Infoscience

Journal article

On Secure and Precise IR-UWB Ranging

To provide high ranging precision in multipath environments, a ranging protocol should find the first arriving path, rather than the strongest path. We demonstrate a new attack vector that disrupts such precise Time-of-Arrival (ToA) estimation, and allows an adversary to decrease the measured distance by a value in the order of the channel spread (10-20 meters). This attack vector can be used in previously reported physical-communication-layer (PHY) attacks against secure ranging (or distance bounding). Furthermore, it creates a new type of attack based on malicious interference: This attack is much easier to mount than the previously known external PHY attack (distance-decreasing relay) and it can work even if secret preamble codes are used. We evaluate the effectiveness of this attack for a PHY that is particularly well suited for precise ranging in multipath environments: Impulse Radio Ultra-Wideband (IR-UWB). We show, with PHY simulations and experiments, that the attack is effective against a variety of receivers and modulation schemes. Furthermore, we identify and evaluate three types of countermeasures that allow for precise and secure ranging.

Related material