
Synthetic Linear Analysis: Improved Attacks on

CubeHash and Rabbit

Yi Lu1, Serge Vaudenay2, Willi Meier3,
Liping Ding1, and Jianchun Jiang1

1 National Engineering Research Center of Fundamental Software
Institute of Software, Chinese Academy of Sciences, Beijing, China

2 EPFL, Lausanne, Switzerland
3 FHNW, Windisch, Switzerland

Abstract. It has been considered most important and difficult to an-
alyze the bias and find a large bias regarding the security of crypto-
systems, since the invention of linear cryptanalysis. The demonstration
of a large bias will usually imply that the target crypto-system is not
strong. Regarding the bias analysis, researchers often focus on a theoret-
ical solution for a specific problem.
In this paper, we take a first step towards the synthetic approach on
bias analysis. We successfully apply our synthetic analysis to improve the
most recent linear attacks on CubeHash and Rabbit respectively. Cube-
Hash was selected to the second round of SHA-3 competition. For Cube-
Hash, the best linear attack on 11-round CubeHash with 2470 queries was
proposed previously. We present an improved attack for 11-round Cube-
Hash with complexity 2414.2. Based on our 11-round attack, we give a
new linear attack for 12-round CubeHash with complexity 2513, which
is sharply close to the security parameter 2512 of CubeHash. Rabbit is
a stream cipher among the finalists of ECRYPT Stream Cipher Project
(eSTREAM). For Rabbit, the best linear attack with complexity 2141

was recently presented. Our synthetic bias analysis yields the improved
attack with complexity 2136. Moreover, it seems that our results might
be further improved, according to our ongoing computations.
Keywords: bias, linear cryptanalysis, synthetic analysis, conditional de-
pendence, CubeHash, Rabbit.

1 Introduction

It has been considered most important and difficult to analyze the bias
and find a large bias regarding the security of crypto-systems, since the
invention of linear cryptanalysis [6] almost 20 years ago. The demonstra-
tion of a large bias will usually imply that the target crypto-system is
not as strong as expected. Regarding the bias analysis, researchers often
focus on a theoretical solution for a specific problem. Unfortunately, it
does not help much to analyze the bias for a broad class of problems.

Most often, we need to study the combined bias of multiple Boolean
functions (such as multiple linear approximations) with many input vari-
ables. Assuming that these Boolean functions are all independent pair-
wise, the problem reduces to the bias computation of each Boolean func-
tion separately. Apparently, if the terms involved in each Boolean function
are statistically independent of the terms in the others, we are sure that
all are independent pairwise and it is “safe” to concentrate on bias com-
putation of each Boolean function. Further, it is worth pointing out that
it is incorrect to conclude independence when the terms involved in each
function “differ” from the terms occurring in the others. It is thus essen-
tial to conduct synthetic analysis to study these bias problems. In this
paper, we take a first step towards the synthetic approach on bias anal-
ysis. We also propose a conditional dependent bias problem and we give
an analysis to estimate the bias.

We apply our synthetic analysis to improve the most recent linear at-
tack [1] on the hash function CubeHash [2]. CubeHash was selected to the
second round of SHA-3 competition [8]. In [1], based on the bias analysis
for 11-round CubeHash, the best linear attack on 11-round CubeHash
with 2470 queries was proposed. Our results improve the bias analysis [1].
We show the largest bias 2−207.1 for 11-round CubeHash, and we present
an improved linear attack for 11-round CubeHash with complexity 2414.2.
Further, based on our 11-round attack, we give a new linear attack for
12-round CubeHash with complexity 2513, which is sharply close to the
security parameter 2512 of CubeHash.

Meanwhile, our synthetic analysis is applied to the recent linear attack
[5] on stream cipher Rabbit [3]. Rabbit is a stream cipher among the
finalists of ECRYPT Stream Cipher Project (eSTREAM). It has also
been published as informational RFC 4503 with the Internet Engineering
Task Force (IETF). In [5], the best linear attack with complexity 2141

was presented. As reference, Rabbit designers claim the security level
2128. Our synthetic analysis applies to the main part of the bias analysis
[5]. Our results yield the improved linear attack with complexity 2136.

The rest of the paper is organized as follows. In Section 2, we give
preliminary analysis on CubeHash. In Section 3, we introduce the syn-
thetic approach to the bias analysis problem and discuss how to apply to
CubeHash round function in details. In Section 4, we propose the syn-
thetic bias analysis for the conditional dependent problem. In Section 5
and Section 6, we present our improved attacks on CubeHash and Rabbit.
We conclude in Section 7.

2

2 Preliminary Analysis on CubeHash Round Function

The hash function CubeHash [2] was designed by Prof. Daniel J. Bern-
stein. It was one of the 14 candidates which were selected to the second
round of SHA-3 competition [8]. SHA-3 was initiated by the U.S. National
Institute of Standards and Technology to push forwards the development
of a new hash standard, following the recent fruitful research work on the
hash function cryptanalysis. CubeHash is a family of cryptographic hash
functions, parameterized by the performance and security requirement.
At the heart of it, CubeHash consists of an internal state of 1024 bits,
round transformation T , round number r, between introduction of new
message blocks. At the end, T is repeated 10r times before outputting h
bits of its state as the final hash value. Security/performance tradeoffs are
provided with different combinations h, r and the message block length
b. The normal security parameters are r = 16, b = 32, according to [1].

Each Round of CubeHash consists of two half rounds. Each half round
consists of five steps, and only one step out of five introduces nonlinearity
to the internal state by performing the modular addition operations. We
will investigate the largest bias [1] for CubeHash. It was shown that due to
this largest bias, a non-trivial linear attack on 11-round CubeHash with
2470 queries exists. As reference, the security parameter is 2512. We will
improve the bias analysis of multiple linear approximations in [1]. Recall
that the bias4 of a binary random variable X is Pr[X = 0] − Pr[X = 1].
Our main focus is that, within each round, the linear approximations
are not all independent pairwise. This can be justified by the fact that
nonlinearity is introduced by two separate steps (Step 1 and Step 6)
instead of one step within a round.

Let us start from a simple case of Round 7 first. We let 32 words
x00000, x00001, . . . , x11111 to denote the internal states of 1024 bits (each
word has 32 bits). The round transformation T can be described by the

4 Our definition of bias is slightly different from [1], it was defined as Pr[X = 0]− 1/2
in [1].

3

following ten steps of operations (‘+’ denotes modular addition):

Step 1: x0n + x1n → x1n for all 4-bit n

Step 2: x0n ≪ 7 → x0n for all 4-bit n

Step 3: x00n ↔ x01n for all 3-bit n

Step 4: x0n ⊕ x1n → x0n for all 4-bit n

Step 5: x1jk0m ↔ x1jk1m for all 1-bit j, k,m

Step 6: x0n + x1n → x1n for all 4-bit n

Step 7: x0n ≪ 11 → x0n for all 4-bit n

Step 8: x0j0km ↔ x0j1km for all 1-bit j, k,m

Step 9: x0n ⊕ x1n → x0n for all 4-bit n

Step 10: x1jkm0 ↔ x1jkm1 for all 1-bit j, k,m

For our purpose, we use superscripts to represent the step number within
the round. We let the states without superscripts to represent the states
right at beginning of the round. The round number of the internal states
which we study is clear from the context, and we omit it from the nota-
tions. At Step 1 of Round 7, the step operation allows us to deduce:

0x300 · x10100 ⊕ 0x300 · x10110 (1)

= 0x300 · x10100 ⊕ 0x300 · x00100 ⊕ 0x300 · x00100 ⊕ (2)

0x300 · x10110 ⊕ 0x300 · x00110 ⊕ 0x300 · x00110 (3)

≈ 0x300 · x110100 ⊕ 0x300 · x110110 ⊕ 0x300 · x100100 ⊕ 0x300 · x100110 (4)

We note that two linear approximations are introduced into (4):

0x300 · x110100 ⊕ 0x300 · x100100 ≈ 0x300 · (x110100 − x100100) (5)

0x300 · x110110 ⊕ 0x300 · x100110 ≈ 0x300 · (x110110 − x100110) (6)

We continue on (4) from Step 2 through Step 5:

= 0x300 · x210100 ⊕ 0x300 · x210110 ⊕ 0x18000 · x200100 ⊕ 0x18000 · x200110

= 0x300 · x310100 ⊕ 0x300 · x310110 ⊕ 0x18000 · x301100 ⊕ 0x18000 · x301110

= 0x300 · x410100 ⊕ 0x300 · x410110 ⊕ 0x18000 · x401100 ⊕ 0x18000 · x411100 ⊕

0x18000 · x401110 ⊕ 0x18000 · x411110

= 0x300 · x510110 ⊕ 0x300 · x510100 ⊕ 0x18000 · x501100 ⊕ 0x18000 · x511110

⊕0x18000 · x501110 ⊕ 0x18000 · x511100 (7)

4

At Step 6, (7) can be rewritten as,

= 0x300 · x510110 ⊕ 0x300 · x500110 ⊕ 0x300 · x500110 ⊕

0x300 · x510100 ⊕ 0x300 · x500100 ⊕ 0x300 · x500100 ⊕

0x18000 · x501100 ⊕ 0x18000 · x511100 ⊕ 0x18000 · x501110 ⊕ 0x18000 · x511110

≈ 0x300 · x610110 ⊕ 0x300 · x600110 ⊕ 0x300 · x610100 ⊕ 0x300 · x600100 ⊕

0x18000 · x611100 ⊕ 0x18000 · x611110

Four linear approximations are introduced in this step:

0x300 · x510110 ⊕ 0x300 · x500110 ≈ 0x300 · (x510110 + x500110) (8)

0x300 · x510100 ⊕ 0x300 · x500100 ≈ 0x300 · (x510100 + x500100) (9)

0x18000 · x501100 ⊕ 0x18000 · x511100 ≈ 0x18000 · (x501100 + x511100) (10)

0x18000 · x501110 ⊕ 0x18000 · x511110 ≈ 0x18000 · (x501110 + x511110) (11)

It is clear that the bias for the linear approximation at Round 7,

0x300 · x10100 ⊕ 0x300 · x10110 (12)

≈ 0x180000 · (x1000000 ⊕ x1000010 ⊕ x1010001 ⊕ x1010011)⊕

0x300 · (x1010101 ⊕ x1010111)⊕ 0x18000 · (x1011101 ⊕ x1011111)

equals the combined bias of the six approximations (5), (6), (8), (9), (10),
(11) holding simultaneously. Furthermore, if these approximations are in-
dependent, we apply Piling-up lemma [6] to deduce that the total bias
is equal to the product of the six individual biases for each linear ap-
proximation. Unfortunately, as we demonstrate below, this independence
assumption is not true.

Obviously, we can easily justify that Approximations (5), (6) are inde-
pendent, because the involved states x10100, x00100 in (5) are independent
of the involved states x10110, x00110 in (6); similarly, Approximations (8),
(9), (10), (11) are independent pairwise. Our main focus here is to show
below that these two groups of approximations are, however, not indepen-
dent. The internal states are invertible with the CubeHash round function
T , as each step operation is invertible. Thus, we can rewrite Approxima-
tions (8), (9), (10), (11) in terms of states right after step one as follows

5

respectively,

0x300 · (x110100 + (x101110 ≪ 7⊕ x110110)) ≈ 0x300 · (x110100 (13)

⊕x101110 ≪ 7⊕ x110110)

0x300 · (x110110 + (x101100 ≪ 7⊕ x110100)) ≈ 0x300 · (x110110 (14)

⊕x101100 ≪ 7⊕ x110100)

0x18000 · (x111110 + (x100100 ≪ 7⊕ x111100)) ≈ 0x18000 · (x111110 (15)

⊕x100100 ≪ 7⊕ x111100)

0x18000 · (x111100 + (x100110 ≪ 7⊕ x111110)) ≈ 0x18000 · (x111100 (16)

⊕x100110 ≪ 7⊕ x111110)

In the next section, we will discuss the synthetic bias analysis and apply
it for CubeHash Round 7 to analyze (5), (6), (13), (14), (15) and (16).

3 The Synthetic Approach

When we study the combined bias of multiple Boolean functions, such
as multiple linear approximations, it is common to assume that they are
all independent pairwise. This way, the problem reduces to the bias com-
putation of each Boolean function separately. Apparently, if the terms
involved in each function are statistically independent of the terms in
the other functions, we are sure that all function outputs are indepen-
dent pairwise and it is “safe” to concentrate on bias computation of each
Boolean function. Further, it is worth pointing out that it is incorrect to
conclude independence when the terms involved in each function “differ”
from the terms occurring in the other functions. For example, one might
take it for granted that (5), (6), (8), (9), (10), (11) are all independent,
as the terms occurring in any linear approximation never occurs in other
approximations. As a matter of fact, as we will see later, after re-writing
(8), (9), (10), (11) equivalently by (13), (14), (15), (16) respectively, they
are not all independent.

It thus leads us naturally to the “Divide-and-Conquer” method to
the bias analysis involving multiple Boolean functions. That is, we try
to group multiple possibly dependent Boolean functions (eg. linear ap-
proximations with regards to CubeHash). The aim is that the functions
in each group are dependent and the functions in different groups are
independent. When grouping, it is desirable to make each group size as
small as possible. The group size is referred to the number of functions
contained in the group. The rationale behind grouping is that, we are

6

dividing originally one (big) group of a larger number of functions into
multiple independent groups; once grouping is done, we just need to study
each group of smaller size individually. This helps make the task of bias
analysis easier by reducing the number of the functions, which have to be
studied simultaneously. We will explain in details next on CubeHash.

3.1 Our Analysis on CubeHash Round Function

We will first see how to group the six approximations (5), (6), (13), (14),
(15) and (16) for CubeHash Round 7. We look at (13) and (14) first. At
first glance, it seems that they are dependent as both have x110110 and
x110100. However, we note that x101110, x

1
01100 only occurs once in (5), (6),

(13), (14), (15), (16), i.e., neither occurs in (5), (6), (15), (16). From the
fact that x101110, x

1
01100 are independent, we deduce that x

1
10100, x

1
01110 ≪ 7

are independent of x110110, x
1
01100 ≪ 7. Thus, x110100, x

1
01110 ≪ 7⊕ x110110

are independent of x110110, x
1
01100 ≪ 7; and x110100, x

1
01110 ≪ 7⊕x110110 are

independent of x110110, x
1
01100 ≪ 7 ⊕ x110100. Consequently, we know that

(13) and (14) are independent. As x110100 occurs in both (5) and (13), we
group (5) and (13) together. Likewise, as x110110 occurs in both (6) and
(14), we group (6) and (14) together.

Both (15), (16) involve x111110, x
1
11100, and it thus seems that (15), (16)

are dependent. We can use the fact that x100100, x
1
00110 are independent to

show that x111110, x
1
00100 ≪ 7⊕x111100 are independent of x

1
11100, x

1
00110 ≪

7 ⊕ x111110. So, we deduce (15) and (16) are independent. As (15), (16)
relates to x100100, x

1
00110 respectively, x100100 is related to (5), (13), and

x100110 is related to (6) and (14). Therefore, we are able to make two
groups. Group One contains (5), (13), (15). Group Two contains (6),
(14), (16). These two groups are independent as we have just explained
above.

When it comes to the joint bias computation of a group of dependent
linear approximations, in general, it is a computationally hard problem,
although in certain cases it might be feasible to calculate the bias for
a single linear approximation. For example, [4] is applicable to analyze
the bias of a single linear approximation in our above CubeHash problem.
Nevertheless, when the bias is large, we can always compute it empirically,
as successfully showed with recent results on RC4 biases (eg. [9]). The
direct bias computation when the bias is small is beyond the scope of this
paper.

Our computations show that the joint bias for the group of approx-
imations (5), (13), (15) holding simultaneously is around 2−2.5 and the
joint bias for (6), (14), (16) is around 2−2.5.

7

Consequently, the total bias for the linear approximation (12) at
Round 7, is calculated as 2−2.5 × 2−2.5 = 2−5. In contrast, if the de-
pendency within the round is ignored, we would have a smaller bias 2−6

at Round 7.
For CubeHash Round 8, we can show that six pairwise independent

approximations arise at Step 1:

0x180000 · (x100001 ⊕ x110001) ≈ 0x180000 · (x100001 − x110001) (17)

0x180000 · (x100011 ⊕ x110011) ≈ 0x180000 · (x100011 − x110011) (18)

0x300 · (x100101 ⊕ x110101) ≈ 0x300 · (x100101 − x110101) (19)

0x300 · (x100111 ⊕ x110111) ≈ 0x300 · (x100111 − x110111) (20)

0x18000 · (x101101 ⊕ x111101) ≈ 0x18000 · (x101101 − x111101) (21)

0x18000 · (x101111 ⊕ x111111) ≈ 0x18000 · (x101111 − x111111) (22)

Eight pairwise independent approximations arise at Step 6. They are
presented in terms of states right after step one of the round:

0x180000 · (x110011 + (x101001 ≪ 7⊕ x110001)) ≈

0x180000 · (x110011 ⊕ x101001 ≪ 7⊕ x110001) (23)

0x180000 · (x110001 + (x101011 ≪ 7⊕ x110011)) ≈

0x180000 · (x110001 ⊕ x101011 ≪ 7⊕ x110011) (24)

0xc00300 · (x110111 + (x101101 ≪ 7⊕ x110101)) ≈

0xc00300 · (x110111 ⊕ x101101 ≪ 7⊕ x110101) (25)

0xc00300 · (x110101 + (x101111 ≪ 7⊕ x110111)) ≈

0xc00300 · (x110101 ⊕ x101111 ≪ 7⊕ x110111) (26)

0xc000000 · (x111010 + (x100000 ≪ 7⊕ x111000)) ≈

0xc000000 · (x111010 ⊕ x100000 ≪ 7⊕ x111000) (27)

0xc000000 · (x111011 + (x100001 ≪ 7⊕ x111001)) ≈

0xc000000 · (x111011 ⊕ x100001 ≪ 7⊕ x111001) (28)

0xc000000 · (x111000 + (x100010 ≪ 7⊕ x111010)) ≈

0xc000000 · (x111000 ⊕ x100010 ≪ 7⊕ x111010) (29)

0xc000000 · (x111001 + (x100011 ≪ 7⊕ x111011)) ≈

0xc000000 · (x111001 ⊕ x100011 ≪ 7⊕ x111011) (30)

Thus, we have 6+8=14 linear approximations involved in this round. As
was done for Round 7, we can demonstrate that these 14 approximations
fall into four independent groups.

8

Group One: (17), (18), (23), (24), (28), (30).

Group Two: (19), (20), (21), (22), (25), (26).

Group Three: (27).

Group Four: (29).

As Group Three and Group Four each contains only one approxi-
mation, we easily know the bias is 2−1 for each group directly from [4].
Group One and Group Two each contains six approximations. We com-
pute the total bias for each group separately. Our results show that the
bias for Group One is 2−5 and the bias for Group Two is 2−6.8. Note
that the independence assumption would yield a smaller bias 2−6, 2−8 for
Group One, Group Two respectively. Consequently, we deduce the total
bias 2−5 × 2−6.8 × 2−1 × 2−1 = 2−13.8 for Round 8, by considering the
dependence within the round. Note that, if the dependency within the
round is ignored, we would have a smaller bias 2−16.

4 Synthetic Bias Analysis on the Conditional Dependent

Problem

When analyzing CubeHash round function, we note a new bias prob-
lem, which we shall call conditional dependence from now on. This is in
contrast to the well-known concept of conditional independence in statis-
tics. Let X,Y, Z be random variables. Recall that X,Y are conditional
independent given Z, if X,Y, Z satisfy Pr(X = x, Y = y|Z) = Pr(X =
x|Z) Pr(Y = y|Z) for all x, y. In our problem, X,Y are statistically inde-
pendent variables, but X,Z are dependent as well as Y, Z. We say that
X,Y are conditional dependent given Z. We are concerned with the bias
of f1(X)⊕f2(Y)⊕f3(Z) for Boolean functions f1, f2, f3. For convenience,
we say f1(X), f2(Y) are conditional dependent given f3(Z) rather than
that X,Y are conditional dependent given Z.

Formally speaking, we consider that u0, u1, u2, v1, v2 are independent
variables of binary strings (of fixed length). Three Boolean functions
fA(u0, u1, u2), fB(u2, v2), fC(u1, v1) are defined over those variables. For
simplicity, they are denoted by A,B,C in shorthand. We assume that we
already know the bias for A,B,C respectively. The main question is, we
want to estimate the bias for A⊕B ⊕ C, and due to the dependence we
do not want to use the Piling-up approximation. We assume it infeasible
to compute directly. Our first solution is to obtain the bias for A⊕C (or
A ⊕ B) first. Then, estimate the bias for A ⊕ B ⊕ C by taking either of
the two

Bias(A⊕ C) · Bias(B), Bias(A⊕B) · Bias(C).

9

Here, we consider only one dependence relation and ignore another de-
pendence relation.

By considering the functions as black-boxes (of random functions),
we propose to use the heuristics and make a more delicate estimate as
follows. As u1 affects both A ⊕ B and C, we make a simple assumption
about the two distributions of the bias for A⊕B and for C over u1: the
absolute value of the bias is (almost) a constant and can only take values
in a set of two elements. Thus, it leads us to compute the average p+ (resp.
p−) of the positive (resp. negative) biases for A⊕B over randomly chosen
u1 and the percentage q of the positive biases for A ⊕ B over randomly
chosen u1. Similarly, we also compute the average of the positive p′+ (resp.
negative p′

−
) biases for C over randomly chosen u1 and the percentage q′

of the positive biases.

The distribution of the bias for A ⊕ B over u1 is independent of the
distribution of the bias for C over u1, so we combine the results and give
an estimate on the bias of A⊕B ⊕ C by

qq′p+p
′

+ + (1− q)(1− q′)p−p
′

−
− q(1− q′)p+p

′

−
− (1− q)q′p−p

′

+ (31)

5 Improved Attacks on CubeHash

Using our synthetic analysis, we analyzed all the 11 rounds for CubeHash.
We give our results in Table 1. Note that we can show that all the linear
approximations for Round 5 are independent and for Round 6, so no bias
improvement is possible for Round 5 as well as Round 6. Due to the de-
pendence within each round, we are able to improve the bias estimate for
11-round CubeHash from 2−234 in [1] to 2−207.1. This gives an improved
attack for 11-round CubeHash with complexity 2414.2.

Table 1. Our analysis results on 11-round linear approximations of CubeHash

round 1 2 3 4 5 6 7 8 9 10 11 total

our bias 2−29 2−35.7 2−16.9 2−13 2−4 2−2 2−5 2−13.8 2−18.7 2−36.5 2−32.5 2−207.1

paper [1] 2−34 2−40 2−18 2−14 2−4 2−2 2−6 2−16 2−22 2−42 2−36 2−234

We can extend our above results to attack 12-round CubeHash. Our
analysis shows that by choosing the same output masks from the set
{0x600, 0x18000, 0x180000, 0xc000000, 0xc0000000} for x01101 and x01111
at the end of Round 5, going backwards 6 rounds, forwards 6 rounds, we

10

get5 five new linear approximations (given in Appendix A) on 12-round
CubeHash. They all have the same bias of around 2−261.1. In particular,
with this construction, the last 11 rounds all have the same bias as our
11-round CubeHash above. The bias for its first round is 2−54, assuming
all linear approximations are independent6.

In above analysis, the analysis is focused within each round. According
to the specification of CubeHash, no randomization is introduced between
consecutive rounds, and the biases of consecutive rounds of CubeHash are
likely to be dependent. Our current quick results show that the bias for
round 6 and round 7 can be improved to 2−6, and the bias for round 4
and round 5 can be improved to 2−16. Thus, we have the improved bias
estimate 2−259.1 for 12-round CubeHash. By using the five equal biases,
we have an attack complexity 2(−256.5)×(−2), ie. O(2513).

6 Our Improved Analysis on Stream Cipher Rabbit

Rabbit [3] is a stream cipher among the finalists of EU-funded ECRYPT
Stream Cipher Project (eSTREAM). Rabbit encryption algorithm has
been published as informational RFC 4503 with the Internet Engineering
Task Force (IETF), the standardization body for Internet technology. We
give a brief description on Rabbit in Appendix B. Recently, the bias for

Rabbit keystream outputs, 0x606·s
[47..32]
i+1 ⊕0x606·s

[79..64]
i+1 ⊕0x606·s

[111..96]
i+1

was estimated to be 2−70.5 in [5]. It yields the best distinguishing attack
with complexity 2141, which is still above the claimed security level 2128.

In this section, we apply our synthetic approach to analyze the main
part of the bias analysis, i.e., the total combined bias of the six linear
approximations below for m = 0x606,m′ = 0x6060000 (for simplicity we
omit the irrelevant subscripts i from the variables g):

m · (g2 + g1 ≪ 16 + g0 ≪ 16) ≈ m · (g2 ⊕ g1 ≪ 16⊕ g0 ≪ 16)(32)

m · (g4 + g3 ≪ 16 + g2 ≪ 16) ≈ m · (g4 ⊕ g3 ≪ 16⊕ g2 ≪ 16)(33)

m · (g6 + g5 ≪ 16 + g4 ≪ 16) ≈ m · (g6 ⊕ g5 ≪ 16⊕ g4 ≪ 16)(34)

m′ · (g1 + g0 ≪ 8 + g7) ≈ m′ · (g1 ⊕ g0 ≪ 8⊕ g7) (35)

m′ · (g3 + g2 ≪ 8 + g1) ≈ m′ · (g3 ⊕ g2 ≪ 8⊕ g1) (36)

m′ · (g7 + g6 ≪ 8 + g5) ≈ m′ · (g7 ⊕ g6 ≪ 8⊕ g5) (37)

5 Note that in above analysis on 11-round CubeHash, the 11-round linear approxima-
tion can be obtained by going backwards 5 rounds and forwards 6 rounds with mask
0x6 for x01101 and x01111 at the end of Round 5.

6 As our computation is going on, we expect that our previous analysis on the internal
round dependence would further improve it.

11

Let Group One contain (32), (33), (36) and Group Two contain (34),
(37). Following Sect. 3, we can demonstrate that the linear approxima-
tions in Group One are independent from those in Group Two. Nonethe-
less, given (35), the two groups are not independent. We let A denote
the corresponding7 Boolean function of (35), and let B,C denote the cor-
responding8 Boolean function for Group One, Group Two respectively.
Obviously, this is a conditional dependent bias problem as we proposed
in Sect. 4. Using our first solution in Sect. 4, we compute the bias for
A⊕B,C respectively and get 2−11.4, 2−6. We estimate the combined bias
for above six linear approximations by

2−11.4 × 2−6 = 2−17.4. (38)

Now, we want to apply our black-box solution (31) in Sect. 4. In our

case, we have u1 = g
[31..16]
7 . For A ⊕ B, we compute with 226 random

samples for each randomly chosen u1 and we run it 214 times. We get in
hexadecimal form: q = 0x24a6/0x4000, p+ = 0x1e0e6fc1/(0x24a6 ∗ 225),
p− = 0x123210ab/(0x1b5a ∗ 225). They correspond to the percentage
of positive bias 57.3%, the average of positive bias +2−9.3, the aver-
age of negative bias −2−9.6, and the average bias +2−11.43 of all. For
the function C, we compute with 222 random samples for each ran-
domly chosen u1 and we run it 216 times. We get q′ = 0xafed/0x10000,
p′+ = 0xd4698c87/(0xafed ∗ 221), p′

−
= 0x4ea00ceb/(0x5013 ∗ 221). They

correspond to the percentage of positive bias 68.7%, the average of pos-
itive bias +2−4.73, the average of negative bias −2−5.03, and the average
bias +2−5.94 of all9 . By (31), we estimate the bias 2−17.5 for A⊕B ⊕C.
This result agrees with our first estimation (38). Note that based on the
naive independence assumption, this combined bias is estimated to be
smaller, i.e., 2−20, according to [5]. Consequently, we have an improved
attack on Rabbit with complexity 2136, based on [5].

7 Conclusion

In this paper, we take a first step towards the synthetic approach on bias
analysis. We apply the “Divide-and-Conquer” method to our synthetic
bias analysis. Our synthetic approach helps make the task of bias analysis
easier when multiple Boolean functions are involved. We also propose a

7 We obtain it by replacing ‘≈’ with ‘⊕’ in (35).
8 We obtain it by replacing ‘≈’ with ‘⊕’ in all the linear approximations in the group
and XORing them together.

9 The computations were run several times and we always got these same statistics.

12

conditional dependent bias problem. Based on naive heuristics and certain
ideal assumptions, we give the synthetic bias analysis to estimate the
bias. Our synthetic approach is successfully applied to improve the best
linear attacks [1, 5] on CubeHash and Rabbit respectively. We present an
improved attack on 11-round CubeHash with complexity 2414.2. Based on
our 11-round attack, we give a new linear attack for 12-round CubeHash
with complexity 2513, which is sharply close to the security parameter 2512

of CubeHash. We also give an improved attack on Rabbit with complexity
2136. Moreover, it seems that our results might be further improved, from
our ongoing computations.

Acknowledgments

This work is supported by the National Science and Technology Major
Project No. 2010ZX01036-001-002 and the Knowledge Innovation Key
Directional Program of Chinese Academy of Sciences under Grant No.
KGCX2-YW-125, and the National Natural Science Foundation of China
under Grant No. 90818012.

References

1. T. Ashur, O. Dunkelman, Linear analysis of reduced-round CubeHash, ACNS 2011,
LNCS vol.6715, pp. 462-478, Springer-Verlag, 2011.

2. D.J.Bernstein, CubeHash specification (2.B.1), submission to NIST, 2009.
3. M. Boesgaard, M. Vesterager, T. Christensen and E. Zenner, The stream cipher

Rabbit, the ECRYPT stream cipher project, http://www.ecrypt.eu.org/stream/.
4. J.Y.Cho, J.Pieprzyk, Multiple modular additions and crossword puzzle attack on

NLSv2, ISC 2007, LNCS vol. 4779, pp.230-248, 2007.
5. Y. Lu, Y. Desmedt, Improved distinguishing attack on Rabbit, ISC 2010, LNCS

vol. 6531, pp.17-23, Springer-Verlag, 2011.
6. M. Matsui, Linear cryptanalysis method for des cipher, EUROCRYPT 93, LNCS

vol. 765, pp.386-397, 1994.
7. A. J. Menezes, P. C. van. Oorschot, and S. A. Vanstone, Handbook of Applied

Cryptography, CRC, 1996.
8. N.I.S.T., Cryptographic hash algorithm competition, http://www.nist.gov/

hash-competition.
9. P. Sepehrdad, S. Vaudenay, M. Vuagnoux, Discovery and exploitation of new biases

in RC4, SAC 2010, LNCS vol.6544, pp. 74-91, 2011.

Appendix A: New Linear Approximations on 12-Round

CubeHash

The five new linear approximations on 12-round CubeHash, which we
used in Section 5, are given below (x, x′ denote the inputs, outputs re-

13

spectively):

0x18199800 · x00000 ⊕ 0x18199800 · x00010 ⊕ 0xe7999f81 · x01101

⊕ 0xe7999f81 · x01111 ⊕ 0x18199800 · x10001 ⊕ 0x18199800 · x10011

⊕ 0x30333 · x10101 ⊕ 0x30333 · x10111 ⊕ 0x1819980 · x11101

⊕ 0x1819980 · x11111 ≈ 0x99800181 · x′00000 ⊕ 0x99800181 · x′00010

⊕ 0x18006018 · x′01101 ⊕ 0x18006018 · x′01111 ⊕ 0x99800181 · x′10001

⊕ 0x99800181 · x′10011 ⊕ 0x30333000 · x′10101 ⊕ 0x30333000 · x′10111

⊕ 0x19980018 · x′11101 ⊕ 0x19980018 · x′11111

0x6660006 · x00000 ⊕ 0x6660006 · x00010 ⊕ 0xe667e079 · x01101

⊕ 0xe667e079 · x01111 ⊕ 0x6660006 · x10001 ⊕ 0x6660006 · x10011

⊕ 0xc0ccc0 · x10101 ⊕ 0xc0ccc0 · x10111 ⊕ 0x60666000 · x11101

⊕ 0x60666000 · x11111 ≈ 0x60006066 · x′00000 ⊕ 0x60006066 · x′00010

⊕ 0x180606 · x′01101 ⊕ 0x180606 · x′01111 ⊕ 0x60006066 · x′10001

⊕ 0x60006066 · x′10011 ⊕ 0xccc000c · x′10101 ⊕ 0xccc000c · x′10111

⊕ 0x66000606 · x′11101 ⊕ 0x66000606 · x′11111

0x66600060 · x00000 ⊕ 0x66600060 · x00010 ⊕ 0x667e079e · x01101

⊕ 0x667e079e · x01111 ⊕ 0x66600060 · x10001 ⊕ 0x66600060 · x10011

⊕ 0xc0ccc00 · x10101 ⊕ 0xc0ccc00 · x10111 ⊕ 0x6660006 · x11101

⊕ 0x6660006 · x11111 ≈ 0x60666 · x′00000 ⊕ 0x60666 · x′00010

⊕ 0x1806060 · x′01101 ⊕ 0x1806060 · x′01111 ⊕ 0x60666 · x′10001

⊕ 0x60666 · x′10011 ⊕ 0xccc000c0 · x′10101 ⊕ 0xccc000c0 · x′10111

⊕ 0x60006066 · x′11101 ⊕ 0x60006066 · x′11111

0x30003033 · x00000 ⊕ 0x30003033 · x00010 ⊕ 0x3f03cf33 · x01101

⊕ 0x3f03cf33 · x01111 ⊕ 0x30003033 · x10001 ⊕ 0x30003033 · x10011

⊕ 0x6660006 · x10101 ⊕ 0x6660006 · x10111 ⊕ 0x33000303 · x11101

⊕ 0x33000303 · x11111 ≈ 0x3033300 · x′00000 ⊕ 0x3033300 · x′00010

⊕ 0xc0303000 · x′01101 ⊕ 0xc0303000 · x′01111 ⊕ 0x3033300 · x′10001

⊕ 0x3033300 · x′10011 ⊕ 0x60006066 · x′10101 ⊕ 0x60006066 · x′10111

⊕ 0x303330 · x′11101 ⊕ 0x303330 · x′11111

14

0x30333 · x00000 ⊕ 0x30333 · x00010 ⊕ 0xf03cf333 · x01101

⊕ 0xf03cf333 · x01111 ⊕ 0x30333 · x10001 ⊕ 0x30333 · x10011

⊕ 0x66600060 · x10101 ⊕ 0x66600060 · x10111 ⊕ 0x30003033 · x11101

⊕ 0x30003033 · x11111 ≈ 0x30333000 · x′00000 ⊕ 0x30333000 · x′00010

⊕ 0x303000c · x′01101 ⊕ 0x303000c · x′01111 ⊕ 0x30333000 · x′10001

⊕ 0x30333000 · x′10011 ⊕ 0x60666 · x′10101 ⊕ 0x60666 · x′10111

⊕ 0x3033300 · x′11101 ⊕ 0x3033300 · x′11111

Appendix B: Short Description on Stream Cipher Rabbit

We give a short description on Rabbit here. We refer to [3, 5] for full
description. Rabbit outputs the 128-bit keystream block si from the eight
state variables x’s of 32 bits at each iteration i,

s
[15..0]
i = x

[15..0]
0,i ⊕ x

[31..16]
5,i s

[31..16]
i = x

[31..16]
0,i ⊕ x

[15..0]
3,i

s
[47..32]
i = x

[15..0]
2,i ⊕ x

[31..16]
7,i s

[63..48]
i = x

[31..16]
2,i ⊕ x

[15..0]
5,i

s
[79..64]
i = x

[15..0]
4,i ⊕ x

[31..16]
1,i s

[95..80]
i = x

[31..16]
4,i ⊕ x

[15..0]
7,i

s
[111..96]
i = x

[15..0]
6,i ⊕ x

[31..16]
3,i s

[127..112]
i = x

[31..16]
6,i ⊕ x

[15..0]
1,i

The state variables x’s are computed from intermediate variables g’s of
32 bits,

x0,i+1 = g0,i + (g7,i ≪ 16) + (g6,i ≪ 16) (39)

x1,i+1 = g1,i + (g0,i ≪ 8) + g7,i (40)

x2,i+1 = g2,i + (g1,i ≪ 16) + (g0,i ≪ 16) (41)

x3,i+1 = g3,i + (g2,i ≪ 8) + g1,i (42)

x4,i+1 = g4,i + (g3,i ≪ 16) + (g2,i ≪ 16) (43)

x5,i+1 = g5,i + (g4,i ≪ 8) + g3,i (44)

x6,i+1 = g6,i + (g5,i ≪ 16) + (g4,i ≪ 16) (45)

x7,i+1 = g7,i + (g6,i ≪ 8) + g5,i (46)

where ≪ denotes left bit-wise rotation and all additions are computed
modulo 232. The description of computing g’s (see [3, 5]) is not relevant
for us and we omit it here.

15

