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Abstract—Although constant technology scaling has resulted in 
considerable benefits, smaller device dimensions, higher 
operating temperatures and electric fields have also 
contributed to faster device aging due to wearout. Not only 
does this result in the shortening of processor lifetimes, it leads 
to faster wearout resultant performance degradation with 
operating time. Instead of taking a reactive approach towards 
reliability awareness, we propose a pre-emptive route toward 
wearout mitigation. Given the significant thermal and stress 
variation across the components of microprocessors, in this 
work we focus on one of the most likely candidates for 
overheating and hence reliability failures, the register file. We 
propose different wearout-aware compiler-directed register 
assignment techniques that distribute the stress induced 
wearout throughout the register file, with the aim of improving 
the lifetime of the register file, with negligible performance 
overhead. We compare our results with a state-of-the-art 
thermal-aware compilation scheme to show the clear 
advantage our proposed wearout-aware scheme has over 
thermal-aware schemes in terms of lifetime improvement that 
can reach up to 20% for Bias Temperature Instability.   

Keywords: wearout, compiler, register file, lifetime degradation, 
device aging. 

I.  INTRODUCTION 

Shrinking feature sizes, the inability of the operating 
voltage to scale accordingly with device dimensions and the 
ever increasing device density have resulted in decreasing 
device lifetime [1]. Post-silicon reliability is still heavily 
dependent on reactive measures, such as error detection and 
error correction. The use of on-chip sensors [2], 
complemented by post-silicon tuning [3], is also steadily 
increasing with the aim of extending system lifetime. 
However, since they do not mitigate the aging process itself, 
the effectiveness of such measures is always constrained due 
to the following reasons. Firstly, in the absence of 
redundancy, they do nothing in case of catastrophic events 
such as dielectric breakdown. Secondly, if the amount of 
aging can be reduced during the lifetime of a device, as 
proposed in this work, then any post-silicon tuning 
performed to compensate for wearout can also be regarded as 
over design, since the amount of tuning needed could 
potentially have been reduced. After all, tuning of a 
parameter always comes at the cost of reduced system 
performance. 

Modern compilers provide various optimization options 
for improving performance. However, the flexibility afforded 
by such compilers is rarely used towards reliability 
improvement. There has been some focus on compiler-

directed thermal-aware register file assignments [4], since 
their relatively small area and high utilization make them one 
of the most likely candidates for overheating [5]. Since all 
wearout mechanisms have a strong dependence on 
temperature, this inherently leads to improvement in register 
file reliability. However, to the best of our knowledge, 
adaptive compilation schemes today are not truly wearout-
aware with a primary focus on the extension of the register 
file’s operable lifetime. 

The work presented here proposes a wearout-aware 
compiler directed register assignment scheme that distributes 
the electrical stress throughout the register file, at 
compilation time, with the aim of minimizing wearout. The 
proposed compilation flow consists of two phases of 
optimization. During phase 1 of the flow, crude wearout 
estimates are used to perform reliability optimization during 
the compilation process, while phase 2, which is more time 
intensive, performs the optimization using detailed wearout 
models. To support register-window based architectures, this 
is done at two levels i.e. at the register window level using an 
adaptive register window assignment, called variable multi-
window context switching (VMWCS), and at the register 
level using an adaptive intra-window register assignment 
scheme, called adaptive variable assignment (AVA). AVA 
distributes the stress induced wearout for the registers 
throughout the window more uniformly with the aim of 
eliminating registers which might fail fairly early in their 
projected lifetime. Similarly, adaptive register-window 
assignment aims at distributing the workload more uniformly 
at the register-window level. Moreover, as temperature is so 
critical for device reliability, the proposed wearout-aware 
register assignment also reduces the temperature of the 
registers or the register windows.  

We also present a framework for extending device level 
wearout models to the architecture level, which is then used 
for comparison between different compilation techniques. To 
do this, our algorithms have been integrated into the CoSy 
compiler development system [6], a flexible and easily-
targetable development kit for high-end compiler designs.  
Although this work focuses on the register file, we 
demonstrate the incorporation of wearout in architecture 
simulations.  Hence, the methodology proposed can be 
extended to other blocks.   

The rest of the paper is organized as follows. Section 2 
gives a brief overview of the related work and recent trends. 
In Section 3 we present our pre-silicon wearout prediction 
framework. Then in Section 4, we present the proposed 
wearout-aware compilation technique. Next, in Section 5, we 
present a test case and compare the reliability figures attained 
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with the proposed scheme. Section 6 summarizes the main 
conclusions of this work.  

II. RELATED WORK 

Pre-silicon wearout-aware design steps ranging from 
device level wearout models [7],[8] to wearout augmented 
CAD tools [9],[10], have become a necessity. The aim of 
these steps is the prediction of device wearout during its 
functional lifetime, which can then be complemented with 
measures, such as the introduction of guard bands, to insure 
reliable system operation [11]. Post-silicon techniques such 
as power gating [12] and insertion of control circuit blocks 
[13] have also been used to reduce wearout. 

Recent work in reliability aware compilation has dealt 
with improving the thermal profile of the functional units 
under study. Some researchers have used an indirect 
approach by improving operating temperatures through 
improvement in power consumption [14]. Moreover, recent 
work [10] has shown that better thermal profiles can be 
achieved by considering global temperatures as the main 
optimization metric. However, an optimized thermal profile 
does not necessarily result in an optimized lifetime, since 
device wearout is not only a function of temperature, but also 
of stress.  

Wearout aware scheduling techniques for stress 
distribution have been used for extending the lifetime of 
multi-core systems [15]. While this approach requires an 
additional central management unit which keeps track of and 
responds to the gradual system wearout, the use of an under-
used computation unit as a system manager has also been 
proposed [16].  An alternative to stress distribution is to 
gracefully drop failing components from operation, given 
available redundancy [17]. 

However, in this work we show that the intra-component 
compiler-level stress distribution, coupled with improved 
operating temperatures, can lead to an optimized component 
wearout profile. With improvement in component lifetimes 
as the main metric, we simultaneously reduce component 
temperatures and achieve a uniform stress distribution for 
optimal reliability. 
III. PRE-SILICON WEAROUT PREDICTION 

The first step in insuring reliable system operation is to 
bridge the gap between the established device level wearout 
models and system behavior at the architecture level. The 
current mean time to failure (MTTF) based high level 
reliability models, such as [10], only provide us with crude, 
single point, reliability estimates based on the assumption 
that the system is a series failure system. Due to the inherent 
lack of depth of these models, it becomes impossible to 
address the core issues affecting system reliability at the 
architecture level. Hence, in this section we present a 
detailed wearout model for the processor micro-architectural 
components. 

Figure 1 summarizes the framework employed for 
estimating the pre-silicon wearout profile of the register file. 
The HW/SW emulation platform, similar to the one 
presented in [18], was used to extract the required thermal 
profile and block level switching activity for a chip running 
benchmark software. The activity at the input of the block 

under study (the register file in this case) was converted to 
stress probabilities and transition probabilities at the inputs. 
These probabilities were then propagated within the block, 
depending on its logic behavior, for a complete 
stress/transition probability profile of the internal nodes of 
the block under study, as shown in Figure 1. Thus we have 
the probability of a transition occurring at any node, which 
can then be translated into the flow of current through the 
interconnects connected to that node. Similarly, the 
probability of stress at a node within the block is translated 
into the probability of voltage stress for the transistors 
connected to that node. Then, using the thermal profile from 
the HW/SW emulation platform and the calculated 
probability of current flow and voltage stress, we can use 
device level models to characterize any wearout mechanism 
in the block under study to determine the wearout profile of 
the system. 

 
Figure 1: General framework for estimating the pre-silicon SoC 
wearout profile. 

Finally, we rely on established device level models for 
the modeling of different wearout mechanisms 
[7],[8],[19],[20],[21]. Appropriate modifications were made 
in the models to take into account the probabilistic nature of 
the input signals.  In the next subsection we provide a brief 
overview of the device level models used in this work. 

A. Device Level Modeling for Wearout 
Almost all wearout mechanisms can be divided into two 

broad categories, the voltage (or E-field) dependent wearout 
mechanisms, such as negative bias temperature instability 
(NBTI), positive bias temperature instability (PBTI), 
transistor and backend dielectric breakdown, etc., and the 
current stress-dependent wearout mechanisms, such as 
electromigration (EM). Due to the lack of higher level 
models for the progressive effect of these mechanisms, it was 
necessary to first model their effect at the device level and 
then abstract the models to the micro-architecture level. For 
this work we have focused on three critical wearout 
mechanisms, namely NBTI, PBTI and transistor gate oxide 
breakdown (GOBD). Support for the type of dielectric was 
also included in the modeling framework with poly+SiON 
and high-k+metal being the available options.  

1) Bias Temperature Instability (BTI) 
Bias Temperature instability (BTI), as the name 

suggests, causes instability in device behavior and is a result 
of the bias stress applied to it. NBTI is the degradation of a 
PMOS device under negative stress, and PBTI is the 
degradation of an NMOS device under positive stress. BTI 
results in shifts in device parameters, such as threshold 



voltage, transconductance, device mobility, etc., but is 
generally identified by shifts in the threshold voltage [7]. 

Historically, BTI was only a major concern for PMOS 
devices with NMOS devices showing comparatively 
negligible degradation. However with the introduction of 
high-k metal gate stacks for sub-45nm technology nodes, 
degradation in NMOS devices due to positive bias has 
increased with large degradation observed for both types of 
devices [22].   

Based on the well-known reaction-diffusion (RD) 
theory, NBTI is directly related to the formation of interface 
traps and their subsequent diffusion into the dielectric. The 
corresponding increase in threshold voltage ( tpV ) follows a 
power law model[7],[23]: 
                       ( ) n

atp tVkTEAV α/exp0 −=∆                     (1) 
where aE is the activation energy, k is Boltzmann’s constant, 
T is temperature, V is the voltage stress, and t is time. 0A  , 
α , and n are fitting parameters and were obtained from 
experimental results[19]. 

Upon the release of the voltage stress, there is some 
recovery of the device degradation. The fraction of the 
recoverable component (r) is modeled as shown in equation 
(2):  
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where β is a scaling parameter, trelax is the total recovery 
time, tstress is the total stress time and φ is a dispersion 
parameter [24]. Since r is the fraction of the total possible 
recovery remaining, equation (2) can now be used to divide 
the total degradation during stress from (2) into a recoverable 
component and a permanent component [19] with the 
recoverable component given by: 
                                    tprect VrV ∆=∆ _                              (3) 
 The recovery was also modeled according to the RD 
framework. When the stress is released, a recovery phase is 
initiated and the amount of threshold voltage shift decreases 
according to: 
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where 3,2,1ζ are constants which depend on the oxide 
thickness and the back diffusion rate of hydrogen and 
temperature, t is the total time and tr is the recovery time and 
Vt_rec is the maximum possible recovery [7],[20] calculated 
from equation (3).  

Unlike NBTI, there is still a lack of a truly scalable 
physical model for PBTI. However equations (1) and (4) are 
adequate for capturing the temperature and voltage 
dependency of the stress and recovery phase of degradation 
due to PBTI [23],[25] with fitting parameters extracted from 
[19].  

 In summary, the device degradation during periods of 
stress is estimated using equitation (1) while the recovery is 
estimated using equation (4) enabling accurate cycle-by-
cycle tracking of device degradation during system 
operation.  

The degradation of threshold voltage results in longer 
delays at the circuit level, which eventually result in failure 
of circuit performances.  For any circuit component, a 
threshold can be determined such that shifts in the threshold 
voltage results in circuit-level failure, as was demonstrated in 
[26]. 

2) Gate Oxide Breakdown 
Gate oxide breakdown is modeled as a leakage (low 

resistance) path through the oxide.  Several frameworks 
describing the physics behind the phenomenon of dielectric 
degradation and breakdown have been proposed. The 
thermo-chemical model, however, provides a deterministic 
description of the process of oxide trap generation. It has 
been shown that the application of electric field on molecular 
dipole moments lowers the activation energy for bond 
breakage [8]. This in turn leads to enhanced trap formation in 
the dielectric. It has been shown [8] that trap generation 
depends on the electric field is described by an Eyring 
equation:  
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where κ is the total density of traps available for generation, 
aE is the activation energy, k is the Boltzmann’s constant, 

2κ is a device constant  dependent on the field acceleration 
factor, and 0E is the oxide electric field.  Traps form 
throughout the oxide, and when the number of traps exceeds 
a threshold, a leakage path forms through the oxide.  

 The formation of a leakage path does not 
necessarily result in circuit-level failure.  However, a 
threshold can be found when the number of traps links 
directly to circuit-level failure, as was demonstrated in [2]. 
IV. WEAROUT-AWARE COMPILATION 

With the high-level system wearout monitoring 
framework described in the previous section, we can measure 
and compare the effects of different compilation techniques 
on the wearout of a register file. Before we describe the 
actual algorithms that were employed for wearout mitigation, 
we need to characterize and understand the functioning of a 
register file and its wearout over time. 

With the models from Section 3, the first step in 
determining the wearout profile of the register file is its 
division into sectors with similar wearout behavior.  Sectors 
are similar if they undergo the same operations, i.e. a read 
operation, a write operation, or neither with the current data 
being retained.  Hence, when a register is being read, the 
transistors undergoing positive/negative voltage bias stress 
are identified. A similar process is repeated for the write 
operation. When neither a read or a write occurs, the latches 
are identified as being under constant DC stress, resulting in 
worst-case BTI and GOBD damage.  

Typically, any wearout mechanism ‘X’ can be defined as  
                            ( )TtsfX ,,=                                    (6) 

where ‘s’ is the stress profile in terms of the number of reads 
and/or writes, ‘t’ is the timing information associated with  
the profile ‘s’ and the set T is the thermal profile. As an 
example, consider a register that undergoes two writes, and 
one read at times twr1, twr2 and trd during a total run-time of tr 
while the temperature variation in the register during tr is 



represented by Tr. Then for equation (6), 
s={writes=2,reads=1}, t={twr1, twr2, trd} and T= Tr .  

The aim of the wearout mitigating algorithms proposed 
is a compiler-directed spreading of device wearout at 
runtime. However, at compile-time, we lack the necessary 
information to derive a complete wearout profile for the 
wearout mechanisms mentioned in Section 3. Note that in a 
typical compilation framework, the complete stress profile of 
the register file is available only after the completion of the 
compilation process, while the thermal and timing 
information is available at runtime. As a result it becomes 
impossible to accurately predict the device wearout at the 
compilation phase. To overcome this issue, we propose the 
compilation framework with two phases shown in Figure 2, 
which are run sequentially. 

 
Figure 2: An overview of the proposed compilation framework  

 
Phase 1 consists of a reliability optimization scheme 

consisting of a compilation module and a wearout estimating 
module, while phase 2 also takes into account the run-time 
information and the thermal profile for a more complete 
wearout profile. The reason for dividing the compilation flow 
into two phases is the excessive time associated with the 
derivation of a detailed wearout profile for all wearout 
mechanisms under study. Hence, to reduce the time 
associated with the complete compilation flow, a crude first 
level optimization is done in phase 1. It should be noted here 
that it took only a few iterations of phase 1 to complete the 
wearout estimate for our examples while typically only a 
single run of phase 2 is needed to update the required 
information from phase 1. The reliability-aware compilation 
might run for a few minutes, at most, but this is still an 
insignificant overhead, since the time in phase 1 is negligible 
compared to the time in phase 2. 

The wearout estimating module of phase 1 estimates the 
degradation due to the wearout mechanisms under study 
using the stress profile from the compilation module. A 
constant time window is assigned to each variable and a 
constant temperature is assumed for each register. The 
estimate of the total wearout under the current compilation 
run is then fed into the compilation module which then 
reassigns the registers depending in the wearout estimate 
from the last compilation run. Even though a constant 
temperature is assumed for the wearout models at this point 
in time, hot spots are taken into account during compilation 
and avoided by keeping apart registers with high activity 
levels. In phase 2, the stress timing information and thermal 
profile of the register file is included in the framework and 
the detailed wearout profile is used to verify if the required 
wearout distribution has been achieved or if further 
optimization is required. 

To accommodate register window based architectures, 
two levels of wearout mitigation, within windows and within 
registers inside each window, are supported in the proposed 
compilation framework, as shown in Figure 3. 

 
Figure 3: Adaptive stress distribution in the register file. Color intensity 
represents the amount of wearout.   

 

A. Adaptive Variable Assignment (AVA) 
Although this work targets a register-window-based 

architecture, our first approach for wearout reduction can be 
just as effective for any other architecture, since the aim here 
is the adaptive assignment of the active registers, irrespective 
of whether they are in a window or the whole register file is 
accessed at once. 

Wearout awareness was introduced in the compiler in 
such a way that the original optimizations employed in the 
compiler itself are not compromised in any way, while still 
leaving room for reliability optimization. Typically, for every 
new variable assignment to registers, the compiler accesses 
the color graph and finds a set of registers that are available 
for assignment [6]. The flow is then transferred to a series of 
filters, as shown in Figure 4. These filters introduce further 
reductions in the set of available registers, according to some 
pre-determined optimization criteria, resulting in what is 
known as the reduced availability set (Sr). Once the reduced 
availability set is formed, typically a compiler picks the first 
register from the list, making no distinction between the 
registers in this set. Hence, in the case of a reduced 
availability set larger than one, there is still room for the 
introduction of improved register assignments for reliability.  

The proposed reliability filtering process can be 
introduced before or after the reduction of the set to Sr 
depending on how reliability critical the target application is. 
Introducing the reliability filter before reduction of the 
availability set gives the highest precedence to reliability 
optimization.    

S=Get_Available_Set

 Size(S)=?1

Assign Register

Yes

Apply_Optimization_Filters()

No

 Size(S)=?1

Yes
Set_Register_Priority()

(Reliability Filter)

No

Register_Assignment_Monitor()

Wearout Monitor

 
Figure 4: The register assignment flow with the additional reliability 
filter included. 



As can be seen, without extensive changes in the 
compiler flow, we have inserted a new reliability filter in the 
register assignment flow. Figure 5 presents the algorithm 
implemented in the reliability filter shown in Figure 4. The 
reliability filter assigns a gain value to all the registers in the 
reduced set according to the input from the register wearout 
monitor, which keeps track of the register wearout from the 
last run. The gain nδ  of a register at position Rn is the 
difference between its computed wearout Wn and the 
wearout of the register at position 1. Wn was computed using 
a weighted sum of the parameters associated with the 
wearout mechanisms under study, i.e. 

                            1WWnn −=δ                                    (7) 
),,(),,(),,( TtsNTtsVTtsVWn tGOBDtNmosPBTItPMOSNBTI Γ+Γ+Γ=    

where 
XΓ is the weight assigned to wearout due to 

mechanism X. Hence, a higher weight for NBTI means a 
higher precedence is given for NBTI reduction during 
compilation.  

Variable assignments for each register are also tracked in 
the register assignment monitor block shown in Figure 4. 
Details are shown in Figure 5.  The algorithm starts with a 
set of registers R for variable assignment.  R is the reduced 
availability set.  In assigning registers to variables, 
precedence is given to registers that are yet to be assigned 
any variables and whose wearout results indicate a lack of 
activity from the last run. This forces the spreading of 
activity across the register file. For the case when no such 
register is empty, i.e. has previously not been assigned 
variables, the wearout of the first register in the set of 
available registers is compared with the wearout of all the 
other registers and the gain for each register is computed. 
The first register in the set is then replaced if the gain of the 
current register is greater than a predetermined value ∆ . 
However, a replacement is only executed if it does not result 
in a hot spot. A register is labeled as a hot spot if it or any of 
its surrounding registers exceeds a pre-determined number of 
variable assignments.  
 

 
Figure 5: Algorithm for reliability filter with time complexity of O(n).  

 In summary, the algorithm passes through the register set 
of length n once, and replaces the first register if it satisfies 
the conditions mentioned above. At the end of the pass, we 
have the best candidate for register assignment in position 1 
in the set. The algorithm has a time complexity of O(n).  
Once the variable is assigned to a register, the register 
assignment monitor and the hot spot labels are updated and 
the process is repeated for the next variable.   

B. Variable Multi-Window Context Switching 
The new AVA is limited by the fact that it can only 

monitor and select registers, for variable assignment, from 
the set of registers visible to the compiler at that instant. This 
would be of no consequence if the compiler had access to the 
whole register file for every register/variable assignment. 
This, however, is not the case for register window based 
architectures, such as SPARC, where the register file is 
divided into smaller sets. Hence, when assigning a variable, 
the compiler can only access a single window.  

Therefore, we propose a variable multi-window context 
switching (VMWCS) scheme which balances the switching 
activity among the register windows in the register file.  

In general, a program includes a number of functions (or 
procedures) that are called in a hierarchal manner, where the 
main function is at the top level of the hierarchy and uses 
register-window i=1 in execution. All the functions found at 
the same level of the hierarchy use the same register-
window, which is sequentially next to the one used by the 
ancestor functions. 

Such methods of assigning register windows are 
inefficient in terms of reliability and thermal behavior, since 
they lead to highly uneven activity levels among the 
windows, i.e. the levels in the hierarchy are not equally 
weighted in terms of switching activity. This leads to an 
uneven distribution of electrical stress throughout the register 
file and may result in high temperatures due to the close 
proximity of highly-accessed register windows. Thus 
VMWCS balances the inter-window stress profile by 
studying the structure of the program, by exploring the 
functional interdependencies, and by assigning various 
register windows to functions at the same hierarchal level at 
compiler preprocessing time. 

Figure 6 shows the flow chart of VMWCS. The proposed 
scheme executes in three main stages, (1) information 
extraction, (2) windows setting, and (3) window assignment.  

 Start

Input 
program

Extract_info=1

F=Get_next_procedure()

Extract_info=1?

Extract_information(F)

Program 
finished?

Set_window_offset(F)

Evaluate_info()
Set_windows()
Extract_info=0

Yes

Yes

No

No

Emit_code(F)

Program_finished?

No

Stop

Yes

 
Figure 6: The proposed variable multi-window context switching 
scheme flow.  

The information extraction phase is performed initially 
by setting a flag, named Extract_info, to 1. At this stage, all 
the necessary information needed to construct a hierarchal 



tree of the program (functional calls and access weight for 
each procedure) is extracted and exported to files to be used 
later (left branch in Figure 6). Then, in the windows setting 
stage, the exported data is used for the generation of the 
hierarchal tree and the subsequent initialization of a factor, 
called weight, for each function (FP) which is calculated 
using: 

           ( ) ( ) ( )∏×=
=
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iPP FrepeatFAccessFweight
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              (8) 

where Access is the extracted access weight of the current 
function, which is the calculated degradation factor based on 
the function utilization of a register window. The factor 
repeat is an estimate of the number of calls to the function Fi. 
We get an estimate of the number of function calls from the 
number of iterations in which this function call is embedded 
and the number of explicit calls to this function. It is 
important to note that we extract these values at compile 
time. Although runtime profiling of these functions is an 
adequate methodology [27], our approach is more time 
efficient, and the estimated number of calls at compile time 
is close  to the actual number of calls at runtime. Once 
calculated, this weight factor is then used to select the 
window for each function, with the aim of uniformly 
distributing the wearout across the register file.  

Based on the impact of each function on register window 
wearout, a number k, the window step size, is assigned to 
each function. k represents the step size relative to the 
window of the immediate ancestor of the function FP (right 
branch in Figure 6). Thus, the output from this stage is a list 
of all the functions and their assigned window step sizes.  

The list generated by the window setting stage is then 
passed onto the window assignment stage, which generates 
the instructions required to shift a function from one window 
to another. Therefore, depending on the window step sizes, 
the window assignment stage then lays out the functions 
across the register file in such a way as to minimize wearout 
during runtime (right branch in Figure 6). 

VMWCS has a computational complexity which is 
related to two main factors, the number of available windows 
(Nw) and the number of functions or procedures in the 
compiled program (Nf). The algorithm starts with computing 
the average degradation of the register file (DegW) if the 
function degradation impacts are equally distributed between 
the windows. From this value, the algorithm passes through 
each window and allocates a number of functions from the 
available set, such that the overall degradation impact is 
close to DegW. The computational complexity of VMWCS is 
O(Nw.Nf).  

VMWCS introduces a few additional instructions and 
some compile time overhead. The instruction overhead is 
translated into an increase in code size and execution time. 
However, the overhead has a negligible impact, as we show 
in Section 5. 

V. CASE STUDY: SPARC V8 

The SPARC V8 is a RISC based 32-bit architecture with 
as many as 128 general purpose registers. This window 
based architecture was selected as a case study for this work. 
The windowing nature of this architecture allows us to 

evaluate the effectiveness of both the AVA and the VMWCS 
wearout mitigation schemes. 

At any point, only 32 registers are visible to the software. 
Out of these, eight are global, while the rest of the 24 form 
the register window. This register window moves up and 
down the register stack with every function call or return. 
Each window has eight local registers, with 16 being shared 
with the neighboring windows, with the aim of passing data 
between function calls.  

The viability of the proposed wearout mitigation scheme 
was assessed across a variety of benchmarks using the 
HW/SW emulation platform presented in [18]. While the 
AVA was used for wearout balancing inside the active 
window, VMWCS preformed the inter-window wearout 
balancing. NBTI, PBTI and gate-oxide degradation were 
monitored for each benchmark, and the results for the 
proposed reliability aware compilation scheme, presented in 
this work, were compared to the default compilation scheme 
[6] and the thermal aware compilation scheme presented in 
[4].   The comparison with [4] enables us to determine the 
impact of stress on lifetime, separately from temperature. 

BTI degradation was monitored using the Vt drift, while 
gate-oxide degradation was monitored using the approximate 
oxide traps generated.   

Let’s first consider a detailed analysis of the effect of the 
proposed scheme on NBTI and GOBD for one of the 
benchmarks, FFT, which uses a limited number of windows.  
Analysis for PBTI was left out since PBTI is similar in 
behavior to NBTI. Figure 7 presents the normalized 
difference between the threshold voltage degradation of 
PMOS devices in the register file for the default compilation 
scheme [6] and the proposed reliability aware compilation 
scheme, i.e., 

      ( ) ( )
( )defaultVt
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where Z represents the average wearout of the devices in a 
single register after the completion of a single run of the 
benchmark.  A positive value indicates a improvement as 
compared to the default scheme. Figure 7 indicates that some 
registers show clear improvement in mitigating NBTI by as 
much as 10% during runtime. However, this comes at the 
cost of an increase in the degradation of other registers. The 
difference between the magnitude of improvement at some 
locations and the magnitude of the increase in wearout in 
others is due to the improvement in the thermal profile of the 
register file at run-time and the recoverable nature of NBTI. 
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Figure 7: The difference between Vt degradation for PMOS devices 
between the reliability aware compilation and the default compilation 
method for FFT.  The x-y plain represents the physical layout of the 
register file. 



 
Compared to BTI, gate-oxide degradation is not 

recoverable, and hence there is a direct tradeoff between 
reducing the wearout in one region of the register file vs. 
another, as seen in Figure 8.  However, overall, the register 
file showed improvement in gate oxide degradation during 
runtime.  
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Figure 8: The difference between gate-oxide degradation for PMOS 
devices between reliability aware compilation and the default 
compilation method for FFT. The x-y plain represents the physical 
layout of the register file.   

 
The compilation process keeps track of wearout of 

registers, on top of thermal-awareness, making our scheme a 
truly reliability aware scheme.  Figures 9-11 plot the amount 
of degradation due the proposed reliability-aware and 
thermal-aware schemes normalized against the default 
compilation scheme. Hence, for example, a value of 0.8 on 
these figures indicates a 20% improvement for a specific 
reliability mechanism over the default compilation scheme. 
Our results indicate that we were able to achieve significant 
improvement over the thermal-aware compilation method 
across different benchmarks. 
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Figure 9: NBTI degradation across different benchmarks for reliability-
aware and thermal-aware compilation normalized against the default 
compilation mode.   
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Figure 10: PBTI degradation across different benchmarks for 
reliability-aware and thermal-aware compilation normalized against the 
default compilation mode.   
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Figure 11: Gate-Oxide degradation across different benchmarks for 
reliability-aware and thermal-aware compilation normalized against the 
default compilation mode.   

Figure 9 indicates the increase in PMOS threshold 
voltages due to NBTI normalized against the increase in 
PMOS threshold voltages due to the default compilation 
scheme i.e.

defaultVt
thermalyrelaibilitVt

_
/_ . On average, NBTI was 

significantly reduced for the reliability-aware scheme with 
around 15-20% improvement across the benchmarks. 
Compared to that, thermal-aware compilation [4] did not 
show any clear trend, with the MPEG showing significant 
improvement, while Encode experiencing worsened NBTI. 
The significant improvement in the NBTI degradation for the 
reliability aware scheme is due to the healing nature of 
NBTI. 

 Stress balancing across the register file helps in 
distributing the workload throughout the register file, hence 
reducing the number of completely inactive registers, which 
result in worst case NBTI degradation for the latches. The 
fact that more devices in the register file experience periods 
of no-stress helps in the recovery of some of the degraded 
threshold voltages for these devices. The thermal-aware 
scheme failed to show any significant improvement for 
benchmarks where register assignment had little impact on 
the thermal profile [4] (Decode and Encode), while the 
comparatively better results for the reliability-aware scheme 
for the two can be solely attributed to stress balancing.  

Similarly, Figure 10 shows the results for NMOS 
degradation due to PBTI across different benchmarks. Due to 
their similar nature, PBTI followed a similar trend to PMOS 
degradation due to NBTI. Our results indicate slightly better 
results for NBTI as compared to PBTI. However, it should 
be noted that the relative magnitudes of NBTI and PBTI 
degradation and their recovery is a strong function of the 
choice of dielectric.  

Gate oxide degradation, with its non-healing nature, also 
showed encouraging results across the benchmarks. However 
the improvement in gate oxide degradation was the least 
among the three mechanisms considered. Gate oxide 
degradation is also the hardest to predict, since not only does 
the amount of degradation depend on the activity intensity, 
but also on the type of activity, with a cell being thrice 
toggled having a possibility of both, higher degradation and 
lower degradation, in comparison with a cell that is toggled 
twice, depending on the arrangements of the toggles with 
respect to time. 

Table 1 summarizes our results across different 
benchmarks for the presented reliability-aware scheme 
presented in this work and the thermal-aware scheme of [4]. 



Additionally it also compares the increase in code size and 
compile-time for both schemes. Hence, this table shows that 
the proposed reliability-aware scheme significantly improves 
register-file lifetime by combining stress and thermal 
balancing, while having a limited code overhead increase.  
Although the increase in compile-time is significant, it is in 
fact negligible in comparison with the program lifetime, 
where program lifetime is calculated as a single compile-
time and numerous execution-times. 
Table 1: Improvement in different wearout mechanisms and increase in 
code size for reliability-aware and thermal-aware compilation schemes. 

Compilation 
Scheme 

Code 
Size % 

Compile 
time 

NBTI PBTI GOBD 

Proposed  
reliability-aware 
method 

0.19% 120% 20% 14% 7% 

Thermal-aware 
method [4] 

0.113% 20% 7% 9% 4% 

 
VI. CONCLUSIONS 

A compilation scheme with reliability as the optimization 
criteria has been presented. We have shown how thermal-
awareness alone might be inadequate for enhancing lifetime. 
Our proposed scheme makes use of both thermal balancing 
and stress balancing to fully optimize compiler-directed 
register file assignment for lifetime improvement. 
Experimental results show that our proposed compilation 
scheme achieves better reliability improvement with respect 
to the state-of-the-art thermally-aware compilation 
techniques for BTI and gate-oxide degradation. 
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