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One possible solution is to extract the dynamic coupling (or 
effective connectivity) structure based on the recorded spike trains. 
The effective coupling between two neurons quantifies how the 
spiking activity of one neuron enhances or reduces the spiking 
probability of the second one and should in general be directed 
and causal. After thresholding, such a coupling structure reduces 
to a binary, directed connectivity matrix in which a non-zero entry 
indicates a directed coupling between two neurons. The connec-
tivity matrix defines a graph and its structural properties can be 
further quantified. Using this analysis scheme, the overall network 
activity can be summarized in a few quantitative parameters of the 
inferred network topology (Figure 1).

The construction of the network graph proceeds therefore in 
three steps. First, we need to extract couplings from time-series 
observations. Several statistical methods have been proposed 
that extend beyond simple cross-correlation analysis. A particu-
larly interesting statistical model is the generalized linear model 
(GLM; McCullagh and Nelder, 1989). GLMs allow the extraction 
of directed, i.e., causal coupling filters that are conditioned on the 
whole population response (Figure 1B). This is in contrast to many 
other proposed schemes that are based only on pair-wise measures 
or very crude approximations to the overall population activity.

1 IntroductIon
In recent years, techniques in systems neuroscience and electro-
physiology to record from many neurons in parallel became widely 
available (see, e.g., Georgopoulos et al., 1986; Nicolelis et al., 1997, 
2003; Santhanam et al., 2006; Jarosiewicz et al., 2008). While in 
the beginning, this was seen merely as a way to perform many 
single-neuron experiments simultaneously, the full potential of 
such parallel recordings was soon realized and led to a paradigm 
shift in the analysis from single-spike statistics (Perkel et al., 1967a; 
Brillinger, 1988; Bialek et al., 1991; Rieke et al., 1999; Gerstner and 
Kistler, 2002) toward the analysis of neural population activity and 
interactions between neurons. Early attempts focused on pair-wise 
cross-correlation analysis (Perkel et al., 1967b; Aertsen et al., 1989), 
but recent statistical models have tried to capture the global net-
work activity (Iyengar, 2001; Brown et al., 2004; Truccolo et al., 
2005; Schneidman et al., 2006; Pillow et al., 2008; Paninski et al., 
2010) in an attempt to understand how neurons collectively encode 
and process information. The access to this high- dimensional type 
of data has also triggered a challenge for statistical data analy-
sis and modeling (Kass et al., 2005): What is an adequate low-
 dimensional description of the structure in the spiking activity of 
neural populations?
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As a second step, each coupling can be further reduced to a 
binary entry in a connectivity matrix by thresholding (Figure 1C). 
Since GLMs are set up on the basis of maximum-likelihood esti-
mation, the threshold can be chosen by cross-validation and is 
therefore not a free parameter of the estimation procedure.

Third, once a graph of the effective connectivity is estimated 
(Figure 1D), its structural properties can be studied (Bullmore 
and Sporns, 2009; Rubinov and Sporns, 2010). Two notions have 
been influential in the analysis of biological networks: small-world 
(Watts and Strogatz, 1998) and scale-free networks (Barabási and 
Albert, 1999). The latter are characterized by the fact that their 
degree distribution, i.e., the distribution of the number of incoming 
or outgoing links at each node, can be described by a power-law.

Small-world networks show a highly clustered structure while 
retaining an overall low average path length between any two nodes 
(see Section 2.4 for a formal definition). In simulation studies, it 
has been shown that small-world topology can evolve from certain 
optimality considerations (Sporns et al., 2000) and synaptic plastic-
ity rules (Cho and Choi, 2010). A functional role of small-world 
structures has been hypothesized for improved memory recall in 
associative networks (Morelli et al., 2004) and faster and more 
reliable synchronizability (Lago Fernández et al., 2000).

Both concepts of scale-free and small-world networks have been 
empirically studied in the context of neuroscience, especially in 
systems neuroscience where connectivity between different brain 
areas was studied using coarse-grained signals such as fMRI, EEG, 
or MEG (see, e.g., Reijneveld et al., 2007; Bullmore and Sporns, 
2009; Chavez et al., 2010; Sepulcre et al., 2010). Only very few stud-
ies have attempted to quantify small-world properties of neural net-
works on the level of individually recorded neurons (Bettencourt 
et al., 2007; Yu et al., 2008). These studies suffer from a number of 
flaws: First, they consider only networks that were obtained from 
in vitro preparations or anesthetized animals. Furthermore, their 
estimates of the connectivity matrix were either based on pair-wise 
measures (Bettencourt et al., 2007) or used very crude approxi-
mations to the population activity (Yu et al., 2008). Both studies 
used undirected (i.e., correlative) measures that did not offer any 
notion of causality.

In this paper, we attempt to overcome most of these limitations 
by using multi-electrode recordings from the awake monkey on 
a larger data set than in previous approaches. The monkey was 

exposed to naturalistic video sequences while activity was recorded 
from a set of neurons in the visual cortex, using multiple electrodes. 
We investigate scale-free and small-world properties of neuronal 
networks using directed couplings estimated by GLMs. For this, the 
quantity proposed by Humphries and Gurney (2008) for quantify-
ing small-world-ness has to be generalized to directed networks. We 
find that the networks under consideration lack scale-free behavior, 
but show a small, but significant small-world structure.

We show that the design of typical electrophysiological experi-
ments imposes a particular sampling scheme that can have a con-
siderate impact on how the small-world structure of the network 
is evaluated (Bialonski et al., 2010). Random graphs that take the 
geometry of the experiment into account can serve as a more 
refined null model than the homogeneous random graphs that 
are usually proposed as reference models to evaluate small-world 
properties. Using such refined reference models, we find that most 
of the small-world structure can be attributed to a simple distance-
dependent connection probability between neurons. Finally, typical 
experimental methods are based on sub-sampling from a larger 
network. We investigate how this sub-sampling is likely to affect the 
estimation of small-world properties by simulating multi-electrode 
experiments in a virtual network of neurons that are coupled in a 
physiologically plausible way.

2 MaterIals and Methods
The general approach taken in this paper can be split into an analy-
sis of experimental recordings, followed by several computational 
steps and a simulation to model the impact of sampling effects on 
the reconstructed topology of neural networks. The methods used 
in each step are outlined below.

2.1 experIMental setup
All experimental procedures were approved by local authorities 
(Regierungspraesidium Hessen, Darmstadt, Germany) and were 
in accord with the guidelines of the European Community for 
the care and use of laboratory animals (European Union directive 
86/609/EEC).

Data was obtained with one rhesus monkey (Macaca mulatta). 
The monkey had to perform a fixation task. During fixation, short 
excerpts from natural movies were shown. The gray-scaled movies 
were recorded indoors in the lab and outdoors on the fields and 
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Figure 1 | Schematic overview of our approach. (A) The activity of a number 
of neurons has been recorded in the form of a set of spike trains, e.g., using 
extracellular electrodes. (B) A statistical framework is applied to extract effective 
coupling filters between the neurons, based on the spike train recordings. These 
couplings will in general be causal and asymmetric. (C) By thresholding, a binary 

coupling matrix Aij is obtained where a non-zero entry represents a directed 
influence from neuron i to neuron j. (D) An equivalent visualization of the matrix 
is a graph in which the nodes correspond to neurons and directed edges 
represent the significant causal influences. This graph can then be quantified 
using graph-theoretic measures.
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the stimulus presentation were included in the analysis. For neurons 
with low firing rates (<4 Hz), the responsiveness to the stimulus 
can hardly be detected, so we restricted analysis to cells with an 
average firing rate of more than 4 Hz. Sorted cells with very high 
firing rates (>100 Hz) seem unphysiological and were excluded 
from the data set, too.

The number of electrodes used in each recording varied 
from session to session, ranging between 3 and 10 electrodes. In 
most recordings, five electrodes were used. Due to the results of 
spike-sorting and the position of the electrodes, the number of 
identified cells varied, too. On average, there were 27 individual 
neurons identified (SD = 9, min. = 16, max. = 44). Each data set 
contained on average 71 trials (SD = 33, min. = 32, max. = 147; 
see Figure 2C for a typical PSTH). In total, there were 455 neu-
rons. The neural firing rates had a mean of 20.9 Hz with SD of 
18.6 Hz (Figure 2A).

2.2 GeneralIzed lInear Models
Since all spikes of a given neuron have roughly the same shape, 
spikes can be treated as stereotypical events in time and are math-
ematically represented as a point process. When the spike train is 
divided into bins, this allows the representation of the spike train 
as a time series of discrete counts. If the bin width is chosen small 
enough, the spike train is approximated by a binary time series, 
indicating the presence of a single spike inside a given time bin 
(Brillinger, 1988).

For GLMs (McCullagh and Nelder, 1989), the probability of 
spiking is a function of a stimulus, the neuron’s own past activ-
ity, and the activity of the other neurons in the recorded network 
(Okatan et al., 2005; Truccolo et al., 2005). The coupling to the 
past activity of the neurons is mediated by temporally filtering the 
spike trains with self- and cross-history kernels. It has been shown 
that this type of neuron model is equivalent to a spike response 
model with a particular noise term using the escape-rate approxi-
mation (Gerstner and Kistler, 2002; Paninski, 2003). Moreover, 
these models can predict not only the spike times, but also the 
subthreshold membrane potential during patch recordings (Jolivet 
et al., 2004).

contain global movement patterns that resemble those generated 
by natural head-movements. A trial consisted of a baseline of 2.2 s 
and the visual stimulation of 2.8 s length. For the present analysis, 
we restricted analysis to the time windows in which the stimulus 
was presented.

Recordings were made from the opercular region of V1 (recep-
tive fields centers, 2.0–3.0° eccentricity) and from the superior bank 
of the calcarine sulcus (10.0–13.0° eccentricity). Electrodes were 
inserted independently into the cortex via guide tubes positioned 
above the dura (diameter, 300 μm; Ehrhardt Söhne, Germany), 
assembled in a customized recording device. Quartz-insulated 
tungsten–platinum electrodes (Thomas Recording, Germany; 
diameter, 80 μm) with impedances ranging from 0.3 to 1.0 MΩ 
were used to record simultaneously the extracellular activity from 
several sites in both superficial and deep layers of the cortex.

Spiking activity of small groups of neurons (MUA) were obtained 
by amplifying (1000×) and band-pass filtering (0.7–6.0 kHz) 
the recorded signals with a customized 32 channels Plexon pre-
amplifier connected to a HST16o25 headset (Plexon Inc., USA). 
Additional 10× signal amplification was done by on-board ampli-
fiers (E-series acquisition boards, National Instruments, USA). The 
signals were digitized and stored using a LabVIEW-based acqui-
sition system. Spikes were detected by amplitude thresholding, 
which was set interactively after on-line visualization of the spike 
waveforms (typically, 2–3 SDs above noise level). Spike events and 
corresponding waveforms were sampled at 32 kS/s (spike waveform 
length, 1.2 ms).

Off-line spike-sorting was performed using a dynamic template 
matching method implemented in a custom software package 
(SpikeOne, developed by Nan-Hui Chen). Sorting was initiated 
by an automatic procedure which defined up to 12 different clus-
ters. Afterward, various displays, such as tuning curves, autocor-
relograms, and measurements of recording stability were used to 
guide interactively which cluster to merge or delete. Only clusters 
well-separated in 2D and 3D plots of spike principal-component-
analysis scores were assigned to single-units (SUA) if a refrac-
tory period was confirmed in inter-spike interval distributions 
(Figure 2B). Only trials for which fixation was maintained over 

0 50 100
0

50

100

150

firing rate (Hz)

fre
qu

en
cy

0 0.5
0

10

20

30

inter−spike interval (s)

pr
ob

ab
ili

ty
 d

en
si

ty

0 0.05
0

10

20

30

0 1 2
0

20

40

60

time after stimulus onset (s)

fir
in

g 
ra

te
 (H

z)

A B C

Figure 2 | Basic data analysis. (A) Histogram of the average firing rate of each 
neuron during the stimulus presentation (N = 455 neurons). The neural firing 
rates have a mean of 20.9 Hz with SD of 18.6 Hz. Sorted cells with average rates 
below 4 Hz and above 100 Hz were excluded from the analysis. (B) Histogram of 
the inter-spike interval distribution of a single neuron, pooled over all trials. For 
better visibility, only inter-spike intervals shorter than 500 ms are shown. The 

neuron had an average firing rate of 17.6 Hz. The inlet zooms into the range of 
intervals up to 50 ms. The distribution is unimodal and a relative refractory period 
is visible. (C) Peri-stimulus-time histogram (PSTH) for a single neuron, obtained 
by averaging over 92 trials (gray area). The prediction of the firing rate based on 
the stimulus-dependent component gstimulus(t) only (black line, see Section 2.2 for 
a definition) closely follows the shape of the PSTH.
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Here we used ∆ = 1 ms. Because of an absolute refractoriness, 
this is sufficient to constrain the number of spikes in each time 
bin to either 0 or 1.

The history-dependent part depends on the neuron’s own previ-
ous spikes and describes the relative refractoriness and adaptation 
effects. The filters are represented with a set of spline functions 
(Kass and Ventura, 2001; Koyama and Kass, 2008). Each spline func-
tion is a piece-wise polynomial of degree 3, where additionally the 
polynomials are joined at knot points such that the resulting func-
tion is twice continuously differentiable. Splines allow a smooth 
filter approximation using only a small number of free parameters. 
Here, we chose m

h
 = 7 basis splines (B-splines of order 3) with non-

uniform knot spacings (De Boor, 2001). Knot points are spaced on 
a roughly logarithmic scale up to 64 ms (Figure 3A). This temporal 
range was chosen after the observation that the magnitude of most 
estimated filters decline back to zero well within the first 20–40 ms 
(Figure 3B). Let the jth spline be of shape B

j
(∆t), then the history 

term on the right-hand side of Equation 4 for neuron i is:
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where { }tn
i  denotes the set of spike times of neuron i and b

h,j
 are 

the model coefficients to be estimated from the data. The auto-
regressive component g

history
(t) will model longer-lasting refractory 

effects (negative coefficients) or rebound-like oscillatory behavior 
(positive weight coefficients).

The ensemble contribution is the past activity of the other 
recorded cells. It describes the effect of all excitatory or inhibitory 
postsynaptic potentials on the current drive of neuron i. The term 
g

ensemble
(t) is mathematically similar to the self-history term, but 

sums over all the past histories of the other neurons:

To describe multi-neuron data, the network of neurons is modeled 
as a Markov dynamical network, as the spiking process is intrinsically 
stochastic. It consists of a directed graph in which the N vertices cor-
respond to neurons and M directed edges represent causal interactions 
between the neurons. We restrict ourselves to simple directed graphs, 
i.e., there is no more than one edge between an ordered pair of vertices. 
Note that two neurons i and j can be connected by up to two edges, 
one from i to j and another one from j to i. Additionally, there are no 
self-loops. In other words, the adjacency matrix is binary with zeros 
on the diagonal. Moreover, we consider the graph topology as static, 
i.e., the structure of edges and vertices does not vary over time.

For the dynamics at each vertex, we used Bernoulli-GLMs. These 
are time-discretized models of the conditional intensity function 
λ(t | H

t
) that generalizes the concept of an instantaneous firing 

rate, conditioned on the history H
t
 of the point process (Daley 

and Vere-Jones, 2002):
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where N(t) denotes the number of events inside the time interval 
[0, t] (counting function). The benefit of using the conditional 
intensity for point processes is that it is closely related to the log-
likelihood of a point process:
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where {t
n
} denotes the set of spike times in the interval [0, T]. 

Hence, maximum-likelihood estimates can be easily obtained with 
parametric models of the conditional intensity (Pawitan, 2001).

The spiking intensity is a function of the effective drive h of the 
neuron that contains the stimulus and the neurons’ past spiking 
activities: h = b

0
 + g

history
(t) + g

ensemble
(t) + g

stimulus
(t), where g

history
(t) 

summarizes the effect of the neuron’s own past spikes, g
ensemble

(t) the 
effect of the spikes of other neurons in the recorded ensemble, and 
g

stimulus
(t) is the modulation by the stimulus. The bias term b

0
 adjusts 

the overall excitability of the neuron, i.e., its baseline firing rate.
For Bernoulli-GLMs, the spiking probability λ(t | H

t
)∆ within a 

small time bin of width ∆ is related to the effective drive h through 
a static non-linearity:
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Figure 3 | Coupling filters in the generalized linear model. (A) Spline basis 
functions that are used for the spike-history kernel. Note the logarithmic scale 
on the x-axis. (B) Mean filter that was obtained for the self-history dependencies 
(auto-regressive component) after fitting. A refractory period with a time 
constant of around 10 ms is visible. (C) Spline basis functions that are used for 

the cross-history kernels. (D) The mean filter for cross-dependencies fitted from 
the data shows a slight excitatory impact from other neurons (black line). The 
average over pairs of neurons at the same electrode (red line) shows that most 
close couplings are effectively excitatory. The mean coupling between distant 
pairs (blue line) shows a biphasic response in time.

Frontiers in Computational Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 4 | 4

Gerhard et al. Small-world estimation from multi-electrode recordings



a wide range of thresholds a, pruned models are generated by 
removing non-significant filters that do not satisfy the threshold 
criterion. The constant coefficient b

0
, i.e., the bias in Equation 4, 

of the reduced models is then re-estimated on the training data 
to correct for changes in global excitability due to the removal of 
connections. The performance of these models is then evaluated 
on the 20% of the data that was not used for fitting (test set). The 
model with optimal threshold is the one with maximum likelihood 
on the test data.

2.4 Graph-theoretIcal analysIs
The graph of the inferred coupling structure consists of N verti-
ces and M directed edges. This corresponds to an edge density of 
r = M/(N 2 − N). We use three different measures to quantify the 
topology of the graph.

First, basic measures of the graph topology are the in- and out-
degree distributions and the average degree 〈k〉. The in-degree 
denotes the number of incoming links at each vertex while the 
out-degree counts the number of outgoing edges.

Second, the characteristic path length L of a network is the aver-
age of the shortest paths lengths between any connected pair of 
nodes. To evaluate small-world properties, surrogate random net-
works (Erdös–Renyi random graphs) are considered that preserve 
the number of vertices N and the average density r. The charac-
teristic path length of the equivalent random network is denoted 
L

r
. Here, L

r
 is calculated by averaging over 500 realizations of ran-

dom networks. For small-world networks, the characteristic path 
length scales only logarithmically with the network size (Albert and 
Barabási, 2002). The same scaling is observed in random networks 
(Fronczak et al., 2004). In other words, for small-world networks 
the average distance between any two nodes should be approxi-
mately equal to the one of a random network with the same size 
and connection density:

λ = ≈L

Lr

1.
 

(8)

Third, the clustering coefficient for a vertex i has been defined for 
undirected graphs as the fraction of pairs of neighbors of vertex i 
who are themselves neighbors. The cluster coefficient of the com-
plete network is taken as the average of the local coefficients. This 
notion has been generalized to directed networks (Fagiolo, 2007): 
Given a vertex i and two of its neighbors, there are potentially eight 
different directed triangles. The cluster coefficient is calculated as 
the number of realized triangles divided by the possible number of 
triangles (i.e., eight) with each pair of neighbors. Let the adjacency 
matrix be denoted by A with elements (a

ij
), then the clustering 

coefficient C
i
 at vertex i can be written as (Fagiolo, 2007):
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where ki
tot is the sum of incoming and outgoing edges at vertex i. 

The clustering coefficient for the whole network is given by:
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In the above, the m
e
 = 6 spline basis functions D

j
(∆t) are similar 

to the self-history basis with the modification that instantane-
ous couplings (within the same time bin and up to 2 ms into the 
past) are excluded to prevent that any spurious correlations that 
remain despite careful spike-sorting show up in the coupling matrix 
(Figure 3C). The combination of six basis functions enables us 
to describe a wide range of potential time courses of excitatory 
and inhibitory interactions between pairs of neurons over a large 
temporal range (Figure 3D).

The stimulus term is modeled using basis splines so that the 
firing rate can vary as a function of the time since stimulus onset. 
m

s
 = 74 basis splines C

j
(t) splines with uniform spacing over the trial 

length of 2.8 s were used. The stimulus term is thus given by:

g t C ts j j
j

ms

stimulus( ) ( ).,= ∑β
 

(7)

Modeling the external input g
stimulus

(t) to each neuron requires 
careful attention. This term describes the modulatory impact of 
the presented visual stimulus to the firing response of the neuron 
over time (Figure 2C). Hence, we assume that this modulatory 
response is the same for all trials in which the same stimulus was 
presented. It is important to explicitly describe the influence of 
the stimulus on the neural responses in order to account for spike 
correlations that are purely stimulus-induced and not due to effec-
tive connectivity.

All model coefficients 


β and their significance values are esti-
mated using standard maximum-likelihood methods (McCullagh 
and Nelder, 1989; Pawitan, 2001).

2.3 InferrInG effectIve connectIvIty
The vertices of the graph are associated with the neurons and the 
edges are representing significant effective connections – effective 
as opposed to anatomical connection, because the interactions are 
inferred only based on the observed spiking activity (Aertsen et al., 
1989). Functional connectivity is used in the literature as a term for 
symmetric measures that do not infer a causal direction of interac-
tion (Bullmore and Sporns, 2009).

Since the estimation procedure of Section 2.2 will typically 
give non-zero parameters to all connections, the network graph 
will initially contain connections between each pair of neurons. 
However, not all of these interactions contribute significantly to 
the activity of a neuron. The maximum-likelihood estimation 
also yields p-values for each parameter to estimate its significance. 
Coefficients of stimulus modulation and self-history turn out to 
be highly significant and are therefore always included. Directed 
cross-couplings are kept if at least one of the coefficients of the 
filter is significant, i.e., its p-value is smaller than the Bonferroni-
corrected significance level a (p < a/m

e
). All other connections are 

removed. The remaining vertices form a graph whose structure 
is further analyzed.

The threshold a for binarizing the coupling matrix is deter-
mined using split-sample validation: The full model with all-to-all 
connections is fitted on 80% of the data (training set). Then, for 
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Only significant couplings between neurons were considered 
to construct the connectivity matrix with binary links between 
neurons (one example is shown in Figure 4). The significance of 
a coupling is indicated by the p-values that are assigned to each 
model parameter by the estimation procedure. The threshold to 
convert the coupling filters into a binary estimate of the effective 
connectivity was set to a = 0.05 after performing the validation 
scheme (see Section 2.3; Figure 5). A region of optimal values for 
the threshold was found to be between a = 0.02 and 0.08. The 
qualitative results of the following analysis do not depend on the 
exact choice of a within this region (data not shown).

Note that the choice of the threshold has a direct influence on the 
inferred edge density (the probability to find a directed link between 
neurons i and j if they are randomly picked; see Figure 5): For the 
given threshold of a = 0.05, the edge density r of the reconstructed 
coupling matrix varied across the 17 data sets between r = 0.07 and 
0.19 (ρ = 0.11). Thus, the values of r are consistent with estimates 
of cortical  connectivity from paired whole-cell recordings (Song 
et al., 2005).

3.2 cortIcal networks do not show scale-free structure
In each of the 17 connectivity graphs, we count the number of 
incoming links converging onto a neuron (in-degree) as well as the 
number of outgoing links (out-degree). Across recording sessions, 
the mean in- and out-degrees vary between 1.6 and 4.9 with an 
average of 2.9. The distributions are peaked around their mean 
value with a slight skew to the right (Figure 6).

This generalized clustering coefficient has two important prop-
erties: First, it reduces to the classical clustering coefficient in 
case of undirected graphs. Secondly, for a directed Erdös–Renyi 
random graph with wiring probability r, 〈C〉 = r, just as in the 
undirected case.

To evaluate the small-world property, we are interested in the 
clustering coefficient of the network compared to that of a random 
network. Let C

r
 denote the clustering coefficient of an equivalent 

random network (matched size and connection density, aver-
aged over 500 random realizations), then we can define for small-
world networks:

γ = >C

Cr

1.
 

(11)

We have discussed three different topological measures. The first 
one, the degree distribution, is used as a measure for the scale-
freeness of a network: A graph is said to be scale-free if its degree 
distribution follows a power-law (or at least a truncated power-law 
for large degrees; Fronczak et al., 2004). The second (characteris-
tic path length) and third (clustering coefficient) both relate to 
the concept of small-world networks. It was proposed to measure 
“small-world-ness” Sw in a single number as the fraction of g and 
λ (Humphries et al., 2006; Humphries and Gurney, 2008):

Sw undir
undir

undir
= γ

λ
.

 
(12)

Though the original definition was based on undirected networks, 
we propose here to use the g and λ defined for directed networks. 
From a combination of Equations 8 and 11 we get a measure of 
small-world-ness for directed graphs:

Sw
C

C

L

Lr

r= .
 

(13)

To assess the statistical significance of an observed Sw, surrogate Sw 
values are calculated from random networks. Based on this distribu-
tion (that scatters around 〈Sw〉 = 1), a z-score and a corresponding 
p-value (one-sided test) can be calculated.

3 results
3.1 BasIc results
The complete data set has been collected in 20 recording sessions, 
each with a different electrode placement (see Section 2.1 for details). 
For all population models, a goodness-of-fit test that is commonly 
used for point process models was applied (Brown et al., 2002; 
Haslinger et al., 2010). Only data sets, for which at least 80% of 
the neurons passed the test, were kept. This excluded 3 data sets 
from the analysis so that the following analysis was performed on 
the remaining 17 data sets. Figure 3 shows typical filters that were 
estimated for the auto-regressive and cross-regressive components. 
Some of the cross-interactions had a biphasic time course with a fast 
excitatory component and a slower inhibitory interaction. These 
could potentially be interpreted as a direct excitatory feed-forward 
component combined with an indirect interaction via inhibitory 
interneurons that were not picked up by the electrodes (see also 
Kriener et al., 2009 for a discussion on effective inhibitory couplings 
between neurons).

1 5 9 13 17 21 25
1

5

9

13

17

21

25

neuron

ne
ur

on

A B DC

A

B

C

D

Figure 4 | Typical binary connectivity matrix from one reconstructed 
network with N = 26 neurons. A non-zero entry at row i and column j 
indicates a directed link from neuron i to neuron j. Neurons are sorted 
according to the electrode from which they were recorded from. In this 
example, four electrodes were used (A–D, the separation is indicated with the 
horizontal and vertical lines). Connections between neurons at the same 
electrode show up in blocks along the diagonal.
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(see Figure 7 for summary statistics). Hence, the character-
istic path lengths are in the range expected from equivalent 
random networks.

Next, we asked whether neighboring neurons are more likely 
to have a common joint neighbor than expected from an equiva-
lent randomized network: The average clustering coefficient C is 
0.18 ± 0.08, with g = C/C

r
 = 1.62 ± 0.44. The small-world coef-

ficient Sw varies between 1.05 and 3.19 with a mean of Sw = 1.71 
(SD = 0.57; Figure 7). In fact, 7 out of the 17 data sets with Sw > 1 
have a highly significant small-world-ness (p-values <0.001).

3.4 dIstance-dependent connectIvIty accounts for oBserved 
sMall-world structure
In the present study, as well as in most previous approaches 
(Bettencourt et al., 2007; Yu et al., 2008), multiple electrodes were 
used to obtain the multi-neuron signals. This imposes certain 
constraints on how the neurons of the whole network are sam-
pled: Each electrode picks up the neural activity from a few cells 

A scale-free network requires a degree distribution that can be 
described by a power-law with negative exponent. The distributions 
are not even monotonically decreasing, so there is no indication for 
a power-law behavior. Even if the distribution were monotonic, the 
limited size of the networks would not allow to faithfully confirm a 
scale-free-like behavior. This is because the range of possible values 
for the degree barely span two orders of magnitude that are not 
sufficient for sound statistical tests of power-laws (Clauset et al., 
2009; De Lomana et al., 2010).

3.3 cortIcal networks show a sMall, But sIGnIfIcant sMall-
world structure
To assess the extent of small-world structure present in the 
recordings, we need to evaluate the typical distance between 
any two neurons within the network. The average characteristic 
path length (see Section 2.4) of the networks is L = 2.7 ± 0.4 
(mean ± SD). A comparison with the path lengths L

r
 expected in 

a random network of the same size yields λ = L/L
r
 = 0.97 ± 0.10 

0 5 10 15
0

50

100

150

in degree

fre
qu

en
cy

0 5 10 15
0

50

100

150

out degree

fre
qu

en
cy

0 10 20
0

20

40

60

in+out degree

fre
qu

en
cy

A B C

Figure 6 | Degree distributions, summed over all 17 data sets. (A) In-degree. (B) Out-degree. (C) Summed in- and out-degrees per vertex. There is no indication 
of a power-law for any of the three distributions as it would be required for scale-free networks.
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Figure 5 | Choice of threshold for binary connectivity matrix. The model is 
fitted on 80% of the data set (training set). Reduced models are created by 
applying a threshold a on the significance value of estimated coefficients for the 
cross-coupling terms. The performance of the models is evaluated on the 20% 
remaining data (test set). Performance is measured with the log-likelihood of the 
data (larger value indicates a better model). A broad regime from 0.02 ≤ a ≤ 0.08 

of optimal threshold is visible. In the study, a was set to 0.05 (circle and dashed 
lines). The choice of threshold directly influences the edge density of the 
reconstructed graph. Examples of connectivity matrices are shown for different 
choices of threshold (a = 0.005, 0.05, and 0.5). A non-zero entry at row i and 
column j indicates a directed link from neuron i to neuron j. Neurons are sorted 
according to the electrode from which they were recorded from.
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the use of multiple electrodes (Figure  8A). We wondered whether 
the assumption of a simple distance-dependent wiring probability 
could account for the observed small-world structure obtained by 
this kind of multi-electrode recordings.

The classical small-world-ness (Equation 13) is defined with 
respect to a reference network, i.e., a homogeneous Erdös–Renyi 
random graph of the same size and average connection density r as 
the original network (Figure 8B). Here, we propose to measure small-
world-ness against a refined null model in which there are two regimes 
of connection probabilities: r

1
 corresponds to a wiring probability 

between neurons that share the same electrode tip, while r
2
 is the 

probability of a directed connection between two neurons from dif-
ferent electrodes (typically r

2
 < r < r

1
; Figure 8C). Surrogate networks 

can now be constructed that use the same number of electrodes and 
neurons per electrode and estimated r

1
 and r

2
 from the data set.

Normalizing the empirically observed clustering coefficients 
and path lengths to these networks yields a modified small-world-
measure Sw* (analogously to Equation 13). Any value of Sw* higher 
than 1 now indicates small-world structure that goes beyond the 
structure expected from multi-electrode recordings and a simple 
two-layered distance-dependency.

In fact, taking the simple distance-dependent wiring probability 
into account, we find that the modified small-world-ness Sw* has a 
mean of 1.37 with SD 0.49. The individual small-world-ness of each 
network is reduced by more than 60% with respect to the baseline 
condition Sw = 1 (Figure 9). More importantly, none of the 17 val-
ues is now highly significantly different from one (p < 0.001). Hence, 
a simple two-stage distance-dependent connection probability can 
account for most of the observed small-world structure.

3.5 localIzed suB-saMplInG overestIMates true 
sMall-world-ness
Any electrophysiological recording constitutes a sub-sample of the 
true network activity. It is known that sub-sampling can severely 
affect how structural properties of the network are estimated 
(Stumpf et al., 2005; Lee et al., 2006). Moreover, recordings with 
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Figure 7 | Summary statistics of small-world property (N = 17 
networks). The left box plot represents the distribution of g = C/Crand, the 
middle box plot shows λ = L/Lrand, and the small-world-ness measure Sw = g/λ 
is shown on the right plot. All Sw were larger than 1. The baseline for random 
networks corresponds to the dashed line. Red line denotes median, boxes 
represent 25 and 75% quantiles. Whiskers extend to the extremal values.
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Figure 8 | refined null models to account for multi-electrode setup. (A) The 
original connectivity structure inferred from a multi-electrode experiment. A 
non-zero entry at row i and column j indicates a directed link from neuron i to 
neuron j. Neurons are sorted according to the electrode from which they were 
recorded from. Links between neurons at the same electrode are represented as 
blocks along the diagonal (red dots). All other links are between neurons from 
different electrodes (blue dots). (B) Small-world-ness Sw is defined against a 
reference network. For the classical measure, the reference network is a 

homogeneous Erdös–Renyi random graph of the same size as the original network 
and the same connection density r, i.e., each link between any two neurons is 
present with the same probability. (C) For multi-electrode recordings, there are two 
principal length scales: distances between neurons at the same electrode and 
distances across electrodes. Pairs of neurons at the same electrode (red dots) are 
assumed to have a different connection density r1 than pairs of neurons from 
different electrodes (blue dots, r2). Empirically we find r1 > r2 which is consistent 
with a monotonically decreasing distance-dependent wiring probability.

that are close to the electrode tip. Typically, these neurons are only 
a few micrometer apart. In contrast, the different electrodes are 
placed in most experiments with a distance of several hundreds of 
micrometers. It is known that the probability for two neurons to 
form a synaptic connection is strongly dependent on their physical 
distance (Hellwig, 2000; Holmgren et al., 2003; Matsuzaki et al., 
2008; Stepanyants et al., 2009).

The high connection probability between near-by neurons 
manifests itself in a high local clustering coefficient, while sparse 
long-range connections between neurons from different electrodes 
introduce the shortcuts necessary to create a significant small-world 
effect (Bialonski et al., 2010). For many of the reconstructed net-
works, the small-world structure is clearly visible in the binary 
connectivity matrix (Figure 4). The clustering structure of the net-
work coincides with the spatial constraints that are imposed by 

Frontiers in Computational Neuroscience www.frontiersin.org February 2011 | Volume 5 | Article 4 | 8

Gerhard et al. Small-world estimation from multi-electrode recordings



experiment, a neuron is included in the sub-graph if it is close 
to one of the virtual electrode positions. In the control condi-
tion, the same number of neurons is randomly chosen across 
the overall network.

More specifically, N = 1000 point neurons were placed in a 3D 
volume and directed edges were inserted with a distance-dependent 
probability law p(d) which we assumed to be a power-law with a 
baseline p

0
:

p d p kdo
a( ) ,= + −

 (14)

where a is the power-law exponent and the amplitude k ensures 
that the values of p(d) can be interpreted as a probability over the 
range of distances in our simulated graph. We chose a power-law 
because it is a monotonically decreasing function and its heavy 
tail ensures a finite amount of long-range connections. Its quali-
tative shape is consistent with experimental evidence on cortical 
connectivity (Hellwig, 2000; Holmgren et al., 2003; Matsuzaki 
et al., 2008), although we note that other functions, such as an 
exponentially decaying profile or constant local connectivity with 
global rewiring could be used as well (Voges et al., 2007, 2010). 
To ensure that the results are independent of the exact shape of 
p(d), we varied the exponent of the power-law a between 1 and 
3. This range of exponents covers the values found empirically 
for both neural and non-biological, as well as generative models 
for growing networks (Barabási and Albert, 1999; Humphries 
et al., 2006).

The small-world-ness Sw (Equation 12) can be computed for 
the overall network. We then mimicked a multi-electrode experi-
ment by placing N

e
 = 6 electrodes randomly in the volume and 

assumed that each neuron that is within a certain radius around 
the electrode tip is included in the sub-sampled connectivity graph 
(Figure 10A). The radius relates to the average number of neurons 
per electrode and was matched to the experimental conditions. The 
coefficients of the connection density (Equation 14) were chosen 
so as to match the typical densities r

1
 and r

2
 of connections at the 

multiple electrodes give a biased picture of the overall connectivity: 
Neurons are either very close in space (at the same electrode) or 
distant (in the range of millimeters) so that only two characteristic 
length scales are sampled.

To study the effect of sub-sampling on the estimation of 
small-world-ness, we performed a simulation study by plac-
ing neurons in a virtual volume, wiring them according to a 
distance- dependent probability distribution and inserting vir-
tual electrodes that sub-sample the global connectivity graph. 
As we are interested in the topological properties of the net-
work, we did not explicitly model the neural spiking activity, 
but assumed that all connections between the sampled neurons 
can be perfectly recovered. When mimicking a multi-electrode 

classical Sw modified Sw*
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Figure 9 | Summary statistics of modified small-world-ness (N = 17 
networks). The left box plot shows the distribution of the classical small-world-
ness parameter Sw with homogeneous random graphs as reference networks. 
The right box plot shows the distribution of the modified small-world-ness, 
taking into account two different connection probabilities. The individual 
small-world-ness of each network is reduced by more than 60% compared to 
the baseline of Sw = 1 (dashed line). Red line denotes median, boxes represent 
25 and 75% quantiles. Whiskers extend to the extremal values.
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Figure 10 | Localized sub-sampling overestimates true small-world-ness. 
(A) Scheme of the simulation of the network topology. Neurons were placed in a 
3D volume and linked with a distance-dependent wiring probability. Virtual 
electrodes were placed in the volume assuming that each electrode can pick up 
the neurons and their connections within a certain radius around the electrode 
tip. This represents the typical sampling geometry of multi-electrode recordings. 
(B) The distance-dependent probability was assumed to be a power-law with a 
constant baseline p(d ) = po + kd−a. The simulations were repeated for different 
exponents a. The distributions are shown here for a = 1, 2, and 3. The 

parameters were matched in each case to obtain the same average densities as 
found in the experiments for the two principal length scales (gray boxes). (C) The 
small-world-ness of the big network is shown as a function of the power-law 
exponent (black line). There is a small, but non-trivial small-world structure 
visible. The small-world-ness that is obtained by sub-sampling using a localized 
sampling scheme (“multi-electrode sampling,” red line) shows that the 
small-world-ness is generally overestimated, independent of the exact shape of 
the connectivity distribution. Random sub-sampling using the same degree of 
sparsity, however, has little effect on the estimate of small-world-ness (blue line).
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two characteristic length scales (Figure 10B, boxes). We assume that 
all connections between the sub-sampled neurons can be perfectly 
recovered and estimated the small-world-ness.

To distinguish this particular type of localized sampling from 
the general effect of sparse sub-sampling, we simulated a second 
condition in which the same number of neurons as for the multi-
electrode sampling were selected, but in a completely random man-
ner across the whole network.

The results of the simulation show that such networks composed 
of a large number of neurons have a rather small, but non-trivial 
small-world structure (Sw ∼ 1.1 over a wide range of power-law 
exponents; Figure 10C, black line).

We now discuss the effects of the two sampling schemes. First, for 
the localized sub-sampling, we find that the estimated small-world-
ness is much higher than the true small-world-ness of the whole 
network: If measured as Sw − 1, the alleged small-world-ness is higher 
by a factor of up to 8 compared to the true value. This results holds 
independently of the exact shape of the probability law (power-law 
exponents varied between 1 and 3; see Figure 10C, red line).

Using the sampling geometry of typical multi-electrode experi-
ments, only a small sub-sample of N

sub
 = 26 neurons out of the 

total N = 1000 neurons were selected. To rule out that the observed 
bias is merely because of this sparse sub-sampling, we estimated 
small-world-ness using a second simulated sampling scheme, using 
the same number of 26 neurons but chosen completely randomly 
from the network. As can be seen in Figure 10C (blue line, “random 
sampling”), sparse random sub-sampling has only little effect on 
the estimated value of the small-world-ness.

We conclude that it is the special locality constraint that typical 
multi-electrode experiments impose on the measured connectivity 
and not the sub-sampling per se that gives rise to an overestimation 
of the true small-world-ness.

4 dIscussIon
4.1 effectIve connectIvIty usInG GeneralIzed lInear Models
We have presented a graph analysis on a network of individually 
recorded neurons whose effective connectivity was estimated using 
a regression framework. Extracting connectivity structure from 
large-scale recordings is a topic of ongoing investigations (Okatan 
et al., 2005; Gürel et al., 2009; Stevenson et al., 2009; Eldawlatly 
et al., 2010). Typically, such analyses use the raw pair-wise cor-
relation coefficient (see, e.g., Marre et al., 2009 for a discussion) 
or, more recently, pair-wise Ising models fitted to population data 
(Schneidman et al., 2006; Roudi et al., 2009). None of these methods 
infers the direction of the interaction, hence, they always produce 
symmetric connectivity matrices. The GLM framework permits to 
estimate causal, i.e., directed interactions and will, in general, result 
in asymmetric connectivity matrices.

The estimation procedure of GLMs leads to temporal coupling 
filters for each directed link between two neurons that can be inter-
preted as the effective excitatory or inhibitory interaction. Here, we 
used a spline basis function representation of the filter. There are 
several ways to reduce the shape of the filter into a single number 
that represents the strength of the interaction: In principle, one can 
use the raw coefficient magnitudes or features of the temporal filter, 
such as its amplitude or net integral (Rebesco et al., 2010). However, 
for complex temporal interactions, such as biphasic responses, the 

net surface below the filter will not be a good measure of inter-
action strength. In this study, we used the smallest p-value (or 
equivalently the highest surprise value) of the spline coefficients 
to apply the threshold. The significance value measures whether the 
spiking activity can be better predicted by including the particular 
covariate and hence is a measure that reflects the importance of 
a causal interaction better than, e.g., the peak amplitude of the 
cross-coupling filter.

Since GLMs are based on a likelihood framework, they allow 
to choose the threshold for binarizing the coupling matrix in a 
principled manner. Here, we proposed to find a global threshold 
that would maximize the likelihood of the model on a novel test 
set. Although this scheme suggests an optimal threshold region (see 
Section 3.1), the procedure is not guaranteed to be consistent and 
more sophisticated selection schemes have been proposed (Quinn 
et al., 2010). Moreover, when going to larger networks, it might 
become necessary to use regularized GLMs where a sparse prior is 
assumed on the coefficients of the cross-couplings (Gerwinn et al., 
2009, 2010; Rebesco et al., 2010). In addition, performance should 
be evaluated on artificial data sets where the true connectivity is 
known (for GLMs, see, e.g., Rebesco et al., 2010). Unfortunately, 
such a comprehensive comparison of different algorithms and sta-
tistical models is still missing.

4.2 BIased estIMatIon of sMall-world-ness for experIMents 
wIth MultIple electrodes
There have been attempts to use graph theory in analyzing neuro-
scientific data (see Sporns and Zwi, 2004; Reijneveld et al., 2007; 
Cho and Choi, 2010 for recent reviews), but typically it is used to 
study large-scale connectivity, e.g., between different brain regions 
(Bullmore and Sporns, 2009). Only very few studies address the 
properties of connections between single neurons. This might 
be due to technical limitations which prevented the recording 
from a large number of neurons until a few years ago (Brown 
et al., 2004).

The number of neurons used in this study is low, but comparable 
to previous studies: Bettencourt et al. (2007) study three networks 
between N = 20 and N = 62; Yu et al. (2008) consider three networks 
between N = 17 and N = 24. Here, we provided evidence on a larger 
data set with 17 different recordings with the largest network hav-
ing N = 44 neurons. The limited number of neurons prohibits a 
detailed analysis of the degree distribution with respect to scale-free 
properties as the data barely span two orders of magnitude. Still it is 
visible that the degree distribution is not a monotonically decreas-
ing function so that a strict power-law behavior can be excluded 
based on the available data.

Based on the generalization of the clustering coefficient to 
directed, binary networks (Fagiolo, 2007), we proposed a small-
world measure for directed networks analogously to Humphries 
and Gurney (2008). All data sets showed a small-world behav-
ior, although not all values Sw > 1 were statistically significant. 
However, a large fraction of the networks showed indeed a 
highly significant small-world behavior. One has to note, that 
the absolute scale of Sw is still rather low compared to what has 
been observed in other networks. It was shown in Humphries 
and Gurney (2008) that Sw scales approximately linear with the 
network size N for real-world networks which suggests that the 
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and Helmchen, 2009). This allows the recording of a complete local 
population of around 50–200 neurons with a temporal precision to 
resolve single action potentials (Grewe et al., 2010). This strategy 
therefore creates a sampling from the network that is more uniform 
than in the case of multiple electrodes. As an alternative to our 
quantitative approach, Kriener et al. (2009) suggested that small-
world signatures can be found in the shape of the distribution of 
pair-wise cross-correlations.

A second suggestion for future work is to extend the concepts 
to directed, weighted networks. Instead of thresholding to a binary 
matrix, it should be possible to work directly with the absolute 
strength of the inferred connectivity (Boccaletti et al., 2006; 
Bullmore and Sporns, 2009). The reference or null networks would 
then not only be of the same size and keep the average degree, but 
would also conserve the empirical weight distribution. However, 
the interpretation of the graph-topological quantities would not 
be straightforward in the context of neural networks (for example, 
the path length from one node to another would now depend on 
the coupling strength between the pairs of neurons on the path). In 
addition, other graph properties could be studied, such as centrality 
measures (Boccaletti et al., 2006) or network motifs (Sporns and 
Kötter, 2004; Song et al., 2005).

A final proposal is to look at relative changes of graph topology 
of the same network, but under different conditions, e.g., different 
global brain states or stimulation (Bialonski et al., 2010). We expect 
the effective coupling in a neural network to be task-dependent 
(Hasson et al., 2009) and altered by the induction of plasticity 
(Rebesco et al., 2010). Since the biases enter both reconstructed 
connectivity estimates, relative changes in different conditions 
should be unaffected. We want to emphasize that other studies 
looking at large-scale brain connectivity have not just established 
the presence of small-world structure but have also found changes 
in the prevalence of this structure depending on clinical conditions, 
e.g., in neurodegenerative diseases (Reijneveld et al., 2007; Buckner 
et al., 2009; Chavez et al., 2010). We expect that the same statistical 
procedures could be applied in the case of networks composed of 
individually recorded neurons.
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order of magnitude that we observe is reasonable for the net-
works considered here. Also, our results are in general agreement 
with previous studies on small-world properties of networks 
of individually recorded neurons (Bettencourt et al., 2007; Yu 
et al., 2008).

The small-world property of the networks should not come as 
a surprise. It has been found that neural connectivity is a function 
of distance between the neurons. Hence, it is expected to find a 
high, local connectivity and sparser long-range connections. This 
geometry naturally leads to networks satisfying the small-world 
criterion (see Section 3.4; Bialonski et al., 2010).

It is known that sub-sampling has an effect on the estimation of 
basically any network parameter. Stumpf et al. (2005) have shown 
that randomly sub-sampled networks of scale-free networks are 
not scale-free themselves. Other empirical studies have found that 
properties like the clustering coefficient and average distances can 
dramatically change when the network is only sparsely sampled 
(Lee et al., 2006). Thus, we cannot expect to be able to extract 
small-world properties from a massive neural network when we 
only have access to the activity of a few neurons. Going beyond these 
earlier studies on random sub-sampling, we have shown here in a 
simulated network with physiological topology, that using multi-
ple electrodes to sample neurons from the network will generally 
overestimate the true small-world-ness (Section 3.5). Here, we used 
a power-law to model the connection probability as a function of 
physical distance. The results are robust with regard to the exact 
shape of function, so we expect the same conclusions to hold for 
other decreasing functions with heavy tails.

The overestimation of small-world-ness arises because each 
electrode picks up many neurons at the small length scale, but the 
sampling on the larger scale is limited by the number of electrodes. 
Since this bias is based on rather general assumptions, it is likely to 
affect not only the estimations of small-world-ness in this study, 
but also in previous published reports on small-world structure 
that are based on multiple-electrode recordings (Bettencourt et al., 
2007; Yu et al., 2008).

4.3 future dIrectIons
We now briefly discuss some solutions to prevent the biases in 
estimating small-world structure: First, densely packed multi-
 electrode arrays together with a reliable detection of single-unit 
activity would remove the bias of a localized, clustered sampling 
scheme. Secondly, advances in recording techniques have made it 
possible to record from a large number of neurons of a local popu-
lation using calcium-imaging and two photon microscopy (Grewe 
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