Abstract

Tribocorrosion of Al-Si-Cu-Mg alloys was investigated in 0.05 M NaCl and 0.1 M NaNO3 solutions under severe sliding and controlled electrochemical conditions. A simple galvanic coupling model was developed to analyze and quantitatively predict the evolution of the open circuit potential during tribocorrosion. According to this model and the obtained results, galvanic coupling was established in the NaNO3 solution within the wear track between passive and mechanically depassivated areas. In the NaCl solution, galvanic coupling was established between the whole depassivated wear track and the surrounding area. This difference was attributed to different mechanical properties of the passive surfaces. (C) 2011 Elsevier Ltd. All rights reserved.

Details

Actions