endotm’m’al module, and S has
multiplicity one as a direct summand ofMlICi.

(d) There is a direct sum decomposition M =~ My @® (V — proj) where My is the unique inde-
composable summand of M that is V -endotrivial.

(e) If P is Sylow p-subgroup of G, then L € mod(kG) is V-endotrivial if and only if L |G is
V |G-endotrivial.

Now, if V' € mod(kG) is an absolutely p-divisible module, one can set an equivalence relation
~y on the class of V-endotrivial kG-modules as follows: for M and N two V-endotrivial modules
let

M ~y N if and only if My =~ Ny,
where My and Ny are the unique V-endotrivial indecomposable summands of M and N, respec-
tively, given by part (e) of Lemma 2.8. This amounts to requiring that M and N are isomorphic
in stmody (kG). Then let Ty (G) denote the resulting set of equivalence classes. In particular, any
equivalence class in Ty (G) consists of an indecomposable V-endotrivial module My and all the
modules of the form My @ (V — proj).

Proposition 2.9 ([Laslla], Prop. 3.5.1). The ordinary tensor product @y, induces an abelian group
structure on the set Ty (G) defined as follows:

[M] + [N] := [M ® N]
The zero element is [k] and the opposite of a class [M] is the class [M*].
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Lemma 2.10 ([Laslla], Prop. 3.5.3). Let V € mod(kG) be absolutely p-divisible. If W € Proj(V),
then the group Tw (G) can be identified with a subgroup of Ty (G) via the injective group homomor-
phism Ty (G) — Tv(G) : [M] —— [M]. By abuse of notation, we write Ty (G) < Ty (G) .

Since Proj(kG) is ordinary projectivity, the group of endotrivial modules is T(G) = Trq(G).
Then, by the above and part (e) of Lemma 2.2, T(G) < Ty (G) for every absolutely p-divisible
V € mod(kQG).

ONE-DIMENSIONAL REPRESENTATIONS: If G is a finite group, denote by X (G) the abelian group
of all isomorphism classes of one-dimensional kG-modules endowed with the group law induced by
®k, which can also be identified with the group Hom(G, k) of k-linear characters of G. This is a
finite p’-group, isomorphic to the p’-part of the abelianisation G/[G, G] of G.

Let V € mod(kG) be an absolutely p-divisible module. Then any one-dimensional module Y is
V-endotrivial, because x* ® x = k. Therefore there is an embedding X (G) — Ty (G) : x — [x].
Thus we can identify X (G) with a subgroup of Ty (G) and there is always a chain of subgroups:

X(G)<T(G) <Tv(G)

There are also several homomorphisms between groups of relative endotrivial modules induced
by a change of group.

Lemma 2.11 ([Lasllal, Sect. 3.6).
1. Restriction. Let H be a subgroup of G and let V' be an absolutely p-divisible kG-module, then
restriction to H induces a group homomorphism, called a restriction map:
Resf: Tv(G) — Tyye(H)
[M] — [MIF]
Moreover, if H contains the normaliser Ng(P) of a Sylow p-subgroup of G, then Reng(P) 18 injec-
tive and sends the class of an indecomposable kG-module to the class of its kH -Green correspondents.

2. Inflation. Let N be a normal subgroup of a group G such that p||G/N|. If V is an absolutely
p-divisible k[G/N]-module, then inflation induces an injective group homomorphism:

Infg/zv-’ Tyv(G/N) =  Tyye (V)(G)

G/N
[M]  — [Infgn(M)]

3. Isomorphism. Let p : Gi —> G2 be a group isomorphism. If M is a kG1-module, then it
can be seen as a kGa-module via ¢~ and is denoted Iso(¢)(M). Let V be an absolutely p-divisible
kG1-module. Then there is a group isomorphism:

Iso(p): Tv(G1) — Tiso(e)(v)(G2)
[M]  +— [Iso(y)(M)]

Lemma 2.12. Let P be a Sylow p-subgroup of G and let H < G be a subgroup containing N (P).
Let V € mod(kG) be an absolutely p-divisible module.
(a) The restriction map Res$, : Ty (G) — Ty,c (H) is injective.
(b) If Proj(V 1$) 2 Proj(V(Y)), where Y = {IP n H|g € G\H}, then the restriction map
Res% : Ty (G) — Ty,c (H) is an isomorphism. Furthermore, the inverse map is induced
by induction, so that

Tv(G) = {[M 1G]] [M] € Ty,g (H)} = Ty, (H).
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More accurately, on indecomposable Vlg—endotrivial modules, the inverse map is induced
by the Green correspondence, that is, if (M) denotes the Green correspondent of an inde-
composable kH-module M, then

Ty (G) = {[T(M)]| M is an indecomposable V | -endotrivial kH-module} .

Lemma 2.13 ([Laslla], Lem. 4.4.1). Let G be a finite group with a normal Sylow p-subgroup P
and let V € mod(kG) be an absolutely p-divisible module. Then ker(Res®) = X(G).

2.3. Relative syzygy modules. An important family of relative endotrivial modules is provided
by the relative syzygies modules of the trivial module. We refer to [Car96, Sect. 8] for definitions
of projective and injective resolutions with respect to a module V' € mod(kG).

Definition 2.14. Let M e mod(kG), let (Py,0s) —> M and M —> (I, 0*) be minimal V-
projective and V-injective resolutions of M, respectively. Define for all n > 1: QF (M) := ker 0,1,
Q" (M) := Coker(0"~'). Define Y, to be the V-projective free part of M. The module Qf} (M),
m € N is called the m-th V-relative syzygy module of M.

Notation. We write Qy (M) := O, (M) and simply Q"(M) := Q¢(M), Q(M) := Q4 (M) if the
module @ is projective. Moreover, if H is a family of subgroups of the group G, then we write
Q3 (M) instead of Qy 5y (M). If V € mod(kG) is absolutely p-divisible and W € Proj(V'), we write
Qu for the class of Qu (k) in Ty (G) and we write  for the class of Q(k) in Ty (G).

Lemma 2.15 ([Laslla], Lemmas 2.3.3, 2.3.4, 3.2.1). Let M,V,W € mod(kG).
(a) If Proj(V) = Proj(W), then Q. (M) = Qf,(M) for every n € Z.
(b) Qv o Qw (M) = Quegw o Qvew (M) and if H,K are families of subgroups of G, then this
formula reads Qayoc (M) = Qp xc0Q oy mic (M) where “HAK = {IHNK |H e H, K € K}.
(c) If M is a V-endotrivial kG-module and W € Proj(V), then the kG-modules Q3, (M) are

V -endotrivial modules for every n € Z.
(d) If H< G and V is absolutely p-divisible, then Res% (Qy) = Qyyo € Ty (H).

Lemma 2.16 ([Oku91], [Lasllb] Lem. 3.8.1). Let n = 2 be an integer and Vi, ..., V, € mod(kG)
be pairwise non isomorphic absolutely p-divisble modules.

(a) In Tv,@v,(G), we have Qv,gv, = Qv, + Qv, — Qvigv, and Qvgy, = [, 0 Qy, (K)].
(b) More generally, in Ty,@.. av, (G):

Wio.ov, = D, W= 2, Qgirtvgy, = 2D Y Qe
i=1 j=2 ; s=1 1<it<...<is<n
(¢c) If H := {Hy,...,H,} is a family of subgroups of the group G such that the kG-module
V(H) is absolutely p-divisible, then formula (b) reads

Q= Z Q{Hi} - 2 QG{Hl ----- Hy_yyofH;y ™ Ty (@).
j=2

i=1

2.4. Endo-permutation modules and the Dade group. If P is a p-group, then a kP-module
M is called an endo-permutation module if its endomorphism algebra Endy (M) is a permutation
kP-module. Furthermore, an endo-permutation module M is called capped if it possesses an inde-
composable summand with vertex P.
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Proposition 2.17 ([Dad78a]).

(a) The class of capped endo-permutation modules is closed under taking direct summands,
duals, tensor products (over k), Heller translates, restriction to a subgroup and tensor
induction to an overgroup.

(b) An endo-permutation kP-module M is capped if and only if the trivial module is a direct
summand of Endy(M).

(¢) If M is capped, then any two indecomposable summands of M with vertex P are isomorphic.
This unique summand, up to isomorphism, is called the cap of M and is written Cap(M).

(d) An equivalence relation ~ on the class of endo-permutation module is defined by: M ~ N
if and only if Cap(M) = Cap(N).

(e) Let D(P) denote the resulting set of equivalence classes. Then D(P) is an abelian group
for the following law:

[M] + [N] = [M®N]
The zero element is the class [k] of the trivial kP-module, while the opposite of a class [M]
is the class of the dual module [M*]. This group is called the Dade group of the group P.

Note that in every equivalence class in D(P), there is, up to isomorphism, a unique indecom-
posable module, namely the cap of any module in the class. Thus D(P) is in bijection with the
set of isomorphism classes of indecomposable endo-permutation k£P-modules with vertex P which
becomes a group with the law [M] + [N] := [Cap(M ® N)].

The classification of endo-permutation modules, through the description of the structure of the
Dade group, started with [Dad78a], [Dad78b], and independently [Alp77]. It was completed in 2004
by S. Bouc in [Bou06]. Inbetween, crucial steps for this classification include the classification of
the endotrivial modules of a p-group. All this was achieved through the work of [Pui90], [BT00],
[CTO00], [CT04], [CT05], [Bou04] and [BMO04].

In [Lasllal], we noted that a main reason of interest in relative endotrivial modules comes from
the fact that they provide a way to define a group structure on collections of representations of
an arbitrary finite group G' which gives a generalisation for the Dade group of a p-group. Indeed,
endo-permutation modules can always be seen as relative endotrivial modules in the following sense:

Theorem 2.18 ([Laslla], Thm 5.0.2). Let P be a p-group and let V(Fp) := @gspk Tg, The
Dade group D(P) can be identified with a subgroup of Ty r,\(P) via the canonical injective homo-
morphism

D(P) — Ty (P)
[M] — [Cap(M)] .

3. PROJECTIVITY RELATIVE TO THE FAMILY OF SUBGROUPS Fg

Recall from the theory of vertices and sources that:
- If H is a subgroup of G and Q is a Sylow p-subgroup of H, then Proj(k1§) = Proj(kTg).
-If H < G, then Proj(k1%) = mod(kG) if and only if H contains a Sylow p-subgroup of G .
Thus it follows from Remark 2.3 and Proposition 2.6 that a permutation module k 1 g, for a
subgroup R < G, is absolutely p-divisible if and only if R has a Sylow p-subgroup @ < P.

Notation. Given G a finite group, fix a Sylow p-subgroup P of G and set F¢g := {@Q < P}. Then
consider the associated module V(F¢) = @ge 7, kTg and notice that by the above Proj(V(Fg))
corresponds to projectivity relative to the family of all non maximal p-subgroups of G. We empha-
sise that Proj(V(F¢g)) does not depend on the choice of the Sylow p-subgroup P.

Lemma 3.1. Let H be a subgroup of G that contains a Sylow-p subgroup P of G. Then:
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(a) Proj(V(Fg)l§;) = Proj(V(Fn)).
(b) V(Fu) is absolutely p-divisible.

Proof. The Mackey formula yields

VIFo)lg = @ kGl P P ko= (P kG @X =V(Fy) X
QeFa QeFg ze[H\G/Q] QxP

where X is a direct sum of kH-modules of the form kTgI with S <¢ P, so that
k1He Proj(V(Fy)). Thus by Proposition 2.2 we obtain first that Proj(X) < Proj(V(Fm))
and second that

Proj(V(Fe) ) = Proj(V(Fu) ® X) = Proj(V(Fn)) -
This proves (a). Now, by Green’s indecomposability Criterion, the modules k Tg are indecompos-
able for every Q < P, and moreover their dimension is divisible by p. In consequence, the module
V(Fp) = Dgerp k1 & is absolutely p-divisible and therefore so are the modules V (Fp) for every

P<H<G.
Indeed, .This proves (b).

Lemma 3.2. Let N be a normal subgroup of the group G such that p||G/N|.Then
Proj(Infg x(V(Fan))) < Proj(V(Fe)).

Proof. Let P be a Sylow p-subgroup of G and PN /N the corresponding Sylow p-subgroup of G/N.
By definition,

V(Fen)= D kTﬁ/N :
R<PN/N

Moreover, if R < PN/N, there exists a subgroup @ such that Pn N < Q < P and R = QN/N.
Whence

G/N
gy (V(Fon) = B Wi nkigey) = @  k1&y .
PAN<QsP PAN<SQ<sP

Now, since @ is a Sylow p-subgroup of QN, Proj(k TgN) = Proj(kTg) (see above). Whence
Proj(Infgx(V(Fan)) = Proj( @ k1gy)= @  Proj(k1g) < Proj(V(Fs)).
PAN<QxP PAN<QsxP

where the last inclusion is obtain by Proposition 2.2, parts (a) and (c), and by definition of the
family Fg. |

4. V(F)-ENDOTRIVIAL MODULES

Because the module V' (Fg) is absolutely p-divisible, we obtain a well-defined group Ty (z.(G)
of V(Fg)-endotrivial modules. The following elementary properties of this group can easily be
deduced from the general theory of relative endotrivial modules that is developed in [Las11al.

Proposition 4.1. Let P be a Sylow p-subgroup of G and H be a subgroup of G such that P < H < G.
(a) There is a well-defined restriction map
Resfi: Tv(ze)(G) — Ty(ry)(H)
[M] —  [MIF].
(b) If H contains Ng(P), then the restriction map Res$ : Ty (r)(G) = Ty (Fy)(H) is an

isomorphism, whose inverse is induced by the Green correspondence on the indecomposable
V(Fg)-endotrivial modules.
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(¢) ker(Resp")) = X (Ng(P)).

(d) IfT(X(Ng(P))) denotes the subgroup of Ty (r.)(G) made up of the classes of the kG-Green

correspondents of the modules in X (Ng(P)), then ker(Res$) = T(X (Ng(P))), which is a
finite group isomorphic to X (Ng(P)).

Proof. (a) This follows from the definition of a restriction map (section 2.2) and part (a) of
Lemma 3.1.

(b) By Lemma 3.1 Proj(V(Fg) %) = Proj(V(Fg)). Therefore part (b) of Lemma 2.12 applies
and yields the result. Indeed Y = Fp (where Y is the family of subgroups in Lemma 2.12)
and thus by the omnibus properties of relative projectivity, Proj(V(Fg)) 2 Proj(V(})).

(¢) This is a straightforward application of Lemma 2.13.

(d) Since, by part (b), Res%G(P) is an isomorphism, (d) follows from (c).

|

Example 4.2. Thus far there are two obvious families of examples of V (F¢)-endotrivial modules.

(a) The kG-Green correspondents of the one-dimensional representations of the normaliser
N¢g(P), provided by part (d) of Lemma 4.1.

(b) The relative syzygies Qf, (M) with W e Proj(V(Fg)), n € Z and M a V(F¢)-endotrivial
module as described in part (c) of Lemma 2.15. In particular if A is a family of subgroups
of G such that the associated module V(H) = @ ey k15 (see Remark 2.3) is absolutely
p-divisible, then Proj(V(H)) < Proj(V(Fg)) and therefore the relative syzygy modules
(k) of the trivial module are all V' (F¢)-endotrivial modules.

It is known from [Alp01] that the relative syzygies Q%,(k), for families of subgroups #, are endo-
permutation modules when G is a p-group. In similar manner, [Urf06, Prop. 5.8] shows that they
are endo-p-permutation modules when G is arbitrary. We show in section 7 that the same is true for
the modules in I'(X (Ng(P))). Therefore there are strong connections between V(Fg)-endotrivial
modules and endo-permutation modules as well as endo-p-permutation modules.

5. ENDO-p-PERMUTATION MODULES AND THE DADE GROUP OF A FINITE GROUP

An endo-p-permutation kG-module is a module M € mod(kG) whose endomorphism algebra
End; (M) is a p-permutation' kG-module. Le. if Endy(M) =~ @, ; N; where each N; is inde-
composable, then for every ¢ € I, N;|k 1 81 for some p-subgroup @Q; of G. Equivalently, M is
endo-p-permutation if and only if M lg is an endo-permutation k@Q-module for every p-subgroup
Q@ of G. In addition, since p-permutation modules are preserved under conjugation and restriction,
it is enough to check that M LIGD is an endo-permutation kP-module for P a fixed Sylow p-subgroup
of G. Other elementary properties of this class of modules are the following:

Lemma 5.1. Let M € mod(kG) be an indecomposable endo-p-permutation module with vertex P.
Then:

(a) M |$ is capped endo-permutation.
(b) ptdimy M.
(c) k| End (M) with multiplicity 1.

Proof. (a) It is easy to see that M lIGD is forced to have a summand with vertex P, thus it is
capped endo-permutation. See [Urf06, Chapter 2] for details.

I English, a p-permutation module is also often termed a trivial source module.
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(b) Assume M were an indecomposable kG-module with k-dimension divisible by p, that is
absolutely p-divisible. Then, as a consequence of Theorem 2.4 (see [Laslla, Lem. 2.2.4]
for a fully developed argument), so would be M |%, which contradicts statement (a).
Indeed, M iIGD being capped, it has got at least one direct summand with k-dimension not
divisible by p, for according to the previous section, Cap(M Lg) is an indecomposable endo-
permutation module, hence V (Fp)-endotrivial and thus dimy Cap(M |%) = +1 mod (p).

(¢) This is a consequence of (b) and Theorem 2.4.
O

It can be seen in [Urf07] that setting an equivalence relation on the whole class of endo-p-
permutation modules with vertex P given by a generalisation of Dade’s compatibility relation (cf
[Dad78a]) does not lead to a group structure induced by tensor product on the set of isomorphism
classes of indecomposable endo-p-permutation modules with vertex P. The idea is then to find a
subclass of this class which has more similarities with that of capped endo-permutation modules
for a p-group, and secondly to obtain a group structure induced by tensor product which embeds
naturally in Ty (z,)(G), generalising the embedding D(P) < Ty (r,)(P) of Theorem 2.18. In this
respect we focus on endo-p-permutation modules which are, at the same time, V(Fg)-endotrivial.

Proposition 5.2. Let M € mod(kG) be an endo-p-permutation module. The following conditions
are equivalent:
(a) M is V(Fg)-endotrivial;
(b) M |G is V(Fp)-endotrivial;
(¢) M has a unique indecomposable summand with vertex P, say My and, in addition, if
S € mod(kP) is a source for My, then the multiplicity of S as a direct summand of M |%
18 one;
(d) Endg(M) =~ k@ N where N is a p-permutation kG-module, all of whose indecomposable
summands have a vertex strictly contained in P.

Proof. (a)=(b): By Lemma 3.1, Proj(V(Fc)) %) = Proj(V(Fp)), therefore statements (a) and
(b) are equivalent by part (e) of Lemma 2.8.

(a)=>(c): Assuming (a), M admits a decomposition M = My @ (V(Fg) — proj) where My is the
unique indecomposable V (Fg)-endotrivial summand of M. Then dimg(Mp) # 0 (mod p) and so
M is forced to have vertex P, whereas all the other summands of M have vertices strictly smaller
than P by definition of Proj(V(Fg)). Furthermore, by part (c) of Lemma 2.8, if S € mod(kP)
is a source for My, then S has multiplicity one in M ig. In consequence, since M lg is V(Fp)-
endotrivial we have

M|%~ My |G @ (V(Fp) —proj) = S@® (V(Fp) — proj)

where the Krull-Schmidt Theorem forces S to be isomorphic to the unique V(Fp)-endotrivial
summand of M |§. Thus S has multiplicity one in M |G as well.

(¢)=(b): Write M = My® L with M, indecomposoable with vertex P and L a module all of whose
indecomposable summands have a vertex strictly smaller than P. Thus L € Proj(V(Fg)) and
restricting M to P yields
M |E= Mol ®(V(Fp) = proj).

Now Mj is endo-p-permutation as a direct summand of an endo-p-permutation module, therefore
My lg is capped endo-permutation by Lemma 5.1. Moreover S | My |$ and because S has vertex
P too, we must have S =~ Cap(My |%), so that the fact that the multiplicity of S is one forces all
the remaining direct summands of My |G to have a vertex strictly smaller than P, that is to be
V (Fp)-ptojective. Hence M |G is V(Fp)-endotrivial.

(a)=(d): Given that M is endo-p-permutation, then Endy (M) is a p-permutation module. Thus
M satisfies condition (d) if and only if it is V(Fg)-endotrivial, by definition of the family Fo. O
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Definition 5.3. An endo-p-permutation kG-module M is said to be strongly capped if it satisfies
the equivalent conditions of Proposition 5.2. Moreover, the unique summand of M with vertex P
given by condition (c) is called the cap of M and denoted by Cap(M).

The cap of a strongly capped endo-p-permutation module is its unique indecomposable direct
summand which is itself strongly capped. Moreover, a strongly capped endo-p-permutation kG-
module has a direct sum decomposition of the form M = Cap(M) ® (V(Fg) — proj) where the
V (Fg)-projective part is also an endo-p-permutation module, but not strongly capped.

Lemma 5.4. The class of strongly capped endo-p-permutation kG-modules is closed under taking
duals, tensor products and restrictions to a subgroup containing a Sylow p-subgroup.

Proof. Taking duals and tensor products are stable operations for both the classes of endo-p-
permutation modules and of V(Fg)-endotrivial modules, therefore they are stable for strongly
capped endo-p-permutation modules. Now if H < G contains a Sylow p-subgroup of G, then
the restriction to H of an endo-p-permutation module is an endo-p-permutation module and the
restriction to H of a V(Fg)-endotrivial module is a V(Fg)-endotrivial module by Lemma 4.1.
Thus the restriction to H of a strongly capped endo-p-permutation module is strongly capped. [

Using a similar approach to that used by Dade for endo-permutation modules, one can define an
equivalence relation ~ on the class of all strongly capped endo-p-permutation modules by setting:

M ~ N < Cap(M) = Cap(N)

Write [M] for the equivalence class of the module M and let D(G) denote the resulting set of
equivalence classes.

Observe that this equivalence relation is the restriction to the class of strongly capped endo-p-
permutation of the equivalence relation ~y (r,) on V(Fg)-endotrivial modules defined in Section
2.2. Thus the classes do not have the same meaning in Ty (r,)(G) and in D(G), and in general
there are more representatives for a given class in Ty (7. (G) than in D(G).

Corollary-Definition 5.5. The set D(G) with the composition law

([M],[N]) — [M] + [N] := [M ® N],
is an abelian group called the generalised Dade group of G, or simply the Dade group of G.
Moreover, D(G) can be identified with a subgroup of Ty (7. (G) through the natural embedding

i D(G) > Tyrg)(G)
[M]  +— [M].
Proof. Lemma 5.4 and the uniqueness of the caps ensure that the assignment
([M],[N]) — [M ® N]

is a well-defined composition law for D(G). The zero element is the class [k] of the trivial module,
while the opposite of a class [M] is the class [M*] of the dual module. The map 2 is well-defined
by the above observation on ~ and ~y(7,) and it is a homomorphism because the addition is
induced by ®j on both sides. It is injective because ker(:) = {[k]}. Indeed, if «([M]) = [k],
then M~y (r,) k which is equivalent to M ~ k because both M and k are strongly capped
endo-p-permutation modules. (]

We identify D(G) with its image +(D(G)) and view D(G) as a subgroup of Ty () (G).
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Remark 5.6. Notice that any ordinary endotrivial module is strongly capped, and in particular,

so is any one-dimensional kG-module. Therefore, up to identifications, the groups T'(G) and X (G)

can also be viewed as subgroups of D(G) and we have a series of subgroup inclusions:
X(G)<T(G) < D(G) < TV(]:G)(G)

The group D®(G) = (Qy (k) |H S Fg) is also a subgroup of D(G) because of the next Lemma.

Lemma 5.7. Let H € Fg. If M is a strongly capped endo-p-permutation module, then Qy (3 (M)
is a strongly capped endo-p-permutation kG-module.

Proof. Since M is assumed to be strongly capped, it is both endo-p-permutation and V(Fg)-
endotrivial. In consequence, on the one hand Qv () (M) is V(Fg)-endotrivial by part (c) of Lemma
2.15, hence V(H)-endotrivial and on the second hand, it is shown in [Urf06, Proposition 5.8] that
it is endo-p-permutation, hence strongly capped, as required. ([l

Finally, note that D(G) can also be identified with set of isomorphism classes of indecompos-
able strongly capped endo-p-permutation kG-modules endowed with the group law [M] + [N] :=
[Cap(M ® N)] (where the square brackets denote the isomorphism class of a module).

6. GROUP OPERATIONS

The operations of restriction and inflation induce group homomorphisms between the generalised
Dade groups, whereas, in contrast with ordinary Dade groups, tensor induction does not.

Lemma 6.1. Let P be a Sylow p-subgroup of G and let H be a subgroup of G such that P < H < G.
Then restriction induces a group homomorphism

Res$%: D(G) — D(H)
(M] — [MF]
Furthermore, if H contains the normaliser Ng(P) of the Sylow p-subgroup P, then the map Resfl
18 injective.
Proof. As seen in 3.1, there is a restriction homomorphism for groups of relatively endotrivial
modules

Resfi: Ty(re)(G) — Tv(ry(H)
[M] — (Mg,
which is an isomorphism if H contains Ng(P). In consequence, it suffices to check that it maps
D(G) to a subgroup of D(H). In fact, if [M] € D(G), then, M |% is strongly capped by Lemma
5.4 and so [M |$] € D(H). Consequently, set Res$ : D(G) — D(H) to be the restriction (of
maps) to D(G) of the map Res$ : Ty (5:)(G) — Ty () (H). It is injective if H > Ng(P). O

The injectivity of the map Reng(P) : D(G) — D(N¢g(P)) allows us to identify the Dade group
D(G) of a group G with a subgroup of the Dade group D(Ng(P)).

Lemma 6.2. Let N be a normal subgroup of the group G such that G/N has order divisible by p.
Then inflation induces a group homomorphism

Inf¢ y: D(G/N) — D(G)
[M]  — [Infgn(M)].
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Proof. Consider the composite map

Infg,

Tv(Fgn) (G/N)
where the first map is given by section 2.2 and the second map is given by Lemma 2.10 because
Proj(Infgn (V(Fayn))) € Proj(V(Fa))

by Lemma 3.2. This composite maps D(G/N) (viewed as a subgroup of Ty (7, ) (G/N)) to D(G).
Indeed, if [M] € D(G/N), then it only remains to check that Infg/N (M) is endo-p-permutation.

Tintg, (v (Foyn) (G) = Ty (76 (G)

G

But if we let ¢ : P/P n N = PN/N denote the canonical group morphism, then
Res$% o Infg/N(M) = Infg/PﬁN olso(p™1) o Resgévj\;N(M)
is endo-permutation because both isomorphism and inflation preserve endo-permutation modules.

Hence Infg /n(M) is endo-p-permutation, as required. It follows that there is an inflation map
Infg/N : D(G/N) — D(Q) defined by restricting the map 2 o Infg/N to D(G/N). O

Now, although the tensor induction of an endo-p-permutation module is an endo-p-permutation
module (see [Urf07, Prop. 1.2]), the tensor induction of a strongly capped endo-p-permutation
module is not necessarily strongly capped again.

Counterexample 6.3. Consider the 3-nilpotent group G := C7 x (5 with k in characteristic 3.
(If C7 :=< a > and C3 :=< u >, then the action of C3 on C7 is given by uau=! = a?.) Then
consider the module Q(k) € mod(kC5), which is endotrivial. However the tensor induced module
G

k),
is neither an endotrivial module nor a strongly capped endo-3-permutation module. In fact, there
exists no absolutely 3-divisible kG-module V' such that the tensor induced module Q(k;)@gg3 is
V-endotrivial. See [Lasl1b, Lem. 7.6.5] for detailed computations.

7. THE STRUCTURE OF D(Q)

Key tools to describe the structure of the group D(G) are provided firstly by the following theo-
rem proven by Dade but never published, and secondly by a characterisation of endo-p-permutation
modules by Urfer.

Theorem 7.1 ([Dad82], Theorem 7.1). Let G be a finite group having a normal Sylow p-subgroup
P. Let M be an endo-permutation kP-module. Then M extends to a kG-module if and only if M
1s G-stable.

Theorem 7.2 ([Urf07], Thm 1.5). Let G be a finite group. Let M € mod(kG) be an indecomposable
module with vertex P and source S € mod(kP). Then M is an endo-p-permutation module if and

only if S is an endo-permutation module whose class [S] in the Dade group D(P) belongs to
D(P)Gfst.

Recall that D(P)%~5¢, the subgroup of G-stable points of D(P), consists of the classes [M] € D(P)
such that Reslp p([M]) = Res.b_ poca([M]), where ¢, denotes the conjugation by z € G. In

particular, D(P)Ne(P)=st = D(P)Ne(P) the subgroup of fixed points of D(P) under the action of
the normaliser Ng(P) by conjugation.
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Notation. If G is a finite group with a Sylow p-subgroup P, we write X := X (Ng(P)) for the
group of one-dimensional representations of Ng(P), identified with a subgroup of D(Ng(P)) by
Remark 5.6, and we write I'(X) := I'(X (Ng(P))) for the subgroup of Ty (,)(G) made up of the
classes of the kG-Green correspondents of the modules in X (Ng(P)) defined in Lemma 4.1.

Theorem 7.3. Let G be a finite group with a non-trivial Sylow p-subgroup P.Then,
(a) restriction from Ng(P) to P yields an exact sequence
Na(P)
0 — X — D(Ng(P)) ———— D(P)"") —0;
(b) restriction from G to P yields an exact sequence

G
Resp

0 — T(X) — D(G) D(P)¢~%t — 0.

In the following proof, we denote by R$ the map Res : Ty () (G) — Ty (r,)(H) and keep
the notation Res% : D(G) — D(H) for the restriction maps at the level of the Dade groups.

Proof. First, it follows from Theorem 7.2, Im(Res%) < D(P)%~*t. For if M is an indecomposable
strongly capped endo—p—permutation kG—module with source S € mod(kP), then Resg([M 1) = [S].

We claim that Im(Res%) = D(P)S5t. Let [S] € D(P)“~* with S indecomposable. Notice that
D(P)G*St c D(P)NG<P> so that by Dade’s Theorem S € mod(kP) extends to a kNg(P)-module
S. In other words, S l ~ S and S is a source for S. By construction S is strongly capped

endo-p-permutation because its source is endo-permutation and has multiplicity 1 in its restriction.
Hence [S] € D(Ng(P)) and ResNG(P)([S]) = [S]. This proves the surjectivity of the map Reng(P)
onto D(P)Ne(P),

Now if T'(S) is the kG-Green correspondent of S, then it has source S as well. Therefore T'(S) is
endo-p-permutation by Theorem 7.2. It is moreover V (Fg)-endotrivial by Lemma 4.1 because the
restriction map R%G ) is an isomorphism whose inverse is induced by Green correspondence on
indecomposable kNg(P)-modules. Thus [I'(S)] € D(G) and Res$([[(S)]) = [S] € D(P)%—*, as
required.

Next we claim that the kernel of the restriction map Res® : D(G) — D(P) is T'(X). It was
established in Lemma 4.1 that ker(RgG(P)) = X. Therefore

ker(Resne ")) = ker(RN")) A D(Ng(P)) = X n D(Na(P)) = X
because X < D(Ng(P)) as noticed in Remark 5.6. Furthermore,
ker(Res$) = (RGS]C\T;G(P)) (ker(ResNG(P))> = (Res]C\'V,G(P))*l(X)
— (RS )1 (X) A D(G) = T(X) n D(G)

and it remains to show that I'(X) < D(G), i.e. that the indecomposable representatives of the
classes in T'(X) are endo-p-permutation modules. Indeed, if x € X, then its kG-Green correspondent
I'(x) has the same source as ¥, that is the trivial module k& € mod(kP). Therefore I'(x) |k 1%, or
in other words, it is a p-permutation module and thus an endo-p-permutation module. Hence
ker(Res$%) = I'(X). O

Corollary 7.4. The generalised Dade group D(G) of a finite group G is finitely generated.

Proof. The group I'(X) = X is finite. The group D(P)%~** is finitely generated as a subgroup of
D(P), which is finitely generated by [Pui90]. Thus the exact sequence

.G
Resp

0 — I'(X) — D(G) D(P)9~st — 0.
of Theorem 7.3 implies that D(G) is finitely generated too. |
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8. THE GENERALISED DADE GROUP AND CONTROL OF p-FUSION

The Dade group D(G) may always be identified, via restriction, with a subgroup of the Dade
group D(Ng(P)) of the normaliser of a Sylow p-subgroup P of G. Then one may naturally ask
when these groups are equal. The control of p-fusion in G by a subgroup H gives a partial answer
to this question.

Proposition 8.1. Let H be a subgroup of G such that Ng(P) < H < G. Then D(G) = D(H) if
and only if D(P)¢~st = D(P)H st

Proof. Since H < G, D(P)®~%t < D(P)#~5. Thus, there is a commutative diagram with exact
rows given by Theorem 7.3

Res$
0 Lo(X) D(G) D(P)&—st 0
\L% L\Resg \[1
0 Ty (X) D(H) —25F ppyi-st 0

where i denotes the inclusion of D(P)E~5t in D(P)" =5t as subgroup, and where I'(X) = ker(Res$)
and T'y(X) = ker(Resh). By part (d) of Proposition 4.1, 'g(X) = X =~ I'y(X). Then, by the
five-lemma the map Resg is surjective if and only if the map ¢ is. Thus, up to identification,
D(G) = D(H) if and only if D(P)¢=5t = D(P)H—st, O

Links between control of p-fusion and the G-stable points of the Dade group of a p-group were
already established in [Urf07]:

Proposition 8.2 ([Urf07], Prop. 1.9). Let P be a p-subgroup of G and assume that p-fusion in G
is controlled by H < G. Then D(P)¢~%t = D(P)H st

Corollary 8.3. Assume that the p-fusion of G is controlled by a subgroup H < G.
(a) If G = H = Ng(P), then D(G) = D(H).
(b) If No(P) = H = P, then D(G) = D(Ng(P)).

Proof. (a) is a straightforward consequence of Propositions 8.1 and 8.2.
(b) If Ng¢(P) = H > P, and H controls p-fusion then so does Ng(P) and part (a) yields the
result.

O

Example 8.4. For instance, if G is a group with an abelian Sylow p-subgroup P, then the nor-
maliser Ng(P) controls p-fusion in G by Burnside’s Theorem. If G is a p-nilpotent group, then P
controls p-fusion. If p is odd and G is a group with a metacyclic Sylow p-subgroup P, then Ng(P)
controls p-fusion in G too (because such p-groups are resistant to fusion). Therefore, in all these
cases it follows from the corollary that D(G) = D(Ng(P)).

Example 8.5. An example in which D(G) £ D(Ng(P)) is provided by G := GL3(F3) and its
extraspecial Sylow 3-subgroup P of order 27 which consists of the upper unitriangular matrices.
The subgroup of P generated by the matrix
1 01
z=| 011
0 0 1
is cyclic of order 3 and it is proven in [Urf07, Section 4] that the class in D(P) of the relative syzygy
module Qe (k) is Ng(P)-stable but not G-stable. Thus D(P)¢=5t < D(P)No(P) and it follows
from Proposition 8.1 that D(G) £ D(Ng(P)).
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9. THE p-NILPOTENT CASE

In this section, consider G is a p-nilpotent group. In other words, G is a semidirect product
G =N x P, with N = Op(G) and P a Sylow p-subgroup of G. Thus G = NP, N n P = {1}, and
welet ¢ : P=P/NnP— NP/N = G/N be the canonical isomorphism. For the structure of
the groups Ty (G) of V-endotrivial modules for an arbitrary absolutely p-divisible kG-module V,
we refer to [Lasllb, Chap. 6].

Theorem 9.1. Let G = N x P be a p-nilpotent group. The restriction map Res% : D(G) — D(P)
1s split surjective. In consequence there is a group isomorphism

D(G) = X(Ng(P))® D(P).
Proof. Since G is p-nilpotent, the Sylow p-subgroup P controls p-fusion in G, thus Proposition 8.2
yields D(P)¢~st = D(P)P~=st = D(P). Now [Lasl1b, Thm. 6.2.2] states that the restriction map

Resg Ty (76) (G) — Ty (7, (P) is split surjective and moreover that a section is provided by the
map

Infg/N

Iso(p)
Ty 7y (P) = Ty (54,5 (G/N) Tv(76)(G).

By Section 6, both these maps can be restricted to the Dade groups so that
Infg/NoIso(gp) : D(P) — D(G) is a section for Res% : D(G) — D(P). In consequence, in
view of Theorem 7.3, D(G) decomposes as a direct sum

D(G) =T(X)®D(P)“ ' =T(X)@® D(P).

Finally, T'(X) = X = X(Ng(P)) by Lemma 4.1. The result follows. O

10. THE CYCLIC CASE

Consider G is a finite group with a non-trivial cyclic Sylow p-subgroup P = Cp», n > 1. In this
case, the classification provided in [Laslla, Sect. 8] for the groups of relative endotrivial modules
of G allows us to determine the generalised Dade group D(G) with ease.

Proposition 10.1. Let G be a finite group with a non-trivial cyclic Sylow p-subgroup P = Cpn,
n=1, and for 0 <r <n—1 let Z, denote the unique cyclic subgroup of order p" of P. Then

D(G) = Ty(7)(G) = Tyg (G) = <T(X(Na(P))), {Qg [0<s<n—1}> .

Proof. Since P is abelian, Ng(P) =: N controls p-fusion by Burnside’s Theorem. Therefore, by
Corollary 8.3, D(G) = D(N). Next we claim that D(N) = Ty (z,)(N). By definition V(Fy) =
@7y k1Y so that

n—1
Proj(V(Fn)) = @ Proj(k1}.) = Proj(k1y )

s=0

because Proj(k:Tgs) c Proj(k Tgm) for every s < n — 1 as pointed out in remark 2.3. Therefore

Ty (Fy)(N) = Tay (N).

In addition, by [Laslla, Thm. 8.2.6], we have
TW%]n,l(N) :<X(N)7{Qk¢gs [0<s<n-—1}>.
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Now, X(N) < D(N) by Remark 5.6 and the relative syzygy modules Qj,~ (k) are endo-p-permutation
modules by Lemma 5.7. Whence D(N) = Ty (z,)(N). Finally, Ty (r,)(G) = Ty, (N) via re-
striction, by Lemma 4.1. Consequently, there is a commutative diagram:

ResG

00— Ty (76)(G) ——=— Ty (7 (N) 0
esg

0 ————D(G) ———=—> D(N) 0

where the left-hand side vertical arrow is the inclusion as a subgroup of D(G) in Ty (£,)(G). Thus,
the equality D(G) = Ty (r,)(G) follows by the 5-Lemma. O

11. THE KLEIN CASE

Consider G is a finite group with a Sylow 2-subgroup P =~ C3 x (5 and assume that the
characteristic of the field & is 2.

Theorem 11.1 ([Laslla], Thm. 6.0.4). Let G be a finite group with a normal Sylow 2-subgroup
P ~Cy x Cy. Let'V be any absolutely 2-divisible kG-module. Then there is a group isomorphism
0 :Ty(G) — T(G) : [M] —> [My] where M = My@®(V—proj) with My the unique indecomposable
and V -endotrivial summand of M.

Proposition 11.2. Let G be a finite group with a Sylow 2-subgroup P =~ Cy x Cs.
(a) For any absolutely 2-divisible kG-module V', the group Ty (G) identifies with a subgroup of
Ty (5)(G) = T(NG(P)).
(b) Moreover D(G) = Ty () (G) .

Proof. Set N := Ng(P).

(a) If V € mod(kG) is absolutely 2-divisible, then, by Lemma 2.11, the restriction map
Res§ : Ty (G) — Ty,c (N) is injective and sends the class of an indecomposable V-endo-
trivial kG-module to the class of its kNN-Green correspondent. By Lemma 4.1, the map
Res% : Ty (7o) (G) — Ty (ry)(N) is an isomorphism whose inverse is induced by Green
correspondence on the indecomposable V(Fy )-endotrivial modules. Furthermore, by The-
orem 11.1, Ty () (N) = T(N) = Ty ¢ (N). Therefore, the situation is as described in the
following diagram:

TvFra)(G)<—=——==-=-=-~ - Ty (G)
2lResg Resg
Ty () (N) === T(N) =<~ Ty, (N)

Thus, there is an injective group homomorphism Ty (G) — Ty () (G) : [L] — [L],
where L denotes an indecomposable V-endotrivial module.

(b) The series of embeddings T'(N) < D(N) < Ty (£,)(N) and Theorem 11.1, which identifies
T(N) with Ty (#,)(IV), allow us to conclude that D(N) = Ty (#,)(NN). Then, to prove that
D(G) = Ty (7)(G), use the same argument as in the proof of Proposition 10.1 in the cyclic
case, because P is also abelian and thus Ng(P) controls p-fusion in G.

O
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12. THE GrOUP D%(G)

If P is a p-group, with p odd, then one of the main results of the classification of endo-permutation
modules asserts that D(P) = D(P) = <{QM§ |Q < P}y (see [Bou06]). In this section we ask

whether or not a similar result holds for the generalised Dade group.

Recall from 5.6 and 5.7 that the group D(G) = (Qyu (k) | H S Fg) is a subgroup of D(G).

Lemma 12.1. The group D*(G) is generated by the relative syzygies ng, where Q) runs over the
proper subgroups of P, that is D*(G) = <{ng |Qe Fa}).

Proof. f H < Fg is a family of subgroups, set ny := max{|H||H € H}. We claim that
Oy € <{Qk¢g |Q € Fg}) for every H S F and the proof proceeds by induction on the natural
number nyy. First, if ny = 1, then Proj(#H) is projectivity relative to the trivial subgroup {15},
which is projectivity in the usual sense. Hence

Qy = melc} € <{Qk¢g |Q € Fc}).

Then, let H := {Hy,..., H,}, n € N be a subfamily of F¢ such that ny; > 2 and assume as induction
hypothesis that Qr € <{Qk¢g |Q € Fg}) for every subfamily F < F¢g such that 1 < nr < ny.
Furthermore, according to Remark 2.3, we may assume that H; £g H; Vi # j,1 <4,j < n. Then,
according to Remark 2.16 we can write

Q=D Yuy — Z Qagm, .oy _ynguyy 0 Ty (G) .

i=1 j=2
The sum " | Qqpy,y € <{Qk¢g |Q € Fg}). Moreover, for every 2 < j < n, the family of subgroups
YHy,...,H;j_1} n {H;} is made up of the subgroups of the form Y9H; n H; with ¢ € G and
1 <4 < j—1, which all satisfy 9H; n H; < H; by the above assumption. In consequence, the
sum Z?:g Qogm,,.. 0, 1}~{H,) Delongs to <{QM8 | Q@ € F}) by induction hypothesis, and the result
follows. 0

Remark 12.2. If H is a subfamily of Fg, then it follows from the preceding proof that
Q3 € <{Qk¢8 |Q < H for some H € H}).

Question: In case G = P is a p-group and p is odd, then D(P) = D}(P) (see [Bou06]). Does a
similar result hold in general for D(G) when G is an arbitrary finite group?

Because the one-dimensional representations are always in D(G) this result obviously has to be
adapted when G is not a p-group. Nonetheless, we show that in the following cases, D(G) is D*}(G)
modulo the Green correspondents I'(X') of one-dimensional representations of Ng(P) (with P a
Sylow p-subgroup of G):

(a) when G has a cyclic Sylow p-subgroup;

(b) when p is odd and P is normal in G;

(¢) when Ng(P) controls p-fusion in P;

(d) it is also true for G = GL3(F,) with p odd.

The question of determining if this result holds in general is left open.

(a) The cyclic case. In case the group G has a cyclic Sylow p-subgroup P, then it was proven
in Proposition 10.1 that

D(G) = Ty(7,)(G) = Tyg  (G) =<D(X(Na(P))), {Qg [0<s<n—1}> .

Zn—1
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Hence D(G) is indeed D*(G) modulo I'(X).

(b) The normal odd case: In order to prove (b), we first recall that a set of generators for
D(P)%=st is provided in [Urf06]:
Proposition 12.3 ([Urf06], Cor. 3.7). Suppose that p is an odd prime and P is a Sylow p-subgroup
of the group G. Then the abelian group D(P)Ne(P) is spanned by the elements
fo = > e
9€[NG(P)/PNa(P,Q)]
where Ng(P,Q) = {g € Ng(P)| 9Q = Q} and Q runs over Fg.

In what follows, we consider that P < G, so that Ng(P, Q) = Ng(Q) for every subgroup @ < P.
We still need another technical result on projectivity relative to p-subgroups.

Lemma 12.4. Let G be a group with a normal Sylow p-subgroup P and R be a proper subgroup of
P. Then

Proj(k1GlE) = Proj( @  k1hg).

2€[G/PNg(R)]

Proof. The Mackey formula yields Proj(k Tglg) = Proj(®,e(c/r k TI;)Q) . Now, in order to obtain
the equality of the statement, recall from Proposition 2.2 that if VW € mod(kG) and Proj(V) =
Proj(W) then Proj(V @ W) = Proj(V). Therefore, in

Proj( & k;TI.:Q) = @ Proj(kTI;Q)

z€[G/P] 2€[G/P]

it is enough to keep only one copy of the summands generating the same relative projectiv-
ity. Thus, compute that for z,y € G, Proj(k TEQ) = Proj(k TfQ) if and only if there ex-
ists p € P such that P*Q = ¥Q if and only if y~'x € PNg(Q) (since P < G) if and only if
y=x mod PNg(Q). Whence Proj(k:Tglg) = Proj(D,e(c/pne Q)] kTI;_’Q). O

Proposition 12.5. Let p be an odd prime and P be a normal Sylow p-subgroup of G. Then the
restriction map Res$ : DXG) —» D(P)C is surjective.
More accurately, if Q@ < P, then any generator fg of D(P)C described in Proposition 12.3 can be
expressed as

fo = > Qe = Resg (Qyg) + X

9€[G/PNg(Q)]

where X € {{fre D(P)Y|R < P and |R| < |Q|}).
Proof. The proof proceeds by induction on the order of the subgroup Q.
Case |(Q)| = 1: by part (d) of Lemma 2.15, Resg(ﬂmﬁ}) = QkT{Gl} = fq1y- Hence f{1y € Res$(DY(@)).
Induction step: Let @ < P such that || > 1 and assume as induction hypothesis that for every
subgroup S < P such that [S| < |Q|, the generator fs = >}, c1q/png(s)] Qg of D(P)% belongs
to Res%(D%(G)). Again by part (d) of Lemma 2.15, in D(P) we have

Resg(QMg) = nglg = QV

where V := C—Dze[G /P k TJ;Q, so that the second equality follows from the Mackey formula. Taking
the vision of P-sets, Qy = Qy where Y is the P-set defined by Y := [ |,/ P/ “Q. Then [Bou00,
Lem. 5.2.3] yields the formula
Qy = Z wp(U,V)Qp
U,VG[SP]
Uu<pV
YV#g
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where [sp] is a set of representatives of conjugacy classes, under the action of P, of subgroups in
P and pp is the Mobius function of the poset ([sp], <p). Translating this in terms of kP-modules

yields:
Q= ( OV up = Y Qup D ( > up(UV)) g

UG Sp VE Sp UG[SP UG Sp VG Sp
U<cQ Us<pV<cQ U=¢Q UscQ Us<pV<cQ

= Z QMI;Q + Z (( 2 /LP(U, V)) Z QkTiU >
2€[G/PNg(Q)] Ue[G\[sp]] Velsp] 2e[G/PNg(U)]

U<gQ U<pV<eQ
=fo+ Z ( 2 ne(U, V))fU
Ue[G\[sp]]  Ve[sp]

U<GQ USPVSGQ

where [G\[sp]] denotes a set of representatives of conjugacy classes of classes of subgroups in [sp]
under the left action of G. Then set

Xi== Y (X ue@V)fuedfre DIP)?|R 5 PR < Q).
eGPl © Velsr]
U<cQ UspV<gQ
By induction hypothesis X € Res&(D?(Q)). It follows that fo = Resg(QMg) + X e Res&(D@)),
as required. O

Theorem 12.6. Let p be an odd prime and G a finite group having a normal Sylow p-subgroup.
Then

D(G) = X(G) + D*(G).
Proof. By Theorem 7.3 the restriction map Res$ : D(G) — D(P)% induces an isomorphism
D(G)/X(G) = D(P)S. Moreover the previous proposition states that restriction of Res& to D?(G)
is surjective onto D(P)%. Hence the result. O

Notice that the sum D(G) = X(G) + D}(G) of Theorem 12.6 need not be direct. A counterex-
ample is provided by taking G to be a group with a normal Sylow p-subgroup isomorphic to a
cyclic p-group Cpn with p,n > 3. Indeed, Theorem 10.1 states that D(G) = Tiye (G), and it

n—1
can be seen from the description by generators and relations of this group given in [Laslla, Thm.
8.2.6] that there exists a class [v] € X(G), [v] # [k], such that 2Qy¢ = [v] and thus [v] belongs
n—1

to both X (G) and D%(G).

(c) D and control of fusion.

Lemma 12.7. Let H be a subgroup of G containing the Sylow p-subgroup P of G and assume
that H controls p-fusion in G. Then the restriction map Res$, : D(G) — DX(H) is surjective.
Moreover, if H contains Ng(P), then restriction induces an isomorphism D®*(G) = D(H).

Proof. The proof is similar to that of Proposition 12.5. We claim that for every subgroup @Q < P,
Resg(ng) = ng + X with X € ({Qyn € D®(H)|R < P,|R| < |Ql|}). We proceed by induction
on the order of the subgroup Q.

Case |Q| =1: ng = Q so that by Lemma 2.15, part (d), Res§(Q) = Q = QkTH € Res$ (D(G)).

Induction step: Let @ < P be a subgroup such that |@Q| > 2 and assume that ResH(ch) has
the required form for every subgroup S < P such that |S| < |Q|. Compute, by part (d) of Lemma
2.15, that

Resfl(ng) = nglg = Qv,
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where by the Mackey Formula one can set V' := @, crn /01 F Mons - Then decompose

V= @ kthhen= @D kh e D ktig.m-
ze[H\G/Q] z€[H\G/Q] ze[H\G/Q]
"Q<H QkH
Write Vi = @)xe[H\G/Q],ngHk TgQ and Vs, := ®xe[H\G/Q],zQ$H k TngH. Then, by part (a) of
Lemma 2.16, Qy = Qvl + QV2 — QV1®V2 .

Now, firstly, since H controls fusion, for every x € [H\G/Q] such that *Q < H, there exists h € H,
such that “Q = "Q. In consequence Proj(Vy) = Proj(k Tg) by Proposition 2.2 (¢) and (e), and
thus by part (a) of Lemma 2.15 we have Qy, = ng.

Secondly, Proj(Va) corresponds to projectivity relative to the family of subgroups
H = {"Q n H|z € [H\G/Q], “Q « H}, all of whose elements have order strictly smaller than
|@Q|. Therefore Remark 12.2 states that

v, = Yy e (e | S < PIS| < QI

Thirdly, by (b) of Lemma 2.15, Qv,gv, = Q3 nygy. Since H consists of subgroups all of order
strictly smaller than |Q|, so does the family H n #{Q}. Thus, the same argument as above yields

Qvigve = Qunnggy € {ye |5 < P IS < 1Q}).
Therefore set X := —Qy, + Qy, g, so that
Qg = Resg(ﬂmg) + X

with X € ({Qyuu € D®(H)|R < P,|R| < |Ql}), as required. Then, by induction hypothesis,
X € Res$(D®(G)) and thus so does ng. In conclusion all the generators of D*(H) are in
Res% (D?(@)) and the surjectivity of Res$ : D%(G) — D2(H) follows.

Finally, if Ng(P) < H < G, the map Res$; : D(G) — D(H) is injective by Lemma 6.1. Hence
the isomorphism follows. O

Corollary 12.8. Let p be an odd prime. If P is a Sylow p-subgroup of G and Ng(P) controls
p-fusion in G, then the Dade group decomposes as

D(G) = D(G) +T(X).

Proof. Theorem 7.3 provides us with the exact sequence

G
Resp

0 — I'(X) — D(G) D(P)¢=t — 0.

Thus it suffices to prove that the map Res$ : D?(G) — D(P)%~*t is surjective. Indeed, since
Ng(P) controls p-fusion, D(P)Ne(P) = D(P)%=5t by Proposition 8.2. Therefore, the map Resg :
D®(G) — D(P)%~*t is equal to the composition

Res$ (P) ResNG(P)
e, DY(Ng(P)) —

DQ(G) D(P)NG(P) — D(p)G—st

where Res% «(p) 1s surjective by the previous lemma and Reng(P) is surjective by Proposition 12.5.
Hence the result. O
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(d) The example of GL3(F,). Let G = GL3(F,) with p an odd prime. This group has an
extraspecial Sylow p-subgroup P of order p? consisting of the upper unitriangular matrices and
generated by the three matrices

1 0 1 1 11 1 0 1
z:= 01 1 J,y:=| 0 1 0 Jandz:=[ 0 1 O
0 01 0 01 0 0 1

Since fusion in P is the same under the action of GL3(F,) or under the action of PSL3(F,),
D(P)&=st = D(P)PSLs(Fp)=st  This last group was computed in [LM09, Example 6.6], by the
following general method:

D(P)G—st _ D(P)NG(P) A m D(P)NG(E)_St.

E<P
E p-essential

(This is actually a consequence of Alperin’s fusion Theorem.) In the current case GL3(F,) has
exactly two p-essential subgroups, namely F; :=< z,2z > and Fy :=< y, 2z >. Moreover

GLy(F,) | * Fp| = =
Ng(Ey) = 20 =t Hp and No(E2) = | 0 | ., (F.) = K,.
00 |F; 0 e

which are the two maximal parabolic subgroups in GL3(F,) and both of which contain Ng(P).

Hence

D(P)G—st _ D<P)Hp—st A D(P)Kp—st .
Proposition 12.9. Let p be an odd prime. Let G := GL3(F,) and let H, and K, be as above.
Then the three restriction maps Res@ : D®(G) — D(P)G—5t, Resg” : DY(H,) — D(P)H»=st,
and Resgp : DY(H,) —> D(P)%»=5t are surjective.
Proof. Detailed computations for the proof of this proposition can be found in [Lasl1b, Sect. 7.11].
The method is to find sets of generators for the groups D(P)#r=5! and D(P)%»~5! and thus for

D(P)%—st = D(P)Hr=5t ~n D(P)%»~5t and then show that all these generators are in the image of

the corresponding restriction map.
|

Note that, in particular, the computations in [Las1l1b, Sect. 7.11] prove that the set of generators
for D(P)PSLs(Fr)=5t computed in [LM09, Example 6.6] misses one generator to be complete.

Finally, as above, the surjectivity of the three restriction maps ResIGp, Resgp, and Resg" of
Proposition 12.9 imply that
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