
Brief Announcement: A Leader-free Byzantine

Consensus Algorithm

Fatemeh Borran and André Schiper

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

{fatemeh.borran,andre.schiper}@epfl.ch

We consider the consensus problem in a partially synchronous system with
Byzantine faults. In a distributed system of n processes, where each process has
an initial value, Byzantine consensus is the problem of agreeing on a common
value, even though some of the processes may fail in arbitrary, even malicious,
ways. It is shown in [11] that — in a synchronous system — 3t + 1 processes
are needed to solve the Byzantine consensus problem without signatures, where
t is the maximum number of Byzantine processes. In an asynchronous system,
Fischer, Lynch and Peterson [7] proved that no deterministic asynchronous con-
sensus protocol can tolerate even a single non-Byzantine (= crash) failure. The
problem can however be solved using randomization for benign and Byzantine
faults. For Byzantine faults, Ben-Or [2] and Rabin [12] showed that this requires
5t + 1 processes. Later, Bracha [3] increased the resiliency of the randomized
algorithm to 3t + 1.

In 1988, Dwork, Lynch and Stockmeyer [6], considered an asynchronous sys-
tem that eventually becomes synchronous (called partially synchronous system).
The consensus algorithms proposed in [6], ensure safety in all executions, while
guaranteeing liveness only if there exists a period of synchrony. Recently, several
papers have considered the partially synchronous system model for Byzantine
consensus [4,10,8,1,5]. However, [1,5] point out a potential weakness of these
Byzantine consensus algorithms, namely that they suffer from “performance
failure”. According to [1], a performance failure occurs when messages are sent
slowly by a Byzantine leader, but without triggering protocol timeouts, and the
paper points out that the PBFT leader-based algorithm [4] is vulnerable to such
an attack. Interestingly, all deterministic Byzantine consensus algorithms for
non-synchronous systems are leader-based. This raises the following fundamen-
tal question: is it possible to design a deterministic Byzantine consensus algo-
rithm for a partially synchronous system that is not leader-based? With such an
algorithm, performance failure of Byzantine processes might be harmless.

Results. Our results confirm the existence of a deterministic leader-free Byzan-
tine consensus algorithm in a partially synchronous system that is resilient-
optimal and signature-free. We started from the observation that leader-free
consensus algorithms exist for the synchronous system, both for benign faults
(e.g., the FloodSet algorithm [9]) and for Byzantine faults (e.g., the algorithm
based on interactive consistency [11]). However, these algorithms violate agree-
ment if executed during the asynchronous period of a partially synchronous

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 479–480, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



480 F. Borran and A. Schiper

system. Therefore we tried to combine one of these algorithms with a second
algorithm that ensures agreement in an asynchronous system.

We have applied our methodology by combining the synchronous consensus
algorithm of [11] with a new algorithm that employs mechanisms from several
consensus algorithms, e.g., Ben-Or [2], and PBFT [4] with strong validity. Let
us denote these two algorithms by A1, respt. A2. Our combined algorithm is
expressed in a round model. In each round, a correct process sends a message
to all, receives a subset of messages sent, and computes its new state based on
the messages received. Algorithm A1 ensures that at the end of t + 1 rounds,
(i) if q is a correct process, any correct process p receives either vq from q
or nothing, where vq is the value initially sent by process q, and (ii) if q is a
faulty process, any correct process p receives either some common value v from
q or nothing. Moreover, if all t + 1 rounds are executed in synchronous periods,
then all correct processes have the same set of messages at the end of t + 1
rounds. Algorithm A2 ensures safety (i.e., agreement and strong validity), while
algorithm A1 provides liveness (i.e., termination) during periods of synchrony.
Our leader-free Byzantine consensus algorithm requires 3t + 1 processes, and
t + 3 rounds per consensus instance during periods of synchrony.

References

1. Amir, Y., Coan, B., Kirsch, J., Lane, J.: Byzantine Replication Under Attack. In:
DSN 2008, pp. 197–206 (2008)

2. Ben-Or, M.: Another advantage of free choice (Extended Abstract): Completely
asynchronous agreement protocols. In: PODC 1983, pp. 27–30. ACM, New York
(1983)

3. Bracha, G.: An asynchronous [(n - 1)/3]-resilient consensus protocol. In: PODC
1984, pp. 154–162. ACM, New York (1984)

4. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance and Proactive Recov-
ery. Transactions on Computer Systems (TOCS) 20(4), 398–461 (2002)

5. Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making Byzan-
tine fault tolerant systems tolerate Byzantine faults. In: NSDI 2009, pp. 153–168.
USENIX Association (2009)

6. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the Presence of Partial Syn-
chrony. JACM 35(2), 288–323 (1988)

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of Distributed Consensus
with one Faulty Process. J. ACM 32(2), 374–382 (1985)

8. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. SIGOPS Oper. Syst. Rev. 41(6), 45–58 (2007)

9. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
10. Martin, J.P., Alvisi, A.: Fast Byzantine Consensus. IEEE Transactions on Depend-

able and Secure Computing 3(3), 202–215 (2006)
11. Pease, M., Shostak, R., Lamport, L.: Reaching Agreement in the Presence of Faults.

J. ACM 27(2), 228–234 (1980)
12. Rabin, M.: Randomized Byzantine generals. In: Proc. Symposium on Foundations

of Computer Science, pp. 403–409 (1983)


