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ABSTRACT

The chiral lattice is a unique structural network not sym-
metric to its mirror image, and with a negative Poisson’s ratio.
Previous investigations have considered this structural network
for the design of superior structural components with sandwich
construction, but these were limited by the in-plane Poisson’s ra-
tio predicted to be exactly —1. This paper presents estimates of
the mechanical properties of the chiral lattice obtained from a
multi-cell finite-element model. It is shown that the chiral lat-
tice has a shear stiffness bound by that of the triangular lattice
and it is very compliant to direct stresses. The minimum in-plane
poisson’s ratio is estimated to be ~ —0.94.

INTRODUCTION

Cellular solids possess superior mechanical properties [1]
that can be exploited for the development of novel structured
materials. Their wide-spread employment in the aerospace, au-
tomotive, and naval industries, among others, is to be attributed
primarily to unique physical properties: low relative density, low
electrical conductivity, low Young’s modulus and strength [1].
Low density facilitates the design components with high specific
(mass-normalized) stiffness, and provides effective thermal insu-
lation [1,2]. The latter is to be attributed to the low conductivity
of the second phase, most often a gas. Low density is also ideal
for naval applications where buoyancy and specific stiffness are
required [1]. Low strength is very advantageous in applications
where mechanical-energy absorption is paramount. This may be

the case of crush-worthy materials, or of packaging materials for
sensitive components, where foams are most applicable [1, 3].
The most recognizable application, however, is that of sandwich
panels. This particular use of cellular structures exploits the high
specific stiffness of the honeycomb core, as well as optimal dis-
tribution of inertia to produce components with extremely high
bending stiffness [1, 3]. The introduction of affordable core ma-
terials and bonding techniques is responsible for widespread uti-
lization of sandwich panels [3], which may feature both foam or
honeycomb cores.

Cellular solids are both naturally-occurring and man-made
materials or structures, depending on the characteristic length
scale, and may feature both ordered (or deterministic) and disor-
dered (or stochastic) topologies. Both stochastic and determinis-
tic instances are characterized by assemblies of cells with solid
boundaries, which may be beam-like and plate-like components
yielding open and closed-cell configurations respectively [1].
Cellular solids possess a low relative density usually lower than
30% than that of their constituent material.

In addition to the constituent material, the effective mechan-
ical properties of cellular solids are determined by the layout of
slender internal members. Deterministic configurations in par-
ticular offer the possibility to design the effective mechanical
behavior by appropriately choosing the structural arrangement
of the microstructure. This particular capability was exploited
to design a two-dimensional (2D), transversally isotropic, struc-
tural lattice with a negative Poisson’s ratio, known as the chiral
lattice [4]. The chiral lattice achieves a negative in-plane Pois-
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son’s ratio, also known as auxetic behavior [5], as a result of
a deformation behavior strongly influenced by the presence of
rotational units [4]. Auxetic behavior in isotropic media repre-
sents a rarity which is in fact to be attributed to two aspects of
a material’s microstructure: the presence of rotational units and
non-affine deformation kinematics [6]. Both topology and me-
chanical behavior of the chiral lattice can be significantly altered
via a single parameter known as the topology parameter [7].

The ability to set the elastic properties of a lattice, simply
by changing a reduced set of geometric parameters, implies ease
of mechanical tailoring to a given application. While tradition-
ally different stiffness or compliance requirements have been ad-
dressed by employing purposely engineered structural arrange-
ments, the possibility of exploring a large realm of elastic be-
havior by varying a single parameter may provide new possi-
bilities, both for static and dynamic behavior. Previous studies
reported in [4] suggest that the chiral lattice features a Poisson’s
ratio v = —1 indicating auxetic behavior, in addition to exhibit-
ing isotropic mechanical characteristics. The Theory of Elas-
ticity however restricts the Poisson’s ratio of isotropic solids to
—1 < v < 1/2[8]. Any attempts to model an isotropic mate-
rial with v = —1 by equivalent continuum models are thwarted
by a resulting indeterminate constitutive matrix. The analyses
presented in this manuscript are devoted to establishing the mag-
nitude of the Poisson’s ratio and of the Young’s modulus more
accurately with respect to the estimates presented in [4]. In par-
ticular,

In this manuscript, the elasto-static behavior of the chiral
lattice is analyzed employing finite-element models. In particu-
lar, in-plane Young’s modulus, shear modulus and Poisson’s ratio
are investigated and compared to the same constants of classical
configurations like the square, triangular and hexagonal configu-
rations.

OVERVIEW OF METHODS TO DETERMINE THE ME-
CHANICS OF CELLULAR SOLIDS

Cellular solids feature low relative density and are com-
monly constituted by arrangements of beam-like slender compo-
nents. For this reason, the elastic properties of cellular solids are
ordinarily determined by employing beam theory to relate loads
and corresponding deformations at the unit cell level, an exam-
ple of which is shown in fig. 1. The simplest technique considers
the symmetry of a specific unit cell and relates externally applied
stresses to concentrated loads acting on the unit-cell members.
The kinematics of the unit cell are then related to externally-
applied stresses, yielding effective constants uniquely defining
Hooke’s Law for the equivalent material.

In the case of the hexagonal lattice depicted in fig. 1, non-
affine deformations facilitate the determination of the mechanical
behavior as only one topologically-distinct component of the unit
cell elastically deflects. Externally applied loads are decomposed

FIGURE 1. Microstructural detail (unit-cell members) in periodic
solids [7].

into local stress components which can easily be associated to lo-
cal deformations. Given the periodicity of the medium, the strain
in a cell can be related to the global strain. With strains aris-
ing from applied tractions, effective material properties may be
defined as a function of geometric parameters. Such analytical
procedure leads to estimates of equivalent mechanical properties
which are as accurate as the beam model employed to describe
the deformation behavior [1]. The same technique has been ap-
plied to the square, hexagonal, triangular and Kagomé lattices
among others [9]. More sophisticated beam theories may be em-
ployed to include shear effects in addition to axial, bending de-
formations.

A second method relates displacements at the extremities
of the unit cell to those of a central joint, or node, relating
them through a spatial Taylor-series expansion. This procedure
is known as Homogenization and it is employed to describe the
elasto-dynamic behavior of an equivalent continuum via two par-
tial differential equations. The coefficients of such equations are
compared to known equilibrium-equation forms such as Classi-
cal Elasticity Theory to obtain the equivalent Lamé constants. In
a similar fashion, the method elucidated in [10], for elasto-static
phenomena, relates Taylor-series-linearized displacements at the
extremities of the unit cell to those of the central joint. The ap-
proximate kinematic variables are then employed to obtain an
expression of the unit-cell strain energy in terms of geometric
parameters of the lattice. The constitutive matrix relating stress
components to strain components is obtained by taking deriva-
tives of the approximated strain-energy function.

In a third procedure, the governing equations of motion, in
stress formulation, are expressed in weak form and are solved
numerically via the finite-element method. Internal forces acting
on each of the beam-like members of the cellular solid are trans-
formed into equivalent continuum stresses by averaging the same
internal forces over a representative volume, usually at a scale
(f ig. 1) comprising several unit cells [11, 12]. This particular
technique allows the evaluation of global elasto-static phenom-
ena bypassing the determination of elastic constants altogether.
This analysis method is particularly suited for stochastic configu-
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rations, for which it is not possible to determine elastic constants
based on a unit-cell analysis, as the unit cell itself is only sta-
tistically described in terms of a characteristic volume or length
scale. However, it is certainly applicable to deterministic config-
urations also, as demonstrated in [11, 12].

The unique topology of the chiral lattice investigated in this
thesis, moreover, does not present a central joint, thus rendering
Taylor-expansion-based techniques not easily applicable. Fur-
thermore, one the objectives of this work is to classify the me-
chanical behavior of the chiral lattice in terms of its equivalent
elastic constants, hence the stress-based formulation of [11,12] is
not applicable either. In order to circumvent the difficulties posed
by chiral topologies, an improved unit-cell analysis and macro-
lattice models based on previous findings by [4] are employed
with the objective of removing some of the limiting assumptions
and approximations previously considered.

GEOMETRY OF THE CHIRAL LATTICE

FIGURE 2. Geometry of the chiral lattice.

The chiral lattice shown in Fig. 2 consists of rings of ra-
dius r, acting as nodes, connected by ribs or ligaments, of length
L tangent to the nodes themselves. The distance between node
centers is denoted as R, while the angle between the imaginary
line connecting the node centers and the ribs is defined as 3. The
angle between adjacent ligaments is denoted as 26. The wall
thickness of nodes and ribs is denoted as 7. and 7, respectively.

Significantly different configurations can be obtained by
varying the ratio L/R here denoted as the fopology parame-
ter. Possible topologies range from an hexagonal arrangement
of rings (L/R — 0) to the classic triangular lattice (L/R — 1)
as shown in Fig. 3. The ability to generate such topologi-
cally and mechanically different structural networks provides the

unique opportunity of deriving a mechanical model that connects
bending-dominated, axially-dominated, conventional, and aux-
etic lattices as a continuous function of the topology parame-
ter. The same model could also bring a very interesting insight
into the transition between bending-dominated behavior and ax-
ially dominated behavior which depend on ligament-wall thick-
ness very differently. This implies that the relative density plays
an important role in determining the mechanical response of the
chiral assembly.
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) L/R— 1

FIGURE 3. Chiral-lattice geometry corresponding to increasing
topology parameter L/R.

In the literature addressing auxetic materials, high specific
shear modulus is often mentioned as one of the desirable fea-
tures associated with auxetic behavior [4,5,13—15]. The findings
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of [4] as discussed in the previous section however, do not al-
low the determination of such an elastic constant, because the
Poisson’s ratio is estimated to be exactly —1. Given the geomet-
ric hexagonal symmetry of the chiral lattice, it is legitimate to
assume isotropic elasto-static characteristics. However as indi-
cated by [8], the Poisson’s ratio of isotropic materials is bounded
by —1 <v<1/2in3-D,or —1 < v < 1 in 2-D, and the associ-
ated constitutive matrix would become singular for v = —1.

MACRO-LATTICE FINITE-ELEMENT MODELS

In order to alleviate the shortcomings of the procedure
above, the analysis proposed by [4] is revisited by relaxing the
assumptions listed in the previous section. In the original inves-
tigations by [4], the following conditions were considered:

1.a nodes or circles are considered rigid;

1.b the kinematic behavior is imposed based on the experimental
observations;

1.c internal forces oriented in a direction perpendicular to the
externally applied stress are retained;

1.d axial and shear deformations of the ligaments are neglected;

l.e ligament wall thickness 7, is the same as that of the nodes or
ty=t,=t;

1.f all deflections are small.

Some of the above assumptions are here relaxed, in order to ob-
tain a refined estimate of the mechanical behavior of the chi-
ral lattice. Ligament deformations here include bending as well
as axial and shear deformations. The unusual kinematics of the
chiral lattice featuring rotational units (the nodes) furthermore,
prompts concerns with respect to neglecting any internal forces.
Accordingly, resultant forces perpendicular to externally-applied
stresses are here retained. The following conditions are consid-
ered:

2.a the deformations of nodes or circles are included in the anal-
ysis;

2.b no restrictions are placed upon resultant forces;

2 .c a macro-lattice FE model is employed;

2.d axial and shear deformations of the ligaments are included
in the analysis;

2.e all deflections are small;

2.f ligament wall thickness ¢, is the same as that of the nodes or
ty=t. =1,

A FE model of the chiral lattice is employed to investigate
the internal forces resulting from externally applied stresses, the
extent of node deformations and the relation between equivalent
elastic constants and geometric parameters. The commercially
available FE software ANSYS® is employed. Specifically, Tim-
oshenko beam elements featuring axial, bending and shear de-
flections are used. Each ligament is discretized by 24 elements,

while each node or circle is discretized by 44 straight-beam ele-
ments. The base configuration is characterized by the parameters
reported in Table. 1.

TABLE 1. Base configuration parameters of FE macro lattice

Geometric parameters
L I m
L/R 0.6 —0.999
t 0.0l m
te 0.0l m
b 0.01 m

Material properties: Aluminum

E, 71 GPa
Vs 1/3

Given the structural composition of the chiral lattice, no sin-
gle member is able to withstand a level of stress required to load
the entire lattice. Perimeter circles on the sides perpendicular
to the desired direction of deformation are kinematically con-
strained to be rigid, as depicted in fig. 4. A displacement pro-
ducing the desired level of strain is applied at the center of each
constrained perimeter circle. In order to avoid singularities in
the stiffness matrix, a circle on each loaded side is constrained
to displace collinearly with the loading direction. The analy-
sis of shear stiffness, on the other hand, does not require any
constraints perpendicularly to the imposed displacements of the
perimeter nodes (fig. 4.c) as such boundary conditions ensure an
invertible stiffness matrix. The effective applied stress is evalu-
ated by summing the point forces at the center of each perimeter
circle constrained kinematically and dividing by the loaded area,
depicted as a yellow line in fig. 4. To estimate the shear stiffness
the effective engineering strain is computed as follows:

Vil — Vi Uis] —U;
Vil l+ J+ ] (1)

Vil —Yj

Xi+1 —Xi

where (x,y) denote the location of the center of each node and
(u,v) denote respectively displacements in the x and y directions.
The subscripts i and j indicate node centers at the top and left
sides of the lattice respectively. The equivalent elastic constants
are then computed as: E, = o,/ &, (fig. 4.a), Ey, = 0, /¢, (fig. 4.b),
and Gy, = Ty, / Y (fig. 4.c). Poisson’s ratios V,y and V), are eval-
uated based on the displacements of the extremities of a unit cell
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FIGURE 4. Representative FE macro-lattice configurations employed
to study loading in the x-direction (a), y-direction (b) and xy-direction

(c).

located approximately in the center of the lattice. The applica-
bility of assumptions made with regard to internal forces, is in-
vestigated by monitoring the nodal-force values sampled at the
extremities of a unit cell (yellow points in fig. 4), located ap-
proximately at the center of the lattice. For each of the three
considered cases a strain level of 500 (€ is employed.

A convergence study is carried out to establish the minimum
number of cells necessary to reasonably estimate stress, strain,
and associated elastic constants for each case considered, as well
as to reduce the influence of boundary effects. Estimates of E,
shown in figs. 5 do not appear to approach an asymptotic value,
suggesting that additional increments in cell numbers in the x and
y-directions are required. Due to computing limitations, how-
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3.98
3.961
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3.92¢

39+
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381

3.78 I I I I i i i
7x13 11x19 15x25 19x33 23x39 27x45 31x53 35x59
cell x X cell y
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1118}

1.1

16 I I I I I i i
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(c) L/R =0.999

FIGURE 5. Variation of Young’s modulus E, with respect to lattice-
cell number — — —, and extrapolated value — — — for three values of
L/R

ever, larger models are not feasible. A Richardson extrapola-
tion [16] is used to obtain a limit value of Young’s modulus to
assess wether the current model size is appropriate. The limit
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value of E,, denoted as E,, may be expressed as:

E, = lim E,(c), 2)

c—oo

where E,(c) is the FE approximation of E, as a function of cell
number ¢, and ¢ = cell x x cell y. The lattice cells considered
here are those depicted in fig. 6. For ¢ # oo, eq. (2) may be ex-
pressed as:

E,—Ei(d) = ayd" +0 (d""“) , an 0, 3)

where 7 is an integer, a, are unknown constants, k, are known
coefficients and d = 1/c. According to Richardson extrapola-
tion [16], the term a,d* in eq. (3) can be eliminated to obtain
the following formula:

_ rME(d/r)—E(d) -
R e G @)

where ky,+1 > k, and r is the refinement ratio or r = dj, 1 /d,,. The
value k, represents the order of convergence, which is not known
a priori. This may be found with the following expression [17]
which considers three values of discretization:

Ex3_Ex2 1
Y P e . 5
' ”<Ex,z—Ex,1) In(r) ®

For the Young’s modulus estimates shown in fig. 5, k, ~ 2. Ne-
glecting the error of order O (dk"“) in eq. (4), the Young’s mod-
ulus for an infinite lattice may be expressed as:

P r*nE,.(d/r) —Ex(d).

. rkn — 1

Il

(6)

For the three sample values of topology parameter depicted in
fig. 5, the difference between E,(d) computed with 35 x 59 cells
and the extrapolated value E, is within 0.3%. Given the small
error introduced by limiting the FE lattice model to 35 x 59 cells
of the kind depicted in fig. 6, and computational limitations, the
maximum number of cells considered in fig. 5 is deemed legiti-
mate as a basis for the estimation of the desired elastic constants.

RESULTS AND DISCUSSION
An estimate of Young’s modulus based experimental obser-
vations is reported in [4] as Ep = Ev/3(t/L)° (L/r)*. This is
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FIGURE 6. Chiral lattice employed for convergence studies

compared to the Young’s modulus obtained here Ey; in fig. 7a for
varying topology parameter L/R. The previous estimated of di-
rect stiffness appear to overestimate the same measure obtained
with FE models, especially for low values of L/R. This is to be
expected as the original analysis in [4] neglected deformation of
rings, which are very large for L/R < 0.8 (see fig. 3). For values
of L/R — 1, the two estimates of Young’s modulus converge to-
wards the upper bound represented by the direct stiffness of the
triangular lattice E7 (fig. 3d). The chiral lattice is then signifi-
cantly stiffer for configurations with small nodes or rings.

The computed Poisson’s ratio is shown in fig. 7b, where
both nu,y, and nuy, are illustrated. The difference between the
two is very small and on the order of numerical errors in the FE
model. This suggested that the chiral lattice is indeed isotropic in
plane as suggested in [4]. Moreover, Poisson’s ratio is very sen-
sitive to L/R and reaches a minimum of —0.94 for L/R == 0.985.
This suggests that the chiral lattice indeed has a negative Pois-
son’s ratio, but this depends on the particular configuration and
approaches -1 but it is not exactly equal to this value. Follow-
ing this minimum value, Poisson’s ratio increases rapidly with a
boundary-layer-like behavior to the limiting value of the triangu-
lar lattice for which v = 1/3 [10].

The FE models employed here indicate that the equiva-
lent Poisson’s ratio is not exactly —1. This removes the inde-
terminacy in the constitutive model of an equivalent medium
with chiral-lattice microstructure. It is then possible to define
a shear modulus, for which the estimated value from FE mod-
els is shown in fig. 7c. The shear stiffness, similarly to Young’s
modulus, is relatively low for configurations with large rings and
increases rapidly to the limiting value of the triangular lattice Gr
asL/R— 1.
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Comparison with Other Configurations

Auxetic materials like the chiral lattice are expected to have
large shear stiffness [18—20], but given the findings summarized
in fig. 7 it is apparent that is more compliant in shear than the
triangular lattice (a non-auxetic configuration, that is v > 0). A
comparison of the chiral lattice with other configurations is here
suitable to shine light on some of the benefits, or lack therefor,
offered by employing an auxetic microstructure to design ma-
terials with desired properties. In particular, square, triangular
and hexagonal lattices are common topologies encountered in
engineering applications and have been investigated for their su-
perior specific (mass-normalized) properties [1,9]. The equiva-
lent mechanical properties for the aforementioned topologies in
terms of geometric parameters are listed in Table. 2. where p

TABLE 2. Mechanical properties of common lattice topologies
(from [1,9])

topology p EJ/E; | G/E;s %
square % % p % p3 %vsﬁ

triangular | 2v/3% | 1p P 1/3

hexagonal %% p3 | 3p° 1.0

is the relative density, or the volume occupied by the internal
members of a cellular solid normalized by the total volume oc-
cupied by a unit cell. For the chiral lattice, the relative density
is 2v/3 (2mrt. 4+ 3Lt,) / (3R?) [21]. The relative density varies
with L/R as shown in fig. 8a. With relative density in hand, it
is possible to compare mechanical properties of the chiral lattice
with other configurations as summarized in Table 2. In partic-
ular, Young’s moduli for the considered configurations are pre-
sented in fig. 8b, where the square and triangular lattices appear
the stiffest. The chiral lattice is the most compliant of all, except
for configurations with L/R > 0.88 in which case it is stiffer than
the hexagonal lattice. The shear modulus however indicates ex-
cellent performance of the chiral lattice, only inferior that that of
the triangular lattice (fig. 8¢) for L/R > 0.82. In this case, the
square and hexagonal lattices are more compliant.

The reason for the trends observed in figs. 8b and. 8c is
the dependency of mechanical on relative density. Deformation
mechanisms in 2-D lattices are determined by either bending
or axial deformations of the internal members [22]. Mechani-
cal properties associated with the former mechanism scale with
p>, while those associated with the latter scale with p [22]. As
the relative density for cellular solids is usually p < 30% [1],

t/L < 1. Mechanical properties associated with axial deforma-
tions are therefore much stiffer than those associated with bend-
ing. The Young’s modulus for square and triangular configu-
rations scales directly with the relative density as shown in Ta-
ble 2 and it is thus higher than that of the hexagonal lattice which
scales with p> (fig. 8b). Chiral-lattice configurations are then
dominated by bending deformations in response to direct stresses
for L/R < 0.98, but this behavior changes to axial deformations
for L/R > 0.98 (fig. 8b). On the other hand, the shear modu-
lus of the triangular lattice is the highest since it scales with p.
The shear modulus of square and hexagonal honeycombs scales
with p3 and it is accordingly low. Even though the chiral lattice
presents a deformation mechanism dominated by bending defor-
mations for L/R < 0.98, the computed shear modulus is higher
than that for square and hexagonal honeycombs, but bounded by
that of the triangular lattice.

CONCLUSIONS

This paper presents estimates of the mechanical properties
of the chiral lattice obtained from a multi-cell finite-element
model. This study is motivated by the indeterminacy in the me-
chanical model of an equivalent continuum with a chiral-lattice
microstructure, since the Poisson’s ratio determined in previous
investigations is exactly —1. Refined estimates of the mechan-
ical properties reported here show that the chiral lattice has a
shear stiffness bound by that of the triangular lattice and it is very
compliant to direct stresses. In particular, it is found that chiral-
lattice configurations with large rings or nodes are dominated
by bending deformations of the internal members in response to
both direct stresses and shear. Accordingly, shear modulus and
Young’s modulus are lower than those for lattices dominated by
axial deformations. Chiral lattice configurations with small rings
or nodes have instead a much higher shear modulus than other
bending-dominated lattices but are bound by the triangular lat-
tice. Finally, the computed in-plane Poisson’s ratio is estimated
to be —0.94 for slender internal components. This removes the
indeterminacy in establish a constitutive model for an equivalent
continuum.
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