This paper presents numerical simulations of annular laminar film condensation heat transfer in micro-channels of different internal shapes. The model, which is based on a finite volume formulation of the Navier-Stokes and energy equations for the liquid phase only, importantly accounts for the effects of axial and peripheral wall conduction and non-uniform heat flux not included in other models so far in the literature. The contributions of the surface tension, axial shear stresses and gravitational forces are included. This model has so far been validated versus various benchmark cases and versus experimental data available in literature, predicting microchannel heat transfer data with an average error of 20% or better.