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ABSTRACT

Space missions are often equipped with several high definition sen-
sors that can autonomously collect a potentially enormous amount
of data. The bottleneck in retrieving these often precious datasets
is the onboard data storing capability and the communication band-
width, which limit the amount of data that can be sent back to Earth.
In this paper, we propose a method based on the analysis of brain
electrical activity to identify the scientific interest of experts towards
a given image in a large set of images. Such a method can be used
to efficiently create an abundant training set (images and whether
they are scientifically interesting) with a considerably faster image
presentation rate that can go beyond expert consciousness, with less
interrogation time for experts and relatively high performance.

Index Terms— EEG, BCI, Signal Processing, Machine Learn-
ing, Implicit Retrieval

1. INTRODUCTION

Autonomous decision making systems are becoming increasingly
demanded for various purposes. Several research groups across the
world are conducting extensive research to increase the performance
and simultaneously reduce the cost and risk of the decision in such
systems for miscellaneous applications such as space exploration,
medicine and militaryapplications. Space exploration is by its very
nature an expensive and risky endeavor. Various factors such as strin-
gent communications constraints ( limited communication windows,
long communication latencies, and limited bandwidth), limited ac-
cess and availability of operators, limited crew availability, and sys-
tem complexity restrain direct human oversight of many functions
[1]. Therefore, autonomy in space research is far more than just a
convenience and is critical to the success of the mission in some
situations. Examples of some previous works in this context are
[2] and [3]. In [4], an on-board autonomous system was developed
and downloaded on Spirit and Opportunity to detect dust-devils and
clouds in the Martian landscape. Another prevailing interest in space
research is to assess the possibility of elaborating an intelligent mod-
ule and incorporating it into space exploration robots in extra orbital
missions to enable them to search in the immense image datasets that
they autonomously collect using several high-definition sensors and
select only the scientifically interesting images. Consequently, these
robots will be able to discard the rest of images and to transmit only
the selected images back to Earth. Such a module can also be used
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for automatic detection of anomalies in medical images, interesting
military images, etc. in large image sets.

A key point, at the center of current technological developments,
is the design of algorithms able to classify sensor readings (e.g. im-
ages) according to their degree of scientific interest. The main dif-
ficulty lies in the definition of what is scientifically interesting. Ma-
chine learning algorithms could be trained directly to classify what is
scientifically interesting and what is not, without further information
about these two very broad classes. This could potentially allow for
broader and more fuzzy classification borders, and could result in al-
gorithms able to return not only the strictly defined and expected, but
also a set of images with potentially unexpected, but relevant prop-
erties. The challenge when following this approach becomes how to
then create a training set for a classifier.

One option is to resort to what is typically referred to as the
interviewing or interrogation technique. Expert scientists would be
interviewed on a particular set of pictures, being asked to simply
classify or rank them; subsequently a computer would be trained to
have a similar response to the one of the interviewed scientist. In this
way, the computer has to automatically extract the relevant features
that guided the expert’s decision-making and learn to use them in
such a way so to mirror the expert’s classification.

Despite the simplicity of this methodology, there are various
drawbacks involved. For example, it requires the scientists to un-
dergo long and time-consuming sessions of image classification
that may prove to be particularly tiring and cumbersome, which in
turn can result in the acquisition of a noisy training set. Moreover,
this approach is subject to the fuzziness of the scientist’s reasoning
when placing a highly cognitive judgment upon each picture. In
other words, the scientist will repeatedly consciously filter the im-
age, eventually merging even contradictory verdicts to one binary
classification or a ranking. In this work, we propose an alternative
approach to creating such a training set for a classifier; in particular,
the information about the expert’s classification is extracted directly
from the classification of his/her brainwaves.

It is well known from neurophysiological studies that when sub-
jects look at images which arouse mental response such as surprise,
anticipation, and etc., their parietal cortex is excited in a very charac-
teristic way: a synchronized peak in the global electrical activity of
large groups of neurons in the parietal area arises after approximately
300 ms after the stimulus (image) presentation. This electrical activ-
ity can be recorded with an Electro-Encephalography (EEG) instru-
ment as an electric positive potential wave and is commonly referred
to as P300 [5].

We propose to extract the picture rating information using the
EEG signal recorded while the expert is presented with the pictures
in a Rapid Serial Visual Presentation (RSVP) experiment. Our set-
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up is inspired by a related work performed by Gerson et al. [6]
who presented an original experiment where a simple image rank-
ing task is performed by ranking images according to the amplitude
of the P300 brainwave recorded during a RSVP experiment based
on the oddball paradigm. The oddball paradigm refers to experi-
mental setups in which a target stimulus is presented among more
frequent background stimuli. The results of this experiment, and the
vast pre-existing literature available on the detection and use of the
P300 wave for different applications such as Brain Computer Inter-
face (BCI) [7], suggests the potentiality of processing EEG signals
recorded during a RSVP experiment using machine learning tech-
niques to extract a classification of the images mirroring the classi-
fication the subject made when presented with the images. In other
words, the EEG signal could be used to define image classes rather
then having the scientist analyze and explicitly perform such a clas-
sification.

The rest of this paper is organized as follows. In Sections 2 and
3, the experiments performed and the signal processing and classi-
fication algorithms used in this study are described . A discussion
of results follows in Section 4 and finally Section 5 concludes the
paper.

2. EXPERIMENTS

The aim of the designed experiments were to answer the following
questions.

1. Can the P300 signal be reliably detected with the experimen-
tal set-up used and with the available tools?

2. How is P300 detection reliability affected by the the image
presentation rate (i.e. the number of images presented per
second)?

In order to fulfill these objectives, the classical oddball paradigm was
used throughout the experiments. Visual stimuli consisted of a set of
3204 images of gray stones illuminated with a uniform ambient light.
25 of those images contained in addition to the stones, a sand model
of a spacecraft, thus constituting the oddball images. The spacecraft
position was different in each of these images but the object itself
was clearly visible in all cases. Examples of background and oddball
images for this experiments are displayed in figure 1.

Fig. 1. Examples of an oddball (left) and background (right) images
used in the experiments.

To answer the above-mentioned questions, five experiments
were designed and performed. Each experiment involved the pre-
sentation of five image sequences to subjects. Four subjects ( all
male, and right-handed) were asked to participate in our experi-
ments and each of them completed two recording sessions. The
second session was performed on another day but for all subjects

No. No. Images Oddballs Repetitions IDP/IIP T (s)
of subjects of sequences in seq. in seq. (ms)

4 5 40 4 2 500/500 40

4 5 67 7 2 300/300 40

4 5 133 13 2 150/150 40

4 5 200 20 2 100/100 40

4 5 400 40 2 50/50 40

Table 1. Parameters of the different experiments

the time between the first and the last session was less than one
week. Before these sessions, the subjects were instructed to watch
the image sequences and silently count the number of images con-
taining the spacecraft model and were made familiar with examples
of an oddball and non-oddball image. It is worth mentioning that the
counting task was imposed merely to keep the subject concentrated
during the test. Furthermore, at the end of each image sequence,
the subject was asked to report the result of counting and this re-
sult was used to monitor the performance of the subject. During
each session, the actual image sequences were presented with the
EEG signals being recorded at the same time, always preceded by a
countdown screen of duration five seconds that allowed the subjects
to prepare for the experiment, reducing the surprise effect of the
sequence start.

In each experiment, images were presented to the subject with
different predefined Image Display Period (IDP) values, followed
by a period of neutral background appearance or Inter Image Period
(IIP), resulting in a different image per second presentation rates.
The parameters of these experiments are presented in Table 1.

Image sequences of different lengths were presented to the sub-
jects with increasing image presentation rate. The number of images
was adjusted to the change in presentation rate, so that the total du-
ration of one sequence remained equal to 40 seconds across all ex-
periments. The number of oddball images present in the sequence
was adjusted accordingly, so that the ratio of the number of oddball
images, randomly placed in the sequences, to the number of non-
oddball images was kept at the same level (10%).

3. SIGNAL PROCESSING AND CLASSIFICATION

In each experiment, the image sequences were presented to the sub-
jects and the exact system clock of each image presentation onset
was stored. The EEG signal was recorded synchronously with im-
age presentation at 2048 Hz sampling rate from 32 active electrodes
placed at the standard positions of the 10-20 international system. A
Biosemi Active Two amplifier was used for amplification and 24-bit
analog to digital conversion. After pre-amplification and digitaliza-
tion of the EEG signal, a block of preprocessing filters was applied
to the raw signals to remove the various artifacts. Wavelet decom-
position was then applied to break down the signal into different fre-
quency components and for further multiresolution analysis. In the
next step, Features are extracted from the signal and finally the ex-
tracted feature vectors were classified into either target (salient im-
age) or non-target (normal image) classes. Preprocessing methods
were applied in the order stated below:

1. Referencing: The average signal from all electrodes was used
for referencing.

2. Filtering: A 12th order forward-backward Butterworth band-
pass filter with zero phase shift and the cut-off frequencies
of 1 Hz and 95 Hz was used to remove all high frequency
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non-EEG artifacts as well as low frequency drifts from the
recorded signal.

3. Downsampling: In order to reduce the number of samples,
the EEG was downsampled from 2048 Hz to 256 Hz using an
eight-order Lowpass Chebyshev Type I filter.

After this preprocessing phase, Discrete Wavelet Transform (DWT)
was used to decompose the EEG signal into its subbands. Wavelet
transform is known to be effective for representing various aspects
of signals such as trends, discontinuities, and repeated patterns when
other signal processing approaches fail or are not as effective. The
EEG signal contains non-stationary components and it has been
shown that wavelets clearly outperform Fourier transform based
methods for feature extraction from the EEG signals [8] .

The Daubechies family of wavelets is one of the most com-
monly used orthogonal wavelets satisfying the admissibility condi-
tions, thus allowing reconstruction of the original signal from the
wavelet coefficients. Daubechies wavelets of different orders were
investigated for the analysis of epileptic EEG records. Daubechies
of order 4 and higher were found to be the most appropriate for anal-
ysis of EEG data. In this study, Daubechies order 6 was used for
decomposition of EEG signals into different bands. Figure 2 illus-
trates a typical EEG signal used in this study and its decomposition
using DWT. It has been shown in [8] that only the delta and theta
frequencies play a major role in the P300 response, however it was
discussed that alpha frequencies have also minor roles. Therefore,
these three subbands ( the last four rows in Figure 2, which corre-
spond to 1-2Hz, 2-4Hz, 4-8 Hz, and 8-16 Hz) were summed together
to reconstruct the P300 signal.

Fig. 2. Three seconds EEG signal and its decomposition

In the next step, single trials of duration 1000 ms were extracted
from the data. Single trials started at stimulus onset (provided by
the image presentation software), i.e. at the beginning of the inten-
sification of first the image in the image sequence, and ended 1000
ms after stimulus onset. This, in faster experiments, there is some
overlap between the single trials of successive images. For instance,
for IDP=IIP=150 ms , the last 700 ms of each trial were overlapping
with the first 700 ms of the following trial. The EEG signal was again
downsampled from 256 Hz to 32 Hz using an eight-order Lowpass
Chebyshev Type I filter. Therefore, the decimated signal contains
frequency components of 1-12.8 Hz and each single trial contains
32 samples. 16 electrodes ( central, parietal and occipital)were se-

lected and the signals of these electrodes were concatenated to form
a feature vector corresponding to that single trial.

Eyeblinks, eye movement, muscle activity, or subject movement
can cause large amplitude outliers in the EEG. To reduce the effects
of such outliers, the data from each electrode were windsorized. For
the samples from each electrode the 10th percentile and the 90th
percentile were computed. Amplitude values lying below the 10th
percentile or above the 90th percentile were then replaced by the
10th percentile or the 90th percentile, respectively.

A Support Vector Machine (SVM) classifier with radial basis
function kernels was used for classification of single trials. To per-
form the classification using this method, five-fold cross validation
was performed and it was repeated 15 times. In each training run,
the extracted feature vectors was first preprocessed using Principal
Component Analysis (PCA) and the dimension of the feature vectors
was reduced from 512 to 288. The Mixing matrix W was used to be
applied later for dimension reduction on test data. In the next step,
the training and test data were normalized to have the minimum and
maximum values of zero and one, respectively. Finally, the training
data was used to train the SVM classifier. To this end, a grid search
for parameter c, was performed. However, the value of parameter γ
was fixed based on the information of the training data as follows.
The radial basis kernel (also called gaussian kernel) can be expresses
as:

k(xi,xj) = exp(−γ‖xi − xj‖2), for γ > 0 (1)

Therefore, to determine the value of γ we computed the average
distance between two feature vectors of the same class in the training
set (d) and we set the gamma value as:

γ =
1

d
(2)

4. RESULT

In this section, the results of different experiments described in sec-
tion 2 are discussed. To begin the analysis of signals correspond-
ing to target and non-target images, the target and non-target sig-
nals were averaged separately. Averaged signals, showed that all the
parietal, parietal-occipital and central electrodes contain the P300
pattern. Moreover, the P300 can be also observed in occipital chan-
nels.

The P300 amplitude is usually larger in parietal regions (largest
in PZ electrode) compared to other parts of the scalp. Figure 3 il-
lustrates the amplitude of P300 in PZ in various experiments. In
this figure, the red and blue signals represent the averaged targets
and averaged non-targets, respectively. It can be seen that there is
a clear P300 peak in the averaged target signals. Furthermore, the
amplitude of P300 clearly decreases as the speed of image presenta-
tion increases. In the first experiment, the largest amplitude of P300
equals 14.03μv and as the image presentation rate increases, this
value degrades to 9.57μv, 8.93 μv, 8.38 μv, and finally 5.66 μv in
the fastest experiment. The reason for this might be twofold. First,
as the speed of image presentation increases, it becomes harder for
the subjects to detect the target images in the sequence and second,
as the image presentation rate increases, the evoked potentials inter-
fere with each other and the measured EEG signal is superposition
of different evoked potentials.

After the analysis of averaged signals, single trial analysis was
performed using the methodology introduced in Section 3, and the
computed feature vectors were classified using the SVM classifier
with radial basis kernel.
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(a) (b)

(c) (d)

(e)

Fig. 3. Averaged signals of PZ electrodes for different image pro-
cessing rates ( IIP=IDP= 500 ms (a) to IIP=IDP= 50 ms (e)). X axis
corresponds to the time after the stimulus onset in ms and Y axis
displays the amplitude of the P300 signal in μv.

In order to evaluate the performance of the system, the precision
and recall values were computed for each subject and each experi-
ment. In the scenario used in this study, precision is defined as the
number of retrieved salient images divided by the total number of
images retrieved using the designed BCI system, and recall is de-
fined as the number of salient images retrieved using the designed
BCI system divided by the total number of existing salient images
in the image sequences (which should have been retrieved). Usually,
precision and recall scores are not discussed in isolation. Instead,
either values for one measure are compared for a fixed level at the
other measure (e.g. precision at a recall level of 0.75) or both are
combined into a single measure, such as the F-measure, which is the
weighted harmonic mean of precision and recall.

Figure 4 illustrates the result of the classification. As it can be
seen in this figure, relatively high F-measure was obtained in the
experiments. Furthermore, F-measure degrades dramatically as the
image presentation rate increases.

5. CONCLUSION

In this work, an efficient P300-based BCI system for classification
of brainwaves associated to scientific interest in image stimuli was
presented. It was shown that relatively high classification accura-
cies can be obtained for most of the users of this system. It has

Fig. 4. Comparison of changes in F-measure values between all sub-
jects with respect to speed using SVM classifier.

been observed that increasing the speed of image presentation, will
decrease the classification accuracy. However with an image presen-
tation frequency of 3.33 Hz, it is still possible to have relatively good
classification results for most of the subjects.
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