
Lightweight Polymorphic Effects - Proofs

Lukas Rytz, Martin Odersky, and Philipp Haller

EPFL, Switzerland,
{first.last}@epfl.ch

EPFL-REPORT-173820

Abstract. This technical report presents the full proofs for the type
preservation and effect soundness theorems of the type system presented
in the article “Lightweight Polymorphic Effects”.

1 Introduction

We first repeat the lemmas and theorems introduced in the paper [2].

Lemma 1. Monotonicity.
For every effect domain D and every syntactic form Trm,
1. if ∀ ei ∈ e, di ∈ d . ei v di, then effD(Trm, e) v effD(Trm, d)
2. effD(Trm, e1, . . . , ei1 t ei2, . . . , en) v effD(Trm, e1, . . . , ei1, . . . , en) t ei2

Lemma 2. Consistency.
– Let S = dynEff(Trm, S) be the set of dynamic effects that occur when eval-

uating a term t of the form Trm. The list S contains an effect set for every
subterm of t.

– Let Γ ; f be an environment and e be a list of static effects such that every
effect set in S is approximated by Si � ei t latent(Γ (f)).

– Then the static effect e = eff(Trm, e) is a conservative approximation of the
effects in S, i.e., S � e t latent(Γ (f)).

As noted in the paper, this lemma has to be verified for the dynEffD and
effD functions of every effect domain D. We show that it holds for the domain
of exceptions E , and we then show that it holds for the general functions dynEff
and eff which act on all effect domains.

Lemma 3. Preservation under substitution for monomorphic abstractions.
If Γ, x : T1; f ` t : T ! el, f 6= x and Γ ; g ` v : T2 ! ⊥ with T2 <: T1,
then Γ ; f ` t[v\x] : T ′ ! e′l such that T ′ <: T and e′l v el.

Lemma 4. Preservation under substitution for polymorphic abstractions.
If Γ, x : T1;x ` t : T ! el and Γ ; g ` v : T2 ! ⊥ with T2 <: T1,
then Γ ; ε ` t[v\x] : T ′ ! e′l such that T ′ <: T and e′l v el t latent(T2).

The substitution lemmas are used in the proofs of both the preservation and
the soundness theorem.



Theorem 1. Preservation.
If Γ ; f ` t : T ! e is a valid typing statement for term t and the term evaluates
as t ⇓ 〈r, S〉, then there is valid a typing statement Γ ; f ` r : T ′ ! e′ for r with
T ′ <: T .

Theorem 2. Effect soundness.
If Γ ; f ` t : T ! e and t ⇓ 〈r, S〉, then S � e t latent(Γ (f)).

2 Consistency of eff and dynEff, monotonicity of eff

2.1 Consistency of eff and dynEff

Proof (Lemma 2 for the domain of exceptions E). By case-analysis on the syn-
tactic terms Trm:

– case Throw(p):
S = dynEffE(Throw(p)) = throws(p)
e = effE(Throw(p)) = throws(p)
therefore S � e.

– case Catch:
S = dynEffE(Catch, S1, S2) = (S1 \ {throws(pi) | pi ∈ p}) ∪ S2

e = effE(Catch, e1, e2) = throws((q \ p) ∪ s),
where e1 = throws(q), e2 = throws(s)

For every effect eS ∈ S, there are two cases:
• case eS ∈ (S1 \ {throws(pi) | pi ∈ p}): For every eS = throws(q), we

have q /∈ p. By hypothesis ∀eS1 ∈ S1 . eS1 v throws(q)t latent(Γ (f)), so
either q ∈ q or eS1 v latent(Γ (f)). We obtain the result eS = throws(q) v
throws(q \ p) t latent(Γ (f)).
• case eS ∈ S2: by hypothesis, eS v throws(s) t latent(Γ (f)).

Given ∀eS . eS v throws(q \ p) ∨ eS v throws(s) ∨ eS v latent(Γ (f)), we
conclude eS v throws((q \ p) ∪ s) t latent(Γ (f)).

– Remaining cases (including Try):
S = dynEffE(Trm, S) =

⋃
Si

e = effE(Trm, e) =
⊔
ei

∀eSi ∈ Si . eSi v eit latent(Γ (f)) by hypothesis of the lemma. By the lattice
properties of t and v, we conclude ∀eS ∈ S . eS v e t latent(Γ (f)).

ut

Proof (Lemma 2 for the multi-domain functions dynEff and eff). Immediate by
using the effect-domain specific versions of Lemma 2 element-wise on the effects
in S and e. ut

2.2 Monotonicity of eff

Proof (Lemma 1, Part 1., for the domain of exceptions E). By case-analysis on
the syntactic terms Trm:



– case Catch:
effE(Catch(p), e1, e2) = throws((qe \ p) ∪ se),
where e1 = throws(qe) and e2 = throws(se)

effE(Catch(p), d1, d2) = throws((qd \ p) ∪ sd),
where d1 = throws(qd) and d2 = throws(sd)

Since e1 v d1, e2 v d2, we have qe ⊆ qd and se ⊆ sd. By the properties of set
operations, ((qe \ p) ∪ se) ⊆ ((qd \ p) ∪ sd).
Therefore, effE(Catch(p), e1, e2) v effE(Catch(p), d1, d2).

– Remaining cases (including Throw(p), Try):
We have effE(Trm, e) =

⊔
ei and effE(Trm, d) =

⊔
di. Since ei v di, the

conclusion is immediate.
ut

Proof (Lemma 1, Part 2., for the domain of exceptions E). By case-analysis on
the syntactic terms Trm:

– case Catch where e1 = e11 t e12:
effE(Catch(p), e11 t e12, e2) = throws(((qe1 ∪ qe2) \ p) ∪ se)
= throws((qe1 \ p) ∪ se ∪ (qe2 \ p)),
where e11 = throws(qe1), e12 = throws(qe2) and e2 = throws(se)

effE(Catch(p), e11, e2) t e12 = throws((qe1 \ p) ∪ se) t throws(qe2).
The conclusion is straightforward.

– case Catch where e2 = e21 t e22: Similar as above.
– Remaining cases (including Throw(p), Try):

We have effE(Trm, e) =
⊔
ei. The proof is straightforward by commutativity

of t.
ut

3 Canonical forms and value typing environment

We now introduce two additional lemmas that are used in the preservation and
soundness proofs.

Lemma 5. Canonical forms.
1. If Γ ; f ` v : T ! ⊥ and T <: T1

e
=⇒ T2, then v = (x : T ′

1)⇒ t.
2. If Γ ; f ` v : T ! ⊥ and T <: T1

e−→ T2, then v = (x : T ′
1)→ t.

Proof (Lemma 5). There are only two kinds of values in the language: monomor-
phic and effect-polymorphic function abstractions. In the first case, v has a
monomorphic function type. By inspecting the subtyping rules, it cannot be a
subtype of a polymorphic function type, which validates the first case. Similar
for the second case. ut

Lemma 6. Environment for type-checking values.
1. If Γ ; f ` v : T ! ⊥, then Γ ; f ′ ` v : T ! ⊥ for an arbitrary f ′.
2. If Γ ; f ` x : T ! ⊥ for a parameter x ∈ Γ , then Γ ; f ′ ` x : T ! ⊥ for an

arbitrary f ′.



3. If Γ ; f ` throw(p) : Nothing ! e, then Γ ; f ′ ` throw(p) : Nothing ! e for an
arbitrary f ′.

This lemma states that the polymorphism environment f does not have an
impact on type-checking a value, a parameter or an error term.

Proof (Lemma 6). There are two kinds of values: monomorphic and polymorphic
function abstractions. Inspecting the corresponding typing rules T-Abs-Mono
and T-Abs-Poly, one can see that both rules do not make use of the effect-
polymorphism environment f in any way.

For parameters and error terms, the conclusion also follows immediately from
the corresponding typing rules. ut

4 Substitution Lemmas

We now proof the substitution Lemmas 3 and 4.
As a first step however, we need to introduce a new typing rule for our type

system. The reason, as explained in TAPL [1] chapter 16.4, is that the type
system has a bottom type (Nothing), but no subsumption rule. The typing rules
presented in the main paper are therefore incomplete, they do not cover the case
of an application expression when the function is an error.

Γ ; f ` t1 : Nothing ! e1
Γ ; f ` t2 : T2 ! e2

Γ ; f ` t1 t2 : Nothing ! eff(App, e1, e2,⊥)
(T-App-E)

4.1 Lemma 3

Proof (Lemma 3). The preconditions of the lemma are:

– Γ, x : T1; f ` t : T ! el with f 6= x

– Γ ; g ` v : T2 ! ⊥
– T2 <: T1

Proof of Γ ; f ` t[v\x] : T ′ ! e′l with T
′ <: T and e′l v el by induction on the

typing rules for term t.

� Case T-Param: we have t = z and z : T ∈ Γ, x : T1. There are two sub-cases:
• z = x, then z[v\x] = v and T1 = T . Since we have Γ ; g ` v : T2 ! ⊥, by

Lemma 6, we have Γ ; f ` v : T2 ! ⊥. The required results are immediate.
• z 6= x, then z[v\x] = z. We have Γ, x : T1; f ` z : T ! el. Since we know

that x is not a free variable, x /∈ FV(z), we can remove its binding from
the typing environment and obtain the result.



� Case T-Abs-Mono: t = (y : Ta) ⇒ t1. From the typing rule we get Γ, x :

T1, y : Ta; ε ` t1 : Tb ! e and T = Ta
e
=⇒ Tb. We can assume that x 6= y and

y /∈ FV(v).
By permutation on the environment: Γ, y : Ta, x : T1; ε ` t1 : Tb ! e
By weakening: Γ, y : Ta; g ` v : T2 ! ⊥
Induction hypothesis: Γ, y : Ta; ε ` t1[v\x] : T ′

b ! e′ with T ′
b <: Tb and e′ v e

We have t[v\x] = (y : Ta) ⇒ t1[v\x]. By applying T-Abs-Mono we obtain

Γ ; f ` t[v\x] : Ta
e′
=⇒ T ′

b ! ⊥ and verify Ta
e′
=⇒ T ′

b <: T and ⊥ v el.
� Case T-App-Mono: t = t1 t2. From the typing rule we have:

Γ, x : T1; f ` t1 : Ta
e
=⇒ T ! e1

Γ, x : T1; f ` t2 : Tb ! e2
Tb <: Ta and el = eff(App, e1, e2, e).

We apply the induction hypothesis to the subterms t1 and t2 to obtain
Γ ; f ` t1[v\x] : Tc ! e′1 with Tc <: Ta

e
=⇒ T and e′1 v e1

Γ ; f ` t2[v\x] : Td ! e′2 with Td <: Tb and e′2 v e2
Looking at the subtyping rules, the type Tc can have two possible forms:
• case Tc = Nothing: Applying T-App-E yields Γ ; f ` t[v\x] : Nothing ! e′l

where e′l = eff(App, e′1, e
′
2,⊥). We have Nothing <: T by S-Nothing.

• case Tc = T ′
a

e′
=⇒ T ′: Using S-Trans we obtain Td <: T ′

a. Applying
T-App-Mono yields Γ ; f ` t[v\x] : T ′ ! e′l where e

′
l = eff(App, e′1, e

′
2, e

′).
The result T ′ <: T is immediate.

In both cases we have eff(App, e′1, e
′
2, e

′) v eff(App, e1, e2, e) for the resulting
effect by monotonicity of eff.

� Case T-Abs-Poly: similar to the case T-Abs-Mono.
� Case T-App-Param: t = f t2. From the typing rule:

f : Ta
e
=⇒ T ∈ Γ, x : T1, and f : Ta

e
=⇒ T ∈ Γ since f 6= x

Γ, x : T1; f ` t2 : Tb ! e2, and Tb <: Ta
el = eff(App,⊥, e2,⊥)

By induction hypothesis Γ ; f ` t2[v\x] : T ′
b ! e′2 with T ′

b <: Tb, e
′
2 v e2.

Since f 6= x, we have f [v\x] = f . Therefore, by applying T-App-Param,
we obtian:
Γ ; f ` t[v\x] : T ! e′l with e

′
l = eff(App,⊥, e′2,⊥). By monotonicity of eff,

we obtain e′l v el.
� Case T-App-Poly: similar to the case T-App-Mono. We need one addi-

tional small lemma: if T ′ <: T then latent(T ′) v latent(T ). The proof is
straightforward.

� Case T-App-E: similar to T-App-Mono. We make use of the observation
that if T <: Nothing, then T = Nothing (by analysis of the subtyping rules).

� Case T-Throw: straightforward.
� Case T-Try: t = try t1 catch(p) t2. By the typing rule we have:

Γ, x : T1; f ` t1 : Ta ! e1 and Ta <: T
Γ, x : T1; f ` t2 : Tb ! e1 and Tb <: T
el = eff(Catch(p), eff(Try, e1), e2)

By applying the induction hypothesis to t1 and t2:
Γ ; f ` t1[v\x] : T ′

a ! e′1 with T ′
a <: Ta and e′1 v e1



Γ ; f ` t2[v\x] : T ′
b ! e′2 with T ′

b <: Tb and e′2 v e2
Applying T-Try, we obtain
Γ ; f ` t[v\x] : T ! e′l with e

′
l = eff(Catch(p), eff(Try, e′1), e

′
2).

By monotonicity of eff we obtain e′l v el.
ut

4.2 Lemma 4

Proof (Lemma 4). The preconditions of the lemma are:

– Γ, x : T1;x ` t : T ! el
– Γ ; g ` v : T2 ! ⊥
– T2 <: T1

Proof of Γ ; ε ` t[v\x] : T ′ ! e′l with T ′ <: T and e′l v el t latent(T2) by
induction on the typing rules for term t.

� Case T-Param: Similar to the case in Lemma 3.
� Case T-Abs-Mono: t = (y : Ta)⇒ t1. From the typing rule we get:

Γ, x : T1, y : Ta; ε ` t1 : Tb ! e
T = Ta

e
=⇒ Tb.

We can assume that x 6= y and y /∈ FV(v).
By permutation on the environment: Γ, y : Ta, x : T1; ε ` t1 : Tb ! e
By weakening: Γ, y : Ta; g ` v : T2 ! ⊥
Applying Lemma 3: Γ, y : Ta; ε ` t1[v\x] : T ′

b ! e′ with T ′
b <: Tb and e′ v e.

By applying T-Abs-Mono: Γ ; ε ` t[v\x] : Ta
e′
=⇒ T ′

b ! ⊥.
Verifying Ta

e′
=⇒ T ′

b <: T and ⊥ v el is straightforward.
� Case T-App-Mono: t = t1 t2. From the typing rule we have:

Γ, x : T1;x ` t1 : Ta
e
=⇒ T ! e1

Γ, x : T1;x ` t2 : Tb ! e2
Tb <: Ta and el = eff(App, e1, e2, e).

We apply the induction hypothesis to the subterms t1 and t2 to obtain
Γ ; ε ` t1[v\x] : Tc ! e′1 with Tc <: Ta

e
=⇒ T and e′1 v e1 t latent(T2)

Γ ; ε ` t2[v\x] : Td ! e′2 with Td <: Tb and e′2 v e2 t latent(T2)
Looking at the subtyping rules, the type Tc can have two possible forms:
• case Tc = Nothing: Applying T-App-E yields Γ ; ε ` t[v\x] : Nothing ! e′l

where e′l = eff(App, e′1, e
′
2,⊥). We have Nothing <: T by S-Nothing.

• case Tc = T ′
a

e′
=⇒ T ′: Using S-Trans we obtain Td <: T ′

a. Applying
T-App-Mono yields Γ ; ε ` t[v\x] : T ′ ! e′l where e

′
l = eff(App, e′1, e

′
2, e

′).
The result T ′ <: T is immediate.

We need to verify eff(App, e′1, e
′
2, e

′) v eff(App, e1, e2, e)t latent(T2). Mono-
tonicity of eff gives
eff(App, e′1, e

′
2, e

′) v eff(App, e1 t latent(T2), e2 t latent(T2), e)
Using the second property of the monotonicity Lemma 1 we conclude:
. . . v eff(App, e1, e2, e) t latent(T2)

� Case T-Abs-Poly: similar to the case T-Abs-Mono.



� Case T-App-Param: t = x t2. From the typing rule:
x : Ta

e
=⇒ T ∈ Γ, x : T1, therefore T1 = Ta

e
=⇒ T

Γ, x : T1;x ` t2 : Tb ! e2, and Tb <: Ta
el = eff(App,⊥, e2,⊥)

By the induction hypothesis Γ ; ε ` t2[v\x] : T ′
b ! e′2 with T ′

b <: Tb and
e′2 v e2 t latent(T2).
We have t[v\x] = v t2[v\x]. By Lemma 6, we have Γ ; ε ` v : T2 ! ⊥. Since
T2 <: T1 = Ta

e
=⇒ T , there are two possible shapes for T2:

• case T2 = Nothing: Applying T-App-E yields Γ ; ε ` t[v\x] : Nothing ! e′l
where e′l = eff(App,⊥, e′2,⊥). We have Nothing <: T by S-Nothing.

• case T2 = T ′
a

e′
=⇒ T ′: Using S-Trans we obtain T ′

b <: T ′
a. Applying

T-App-Mono yields Γ ; ε ` t[v\x] : T ′ ! e′l where e
′
l = eff(App,⊥, e′2, e′).

The result T ′ <: T is immediate.
We need to verify eff(App,⊥, e′2, e′) v eff(App,⊥, e2,⊥)t latent(T2). Mono-
tonicity of eff gives
eff(App,⊥, e′2, e′) v eff(App,⊥, e2 t latent(T2), e′)

Since e′ v ⊥ t e′, monotonicity gives
. . . v eff(App,⊥, e2 t latent(T2),⊥ t e′)

Using the second property of the monotonicity Lemma 1
. . . v eff(App,⊥, e2,⊥) t e′ t latent(T2)

And finally, since e′ = latent(T2), we obtain
. . . v eff(App,⊥, e2,⊥) t latent(T2).

� Case T-App-Poly: similar to the case T-App-Mono. We again use the
property that if T ′ <: T , then latent(T ′) v latent(T ).

� Case T-App-E: similar to T-App-Mono. We need to make use of the obser-
vation that if T <: Nothing, then T = Nothing (by analysis of the subtyping
rules).

� Case T-Throw: straightforward.
� Case T-Try: t = try t1 catch(p) t2. By the typing rules:

Γ, x : T1;x ` t1 : Ta ! e1 and Ta <: T
Γ, x : T1;x ` t2 : Tb ! e1 and Tb <: T
el = eff(Catch(p), eff(Try, e1), e2)

By applying the induction hypothesis to t1 and t2:
Γ ; ε ` t1[v\x] : T ′

a ! e′1 with T ′
a <: Ta and e′1 v e1 t latent(T2)

Γ ; ε ` t2[v\x] : T ′
b ! e′2 with T ′

b <: Tb and e′2 v e2 t latent(T2)
Applying T-Try, we obtain Γ ; ε ` t[v\x] : T ! e′l with e

′
l = eff(Catch(p), eff(Try, e′1), e

′
2).

By the monotonicity Lemma 1 we obtain e′l v el.
ut



5 Soundness theorems

5.1 Preservation (Theorem 1)

Proof (Theorem 1). The preconditions are

– Γ, f ` t : T ! e
– t ⇓ 〈r, S〉

Proof of Γ, f ` r : T ′ ! e′ with T ′ <: T by induction on the evaluation rules
for term t.

♩ Case E-App-E1: t = t1 t2. We have
t1 ⇓ 〈throw(p), S1〉 t ⇓ 〈throw(p), S〉, where S = dynEff(S1, ∅, ∅)

By typing rule T-Throw, we obtain Γ ; f ` r : Nothing ! eff(Throw(p)).
The result Nothing <: T is immediate by S-Nothing.

♩ Case E-App-E2: similar.
♩ Case E-App: t = t1 t2. We have:

t1 ⇓ 〈(x : T1) 7→ tr, S1〉
t2 ⇓ 〈v2, S2〉
tr[v2\x] ⇓ 〈r, Sl〉

We distinguish sub-cases for the typing rule of the application expression
t1 t2:
• case T-App-E: Γ ; f ` t1 : Nothing ! e1. By induction hypothesis, we

have Γ ; f ` (x : T1) 7→ tr : T ′
1 ! e′1 such that T ′

1 <: Nothing. Since the
type of a function abstraction cannot be Nothing, this case is impossible.

• case T-App-Param: t1 = p for some parameter p. This is impossible,
since we have t1 ⇓ 〈(x : T1) 7→ tr, S1〉, but there is no evaluation rule for
parameters.

• case T-App-Mono: we have
Γ ; f ` t1 : Ta

el=⇒ T ! e1
Γ ; f ` t2 : Tb ! e2 with Tb <: Ta

Applying the induction hypothesis to t1 and t2:
Γ ; f ` (x : T1) 7→ tr ! Tc ! e′1 with Tc <: Ta

el=⇒ T
Γ ; f ` v2 : T ′

b ! ⊥ with T ′
b <: Tb

According to the subtyping rules, Tc can either be Nothing or a monomor-
phic function type. But since Tc is the type of a function abstraction, it

cannot be Nothing, therefore we have Tc = Td
e′l=⇒ Te. By the canonical

forms Lemma 5 the corresponding function abstraction is a monomor-
phic one. We obtain:

Γ ; f ` (x : T1)⇒ tr ! T1
e′l=⇒ Te ! e′1, with Td = T1

Therefore:
Γ, x : T1; ε ` tr : Te ! e′l

By transitivity of subtyping, we have T ′
b <: Tb <: Ta <: T1 and we can

apply substitution Lemma 3 to obtain
Γ ; ε ` tr[v2\x] : T ′

e ! e′′l with T ′
e <: Te.



Now we apply the induction hypothesis on tr[v2\x] to obtain
Γ ; ε ` r : Tr ! er with Tr <: T ′

e.
By Lemma 6 we get Γ ; f ` r : Tr ! er, and by transitivity of subtyping
Tr <: T

′
e <: Te <: T .

• case T-App-Mono: similar.
♩ Case E-Throw: t = throw(p). By T-Throw, we have

Γ ; f ` throw(p) : Nothing ! eff(Throw(p)).
The same typing rule is also applied to the result r, and we verify Nothing <:
Nothing by S-Refl.

♩ Case E-Try-E: t = try t1 catch(p) t2. We have
t1 ⇓ 〈throw(p), S1〉
t2 ⇓ 〈r2, S2〉

From the typing rule T-Try:
Γ ; f ` t1 : T1 ! e1 with T1 <: T
Γ ; f ` t2 : T2 ! e2 with T2 <: T

Applying the induction hypothesis to t1, we obtain Γ ; f ` r2 : T ′
2 ! e′2

with T ′
2 <: T2. Since r = r2, in remains to verify using S-Trans that

T ′
2 <: T2 <: T .

♩ Case E-Try: similar.
ut

5.2 Effect soundness (Theorem 2)

Proof (Theorem 2). The preconditions are

– Γ, f ` t : T ! e
– t ⇓ 〈r, S〉

Proof of S � e t latent(Γ (f)) by induction on the evaluation rules for term t.


 Case T-App-E1: t = t1 t2. We have
t1 ⇓ 〈throw(p), S1〉
t ⇓ 〈throw(p), dynEff(App, S1, ∅, ∅)〉

We look at the sub-cases corresponding to the typing rules for applications:
• case T-App-E: Γ ; f ` t1 : Nothing ! e1 and Γ ; f ` t2 : T2 ! e2 and
e = eff(App, e1, e2,⊥).
By induction hypothesis, we have S1 � e1t latent(Γ (f)). Note that triv-
ially, ∅ � ex for any ex. Therefore we can apply the consistency Lemma
2 to obtain dynEff(App, S1, ∅, ∅) � eff(App, e1, e2,⊥) t latent(Γ (f)).

• case T-App-Param: t1 = p for some parameter p. This case is not
possible because there is no evaluation rule for parameters.

• case T-App-Mono:
Γ ; f ` t1 : T1

el=⇒ T ! e1
Γ ; f ` t2 : T2 ! e2 with T2 <: T1
e = eff(App, e1, e2, el)

The induction hypothesis on t1 gives
S1 � e1 t latent(Γ (f))



Since ∅ � ex for any ex, we can apply Lemma 2 to obtain
dynEff(App, S1, ∅, ∅) � eff(App, e1, e2, el) t latent(Γ (f)).

• case T-App-Poly: similar.

 Case E-App-E2: similar

 Case E-App: Again, t = t1 t2. We have the following preconditions

t1 ⇓ 〈(x : Ta) 7→ tr, S1〉
t2 ⇓ 〈v2, S2〉
tr[v2\x] ⇓ 〈r, Sl〉
t ⇓ 〈r, S〉 with S = dynEff(App, S1, S2, Sl)

There is a sub-case for every possible typing rule for the application expres-
sion.
• case T-App-E: Γ ; f ` t1 : Nothing ! e1. By the preservation theorem,

we have Γ ; f ` (x : Ta) 7→ tr : T1 ! e′1 with T ′
1 <: Nothing, which cannot

be derived with any typing rule. Therefore, this case is impossible.
• case T-App-Param: t1 = p for some parameter p. This case is not

possible because there is no evaluation rule for parameters.
• case T-App-Mono:

Γ ; f ` t1 : T1
el=⇒ T ! e1

Γ ; f ` t2 : T2 ! e2 with T2 <: T1
e = eff(App, e1, e2, el)

By induction hypothesis on t1 and t2, we obtain
S1 � e1 t latent(Γ (f))
S2 � e2 t latent(Γ (f))

By the preservation theorem, we have Γ ; f ` (x : Ta) 7→ tr : T ′
1 ! ⊥ with

T ′
1 <: T1

el=⇒ T . Since the term is a function abstraction, T ′
1 = Nothing

is not possible, which implies T ′
1 = Ta

e′l=⇒ T ′. By the canonical forms
Lemma 5, the term is a monomorphic function abstraction:

Γ ; f ` (x : Ta)⇒ tr : Ta
e′l=⇒ T ′ ! ⊥

Therefore, we have Γ, x : Ta; ε ` tr : T ′ ! e′l. Applying preservation on
t2 gives us Γ ; f ` v2 : T ′

2 ! ⊥ with T ′
2 <: T2 <: T1 <: Ta. We can apply

substitution Lemma 3 to obtain
Γ ; ε ` tr[v2\x] : T ′′ ! e′′l with T ′′ <: T ′ and e′′l v e′l.

The induction hypothesis on t[v2\x] gives Sl � e′′l t latent(Γ (ε)). Since
latent(Γ (ε)) = ⊥, and by e′′l v e′l v el, we have Sl � el. Together with
the induction hypotheses, we apply the consistency Lemma 2 to obtain
S � eff(App, e1, e2, el) t latent(Γ (f))

• case T-App-Poly: similar (see main paper).

 Case E-Throw: t = throw(p) and t ⇓ 〈throw(p), dynEff(Throw(p))〉.
By typing rule T-Throw, we obtain
Γ ; f ` throw(p) : Nothing ! eff(Throw(p)).

By Lemma 2, we conclude
dynEff(Throw(p)) � eff(Throw(p)) t latent(Γ (f)).


 Case E-Try-E: t = try t1 catch(p) t2. We have
t1 ⇓ 〈throw(p), S1〉
t2 ⇓ 〈r2, S2〉



St = dynEff(Try, S1) S = dynEff(Catch(p), St, S2)
From the typing rule T-Try:
Γ ; f ` t1 : T1 ! e1 with T1 <: T
Γ ; f ` t2 : T2 ! e2 with T2 <: T
et = eff(Try, e1) e = eff(Catch(p), et, e2)

The induction hypotheses are
S1 � e1 t latent(Γ (f))
S2 � e2 t latent(Γ (f))

Applying Lemma 2 to St and et yields St � et t latent(Γ (f)). Now we can
apply the same lemma to S and e and conclude S � e t latent(Γ (f)).


 Case E-Try: similar.
ut

References

1. Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
2. Lukas Rytz and Martin Odersky. Lightweight polymorphic effects. Technical report,

EPFL, 2012.


