Abstract

This article considers the exploitation of parasitic antenna arrays in multi-user (MU) wireless communication systems by using their adaptive beamforming capabilities in order to improve the average system throughput. The use of parasitic arrays and especially the electrically steerable passive array radiator (ESPAR) antennas enables the design of terminals with a single RF front-end and reduced antenna dimensions, i.e., lightweight and compact mobile terminals. Although the beamforming capabilities of active element arrays at the receiver have been well investigated in the past, this article highlights the potentials of pattern reconfigurable parasitic arrays based on the beamspace representation of the ESPAR antenna. The advantages of using ESPAR at the receiving terminal are examined both in opportunistic beamforming and in MIMO broadcast channel MU systems, optimizing correspondingly the SNR or the SINR of the forward link.

Details

Actions