
 Wearout-Aware Compiler-Directed Register
Assignment for Embedded Systems

Fahad Ahmed[1], Mohamed M. Sabry[2], David Atienza[2] and Linda Milor[1]
[1]Georgia Institute of Technology, Atlanta, GA, 30332, USA

[2]Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
Email: [fahad.ahmed, linda.milor]@ece.gatech.edu and [mohamed.sabry, david.atienza]@epfl.ch

Abstract—Although constant technology scaling has resulted in
considerable benefits, smaller device dimensions, higher
operating temperatures and electric fields have also
contributed to faster device aging due to wearout. Not only
does this result in the shortening of processor lifetimes, it leads
to faster wearout resultant performance degradation with
operating time. Instead of taking a reactive approach towards
reliability awareness, we propose a pre-emptive route toward
wearout mitigation. Given the significant thermal and stress
variation across the components of microprocessors, in this
work we focus on one of the most likely candidates for
overheating and hence reliability failures, the register file. We
propose different wearout-aware compiler-directed register
assignment techniques that distribute the stress induced
wearout throughout the register file, with the aim of improving
the lifetime of the register file, with negligible performance
overhead. We compare our results with a state-of-the-art
thermal-aware compilation scheme to show the clear
advantage our proposed wearout-aware scheme has over
thermal-aware schemes in terms of lifetime improvement that
can reach up to 20% for Bias Temperature Instability.

Keywords: wearout, compiler, register file, lifetime degradation,
device aging.

I. INTRODUCTION

Shrinking feature sizes, the inability of the operating
voltage to scale accordingly with device dimensions and the
ever increasing device density have resulted in decreasing
device lifetime [1]. Post-silicon reliability is still heavily
dependent on reactive measures, such as error detection and
error correction. The use of on-chip sensors [2],
complemented by post-silicon tuning [3], is also steadily
increasing with the aim of extending system lifetime.
However, since they do not mitigate the aging process itself,
the effectiveness of such measures is always constrained due
to the following reasons. Firstly, in the absence of
redundancy, they do nothing in case of catastrophic events
such as dielectric breakdown. Secondly, if the amount of
aging can be reduced during the lifetime of a device, as
proposed in this work, then any post-silicon tuning
performed to compensate for wearout can also be regarded as
over design, since the amount of tuning needed could
potentially have been reduced. After all, tuning of a
parameter always comes at the cost of reduced system
performance.

Modern compilers provide various optimization options
for improving performance. However, the flexibility afforded
by such compilers is rarely used towards reliability
improvement. There has been some focus on compiler-

directed thermal-aware register file assignments [4], since
their relatively small area and high utilization make them one
of the most likely candidates for overheating [5]. Since all
wearout mechanisms have a strong dependence on
temperature, this inherently leads to improvement in register
file reliability. However, to the best of our knowledge,
adaptive compilation schemes today are not truly wearout-
aware with a primary focus on the extension of the register
file’s operable lifetime.

The work presented here proposes a wearout-aware
compiler directed register assignment scheme that distributes
the electrical stress throughout the register file, at
compilation time, with the aim of minimizing wearout. The
proposed compilation flow consists of two phases of
optimization. During phase 1 of the flow, crude wearout
estimates are used to perform reliability optimization during
the compilation process, while phase 2, which is more time
intensive, performs the optimization using detailed wearout
models. To support register-window based architectures, this
is done at two levels i.e. at the register window level using an
adaptive register window assignment, called variable multi-
window context switching (VMWCS), and at the register
level using an adaptive intra-window register assignment
scheme, called adaptive variable assignment (AVA). AVA
distributes the stress induced wearout for the registers
throughout the window more uniformly with the aim of
eliminating registers which might fail fairly early in their
projected lifetime. Similarly, adaptive register-window
assignment aims at distributing the workload more uniformly
at the register-window level. Moreover, as temperature is so
critical for device reliability, the proposed wearout-aware
register assignment also reduces the temperature of the
registers or the register windows.

We also present a framework for extending device level
wearout models to the architecture level, which is then used
for comparison between different compilation techniques. To
do this, our algorithms have been integrated into the CoSy
compiler development system [6], a flexible and easily-
targetable development kit for high-end compiler designs.
Although this work focuses on the register file, we
demonstrate the incorporation of wearout in architecture
simulations. Hence, the methodology proposed can be
extended to other blocks.

The rest of the paper is organized as follows. Section 2
gives a brief overview of the related work and recent trends.
In Section 3 we present our pre-silicon wearout prediction
framework. Then in Section 4, we present the proposed
wearout-aware compilation technique. Next, in Section 5, we
present a test case and compare the reliability figures attained

978-1-4673-1036-9/12/$31.00 ©2012 IEEE 33 13th Int'l Symposium on Quality Electronic Design

with the proposed scheme. Section 6 summarizes the main
conclusions of this work.

II. RELATED WORK

Pre-silicon wearout-aware design steps ranging from
device level wearout models [7],[8] to wearout augmented
CAD tools [9],[10], have become a necessity. The aim of
these steps is the prediction of device wearout during its
functional lifetime, which can then be complemented with
measures, such as the introduction of guard bands, to insure
reliable system operation [11]. Post-silicon techniques such
as power gating [12] and insertion of control circuit blocks
[13] have also been used to reduce wearout.

Recent work in reliability aware compilation has dealt
with improving the thermal profile of the functional units
under study. Some researchers have used an indirect
approach by improving operating temperatures through
improvement in power consumption [14]. Moreover, recent
work [10] has shown that better thermal profiles can be
achieved by considering global temperatures as the main
optimization metric. However, an optimized thermal profile
does not necessarily result in an optimized lifetime, since
device wearout is not only a function of temperature, but also
of stress.

Wearout aware scheduling techniques for stress
distribution have been used for extending the lifetime of
multi-core systems [15]. While this approach requires an
additional central management unit which keeps track of and
responds to the gradual system wearout, the use of an under-
used computation unit as a system manager has also been
proposed [16]. An alternative to stress distribution is to
gracefully drop failing components from operation, given
available redundancy [17].

However, in this work we show that the intra-component
compiler-level stress distribution, coupled with improved
operating temperatures, can lead to an optimized component
wearout profile. With improvement in component lifetimes
as the main metric, we simultaneously reduce component
temperatures and achieve a uniform stress distribution for
optimal reliability.
III. PRE-SILICON WEAROUT PREDICTION

The first step in insuring reliable system operation is to
bridge the gap between the established device level wearout
models and system behavior at the architecture level. The
current mean time to failure (MTTF) based high level
reliability models, such as [10], only provide us with crude,
single point, reliability estimates based on the assumption
that the system is a series failure system. Due to the inherent
lack of depth of these models, it becomes impossible to
address the core issues affecting system reliability at the
architecture level. Hence, in this section we present a
detailed wearout model for the processor micro-architectural
components.

Figure 1 summarizes the framework employed for
estimating the pre-silicon wearout profile of the register file.
The HW/SW emulation platform, similar to the one
presented in [18], was used to extract the required thermal
profile and block level switching activity for a chip running
benchmark software. The activity at the input of the block

under study (the register file in this case) was converted to
stress probabilities and transition probabilities at the inputs.
These probabilities were then propagated within the block,
depending on its logic behavior, for a complete
stress/transition probability profile of the internal nodes of
the block under study, as shown in Figure 1. Thus we have
the probability of a transition occurring at any node, which
can then be translated into the flow of current through the
interconnects connected to that node. Similarly, the
probability of stress at a node within the block is translated
into the probability of voltage stress for the transistors
connected to that node. Then, using the thermal profile from
the HW/SW emulation platform and the calculated
probability of current flow and voltage stress, we can use
device level models to characterize any wearout mechanism
in the block under study to determine the wearout profile of
the system.

Figure 1: General framework for estimating the pre-silicon SoC
wearout profile.

Finally, we rely on established device level models for
the modeling of different wearout mechanisms
[7],[8],[19],[20],[21]. Appropriate modifications were made
in the models to take into account the probabilistic nature of
the input signals. In the next subsection we provide a brief
overview of the device level models used in this work.

A. Device Level Modeling for Wearout
Almost all wearout mechanisms can be divided into two

broad categories, the voltage (or E-field) dependent wearout
mechanisms, such as negative bias temperature instability
(NBTI), positive bias temperature instability (PBTI),
transistor and backend dielectric breakdown, etc., and the
current stress-dependent wearout mechanisms, such as
electromigration (EM). Due to the lack of higher level
models for the progressive effect of these mechanisms, it was
necessary to first model their effect at the device level and
then abstract the models to the micro-architecture level. For
this work we have focused on three critical wearout
mechanisms, namely NBTI, PBTI and transistor gate oxide
breakdown (GOBD). Support for the type of dielectric was
also included in the modeling framework with poly+SiON
and high-k+metal being the available options.

1) Bias Temperature Instability (BTI)
Bias Temperature instability (BTI), as the name

suggests, causes instability in device behavior and is a result
of the bias stress applied to it. NBTI is the degradation of a
PMOS device under negative stress, and PBTI is the
degradation of an NMOS device under positive stress. BTI
results in shifts in device parameters, such as threshold

voltage, transconductance, device mobility, etc., but is
generally identified by shifts in the threshold voltage [7].

Historically, BTI was only a major concern for PMOS
devices with NMOS devices showing comparatively
negligible degradation. However with the introduction of
high-k metal gate stacks for sub-45nm technology nodes,
degradation in NMOS devices due to positive bias has
increased with large degradation observed for both types of
devices [22].

Based on the well-known reaction-diffusion (RD)
theory, NBTI is directly related to the formation of interface
traps and their subsequent diffusion into the dielectric. The
corresponding increase in threshold voltage (tpV) follows a
power law model[7],[23]:
 () n

atp tVkTEAV α/exp0 −=∆ (1)
where aE is the activation energy, k is Boltzmann’s constant,
T is temperature, V is the voltage stress, and t is time. 0A ,
α , and n are fitting parameters and were obtained from
experimental results[19].

Upon the release of the voltage stress, there is some
recovery of the device degradation. The fraction of the
recoverable component (r) is modeled as shown in equation
(2):

1

1

−






















+=

φ

β
stress

relax

t
tr (2)

where β is a scaling parameter, trelax is the total recovery
time, tstress is the total stress time and φ is a dispersion
parameter [24]. Since r is the fraction of the total possible
recovery remaining, equation (2) can now be used to divide
the total degradation during stress from (2) into a recoverable
component and a permanent component [19] with the
recoverable component given by:
 tprect VrV ∆=∆ _ (3)
 The recovery was also modeled according to the RD
framework. When the stress is released, a recovery phase is
initiated and the amount of threshold voltage shift decreases
according to:

t

tkTE
VV ra

recttr
3

21
_

)/exp(
ζ

ζζ −+
∆=∆ (4)

where 3,2,1ζ are constants which depend on the oxide
thickness and the back diffusion rate of hydrogen and
temperature, t is the total time and tr is the recovery time and
Vt_rec is the maximum possible recovery [7],[20] calculated
from equation (3).

Unlike NBTI, there is still a lack of a truly scalable
physical model for PBTI. However equations (1) and (4) are
adequate for capturing the temperature and voltage
dependency of the stress and recovery phase of degradation
due to PBTI [23],[25] with fitting parameters extracted from
[19].

 In summary, the device degradation during periods of
stress is estimated using equitation (1) while the recovery is
estimated using equation (4) enabling accurate cycle-by-
cycle tracking of device degradation during system
operation.

The degradation of threshold voltage results in longer
delays at the circuit level, which eventually result in failure
of circuit performances. For any circuit component, a
threshold can be determined such that shifts in the threshold
voltage results in circuit-level failure, as was demonstrated in
[26].

2) Gate Oxide Breakdown
Gate oxide breakdown is modeled as a leakage (low

resistance) path through the oxide. Several frameworks
describing the physics behind the phenomenon of dielectric
degradation and breakdown have been proposed. The
thermo-chemical model, however, provides a deterministic
description of the process of oxide trap generation. It has
been shown that the application of electric field on molecular
dipole moments lowers the activation energy for bond
breakage [8]. This in turn leads to enhanced trap formation in
the dielectric. It has been shown [8] that trap generation
depends on the electric field is described by an Eyring
equation:

 () na
t tkT

EEN 




 += 02exp κκ , (5)

where κ is the total density of traps available for generation,
aE is the activation energy, k is the Boltzmann’s constant,

2κ is a device constant dependent on the field acceleration
factor, and 0E is the oxide electric field. Traps form
throughout the oxide, and when the number of traps exceeds
a threshold, a leakage path forms through the oxide.

 The formation of a leakage path does not
necessarily result in circuit-level failure. However, a
threshold can be found when the number of traps links
directly to circuit-level failure, as was demonstrated in [2].
IV. WEAROUT-AWARE COMPILATION

With the high-level system wearout monitoring
framework described in the previous section, we can measure
and compare the effects of different compilation techniques
on the wearout of a register file. Before we describe the
actual algorithms that were employed for wearout mitigation,
we need to characterize and understand the functioning of a
register file and its wearout over time.

With the models from Section 3, the first step in
determining the wearout profile of the register file is its
division into sectors with similar wearout behavior. Sectors
are similar if they undergo the same operations, i.e. a read
operation, a write operation, or neither with the current data
being retained. Hence, when a register is being read, the
transistors undergoing positive/negative voltage bias stress
are identified. A similar process is repeated for the write
operation. When neither a read or a write occurs, the latches
are identified as being under constant DC stress, resulting in
worst-case BTI and GOBD damage.

Typically, any wearout mechanism ‘X’ can be defined as
 ()TtsfX ,,= (6)

where ‘s’ is the stress profile in terms of the number of reads
and/or writes, ‘t’ is the timing information associated with
the profile ‘s’ and the set T is the thermal profile. As an
example, consider a register that undergoes two writes, and
one read at times twr1, twr2 and trd during a total run-time of tr
while the temperature variation in the register during tr is

represented by Tr. Then for equation (6),
s={writes=2,reads=1}, t={twr1, twr2, trd} and T= Tr .

The aim of the wearout mitigating algorithms proposed
is a compiler-directed spreading of device wearout at
runtime. However, at compile-time, we lack the necessary
information to derive a complete wearout profile for the
wearout mechanisms mentioned in Section 3. Note that in a
typical compilation framework, the complete stress profile of
the register file is available only after the completion of the
compilation process, while the thermal and timing
information is available at runtime. As a result it becomes
impossible to accurately predict the device wearout at the
compilation phase. To overcome this issue, we propose the
compilation framework with two phases shown in Figure 2,
which are run sequentially.

Figure 2: An overview of the proposed compilation framework

Phase 1 consists of a reliability optimization scheme

consisting of a compilation module and a wearout estimating
module, while phase 2 also takes into account the run-time
information and the thermal profile for a more complete
wearout profile. The reason for dividing the compilation flow
into two phases is the excessive time associated with the
derivation of a detailed wearout profile for all wearout
mechanisms under study. Hence, to reduce the time
associated with the complete compilation flow, a crude first
level optimization is done in phase 1. It should be noted here
that it took only a few iterations of phase 1 to complete the
wearout estimate for our examples while typically only a
single run of phase 2 is needed to update the required
information from phase 1. The reliability-aware compilation
might run for a few minutes, at most, but this is still an
insignificant overhead, since the time in phase 1 is negligible
compared to the time in phase 2.

The wearout estimating module of phase 1 estimates the
degradation due to the wearout mechanisms under study
using the stress profile from the compilation module. A
constant time window is assigned to each variable and a
constant temperature is assumed for each register. The
estimate of the total wearout under the current compilation
run is then fed into the compilation module which then
reassigns the registers depending in the wearout estimate
from the last compilation run. Even though a constant
temperature is assumed for the wearout models at this point
in time, hot spots are taken into account during compilation
and avoided by keeping apart registers with high activity
levels. In phase 2, the stress timing information and thermal
profile of the register file is included in the framework and
the detailed wearout profile is used to verify if the required
wearout distribution has been achieved or if further
optimization is required.

To accommodate register window based architectures,
two levels of wearout mitigation, within windows and within
registers inside each window, are supported in the proposed
compilation framework, as shown in Figure 3.

Figure 3: Adaptive stress distribution in the register file. Color intensity
represents the amount of wearout.

A. Adaptive Variable Assignment (AVA)
Although this work targets a register-window-based

architecture, our first approach for wearout reduction can be
just as effective for any other architecture, since the aim here
is the adaptive assignment of the active registers, irrespective
of whether they are in a window or the whole register file is
accessed at once.

Wearout awareness was introduced in the compiler in
such a way that the original optimizations employed in the
compiler itself are not compromised in any way, while still
leaving room for reliability optimization. Typically, for every
new variable assignment to registers, the compiler accesses
the color graph and finds a set of registers that are available
for assignment [6]. The flow is then transferred to a series of
filters, as shown in Figure 4. These filters introduce further
reductions in the set of available registers, according to some
pre-determined optimization criteria, resulting in what is
known as the reduced availability set (Sr). Once the reduced
availability set is formed, typically a compiler picks the first
register from the list, making no distinction between the
registers in this set. Hence, in the case of a reduced
availability set larger than one, there is still room for the
introduction of improved register assignments for reliability.

The proposed reliability filtering process can be
introduced before or after the reduction of the set to Sr
depending on how reliability critical the target application is.
Introducing the reliability filter before reduction of the
availability set gives the highest precedence to reliability
optimization.

S=Get_Available_Set

 Size(S)=?1

Assign Register

Yes

Apply_Optimization_Filters()

No

 Size(S)=?1

Yes
Set_Register_Priority()

(Reliability Filter)

No

Register_Assignment_Monitor()

Wearout Monitor

Figure 4: The register assignment flow with the additional reliability
filter included.

As can be seen, without extensive changes in the
compiler flow, we have inserted a new reliability filter in the
register assignment flow. Figure 5 presents the algorithm
implemented in the reliability filter shown in Figure 4. The
reliability filter assigns a gain value to all the registers in the
reduced set according to the input from the register wearout
monitor, which keeps track of the register wearout from the
last run. The gain nδ of a register at position Rn is the
difference between its computed wearout Wn and the
wearout of the register at position 1. Wn was computed using
a weighted sum of the parameters associated with the
wearout mechanisms under study, i.e.

 1WWnn −=δ (7)
),,(),,(),,(TtsNTtsVTtsVWn tGOBDtNmosPBTItPMOSNBTI Γ+Γ+Γ=

where
XΓ is the weight assigned to wearout due to

mechanism X. Hence, a higher weight for NBTI means a
higher precedence is given for NBTI reduction during
compilation.

Variable assignments for each register are also tracked in
the register assignment monitor block shown in Figure 4.
Details are shown in Figure 5. The algorithm starts with a
set of registers R for variable assignment. R is the reduced
availability set. In assigning registers to variables,
precedence is given to registers that are yet to be assigned
any variables and whose wearout results indicate a lack of
activity from the last run. This forces the spreading of
activity across the register file. For the case when no such
register is empty, i.e. has previously not been assigned
variables, the wearout of the first register in the set of
available registers is compared with the wearout of all the
other registers and the gain for each register is computed.
The first register in the set is then replaced if the gain of the
current register is greater than a predetermined value ∆ .
However, a replacement is only executed if it does not result
in a hot spot. A register is labeled as a hot spot if it or any of
its surrounding registers exceeds a pre-determined number of
variable assignments.

Figure 5: Algorithm for reliability filter with time complexity of O(n).

 In summary, the algorithm passes through the register set
of length n once, and replaces the first register if it satisfies
the conditions mentioned above. At the end of the pass, we
have the best candidate for register assignment in position 1
in the set. The algorithm has a time complexity of O(n).
Once the variable is assigned to a register, the register
assignment monitor and the hot spot labels are updated and
the process is repeated for the next variable.

B. Variable Multi-Window Context Switching
The new AVA is limited by the fact that it can only

monitor and select registers, for variable assignment, from
the set of registers visible to the compiler at that instant. This
would be of no consequence if the compiler had access to the
whole register file for every register/variable assignment.
This, however, is not the case for register window based
architectures, such as SPARC, where the register file is
divided into smaller sets. Hence, when assigning a variable,
the compiler can only access a single window.

Therefore, we propose a variable multi-window context
switching (VMWCS) scheme which balances the switching
activity among the register windows in the register file.

In general, a program includes a number of functions (or
procedures) that are called in a hierarchal manner, where the
main function is at the top level of the hierarchy and uses
register-window i=1 in execution. All the functions found at
the same level of the hierarchy use the same register-
window, which is sequentially next to the one used by the
ancestor functions.

Such methods of assigning register windows are
inefficient in terms of reliability and thermal behavior, since
they lead to highly uneven activity levels among the
windows, i.e. the levels in the hierarchy are not equally
weighted in terms of switching activity. This leads to an
uneven distribution of electrical stress throughout the register
file and may result in high temperatures due to the close
proximity of highly-accessed register windows. Thus
VMWCS balances the inter-window stress profile by
studying the structure of the program, by exploring the
functional interdependencies, and by assigning various
register windows to functions at the same hierarchal level at
compiler preprocessing time.

Figure 6 shows the flow chart of VMWCS. The proposed
scheme executes in three main stages, (1) information
extraction, (2) windows setting, and (3) window assignment.

 Start

Input
program

Extract_info=1

F=Get_next_procedure()

Extract_info=1?

Extract_information(F)

Program
finished?

Set_window_offset(F)

Evaluate_info()
Set_windows()
Extract_info=0

Yes

Yes

No

No

Emit_code(F)

Program_finished?

No

Stop

Yes

Figure 6: The proposed variable multi-window context switching
scheme flow.

The information extraction phase is performed initially
by setting a flag, named Extract_info, to 1. At this stage, all
the necessary information needed to construct a hierarchal

tree of the program (functional calls and access weight for
each procedure) is extracted and exported to files to be used
later (left branch in Figure 6). Then, in the windows setting
stage, the exported data is used for the generation of the
hierarchal tree and the subsequent initialization of a factor,
called weight, for each function (FP) which is calculated
using:

 () () ()∏×=
=

P

i
iPP FrepeatFAccessFweight

2
 (8)

where Access is the extracted access weight of the current
function, which is the calculated degradation factor based on
the function utilization of a register window. The factor
repeat is an estimate of the number of calls to the function Fi.
We get an estimate of the number of function calls from the
number of iterations in which this function call is embedded
and the number of explicit calls to this function. It is
important to note that we extract these values at compile
time. Although runtime profiling of these functions is an
adequate methodology [27], our approach is more time
efficient, and the estimated number of calls at compile time
is close to the actual number of calls at runtime. Once
calculated, this weight factor is then used to select the
window for each function, with the aim of uniformly
distributing the wearout across the register file.

Based on the impact of each function on register window
wearout, a number k, the window step size, is assigned to
each function. k represents the step size relative to the
window of the immediate ancestor of the function FP (right
branch in Figure 6). Thus, the output from this stage is a list
of all the functions and their assigned window step sizes.

The list generated by the window setting stage is then
passed onto the window assignment stage, which generates
the instructions required to shift a function from one window
to another. Therefore, depending on the window step sizes,
the window assignment stage then lays out the functions
across the register file in such a way as to minimize wearout
during runtime (right branch in Figure 6).

VMWCS has a computational complexity which is
related to two main factors, the number of available windows
(Nw) and the number of functions or procedures in the
compiled program (Nf). The algorithm starts with computing
the average degradation of the register file (DegW) if the
function degradation impacts are equally distributed between
the windows. From this value, the algorithm passes through
each window and allocates a number of functions from the
available set, such that the overall degradation impact is
close to DegW. The computational complexity of VMWCS is
O(Nw.Nf).

VMWCS introduces a few additional instructions and
some compile time overhead. The instruction overhead is
translated into an increase in code size and execution time.
However, the overhead has a negligible impact, as we show
in Section 5.

V. CASE STUDY: SPARC V8

The SPARC V8 is a RISC based 32-bit architecture with
as many as 128 general purpose registers. This window
based architecture was selected as a case study for this work.
The windowing nature of this architecture allows us to

evaluate the effectiveness of both the AVA and the VMWCS
wearout mitigation schemes.

At any point, only 32 registers are visible to the software.
Out of these, eight are global, while the rest of the 24 form
the register window. This register window moves up and
down the register stack with every function call or return.
Each window has eight local registers, with 16 being shared
with the neighboring windows, with the aim of passing data
between function calls.

The viability of the proposed wearout mitigation scheme
was assessed across a variety of benchmarks using the
HW/SW emulation platform presented in [18]. While the
AVA was used for wearout balancing inside the active
window, VMWCS preformed the inter-window wearout
balancing. NBTI, PBTI and gate-oxide degradation were
monitored for each benchmark, and the results for the
proposed reliability aware compilation scheme, presented in
this work, were compared to the default compilation scheme
[6] and the thermal aware compilation scheme presented in
[4]. The comparison with [4] enables us to determine the
impact of stress on lifetime, separately from temperature.

BTI degradation was monitored using the Vt drift, while
gate-oxide degradation was monitored using the approximate
oxide traps generated.

Let’s first consider a detailed analysis of the effect of the
proposed scheme on NBTI and GOBD for one of the
benchmarks, FFT, which uses a limited number of windows.
Analysis for PBTI was left out since PBTI is similar in
behavior to NBTI. Figure 7 presents the normalized
difference between the threshold voltage degradation of
PMOS devices in the register file for the default compilation
scheme [6] and the proposed reliability aware compilation
scheme, i.e.,

 () ()
()defaultVt

yreliabilitVtdefaultVtZ
_

__ −
= (9)

where Z represents the average wearout of the devices in a
single register after the completion of a single run of the
benchmark. A positive value indicates a improvement as
compared to the default scheme. Figure 7 indicates that some
registers show clear improvement in mitigating NBTI by as
much as 10% during runtime. However, this comes at the
cost of an increase in the degradation of other registers. The
difference between the magnitude of improvement at some
locations and the magnitude of the increase in wearout in
others is due to the improvement in the thermal profile of the
register file at run-time and the recoverable nature of NBTI.

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

N
or

m
al

iz
ed

 D
iff

er
en

ce
 B

et
w

ee
n

R
el

ia
bi

lty
 A

w
ar

e
 a

nd
 D

ef
au

lt
C

om
pi

la
tio

n
- N

BT
I D

eg
ra

da
tio

n

 (Z

)

Register File

Figure 7: The difference between Vt degradation for PMOS devices
between the reliability aware compilation and the default compilation
method for FFT. The x-y plain represents the physical layout of the
register file.

Compared to BTI, gate-oxide degradation is not

recoverable, and hence there is a direct tradeoff between
reducing the wearout in one region of the register file vs.
another, as seen in Figure 8. However, overall, the register
file showed improvement in gate oxide degradation during
runtime.

-0.10

-0.05

0.00

0.05

0.10

0.15

Register File

N
or

m
al

iz
ed

 D
iff

er
en

ce
 B

et
w

ee
n

R
el

ia
bi

lty
 A

w
ar

e
 a

nd
 D

ef
au

lt
C

om
pi

la
tio

n
- G

at
e

O
xi

de
 D

eg
ra

da
tio

n

 (Z

)

Figure 8: The difference between gate-oxide degradation for PMOS
devices between reliability aware compilation and the default
compilation method for FFT. The x-y plain represents the physical
layout of the register file.

The compilation process keeps track of wearout of

registers, on top of thermal-awareness, making our scheme a
truly reliability aware scheme. Figures 9-11 plot the amount
of degradation due the proposed reliability-aware and
thermal-aware schemes normalized against the default
compilation scheme. Hence, for example, a value of 0.8 on
these figures indicates a 20% improvement for a specific
reliability mechanism over the default compilation scheme.
Our results indicate that we were able to achieve significant
improvement over the thermal-aware compilation method
across different benchmarks.

N
or

m
al

iz
ed

 N
BT

I D
eg

ra
da

tio
n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Reliability Aware Compilation
Thermal Aware Compilation

D -- G711_Decode
E -- G711_Encode
S -- Cubic Spline
M -- MPEG
F -- FFT
T -- Dhrystone
J -- JPEG

D E S M F T J

Figure 9: NBTI degradation across different benchmarks for reliability-
aware and thermal-aware compilation normalized against the default
compilation mode.

N
or

m
al

iz
ed

 P
BT

I D
eg

ra
da

tio
n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Reliabilty Aware Compilation
Thermal Aware Compilation

D -- G711_Decode
E -- G711_Encode
S -- Cubic Spline
M -- MPEG
F -- FFT

D E S M F

T -- Dhrystone
J -- JPEG

T J

Figure 10: PBTI degradation across different benchmarks for
reliability-aware and thermal-aware compilation normalized against the
default compilation mode.

N
or

m
al

iz
ed

 G
at

e-
O

xi
de

 D
eg

ra
da

tio
n

0.6

0.7

0.8

0.9

1.0

1.1

Reliability Aware Compilation
Thermal Aware Compilation

D -- G711_Decode
E -- G711_Encode
S -- Cubic Spline
M -- MPEG
F -- FFT
T -- Dhrystone
J -- JPEG

J
D E S M F T J

Figure 11: Gate-Oxide degradation across different benchmarks for
reliability-aware and thermal-aware compilation normalized against the
default compilation mode.

Figure 9 indicates the increase in PMOS threshold
voltages due to NBTI normalized against the increase in
PMOS threshold voltages due to the default compilation
scheme i.e.

defaultVt
thermalyrelaibilitVt

_
/_ . On average, NBTI was

significantly reduced for the reliability-aware scheme with
around 15-20% improvement across the benchmarks.
Compared to that, thermal-aware compilation [4] did not
show any clear trend, with the MPEG showing significant
improvement, while Encode experiencing worsened NBTI.
The significant improvement in the NBTI degradation for the
reliability aware scheme is due to the healing nature of
NBTI.

 Stress balancing across the register file helps in
distributing the workload throughout the register file, hence
reducing the number of completely inactive registers, which
result in worst case NBTI degradation for the latches. The
fact that more devices in the register file experience periods
of no-stress helps in the recovery of some of the degraded
threshold voltages for these devices. The thermal-aware
scheme failed to show any significant improvement for
benchmarks where register assignment had little impact on
the thermal profile [4] (Decode and Encode), while the
comparatively better results for the reliability-aware scheme
for the two can be solely attributed to stress balancing.

Similarly, Figure 10 shows the results for NMOS
degradation due to PBTI across different benchmarks. Due to
their similar nature, PBTI followed a similar trend to PMOS
degradation due to NBTI. Our results indicate slightly better
results for NBTI as compared to PBTI. However, it should
be noted that the relative magnitudes of NBTI and PBTI
degradation and their recovery is a strong function of the
choice of dielectric.

Gate oxide degradation, with its non-healing nature, also
showed encouraging results across the benchmarks. However
the improvement in gate oxide degradation was the least
among the three mechanisms considered. Gate oxide
degradation is also the hardest to predict, since not only does
the amount of degradation depend on the activity intensity,
but also on the type of activity, with a cell being thrice
toggled having a possibility of both, higher degradation and
lower degradation, in comparison with a cell that is toggled
twice, depending on the arrangements of the toggles with
respect to time.

Table 1 summarizes our results across different
benchmarks for the presented reliability-aware scheme
presented in this work and the thermal-aware scheme of [4].

Additionally it also compares the increase in code size and
compile-time for both schemes. Hence, this table shows that
the proposed reliability-aware scheme significantly improves
register-file lifetime by combining stress and thermal
balancing, while having a limited code overhead increase.
Although the increase in compile-time is significant, it is in
fact negligible in comparison with the program lifetime,
where program lifetime is calculated as a single compile-
time and numerous execution-times.
Table 1: Improvement in different wearout mechanisms and increase in
code size for reliability-aware and thermal-aware compilation schemes.

Compilation
Scheme

Code
Size %

Compile
time

NBTI PBTI GOBD

Proposed
reliability-aware
method

0.19% 120% 20% 14% 7%

Thermal-aware
method [4]

0.113% 20% 7% 9% 4%

VI. CONCLUSIONS

A compilation scheme with reliability as the optimization
criteria has been presented. We have shown how thermal-
awareness alone might be inadequate for enhancing lifetime.
Our proposed scheme makes use of both thermal balancing
and stress balancing to fully optimize compiler-directed
register file assignment for lifetime improvement.
Experimental results show that our proposed compilation
scheme achieves better reliability improvement with respect
to the state-of-the-art thermally-aware compilation
techniques for BTI and gate-oxide degradation.

Acknowledgements

The authors would like to acknowledge the support for
this work of ACE Associated Compiler Experts by providing
the complete license to use the CoSy compiler development
system at ESL-EPFL, as well as the helpful insights on the
modification of the CoSy compiler chain.

References

[1] S. Borkar, "Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation," IEEE Micro,
vol. 25, pp. 10-16, 2005.

[2] F. Ahmed and L. Milor, "Reliable cache design with on-chip
monitoring of NBTI degradation in SRAM cells using BIST," in 28th
VLSI Test Symposium (VTS), 2010, pp. 63-68.

[3] T. Kim, et al., "Silicon odometer: an on-chip reliability monitor for
measuring frequency degradation of digital circuits," in IEEE
Symposium on VLSI Circuits, 2007, pp. 122-123.

[4] M. Sabry, et al., "Thermal-aware compilation for system-on-chip
processing architectures," in Proceedings of the 20th symposium on
Great lakes symposium on VLSI, 2010, pp. 221-226.

[5] J. Srinivasan and S. Adve, "Predictive dynamic thermal management
for multimedia applications," in Proceedings of the 17th annual
international conference on Supercomputing, 2003, pp. 109-120.

[6] "ACE Cosy Compiler. http://www.ace.nl/compiler/cosy.html.."
[7] M. Alam and S. Mahapatra, "A comprehensive model of PMOS NBTI

degradation," Microelectronics Reliability, vol. 45, pp. 71-81, 2005.
[8] D. Qian and D. Dumin, "The Electric Field, Oxide Thickness, Time

and Fluence Dependences of Trap Generation in Silicon Oxides and
Their Support of the E-model of Oxide Breakdown," in Proceedings of
the 1999 7th International Symposium on the Physical and Failure
Analysisof Integrated Circuits, 1999, pp. 145–150.

[9] W. Wang, et al., "An efficient method to identify critical gates under
circuit aging," in Proceedings of the 2007 IEEE/ACM international
conference on Computer-aided design, 2007, pp. 735-740.

[10] J. Srinivasan, et al., "Lifetime reliability: Toward an architectural
solution," IEEE Micro, vol. 25, pp. 70-80, 2005.

[11] Y. Lee, et al., "Managing Bias-Temperature Instability for Product
Reliability," in International Symposium on VLSI Technology, Systems
and Applications, VLSI-TSA 2007, pp. 1-2.

[12] A. Calimera, et al., "NBTI-Aware power gating for concurrent leakage
and aging optimization," in Proceedings of the 14th ACM/IEEE
international symposium on Low power electronics and design, 2009,
pp. 127-132.

[13] D. R. Bild, et al., "Minimization of NBTI performance degradation
using internal node control," in Proceedings of the Conference on
Design, Automation and Test in Europe, 2009, pp. 148-153.

[14] H. Yun and J. Kim, "Power-aware modulo scheduling for high-
performance VLIW processors," in Proceedings of the 2001
International Symposium on Low Power Electronics and Design, 2001,
pp. 40-45.

[15] D. Sylvester, et al., "Elastic: An adaptive self-healing architecture for
unpredictable silicon," IEEE Design & Test of Computers, vol. 23, pp.
484-490, 2006.

[16] B. Hamidzadeh, et al., "Dynamic scheduling techniques for
heterogeneous computing systems," Concurrency: Practice and
Experience, vol. 7, pp. 633-652, 1995.

[17] N. Aggarwal, et al., "Configurable isolation: building high availability
systems with commodity multi-core processors," in Proceedings of the
34th annual international symposium on Computer architecture, 2007,
pp. 470 - 481.

[18] D. Atienza, et al., "HW-SW emulation framework for temperature-
aware design in MPSoCs," ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 12, pp. 1-26, 2007.

[19] T. Grasser, et al., "Simultaneous Extraction of Recoverable and
Permanent Components Contributing to Bias-Temperature Instability,"
in IEEE International Electron Devices Meeting. , 2007, pp. 801-804.

[20] S. Bhardwaj, et al., "Predictive modeling of the NBTI effect for
reliable design," in Custom Integrated Circuits Conference, CICC,
2006, pp. 189-192.

[21] L. Xiaojun, et al., "Compact Modeling of MOSFET Wearout
Mechanisms for Circuit-Reliability Simulation," IEEE Transactions on
Device and Materials Reliability, vol. 8, pp. 98-121, 2008.

[22] S. Pae, et al., "BTI reliability of 45 nm high-K + metal-gate process
technology," in IEEE International Reliability Physics Symposium.,
2008, pp. 352-357.

[23] L. Sun-Me, et al., "Effects of BTI during AHTOL on SRAM
V<inf>MIN</inf>," in IEEE International Reliability Physics
Symposium (IRPS) 2011, pp. 1-6.

[24] S. Ramey, et al., "Frequency and recovery effects in high-κ
BTI degradation," in IEEE International Reliability Physics
Symposium., 2009, pp. 1023-1027.

[25] S. K. Krishnappa and H. Mahmoodi, "Comparative BTI reliability
analysis of SRAM cell designs in nano-scale CMOS technology," in
12th International Symposium on Quality Electronic Design (ISQED),
2011, pp. 1-6.

[26] F. Ahmed and L. Milor, "NBTI resistant SRAM design," in 4th IEEE
International Workshop on Advances in Sensors and Interfaces
(IWASI), 2011, pp. 82-87.

[27] X. Zhou, et al., "Temperature-aware register reallocation for register
file power-density minimization," ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 14, pp. 1-26, 2009.

http://www.ace.nl/compiler/cosy.html..

	Fahad Ahmed[1], Mohamed M. Sabry[2], David Atienza[2] and Linda Milor[1]
	[1]Georgia Institute of Technology, Atlanta, GA, 30332, USA
	[2]Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
	Email: [fahad.ahmed, linda.milor]@ece.gatech.edu and [mohamed.sabry, david.atienza]@epfl.ch
	I. Introduction
	II. Related Work
	III. Pre-silicon Wearout Prediction
	A. Device Level Modeling for Wearout
	1) Bias Temperature Instability (BTI)
	2) Gate Oxide Breakdown

	IV. Wearout-Aware Compilation
	A. Adaptive Variable Assignment (AVA)
	B. Variable Multi-Window Context Switching

	V. Case Study: SPARC V8
	VI. Conclusions
	References

