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LDAHash:
Improved Matching with Smaller Descriptors

Christoph Strecha, Alexander M. Bronstein, Member, |IEEE,
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Abstract—SIFT-like local feature descriptors are ubiquitously employed in computer vision applications such as content-based
retrieval, video analysis, copy detection, object recognition, photo tourism, and 3D reconstruction. Feature descriptors can be designed
to be invariant to certain classes of photometric and geometric transformations, in particular, affine and intensity scale transformations.
However, real transformations that an image can undergo can only be approximately modeled in this way, and thus most descriptors
are only approximately invariant in practice. Second, descriptors are usually high dimensional (e.g., SIFT is represented as a
128-dimensional vector). In large-scale retrieval and matching problems, this can pose challenges in storing and retrieving descriptor
data. We map the descriptor vectors into the Hamming space in which the Hamming metric is used to compare the resulting
representations. This way, we reduce the size of the descriptors by representing them as short binary strings and learn descriptor
invariance from examples. We show extensive experimental validation, demonstrating the advantage of the proposed approach.

Index Terms—Local features, SIFT, DAISY, binarization, similarity-sensitive hashing, metric learning, 3D reconstruction, matching.

1 INTRODUCTION

VER the last decade, feature point descriptors such as

SIFT [1] and similar methods [2], [3], [4] have become
indispensable tools in the computer vision community. They
are usually represented as high-dimensional vectors, such as
the 128-dimensional SIFT or the 64-dimensional SURF
vectors. While a descriptor’s high dimensionality is not an
issue when only a few hundred points need to be
represented, it becomes a significant concern when millions
have to be on a device with limited computational and
storage resources. This happens, for example, when storing
all descriptors for a large-scale urban scene on a mobile
phone for image-based location purposes. Not only does this
require a tremendous amount of storage, it is also slow and
potentially unreliable because most recognition algorithms
rely on nearest-neighbor computations and computing
euclidean distances between long vectors is neither cheap
nor optimal.

Consequently, there have been many recent attempts at
compacting SIFT-like descriptors to allow for faster match-
ing while retaining their outstanding recognition rates. One
class of techniques relies on quantization [5], [6] and
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dimensionality reduction [7], [8]. While helpful, this
approach is usually not sufficient to produce truly short
descriptors without loss of matching performance. Another
class [9], [10], [11], [12] takes advantage of training data to
learn short binary codes whose distances are small for
positive training pairs and large for others. This is
particularly promising because not only does binarization
reduce the descriptor size, but also partly increases
performance, as will be shown.

Binarization is usually performed by multiplying the
descriptors by a projection matrix, subtracting a threshold
vector, and retaining only the sign of the result. This maps
the data into a space of binary strings, greatly reducing their
size on the one hand and simplifying their similarity
computation (now becoming the Hamming metric, which
can be computed very efficiently on modern CPUs) on the
other. Another class of locality-sensitive hashing (LSH)
techniques and their variants [9], [13] encode similarity of
data points as the collision probability of their binary codes.
While such similarity can be evaluated very efficiently,
these techniques usually require a large number of hashing
functions to be constructed in order to achieve competitive
performance. Also, families of LSH functions have been
constructed only for classes of standard metrics, such as the
L, norms, and do not allow for supervision.

In most supervised binarization techniques based on a
linear projection, the matrix entries and thresholds are
selected so as to preserve similarity relationships in a training
set. Doing this efficiently involves solving a difficult non-
linear optimization problem and most of the existing
methods offer no guarantee of finding a global optimum.
By contrast, spectral hashing (SH) [14] does offer this
guarantee for simple data distributions and has proved very
successful. However, this approach is only weakly super-
vised by imposing a euclidean metric on the input data,
which we will argue is not a particularly good one in our case.
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To better take advantage of training data composed of
interest point descriptors corresponding to multiple 3D
points seen under different views, we introduce a global
optimization scheme that is inspired by an earlier local
optimization one [10]. In [10], the entries of the projection
matrix and thresholds vectors are constructed progressively
using AdaBoost. Given that Adaboost is a gradient-based
method [15] and that the algorithm optimizes a few matrix
rows at a time, there is no guarantee the solution it finds is
optimal. By contrast, we first compute a projection matrix
that is designed either to solely minimize the in-class
covariance of the descriptors or to jointly minimize the in-
class covariance and maximize the covariance across
classes, both of which can be achieved in closed form. This
being done, we compute optimal thresholds that turn the
projections into binary vectors so as to maximize recogni-
tion rates. In essence, we perform Linear Discriminant
Analysis (LDA) on the descriptors before binarization and
will therefore refer to our approach as LDAHash.

Our experiments show that state-of-the-art metric learn-
ing methods based, e.g., on margin maximization [16], [17]
achieve exceptional performance in the low false negative
rate range, which degrades significantly in the low false
positive rate range. Binarization usually only deteriorates
performance. In large-scale applications that involve match-
ing keypoints against databases containing millions of
them, achieving good performance in the low false positive
rate range is crucial to preventing a list of potential matches
from becoming unacceptably long. We use ROC curves to
show that, in many different cases, the proposed method
has competitive performance in the low false negative rage
while significantly outperforming other methods in the low
false positive range.

We also show that unlike many other techniques where
binarization produces performance degradation, using our
approach to binarize SIFT descriptors [1] actually improves
matching performance. This is especially true in the low
false positive range with 64 or 128-bit descriptors, which
means that they are about 10 to 20 times shorter than the
original ones. Furthermore, using competing approaches
[10], [14], [18] to produce descriptors of the same size as
ours results in lower matching performance over the full
false positive range.

In the following section, we briefly survey existing
approaches to binarization. In Section 3, we introduce our
own framework. In Section 4, we describe the correspond-
ing training methodology, training data, and analyze the
impact of individual components of our approach. Finally,
we present our results in Section 5.

2 PrIOR WORK

Most approaches for compacting SIFT-like descriptors and
allowing for faster matching rely on one or more of the
following techniques:

2.1 Tuning

In [8], [19], [6], [20], [18], the authors use training to optimize
the filtering and normalization steps that produce a SIFT-like
vector. The same authors optimize in [18] over the position of
the elements that make up a DAISY descriptor [4].
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2.2 Quantization

The SIFT descriptor can be quantized using, for instance,
only 4 bits per coordinate [5], [18], thus saving memory and
speeding up matching because comparing short vectors is
faster than comparing long ones. Chandrasekhar et al. [20]
applied tree-coding methods for lossy compression of
probability distributions to SIFT-like descriptors to obtain
a compressed histogram of gradients (CHOG).

2.3 Dimensionality reduction

PCA has been extensively used to reduce the dimensionality
of SIFT vectors [21], [6]. In this way, the number of bits
required to describe each dimension can be reduced without
loss in matching performance [6], [18]. In [22], a whitening
linear transform was proposed in addition to benefit from
the efficiency of fast nearest-neighbor search methods.

The three approaches above are mostly unsupervised
methods and sometimes require a complex optimization
scheme [20], [18]. Often, they are not specifically tuned for
keypoint matching and do not usually produce descriptors as
short as one would require for large-scale keypoint matching.

Our formulation relates to supervised metric learning
approaches. The problem of optimizing SIFT-like descrip-
tors can be approached from the perspective of metric
learning, where many efficient approaches have been
recently developed for learning similarity between data
from a training set of similar and dissimilar pairs [23], [24].
In particular, similarity-sensitive hashing (SSH) or locality-
sensitive hashing [9], [10], [14], [11], [12] algorithms seek to
find an efficient binary representation of high-dimensional
data maintaining their similarity in the new space. These
methods have also been applied to global image descrip-
tors and bag-of-feature representations in content-based
image search [25], [26], [27], [28], video copy detection [29],
and shape retrieval [30]. In [31] and [32], Hamming
embedding was used to replace vector quantization in
bag-of-feature construction.

There are a few appealing properties of similarity-
sensitive hashing methods in large-scale descriptor match-
ing applications. First, such methods combine the effects of
dimensionality reduction and binarization, which makes
the descriptors more compact and easier to store. Second,
the metric between the binarized descriptors is learned
from examples and renders more correctly their similarity.
In particular, it is possible to take advantage of feature
point redundancy and transitive closures in the training
set, such as those in Fig. 3. Finally, comparison of binary
descriptors is computationally very efficient and is amen-
able for efficient indexing.

Existing methods for similarity-sensitive hashing have a
few serious drawbacks in our application. The method of
Shakhnarovich [10] poses the similarity-sensitive hashing
problem as boosted classification and tries to find its solution
by means of a standard AdaBoost algorithm. However,
given that AdaBoost is a greedy algorithm equivalent to a
gradient-based method [15], there is no guarantee of global
optimality of the solution. The spectral hashing algorithm
[14], on the other hand, has a tacit underlying assumption of
euclidean descriptor similarity, which is typically far from
being correct. Moreover, it is worthwhile mentioning that
spectral hashing, similarity-sensitive hashing, and similar
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methods have so far proven to be very efficient in retrieval
applications for ranking the matches, in which one typically
tries to achieve high recall. Thus, the operating point in these
applications is at low false negative rates, which ensures that
no relevant matches (typically, only a few) are missed. In
large-scale descriptor matching, on the other hand, one has
to create a list of likely candidate matches, which can be very
large if the false positive rate is high. For example, given a set
of 1 M descriptors, which is modest for Internet-scale
applications, and 1 percent false positive rate, 10 K
candidates would have to considered. Consequently, an
important concern in this application is a very low false
positive rate. As we show in the following, our approach is
especially successful at this operating point, while existing
algorithms show poor performance.

3 APPROACH

Let us assume we are given a large set of keypoint
descriptors. They are grouped into subsets corresponding
to the same 3D points and all pairs within the subsets
are therefore considered as belonging to the same class. The
main idea of our method is to find a mapping from the
descriptor space to the Hamming space by means of an
affine map followed by a sign function such that the
Hamming distance between the binarized descriptors is as
close as possible to the similarity of the given data set. Our
method involves two key steps:

Projection selection. We compute a projection matrix that is
designed either to solely minimize the in-class covariance of
the descriptors or to jointly minimize the in-class covariance
and maximize the covariance across classes, both of which
can be done in closed form (Sections 3.3.1 and 3.3.2).

Threshold selection. We find thresholds that can be used to
binarize the projections so that the resulting binary strings
maximize recognition rates. We show that this threshold
selection is a separable problem that can be solved using 1D
search. In the remainder of this section, we formalize these
steps and describe them in more details.

3.1 Problem Formulation

Our set of keypoint descriptors is represented as
n-dimensional vectors in IR". We attempt to find their
representation in some metric space (Z, dz) by means of a
map of the form y : R" — (Z, dg). The metric dz o (y x y)
parameterizes the similarity between the feature descrip-
tors, which may be difficult to compute in the original
representation. Our goal in finding such a mapping is
twofold. First, Z should be an efficient representation. This
implies that y(x) requires significantly less storage than x,
and that dz(y(x),y(x')) is much easier to compute than,
e.g., ||x — x/||. Second, the metric dz o (y X y) should better
represent some ideal descriptor similarity, in the following
sense: Given a set P of pairs of descriptors from
corresponding points in different images, e.g., the same
object under a different view point (referred to as positives)
and a set A of pairs of descriptors from different points
(negatives), we would like dyz(y(x),y(x')) < R for all
(x,x) € P and dz(y(x),y(x)) > R for all (x,x') €N to
hold with high probability for some range R.

Setting Z to be the m-dimensional Hamming space
H™ = {+1}", the embedding of a descriptor x can be
expressed as an m-dimensional binary string. Here, we limit
our attention to affine embeddings of the form

y = sign(Px + t), (1)

where P is an m x n matrix and t is an m x 1 vector;
embeddings having more complicated forms can be
obtained in a relatively straightforward manner by introdu-
cing kernels. Even under the optimistic assumption that real
numbers can be quantized and represented by 8 bits, the
size of the original descriptor is 8n bits, while the size of the
binary representation is m bits. Thus, setting m < n allows
us to significantly alleviate the storage complexity and
potentially improve descriptor indexing.

Furthermore, the descriptor dissimilarity is computed in
our representation using the Hamming metric dy~(y,y’) =
m— 15" sign(y,y’), which is done by performing an XOR
operation between y and y’ and counting the number of
nonzero bits in the result, an operation carried out in a single
instruction on modern CPU architectures (POPCNT SSE4.2).

The embedding y is constructed to minimize the
expectation of the Hamming metric on the set positive
pairs while maximizing it on the set of negative pairs. This
can be expressed as minimization of the loss function:

L = o E{du(y,y')|P} — E{du(y,y" )N}, (2)

with respect to the projection parameters P and t. Here, o is
a parameter controlling the trade-off between false positive
and false negative rates (higher o corresponds to lower false
negative rates). In practice, the conditional expectations
E{:[P}, E{-|N'} are replaced by averages on a training set of
positive and negative pairs of descriptors, respectively.

3.2 LDAHash

Here, we note that up to constants, problem (2) is equivalent
to the minimization of

L=E{y"y|N} - a E{y"y'|P} (3)

or

L=aE{lly —yI*IP} — E{ly - ¥'I’W}, (4)

attempting to make the correlation of the binary codes as
negative as possible for negative pairs and as positive
as possible for positive pairs. Direct minimization of L is
difficult since the terms y involve a nondifferentiable sign
nonlinearity. While, in principle, smooth approximation is
possible, the solution of the resulting nonconvex problem in
(m+1) x n variables is challenging, typically containing
thousands of unknowns.

As an alternative, we propose to relax the problem,
removing the sign and minimizing a related function:

L = oE{||Px — PX|*|P} — E{||Px — PX|*IN}.  (5)

The above objective is independent of the affine term t and
optimization can be performed over the projection matrix P
only, which we further restrict to be orthogonal. Once the
optimal matrix is found, we can fix it and minimize a
smooth version of (4) with respect to t.
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3.3 Projection Selection

Next, we describe two different approaches for computing
P, which we refer to as LDA and Difference of Covariances
(DIF) and that we compare in Sections 4 and 5.

3.3.1 Linear Discriminant Analysis
We start by observing that

E{|Px — PX|*|P} = t{PEpP"},

where 3p = E{(x — x/)(x — x)|P} is the covariance matrix
of the positive descriptor vector differences. This leads to

L=atr{PEpP"} — tr{PE,\P"},

with Xy = B{(x — x)(x — x)"|\V'} being the covariance
matrix of the negative descriptor vector differences.

Transformmg the coordinates by premultiplying x by
by N/ turns the second term of L into a constant for any
unitary P, leaving

7 ~1/2 ~T/25T
Lxtr{PX, "Zpx, "P'} (©)
= tr{PZp2'P"} = tr{PEgP"},

where X = 3p3,/ is the ratio of the positive and negative
covariance matrices. Since Xg is a symmetric positive
semidefinite matrix, it admits the eigendecomposition
¥z = USUT, where S is a nonnegative diagonal matrix.
An orthogonal m x n matrix P minimizing the trace of
PXzP" is a projection onto the space spanned by the
m smallest eigenvectors of X, L is given by

§. 0" ()

PE_1/2 _ (ER)_I/Qz_l/Q _

where S is the m x m matrix with the smallest eigenvalues
and U is the n xm matrix with the corresponding
eigenvectors (for notatlon brevity, we denote such a
projection by (ER)”L ?). This approach resembles the spirit
of linear discriminant analysis. A similar technique has been
introduced in [29] within the framework of boosted
similarity learning. Note that the normalization of columns
of P is unimportant since a sign function is applied to its
output. However, we keep the normalization by the inverse
square root of the variances, which makes the projected
differences P(x — x’) normal and white.

3.3.2 Difference of Covariances
An alternative approach can be derived by observing that

L=tr{PEpP"},
where ¥p = aXp — X). This yields
P = (3p),"", (8)

where at most m smallest negative eigenvectors are selected.
This selection of the projection matrix will be referred to as
covariance difference and denoted by DIF. Note that it allows
controlling the trade-off between false positive and negative
rates through the parameter «, which is impossible in the
LDA approach.

The limit a — oo is of particular interest as it yields
3p « Xp. In this case, the negative covariance does not play
any role in the training, which is equivalent to assuming

that the differences of negative descriptor vectors are white
Gaussian, X = L. The corresponding projection matrix is
given by

P = (3p);2 (9)

The main advantage of this approach is that it allows
learning the projection in a semi-supervised setting when
only positive pairs are available.

In general, a fully supervised approach is advantageous
over its semi-supervised counterpart, which assumes a
sometimes unrealistic unit covariance of the negative class
differences. However, unlike the positive training set
containing only pairs of knowingly matching descriptors,
the negative set might be contaminated by positive pairs (a
situation usually referred to as Ilabel noise). If such a
contamination is significant, the semi-supervised setting is
likely to perform better.

3.4 Threshold Selection

Given the projection matrix P selected as described in the
previous section, our next step is to minimize a smooth
version of the loss function (3),

L = E{sign(Px + t) "sign(Px’ + t)|\'}
— aE{sign(Px + t)"sign(Px’ 4 t)|P}
m 10
= Z E{sign(p; x +t;)sign(p; x' +t;) N} (10)
=1

— aE{sign (piTx + ti)sign(piTx’ +t;)|P},

with respect to the thresholds t, where p! denotes the
ith row of P and ¢; denotes the ith element of t. Observe
that due to its separable form, the problem can be split into
independent subproblems:

min - B{sign((p/x + ;) (p/x' +:)) |V}
—aE{sign((pfx + ;) (p}x' + 1)) [P},

which in turn can be solved using simple 1D search over
each threshold ¢;.

Let y=p/x and y = p/x’ be the ith element of the
projected training vectors x and x’. The ith bits of y and y’
coincide if ¢; < min{y,y'} or ¢ > max{y,y'}, and differ if
min{y,y'} <t; < max{y,y'}. For a given value of the thresh-
old, we express the false negative rate as

(11)

FN(t) = Pr(min{y, '} > t or max{y,y'} < t|P)
=1 - Pr(min{y,y'} < t|P) + Pr(max{y,y'} < t|P)
=1 — cdf(min{y, y'}|P) + cdf(max{y, v }|P)
(12)

with cdf standing for cumulative distribution function.
Similarly, the false positive rate can be expressed as

FP(t) = Pr(min{y, y'} <t < max{y,y'}|V)
=1 — Pr(min{y,y'} >t or max{y,y'} < t|N)
= cdf(min{y, ¢ }|NV) — cdf(max{y, y' }|N).
We compute histograms of minimal and maximal values of

projected positive and negative pairs, from which the
cumulative densities are estimated. The optimal threshold ¢;

(13)
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Fig. 1. The probability density functions for the classification perfor-
mance for positive and negative training examples (a) for the first two
dimensions and (b) for DIF.

is selected to minimize FP + FN (or, alternatively, maximize
TN + TP, where TP = 1 — FN and TN = 1 — FP are the true
positive and true negative rates, respectively). Fig. 1
visualizes TP, TN, and TP — FP for the first two components
i = 1,2 of the projections LDA and DIF.

4 TRAINING METHODOLOGY

In this section, we first describe our ground truth training
and evaluation data. We then evaluate different aspects of
our binary descriptors.

4.1 Ground Truth Data

To build our ground truth database, we used sets of
calibrated images for which we show the 3D point model
and a member image in Figs. 3, 4, 14, 15, and 16. These data
sets contain images we acquired ourself, such as those in
Figs. 14 and 15, and sometimes over extended periods of
time (Fig. 3). Those of Figs. 3, 4, and 15 contain images
downloaded from the Internet or are fully acquired from
this source, as in the case of Fig. 16.

We used our own calibration pipeline [33] to register
them and to compute internal and external camera
parameters as well as a sparse set of 3D points, each
corresponding to a single keypoint track. First, pairwise

T
[ F—

keypoint correspondences are established using Vedaldi’s
[34] SIFT [1] descriptors that we compared using the
standard L, norm. These are transformed into keypoint
tracks which are used to grow initial reconstructions that
have been obtained by a robust fit of pairwise essential
matrices. This standard procedure is similar to [35] and we
refer to this and our work [33] for more information.

Because our data set contains multiple views of the same
scene, we have many conjunctive closure matches [36] such
as the one depicted by the blue line in Fig. 3 (bottom): A
keypoint that is matched in two other images, as depicted
by the green lines, gives rise to an additional match in these
other two images. Since they may be quite different from
each other, the L, distance between the corresponding
descriptors may be large. Yet, the descriptors in all three
images will be treated as belonging to the same class, which
is key to learning a metric that can achieve better matching
performance than the original L; norm. In our data sets,
these conjunctive closures partially build long chains for
which individual pairs can have quite large L, norm as one
can see in Fig. 2. In practice, we consider only chains with
five or more keypoints, i.e., 3D points that are visible in at
least five images.

For the negative examples, we randomly sampled the
same number of keypoint pairs and checked that none of
them belonged to the positive set.

This training database is more specific than the one used
in [8] and [19], where the authors use a calibrated database
of images and their dense multiview stereo correspon-
dences. However, calibration and dense stereo information
is used to extract the image patches which are centered
around 3D point projections and use these to build a
training database of positive matches. In our framework, we
use the calibration only to geometrically verify SIFT matches
as being consistent with the camera parameters and with
the 3D structure. The 2D position, scale, and orientation of
the original interest points is kept such that we can perform

Fig. 2. Some of the keypoints from the same 3D point for the Venice data set in Fig. 16 are shown as an example. The red circle shows the keypoint
(DoG) position and its scale. The track was extracted by consecutive SIFT L, matching, which makes it possible to include keypoint pairs
(conjunctive closures) that are quite different into the training and evaluation set.



Fig. 3. Top row: Calibrated model of Lausanne with 4,485 images and
1.264 M 3D points that are computed from 9.9 M feature points.
Bottom row: Three sample images from the data set with a transitive
closure indicated.

learning on the data that are actually extracted by the
combination of SIFT keypoint detection (Difference of
Gaussians (DoG)) and description.

In [6] and [18], stereo correspondences are used to build
a training database of positive keypoint pairs, similar to
ours. This approach has advantages if the computed stereo
correspondences are reliable even for image pairs with
strong appearance changes. However, it is likely that
ground truth correspondences for which SIFT already give
good results are overrepresented by this strategy [18]. Here,
we put more effort into build long chains of subsequent
matches that end up describing the huge variability of
features represented by the same 3D point.

To train our descriptors, we use the Lausanne data set of
Fig. 3. Approximately, 9.9 M feature points are extracted
and their triangulation produced about 1.3 M 3D points,
such as those depicted in the top of Fig. 3. The urban area
represented here covers nearly 2 square kilometers and
encompasses the appearance statistics of man-made scenes.
Vegetation also appears but is not extensively represented
in this database. This training database finally consists of
about 72 M positive and negative matching pairs from
nearly 8 M keypoints. For testing, we used the data sets in
Figs. 4, 14, 15, and 16 as well as Lidar ground truth data and
planar image pairs as described in Section 5.1.

4.2 Parameter Evaluation

In the following, we evaluate the two steps in our
optimization: 1) the computation of P, which results in a
dimensionality reduced floating-point feature vector and
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Fig. 4. The Dresden data set used for the evaluation in Figs. 6 and 7
contains 4,551,124 positive and negative matches, which are obtained
by geometric verification using the full calibration.

2) the estimation of the thresholds that perform the
binarization. For this evaluation, we use a set of images
from different cities of Figs. 4, 14, 15, and 16. These provide
positive and negative matching examples, which we use to
compute the ROC statistics for different descriptor dis-
tances, i.e., Ly ball or Hamming cube. We use the same
negative samples in all cases.

All ROC curves are plotted in log scale for the FP rate,
since the operating point for large-scale image retrieval
systems requires very low FP rates. For example, a value of
FP =0.01 (1 percent) for the Dresden data set with 4.5 M
positive and negative matching examples will result in 45 K
false positives, which is far more than retrieval systems
could possibly handle. We are thus interested in perfor-
mance at FP <« 1%.

Throughout the paper, we use the following convention to
the algorithms we compare: Metric-Projection-Size. The metric
can either be L5 (euclidean) or H (Hamming on the binarized
vectors). Projection denotes the way in which the projection
matrix P is computed: LDA (linear discriminant according to
(7)) or DIF (difference of covariances according to (8)). Size
denotes the descriptor length in bits.

4.3 The Choice of « in DIF Projections

Fig. 5 shows the performance of the DIF formulation when
the relative influence of positive and negative training data is
varied. This is achieved by « in (8). a = 10 leads to the best

0.95 | o
09 S f
ko
S 085} 1
(0]
=
-*g 08 f 1
o infinity-128 ———
g 075 1000-128 -+----- 1
E 10-128
0.7 1-128 ,
infinity-64
1000-64 |
0.65 10-64 = wwen
; 1-64 mimimimim
06 S A I I I Il
1e-0 0.0001 0.001 0.01 0.1 1

false positive rate

Fig. 5. Performance evaluation for the DIF binarization as a function of «
for 128 and 64 bits on the Dresden data set shown in Fig. 4. The label on
each curve indicates a—number of bits.



STRECHA ET AL.: LDAHASH: IMPROVED MATCHING WITH SMALLER DESCRIPTORS 7

1

0.9

0.8

0.7

0.6

true positive rate

05
H-DIF-128 ——

0.4 H-DIFSH-128 |
H-LDA-128
0.3 ‘ H-LDASH-128 -
1e-05  0.0001  0.001 0.01 0.1 1

false positive rate

Fig. 6. Performance evaluation for the binarization used in spectral
hashing [14] (denoted by the ending SH for each projection) with our
proposed threshold optimization in Section 3.4 for the Venice data set
shown in Fig. 16. Note that our threshold selection outperforms the
corresponding SH formulation over the full false positive range.

results for both 128 and 64-bit descriptors. Note that this
experiment also includes the case where only positive
matches are taken into account, i.e., the approach with
a = oco. All remaining results in this paper will therefore use
a = 10and we denote the corresponding binarization by DIF.

4.4 Linear Projection

We estimated the parameters P of our projection matrix of
(1) to produce descriptors of size m = 64 and 128 for DIF
and LDA. The projection by P results in floating point
descriptors y = Px which we compare in Fig. 7(left) to SIFT
[1], [34] and to DAISY [6], [18]. For DAISY, we used
software provided by Simon Winder, who also suggested
the optimal parameters.’

As shown in Fig. 7(left), LDA projections improve the
results when compared to SIFT. By contrast, DIF projections
perform worse than the original SIFT descriptors. This effect
is stronger when we reduce the dimensions to 64. However,
after binarization, these results change as will be shown next.

4.5 Binarization

In Fig. 6, we compare our supervised threshold optimization
with the spectral hashing approach [14], which has been
shown to outperform many other hashing approaches such as
restricted Boltzmann machines and locality-sensitive hash-
ing [14]. Spectral hashing first applies a PCA projection of the
feature space. Then, the bounding box of all feature vectors is
computed and the binarization is realized by looking at the
sign of the analytical eigenfunctions in that box for each
dimension. The SH approach selects the m smallest of those
eigenfunctions. Instead of applying PCA projections, we
show the performance of this particular binarization scheme
for DIF and LDA projections, denoted as H-DIFSH-128 and
H-LDASH-128. This is compared to our supervised threshold
optimization (H-DIF-128 and H-LDA-128) in Fig. 6. One can
see that our supervised binarization scheme, as described in

1. The DAISY parameters used: 1) the keypoint scale, which transforms
the SIFT scale parameter to DAISY scale, was set to 1.6 and 2) the descriptor
T2 4 2r6s making up a 52-dimensional feature representation of unsigned
char values was used in all experiments. For additional details, see [6] and
[18].

Section 3.4 does increase performance substantially over the
corresponding unsupervised spectral hashing formulation.
Note also that SH binarization is related to feature
discretization, which tries to approximate floating-point
feature vectors by fewer bits in each dimension. Without
sorting the m smallest eigenfunctions or equally scaling
each dimension of the feature space to the same range, SH
corresponds to a discretization of each feature dimension
into several bits.? Unsupervised feature discretization, as
used by Brown et al. [18], will therefore show a similar
behavior as SH binarization does.

4.6 Combined Comparison

In Fig. 7(right), we show the final result of our binarized
descriptors in comparison to other approaches. One can see
that if the data are transformed according to the covariance
structure of the feature space (by LDA or DIF), we get a
significant performance boost by using the Hamming
metric on binarized descriptors. This can be seen even for
H-DIF-128, for which the unbinarized version L2-DIF-4096
performs worse than SIFT. If, on the other hand, the feature
space is not aligned with the covariance structure,
binarization does not improve, e.g., for random orthogonal
projections H-RANORTH-128. Fig. 7 also shows the results
of similarity-sensitive hashing proposed in [10] and used in
[40], the results of DAISY [6], [18], and spectral hashing
[14]. Our approach shows significantly better performance
in the interesting area of low false positive rates and
reaches the performance of the other descriptors for high
true positive rates with a much smaller descriptor size. In
the next sections (Sections 5.1 and 5.2), we show similar or
better behavior on more difficult data sets of our approach
on many other test sequences.

Note also the improvement of the binarization with
respect to the unbinarized projection by comparing
Figs. 7(left) and 7(right) for LDA and DIF. An improvement
by quantization was also reported by Brown et al. [18],
where the range of each descriptor coordinate has been
binarized to fit various bit sizes.

In Fig. 8, we show the performance with varying number
of bits for DIF binarization and we compare it to the SIFT
baseline performance.

5 EXPERIMENTAL EVALUATION

In this section, we compare the performance of our
approach to metric learning against state-of-the-art methods
[10], [14], [18] and use SIFT [1] as a baseline. We first do this
using image pairs for which LIDAR data, and therefore
ground truth correspondences, are available. We then move
on to the large-scale data sets presented in Section 5.2 to
validate our approach in a more challenging context.

5.1 LIDAR Ground Truth Evaluation

We evaluated the performance of our binarized descriptor
on publicly available data sets [41], [38], for which camera
parameters and the ground truth 3D model are available.
The dense ground truth cloud of 3D points was obtained by
using LIDAR and was registered to the images, making it

2. The number of bits depends on the frequency of the harmonic
eigenfunctions and can be chosen (see [14] for more details).



8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

09 |
Q
[
5 08¢t
2
‘@
g
S o7t
2
L2-SIFT-1024
0.6 | L2-DIF-4096 1
L2-LDA-4096 v
L2-DIF-2048 -
L2-LDA-2048
05 kL ‘ ‘ : ;
1e05 00001  0.001 0.01 0.1 1

false positive rate

VOL. 33, NO. X, XXXXXXX 2011

09 ]
Q
©
5 08f ]
=
:‘(%‘
g
S o7¢ ]
E

L2-SIFT-1024

06 f H-DIF-128 |
I H-LDA-128 .
H-DIF-64 =
H-LDA-64
05 L L L
1e-05  0.0001  0.001 0.01 0.1 1

false positive rate

Fig. 7. Left: Performance evaluation for the projection P for our methods (DIF and LDA) in comparison to the original SIFT and to the DAISY
descriptor on the Dresden data set shown in Fig. 4. Right: Performance evaluation for various descriptors for the same data set after binarization. We
compare our binary descriptors with Locality-Sensitive Hashing in [10] (H-SSH-128), DAISY [6] (L2-DAISY-416), SIFT [1] (L2-SIFT-1024), and
random orthogonal projections (H-RANORT-128). Note that binarization improves the performance for the interesting area of the ROC curves at a

low false positive rate.

easy to find the corresponding pixel in any image to a pixel
in any other. Occluded areas can by identified, and have
been excluded from the evaluation, by geometric visibility
reasoning. These high precision evaluation data do contain
real 3D distortions which are different from the well-known
data set of Mikolajczyk et al. [2], where the images are
related by a single homography. It does therefore allow us
to evaluate more realistic scenarios.

We focus on two pairs of the Fountain-P11 and the Herz-
Jesu-P8 data sets depicted in Fig. 9. For both data sets, we
present the results for a small baseline and a wide-baseline
setting. These data sets and the evaluation procedure will
be publically available [39]. In addition, we show results on
the standard graffiti and wall data sets of Mikolajczyk et al.
[2], which consist of planar scenes, making it easy to
establish dense correspondence by a homography.

In Figs. 10, 11, and 12, we plot ROC and precision-recall
curves that summarize the corresponding matching per-
formance using the various descriptors. These curves were
obtained as follows: First, SIFT keypoints were detected in
all images. From these, we filtered out all keypoints for
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H-DIF-50 1
H-DIF-64 »wwwew
H-DIF-80 =i=i===
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false positive rate

0.7 +
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0.6

0.5
1e-05
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Fig. 8. Performance of DIF with varying number of bits on the Karls
bridge data set of Prague [37]. As a reference, we include the original
SIFT performance.

which there were no ground truth matches, either due to
missing LIDAR data or occlusions. For each of the
remaining keypoints in one image, we search for the
corresponding keypoint in the other image and check
whether it is less than 2 pixels® away from the ground
truth LIDAR match. To enforce consistency, we switched
the roles of the images and performed the same operation.
This provided us with ground truth keypoint correspon-
dences and we further did the evaluation only on those
keypoints. By varying the matching threshold on either the
Ly norm or Hamming distance, we counted the number of
true and false positives to obtain the ROC curves. By using
the same set of keypoints, the recall is defined by the
relative amount of true positives and precision by the
number of true positive relative to the total number of
retrieved keypoints.

In the fountain-P11 and Herz-Jesu-P8 data sets (Figs. 10
and 11), the 128-bit binary descriptors significantly outper-
form SIFT. This performance boost is achieved with a
descriptor size which is eight times less than the number of
bits original SIFT requires (1,024). Even if we halve the size of
our descriptors to 64 bits, we get results that are similar and in
some cases superior to those of SIFT in accuracy, while being
16 times more compact. This dependence of the descriptor
size is depicted in Fig. 13. These experiments show a
significant improvement of DAISY when compared to SIFT,
which was also reported by their authors in [6] and [18]. When
compared to current state-of-the-art hashing approaches [14],
spectral hashing, and similarity-sensitive hashing, using the
same descriptor size (128 bits), we can appreciate a
performance boost over the full precision/FP range. Our
DIF projections are slightly better than LDA projections and
still perform very well with only 64 bits. In the Mikolajczyk
data set 12, the results do not show a clear direction. This is
grounded in the small number of ground truth matches (680
and 375) that make matching confusions less likely and on the
fact that the image pairs are relatively easy.

3. We used this value since we are primarily interested in high precision
matches which are needed for calibration purposes. We also checked
different values and obtained very similar results.
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(@) (b)

(d)

Fig. 9. Images used for quantitative evaluation. Dense ground truth correspondences are available from LIDAR measurements for fountain-P11 (top)
and Herz-Jesu-P8 (bottom) [38]. The matching performance of the image pairs a-b and a-c as well as d-e and d-f is shown in Figs. 10 and 11. The

data are publically available [39].
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128-bit descriptors, we systematically outperform all other methods and perform at least similarly when using 64-bit descriptors. Precision versus

recall curves are shown in [37].

5.2 Large-Scale Ground Truth Evaluation

To test our hashing scheme for large-scale keypoint retrieval
on substantially different images, we calibrated four other
data sets depicted in Figs. 14, 15, and 16 using SIFT L, norm
matching as described in Section 4.1. The first data set
consists of 71 aerial images (41 M pixels) and the other three
of 192, 107, and 310 urban images. All data sets contain
millions of matching examples and especially the Venice
data set, with about 13 million data points, also covers
interesting situations with strong light and scale changes.
The ROC curves are shown in Figs. 14, 15, and 16. Overall, we
get an improvement in performance for these large-scale

data sets, which indicates that our learning scheme gener-
alizes properly and scales well.

The first three data sets are relatively easy. Baselines in
these data sets are small and many of the images are taken
under similar light conditions, which is especially true for the
aerial data set in Fig. 14. As a result, the improvement of our
metric learning is less pronounced than in the last example of
Venice (Fig. 16). This data set contains images from photo
community collections taken by many different users at
different times. One can notice here a significant improve-
ment for 128-bit LDA and DIF projections as well as for 64-bit
DIF projections for low false positive rates. More particularly,
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Fig. 12. ROC curves for binarized and original SIFT as well as DAISY, SH, and SSH on the image pairs of wall (a) and graffiti (b) (top) from [2].

Precision versus recall curves are shown in [37].

as can be conducted from the graphs, we retrieve the correct
keypoint in 83 percent (78 percent) of the cases with 128 (64)
bits at FP = 0.001 (corresponding to 12,796 false positives in
total), which is substantially better than SIFT and DAISY-416
with 56 and 69 percent, respectively. At the same time, we
need only 12.5 percent (6.25 percent) of the space and
bandwidth to store and transfer the descriptors for proces-
sing. The difference is much more outspoken if we go to more
realistic, lower values of the false positive rate.

If we compare the performance of the descriptors with
128 bits and less, we outperform the other approaches SSH,
SH, and DAISY-128 over the full false positive range.

The improvement of our metric learning scheme can be
explained by the large amount of conjunctive closure
matches in our training set. They are true matches, in that
they correspond to the projection of the same physical 3D
point but may be relatively far apart when compared by the
SIFT L, norm. Our hashing scheme accounts for that and
brings those keypoints closer in the Hamming space. This
results in an even greater performance boost over SIFT when
wide baseline and small baseline are compared, as seen in
Figs. 10 and 11, and when the images contain strong
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Fig. 13. Descriptor performance as a function of their size for the
fountain data set in Fig. 10(top left) for various false positive rates.

appearance changes, as in the Venice data set shown in
Fig. 16. We note that the use of a single global projection of
the data is potentially limiting full exploitation of the wide-
baseline data. Training a sequence of projections where a
subsequent projection is trained on the errors of the previous
ones could allow circumventing this limitation.

Our evaluation confirms earlier results on the perfor-
mance of the (52-dimensional) DAISY descriptor [6], [18]
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Fig. 14. ROC curves for our binary descriptors together with original
SIFT, DAISY [6], spectral hashing [14], and boosted learning in [10] on
an aerial image set with 6,375,139 positive and negative matching
examples. Note that this test image set is also very different from our
terrestrial image training set in that more vegetation is present. The
performances H-DIF-16 and H-LDA-16 indicate a good generalization of
our learning procedure.
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Fig. 15. ROC curves similar to Fig. 14 on the urban data set of Prague
with 2,027,389 positive and negative matching examples.

when compared to SIFT, which is visible especially in the
large-scale data sets. To build the DAISY descriptor, an
extensive optimization of the filter locations that are used
to fill up the descriptor bins has been performed. This
was not done here. Surprisingly, the good low false
positive performance of our descriptors when compared
to DAISY-416 is consistent and could be explained by the
difference in generating the training data (as discussed in
Section 4.1) and by the fact that DAISY does not use
supervision for its last, quantization step. We think that
this is important and show here, as seen in Fig. 6, that it
leads to a larger performance boost than the unsupervised
quantization strategy used by DAISY.

Our experiments show that DIF projections perform
slightly better than LDA projections.

5.3 Dependence on Keypoint Detector

Local keypoint descriptors are often highly coupled to
keypoint detectors since computation time can be saved
by this strategy. For all evaluation so far, we used the
SIFT-related keypoint detector which is based on Differ-
ence of Gaussians [1]. DAISY [6] and SUREF [3] use other
keypoint detectors, which are based on Laplacians and
Hessians, respectively. An evaluation on the matching
performance for SIFT, DAISY, and SURF with their own
keypoint detectors is shown in Fig. 17. For a fair
comparison, we sampled for each keypoint detector a
constant number of 5,000 matches for the fountain data
set in Figs. 9a and b. The results show that the DoG
keypoint detector performs best and that DAISY gives
better results on those keypoints when compared to its
own keypoint detections.
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o
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Fig. 16. ROC curves for our learned binary descriptors together with
original SIFT, DAISY [6], [18], spectral hashing [14], and boosted learning
in [10] on the flickr data set of Venice, with 12,796,971 positive and
negative matching examples. This data set contains images taken by
different cameras and with different light, weather, and seasonal
conditions. For this reason and for its size, it is the most challenging
data set.

6 CONCLUSIONS

We presented a novel and simple approach to produce a
binary string from a SIFT descriptor. Our approach first
aligns the SIFT descriptors according to the problem
specific covariance structure. In the resulting vector space,
all SIFT descriptors have diagonal covariance. We can then
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Fig. 17. ROC curves for the performance of the descriptors on their own
keypoint detector with L2-SIFT-1024 and H-DIF-128 using DoG
keypoints, L2-DAISY-416 using Laplacian Keypoints [6], and L2-OSURF
[3] using Hessian keypoints. We use 5,000 ground truth keypoints on the
fountain data set depicted in Fig. 9a-b.
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estimate reliable thresholds that perform the binarization
according to an appropriate cost function. This approach is
very fast and can be used for many other applications for
which similar training data are available.

We showed in this paper that this very simple and general
approach leads to outstanding matching results with a very
compact descriptor. Our resulting binary descriptor per-
forms better than original SIFT [1], [34] and DAISY [6], [18] in
the low false positive range, which is the interesting range for
large-scale keypoint retrieval applications. Thereby, our
128-bit version requires only ~10% of the size SIFT uses to
(~25% of the DAISY size, respectively) describe keypoints.
When compared to locality-sensitive hashing [10] and
spectral hashing proposed by Weiss et al. [14], which use
the same number of bits to encode keypoints, our descriptors
perform better in the whole false positive range. This is also
true if we compare to a reduced size DAISY with 128 bits.

Very good performance for low false positive rates can be
obtained by using as few as 64 bits (H-DIF-64), which makes
it possible to search efficiently in a large database. Matching
is very fast for binary descriptors even for exhaustive search,
since only an XOR followed by a bit count is needed to
compute the Hamming distance (in some modern CPUs, bit
counting is implemented as a single instruction). Moreover,
binary descriptors with the Hamming metric can be indexed
efficiently on existing database management systems, a
direction we intend to explore in future research. We believe
that matching of our binary representations can be per-
formed very fast even on mobile devices and release our
binarizations for SIFT into the public domain [42].

Philosophically, our approach addresses the gap be-
tween modeling and learning in feature descriptor design.
The recent trend in computer vision literature has been to
construct feature descriptors that would theoretically be
invariant to certain transformations such as rotations or
affine transformations. However, such transformations are
only approximations of the real image formation model,
and thus the descriptor is never truly invariant. Augment-
ing it with a metric learning approach, it is possible to learn
invariance to typical transformations that may appear in a
natural scene. It would be interesting to explore the trade-
off between how much effort should be invested in
modeling invariance versus learning it from examples.

Interesting further research could look at other descrip-
tors such as DAISY [6], SURF [3], or BRIEF [43], which are
faster to compute and to learn a similar binarization. We also
plan to investigate the performance of an additional network
layer to reduce the size of our current binary descriptors
even further and without loss in performance.
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