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Abstract

Premature babies are not fully equipped to deal with the outside world. Their
immature bodies make them highly at risk to a large number of physiologi-
cal complications. Therefore, while they are still immature, premature babies
are taken care of in neonatology intensive care units, where they are kept in
a controlled and protective environment. In these units, the babies’ vital pa-
rameters, such as their heart rate and temperature, are tightly monitored. The
devices used to record this data are fitted with alarms that are triggered auto-
matically when something wrong is detected [1]. However, the alarm systems
currently used are often unable to discriminate between real physiological prob-
lems and artefacts that should be ignored (for example, when a measurement
device drops-out). As a result, these systems produce a high rate of false alarms,
where the alarm is triggered when nothing is clinically wrong. This can have
unwanted consequences: first, it creates a noisy environment, which may dis-
turb the babies; second, it can lead to the alarm being ignored when there is
actually something wrong. In order to address this problem, my host labora-
tory has constructed a system that can automatically infer the state of health
of premature babies in neonatology units, based on their recorded physiological
data [2]. The new system is designed to be able to deal with artefactual changes
in the measurements, hopefully resulting in a reduced number of false alarms.

In this thesis, I describe my contribution to this project, which is twofold.
The first part deals with the problem of evaluating the performance of the sys-
tem. To do this, I developed an online feedback process, where clinicians could
provide information about the true clinical interpretation of the physiological
data, which could be compared to the output of the system. The feedbacks pro-
vided by the clinicians were then analysed to investigate how the system could
be improved. The second part of my thesis was motivated by early feedbacks
from the clinicians, which indicated that the system was unable to deal with
changes in the humidity measurements that occurred when the incubator door
was opened and closed. To address this, I extended the current system, so that
it was able to account for these changes, thereby increasing its capability to
detect ‘true’ physiological problems during the period after the incubator door
is closed.
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Chapter 1

Introduction

Premature birth is an important issue, as it leads often to long term complica-
tions, such as neurological disabilities and cognitive dysfunctions [3]. Moreover,
this affects a large proportion of the population (12-13% of births in the United
States of America, and 5-9 % of births in many other industrialised countries
14]).

Before birth, the uterine environment plays a crucial role in protecting the
foetus against temperature changes and physical contacts, as well as an essential
role of assistance, as the mother provides him with food and oxygen. When
the birth occurs too early, the baby, too immature to function independently,
is taken care of in a neonatology unit, where the equipments used permit to
reproduce the roles of protection and assistance normally played by the mother
[5].

In neonatology units, the physiological data of the premature babies, such as
heart rate, respiratory rate, blood pressure and temperature are recorded and
displayed on monitors in order for the clinicians to keep control over their state
of health. While normal states are characterised by haemostasis and stability
in these physiological measurements, each particular condition or pathology
produces a specific sequence of measurements which form a very characteristic
pattern.

The recording devices currently used in neonatology units are fitted with
detection systems which activate an alarm every time a problem is detected
in the measurements. Generally, these systems are very basic, and thus often
unable to distinguish between physiological problems and artefacts (caused for
example by a probe drop-out). This can have harmful consequences: a large
proportion of alarms are triggered when nothing is clinically wrong, meaning
that real problems could easily be ignored by the clinical staff. Moreover, a
neonatology unit must constitute a protected environment, in which the amount
of noise should be kept to a minimum, because pre-term babies may be affected
by noise generated by the high rate of alarms [6, 7].

In order to address this problem and decrease the rate of false alarms, my
host laboratory, in the context of the ‘Condition Monitoring in Premature Ba-



bies’ project, developed a system permitting automatic inference of the baby’s
state of health in real time, based on the physiological traces recorded from the
baby [8].

This system consists of a model that describes how the state of health of the
baby (e.g. healthy / unhealthy) generates the recorded physiological measure-
ments. This model is probabilistic, which permits to deal with noisy data and
imperfect knowledge of the world [9]. The parameters of the model are learned
directly from the recorded data, which ensures that the model predicts such
physiological data as closely as possible. Finally, once the model is learned, it
can be used to infer the real state of the baby based on the recordings - and
trigger an alarm when there is a problem.

The probabilistic model used here is a Factorial Switching Linear Dynamical
System (FSLDS) [10]. This model describes complex time-series which are not
well described globally by a single type of dynamics, but are better described
by ‘jumps’ from one regime to another [9].

Physiological data monitored in neonatology units follow this kind of pat-
tern, with data following one particular type of dynamics when the baby is
healthy, and instantaneously switching to a different type of dynamics when a
physiological problem occurs. Specifically, for the FSLDS model described here,
in addition to the ‘normal’ regime, some ‘factors’ are explicitly included, which
relate to artefact events - e.g. probe drop-out - or physiological events - e.g.
bradycardia - affecting the measurements. The FSLDS model is used to infer
which set of factors are responsible for the values displayed currently on the
monitor. An additional factor (the ‘X-factor’) accounts for any novel conditions
which cannot be explained by the normal regime or by the factors included in
the system.

The addition of this X-factor has two benefits. Firstly, because it is im-
possible to model all the possible regimes encountered in pre-term babies, the
X-factor ensures that an alarm will be raised whenever an abnormal type of
dynamics is occurring, even though the system can not attribute this new type
of dynamics to one of the factors included in the system. Secondly, if a data
segment triggers the X-factor, this means that the current model is not able to
explain this particular sequence of data, and must be improved.

The FSLDS system developed by my host laboratory has been successful in
inferring the different artefact and physiological conditions included as factors
in the system. Moreover, the X-factor has shown efficiency in inferring novel
conditions [10]. However, the factors currently part of the system have been
evaluated only in a limited amount of physiological data (15 babies). An as-
sessment of the performance of the model on new monitoring data could help
to give a better evaluation of the system. Moreover, the number of factors cur-
rently part of the system is very limited. Further analysis of the segments of
physiological data that have triggered the X-factor could show up additional
non-normal regimes in the data that could be added to the system as new fac-
tors, and therefore used to improve the current model. Indeed, initial analysis of
the X-factor, conducted previously, has already highlighted imperfections of the
system, indicating that there was a need for re-modelling the effect of opening



the incubator.

In my project, I will address the issues mentioned above by undertaking an
analysis of intervals of new physiological data that trigger the X-factor, in order
to evaluate the existing factors, and discover clinically significant non-normal
regimes. The results will then be analysed and an eventual addition of new
factors in the model will be discussed. Finally, I will re-model the factor that
has been discovered not to be good enough to explain the data.

1.1 Outline

Chapter 2 is dedicated to presenting the medical background of the project.
Specifically, I will give an overview of the main characteristics of premature
babies’ physiology, some common clinical manifestations following from these
characteristics, and condition monitoring in neonatology units.

In Chapter 3, I describe the mathematical background of the project. The
first section is devoted to giving a general introduction on time-series probabilis-
tic models. In the second section, I will describe the main aspects of the FSLDS
model developed by my host laboratory in the framework of the ‘Condition
Monitoring in Premature Babies’ project.

Chapter 4 is dedicated to presenting the first part of my contribution to this
project, which consists of an evaluation of the system developed by my host
laboratory. This evaluation is accomplished through an analysis of feedbacks of
clinicians on intervals highlighted by the X-factor. I will describe the web-form
applications developed in order to gather these feedbacks, as well as the results
obtained from the analysis of this collection of feedbacks.

Chapter 5 describes the process followed for re-modelling the incubator open
(or handling) factor, that has been discovered not to be good enough to explain
the data. Notably, I show how I found the parameters, evaluated the relevance
of the model, integrated the model in the overall system and assessed the per-
formance of this re-modelled factor.

The last chapter concludes by presenting the most important findings of this
project, and discussing some directions for future work.



Chapter 2

Premature babies: clinical
overview

Premature babies are typically highly immature, and unprepared for the real
world. Before birth, the uterus protects the baby from temperature changes
and physical contact, while the mother provides him with food and oxygen.
In contrast, after they are born, the baby must breathe alone, is subjected to
changes in the external temperature, and must use their digestive system to
get nutrients from food. That is, they are suddenly placed into an environment
which requires their organs to function in an independent way, which they are
still incapable of doing. Because of the immaturity of their organs and the
instability of their homoeostatic control systems [11], premature babies have
often difficulties to breathe, to suck and to control their body temperature [12].

To help them deal with this, premature babies are taken care of in neonatal
units, where the equipment used permits achievement of the following goals.
First, pre-term babies are placed in incubators, a device that tend to recreate the
protective environment of the womb, in order to prevent any injury due to the
outside world, by controlling tightly many factors like temperature. Secondly,
since many of the body’s organs function differently in the womb than in the
outside world, the neonatal equipments help the baby to make the switch that
the organs are not ready to make on their own.

Keeping track of heart beat, breathing rate, blood pressure and tempera-
ture is crucial to keep control of the health of premature babies. Indeed, from
observing these recordings, it is possible to determine the state of the baby [1].
While normal states appear highly stable, abnormal conditions or pathologies
are accompanied by specific recognised changes in the physiological recordings
(patterns). [10].

The monitors currently used in neonatal units are fitted with simple detec-
tion systems, which activate an alarm every time a problem is detected in the
measurements. Generally, these detection systems are very basic, with the alarm
being triggered when a particular signal goes above or below preset thresholds



[1]. However, the observations on the monitor do not depend only on the physio-
logical state of the baby. They can also be influenced by noise, due to inaccuracy
of the probes, or artefacts, such as when the probe drops out [10]. Therefore,
the alarms often sound when nothing is clinically wrong, which can have un-
wanted consequences. Firstly, since the alarms sound all the time, this could
prevent them from being taken seriously by the clinicians, meaning that a real
problem is more likely to be ignored, or only attended to after a dangerously
long response time [13]. Moreover, in the neonatal unit, sound must be kept to
a minimum, since extra noise (as well as additional disturbances caused when
the clinicians respond to an alarm), could have adverse effects on the baby’s
health, for example, by inducing cardiorespiratory instability [6].

In order to address this problem and reduce the rate of false alarms, my host
laboratory, in the context of the ‘Condition Monitoring in Premature Babies’
project [8], designed a detection system, which would be able to trigger an alarm
when the health of the baby is in danger, while preventing the alarm from being
triggered when changes in the measurements are unrelated to the real state of
health of the baby, but are caused by an artefact. In order to do that, this
system must be able to recognize, from the vital parameters recorded from the
baby (e.g. heart rate, oxygen saturation, blood pressure), if the baby is in a
healthy state, in an unhealthy state (e.g. bradycardia, oxygen desaturation), or
if an artefact is happening to one or more of the probes (e.g. probe drop-out).
To understand the design of this system, and thus, understand how the clinical
conditions influence the readings on the monitor, it is essential to be acquainted
with the most common clinical conditions encountered in premature babies. It
is also crucial to understand the principles underlying the function of the probes
used to record the vital parameters from the baby, to be able to comprehend
how these readings can be altered by artefacts. Therefore, a basic introduction
on the premature babies ’ physiology, main clinical conditions and monitoring
in neonatology is given in this chapter.

Section 2.1 describes the physiological characteristics of premature babies,
highlighting the high immaturity of their organs in comparison with adults.
Section 2.2 discusses the common clinical conditions that follow from this char-
acteristic immaturity. Finally, I explain in section 2.3 how pre-term babies are
monitored in neonatology units, and give some examples of artefacts that can
alter the measurements.

2.1 Physiology

Physiology of premature babies differs from adult physiology, in that most of
their organ systems are still undeveloped. This section focusses on the particular
characteristics of neonatal and premature physiology that leads to the most
common clinical manifestations in neonatology units.

Respiratory considerations One of the main characteristic of pre-term ba-
bies is the high immaturity of their respiration control system [14]. This im-



maturity can lead to several diseases or clinical manifestations. Because some
of these clinical conditions are discussed in this project, a basic introduction of
the pre-term respiratory system is given here.

The first goal of respiration is to convey oxygen to the tissues. Ventilation is
the mechanical phenomenon that brings air (and therefore oxygen) into contact
with blood in the pulmonary alveoli. This is achieved by an alternation between
inspiration (where ambient air is added to an already present volume in the
lungs) and expiration (where a part of the air in the alveoli is expelled) [15].

During respiratory stress, ventilation is regulated by varying the air flow
entering and leaving the lungs, in order to ensure that the concentrations of Os
and CO; in the blood remain as steady as possible. While healthy adults can
vary their respiratory flow both by modifying their tidal volume (the amount
of air inspired and expired during normal breathing; see Figure 2.1) and their
respiratory rate [16], neonates can only vary the latter [17]. This is because the
anatomic shape and the poorly developed muscles of the thorax reduce respi-
ratory mechanical advantages [17], causing their vital capacity (the maximum
amount of air they can expel from the lung after a maximal inspiration; see
Figure 2.1) to be particularly small in relation to their body weight [11].

The functional residual capacity (FRC; the amount of air that remains in
the lungs after a normal expiration; see Figure 2.1) is particularly small in
neonates and pre terms - less than one half of an adults in relation to their
body weight[11]. Because of their small FRC, neonates can only store a low
amount of Oz [18]. In healthy adults, Os stored in the lungs plays an impor-
tant role in smoothing out the blood gas variations when not enough oxygen
is available for ventilation, for instance if the respiration rate slows down. The
small capacity of Oy storage in pre-terms can lead to episodes of dramatic re-
duction of the amount of oxygen reaching the tissues (hypoxia) during periods
of slowed respiratory rate or apnoea induced by the immaturity of the respira-
tion control in premature babies. In extreme cases, the combination of small
capacity of Os storage and high immaturity of respiratory control system can
lead to a syndrome very common in pre-term babies named periodic breathing.
This condition is characterised by periods of breathing and apnoea succeeding
each other, and can become clinically significant if associated with more pro-
longed periods of apnoea, episodes of bradycardia, desaturations or hypoxaemia
(abnormally low partial pressure of oxygen in the blood) [11, 18].

In addition, premature babies have much smaller alveoli than adults (many
of them have alveoli with radii less then one quarter of that of an adult) [11].
Since surface tension is inversely dependent to the radius of the alveolus, the
alveolar pressure due to the surface tension is much greater in pre-terms than
in adults. Moreover, adult lungs secrete surfactant, a substance that greatly
reduces alveolar pressure, preventing them from collapsing. Unfortunately, this
substance does not start to be secreted before six or seven month of gestation,
sometimes even later. Thus, most premature babies produce little or no surfac-
tant in their alveoli. As a consequence, their lungs have a very strong tendency
to collapse [15], tendency enhanced by the small FRC. To compensate for this,
newborns keep the volume of air in their lung higher than the FRC, by actively



maintaining their respiratory rate very high (see table 2.1) [19]. The collapse
of the lungs (happening e.g. when the respiration cease ) is called respiratory
distress syndrome of the new born, and is fatal if not treated, notably by the
application of positive air pressure in the lungs [11].
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Figure 2.1: Tlustration of respiratory volume changes during normal breathing and during
maximal inspiration and maximal expiration. Tidal volume: volume of air inspired or expired
during normal breathing. Inspiratory reserve volume: extra volume of air that can be inspired
above the tidal volume during maximal inspiration.. Expiratory reserve volume: extra volume
of air that can be expired after the end of a normal tidal expiration during maximal expiration.
Residual volume: Volume of air remaining in the lungs after maximal expiration. Inspiratory
capacity: tidal volume + inspiratory reserve volume. Functional residual capacity: expiratory
reserve volume + residual volume. Vital capacity: inspiratory reserve volume + tidal volume
+ expiratory reserve volume. Total lung capacity: vital capacity + residual volume. Source:

[15].

Other considerations The first role of the heart is to pump blood through
the cardiovascular system. This organ can be considered as a combination of
coupled muscles which the simultaneous contraction result in the mechanical
action of pumping [20].

Cardiac muscles in newborns are much smaller in relation to their body
weight than adults, which results in a much weaker pumping power. The baby
compensates for this lack of pump power by a faster cardiac pulse [17]. Thus,
like respiration, heart rate in newborn is twice as fast in relation to their body
weight as in the adult (see table 2.1) [11]. The blood pressure is also much
smaller in newborn than in adults (see table 2.1).

The underdevelopment of organ systems in pre-terms leads to great instabil-
ity in the homoeostatic mechanisms of their body. In particular, premature
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babies have difficulties to maintain a normal body temperature, which has a
tendency to move towards ambient temperature. This is an important issue,
because body temperature below 35.5°C can be fatal. To overcome this, prema-
ture babies have to be placed in incubators, where the external temperature is
heavily regulated [11].

| Parameter | Neonate | Adult |
Respiratory parameters:
Tidal volume (ml/kg) 7 7-10
Dead space (ml/kg) 2.2 2.2
VD:VT ratio 0.3 0.3
Respiratory rate 30-40 15
Compliance (ml/cmH20) 5 100
Resistance (cmH20/1/s) 25 5
Oxygen consumption (ml/kg/min) 7 3
Cardiovascular parameters:
Heart rate (bpm) 80-200 60-110
Mean systolic blood pressure (mmHg) 50-90 110-130
Mean diastolic blood pressure (mmHg) 25-60 65-80

Table 2.1: Comparison between newborn and adult vital parameters. The parameters
that show large contrasts between neonates and adults are highlighted in red. VD:V'T ratio
corresponds to the ratio between ‘dead space’ and ‘tidal volume. The dead space is the air
a person breathes that is not used for gas exchanges, as it never reaches the gas exchange
areas, but only fills respiratory passages where gas exchange does not occur, such as nose, the
pharynx, and trachea. The lung compliance corresponds to the extent to which the lungs will
expand for each unit increase in transpulmonary pressure. [15|Adapted from [17].

2.2 Clinical issues

Apnoea, bradycardia and oxygen desaturations are the clinical events most com-
monly encountered in the neonatal unit [21]. The following section is dedicated
to presenting the main characteristics of these conditions.

Apnoea Apnoea corresponds to periods with no breathing. Apnoea is defined
to be clinically significant when it is longer then 20 seconds, or otherwise, when
it is accompanied by bradycardia, cyanosis (bluish discolouration of the skin
resulting from poor circulation or inadequate oxygenation of the blood), or
pallor [22]. In most neonatology units, apnoea alarms are set to be triggered by
periods of apnoea longer than 15-20 seconds.

There are three categories of apnoea. Central, obstructive or mixed. A
central apnoea occurs when no respiratory effort is present. In contrast, when
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respiratory effort is present, it is called an obstructive apnoea. Finally, a mixed
apnoea occurs when elements of both central and obstructive apnoea are present
[21].

Apnoea of prematurity is the most common type of apnoea in pre-terms. It
consists of the cessation of breathing due to the immaturity of the brainstem
centres that regulate respiration. This cessation of breathing leads particularly
quickly to severe hypoxaemia (abnormally low partial pressure of oxygen in the
blood), which in turn can cause oxygen desaturations and bradycardia episodes
[23].

These early and recurrent occurrences of hypoxaemia during apnoea episodes
are related to the low lung volume of pre-terms, in particular to their low func-
tional residual capacity (FRC) - that is, low oxygen storage capacity (see section
2.1). It has been observed that the lower the FRC after the apnoea, the quicker
the desaturation occurs [24]. This makes sense, since, as seen in section 2.1, the
role of this volume is to stabilise oxygenation during brief periods of apnoea.

Clinical monitoring of apnoea is not reliable. Therefore, the presence of
bradycardia and oxygen desaturation episodes indicate clinically significant ap-
noea episodes [21].

Bradycardia A bradycardia is defined as a decrease in heart rate below a
predetermined threshold, which is usually fixed at 100 beats per minute, or
at 25-30% of decline from baseline. To say that a bradycardia is clinically
significant, it has to last more than 5 seconds [21]. Since heart rate monitoring
is highly reliable and artefacts on ECG easy to pick out, bradycardia is used by
clinicians as a marker for clinically significant episodes of apnoea [21].

Oxygen desaturation Oxygen desaturations are seen on the monitors during
hypoxaemia episodes - decreased partial pressure of oxygen in the blood. One
possible cause of a hypoxaemia episode is the reduction in alveolar ventilation
during periods of apnoea. Therefore decrease of oxygen saturation observed on
the monitor is often used as a tool to diagnose apnoea. In most neonatology
units, low saturation alarms are set at 85 - 90 % for 3-5 seconds [21].

Temporal relationship between apnoea, bradycardia and oxygen de-
saturation The time of occurrence of these physiological events - that is,
apnoea, bradycardia and oxygen desaturation - constitute important clues to
help diagnose the condition of newborns in neonatology units. For example,
apnoea occurring during sleep often indicates that it was caused by apnoea
of prematurity. Some hypoxaemia episodes induced by apnoea are responsible
for bradycardia and desaturations events called “feed-related”, because they are
triggered by oral feeding. They occur very commonly and almost exclusively
in pre-terms during oral feeding, and are due to the brainstem immaturity in
coordinating the acts of sucking, swallowing, and breathing [21]. Some hypoxia
episodes provoke bradycardia and desaturation events that can be seen recur-
rently after feeding. These episodes are usually caused by diaphragmatic fatigue
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[25]. When bradycardia and oxygen desaturations occur in mechanically venti-
lated infants, accompanied with a decrease in lung volume and ventilation, these
episodes are often triggered by body movements [26]. It seems that hypoxaemia
episodes can be triggered by excessive handling [27].

The order in which these clinical events happen is important as well, as it
allows understanding of their cause and their physiology. Figure 2.2 gives the
most common sequences of these events. In the first and most common case, an
episode of apnoea leads to hypo-ventilation, which provokes an oxygen desatu-
ration. This oxygen desaturation triggers a reflex bradycardia [28]. Examples
of causes that generate this sequences are: apnoea of prematurity - cessation
of breathing caused by the immaturity of the brainstem centres that regulate
breathing, sepsis - presence in tissues of harmful bacteria and their toxins, typ-
ically through infection of a wound, and Central Nervous System depression
[28]. Another possible sequence of events implies inhibitory reflexes, which trig-
ger the development of an apnoea and a bradycardia almost simultaneously. In
this case, oxygen desaturation occurs much later in the sequence of events. Con-
sequently, if a sudden bradycardia occurs without any previous desaturation, we
know that inhibitory reflexes are somehow involved [21].

[ area | = [Fommomon ] o [Gawsmo]
s 0 ox 0 2
| DESATURATION |

| BRADYCARDIA |

Figure 2.2: Tllustration of the temporal relationship between apnoea, bradycardia and oxy-
gen desaturations. The most common sequence of event, indicated by the black arrows, is
triggered by an episode of apnoea that leads to hypo-ventilation, which in turn provokes an
oxygen desaturation. A less common, sequence of event is indicated by the white arrows. This
sequence is triggered by inhibitory reflexes, which provoke the development of an apnoea and a
bradycardia almost simultaneously. The bradycardia leads in turn to an oxygen desaturation.
Source: [28].

2.3 Condition monitoring

The state of health of the baby cannot be observed directly, but through phys-
iological measurements collected by probes (see Figure 2.3). However, these
physiological measurements do not reflect faithfully the true state of health of
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the baby. Noise due to probe inaccuracy or artefacts (e.g. probe drop-out) can
alter the measurements. Indeed, most of the alterations of the measurements
that are unrelated to the babies’ state of health are associated with the particu-
lar probes used to record the vital parameters from the baby. An understanding
of the basic design assumptions of the probes used in neonatology units is there-
fore essential, in order to be able to distinguish between the physiological data
that reflect the true state of health of the baby and erroneous data due to the
particular probe used.

This section aims to describe the basic scientific principles of the function-
alities of the most commonly used probes in neonatology units.

Figure 2.3: Probes used to collect vital parameters from an infant in intensive care. 1) ECG,
2) arterial line (connected to blood pressure transducer), 3) pulse oximeter, 4) core tempera-
ture probe (underneath shoulder blades), 5) peripheral temperature probe, 6) transcutaneous
probe. Source: [10].

Electrocardiography (ECG) and Heart Rate Monitoring The heart
rate is obtained from the electro-cardiogram (ECG) unit. An electro-cardiogram
(ECG) consists of two electrodes which are placed on the baby’s chest (see Fig-
ures 2.3 and 2.4b) and that records potential variations induced by the elec-
trical depolarisation of the cardiac muscle. The resulting electrocardiogram is
displayed in figure 2.4a.

The normal electrocardiogram is composed of a P wave, a QRS complex and
a T wave. Each different wave is caused by electrical potentials generated by
different part of the heart muscles during during the contraction process (see
Figure2.4a) [29].

In NICU, only the heart rate is monitored, because the complete ECG can
not be determined with enough precision without extra costs. The heart rate
is computed from the time difference between successive peaks in the measured
electrical signal from the heart (heart rate = 1/RRinterval in Figure 2.4a).

Different kinds of artefacts can occur in the heart rate signal. They can be
due to poor sensor contact, motion, aberrant detection of the ‘I’ wave (that
would shift the signal up) or missing of a ‘R wave’ (that would shift the signal

14



down)[1, 29]. However, these artefacts are usually easy to detect, which makes
heart rate a reliable channel [21].
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Figure 2.4: (a) Ilustration of ECG electrodes. Two electrodes are placed on the patient’s
chest. These electrodes record the potential variations induced by the electrical depolarisa-
tion of the cardiac muscle. (b) Illustration of the normal electrocardiogram resulting from
the ECG recording. The ECG is composed of a P wave, a QRS complex, and a T wave.
caused respectively by potentials generated when the atria depolarize before atrial contrac-
tion begins (P wave), by potentials generated as the depolarization wave spreads through the
ventricles (QRS complex) and potentials generated as the ventricles recover from the state of

depolarization. Source: [29].

Pulse oximeter (Sp0O:2) A pulse oximeter, bound to the baby’s foot (see
figure 2.3), measures the proportion of haemoglobin molecules in the arterial
blood which are loaded with oxygen. The oximeter is composed by an emitting
light diode (LED) and a photo-detector positioned opposite to the LED. The
oximeter relies on the fact that deoxygenated haemoglobin absorbs more light in
the red band (at 600-750nm), whereas oxygenated haemoglobin absorbs more
light in the infra-red band (850-1000nm; see Figure 2.5). The ratio of the
absorbency of red and infra-red light sent through a tissue relates to the ratio
of oxygenated relative to deoxygenated haemoglobin [1].

In principle, the delay between a fall in the oxygen level and its display
on the monitor should be approximately 4 seconds - the time it takes for the
deoxygenated blood to travel from the lung to the sensor site, here the toe.
In practise however, pulse oximeters average their values over a short period of
time, varying from 2 to 15 seconds, in order to smooth the output. A downside of
this is that it limits the temporal resolution, so that fast changes in oxygen levels
aren’t observed. Moreover, it makes it difficult to distinguish real desaturations
from artefactual drops in SPO; readings during periods of body movements
(handling, feeding, etc.) [1].
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A certain number of artefacts can occur with the pulse oximeter. If the
photo-detector is not placed exactly opposite the LED, it will not be sufficiently
protected from the ambient light, so that light circumventing the tissue will
cause erroneous high or low values. Alternatively, if the oximeter is applied
with too much pressure, it can reduce the signal-to-noise ratio and therefore
weaken the precision of the S POy measurements [1].

If we are faced with an episode of intermittent body movement (e.g. dur-
ing feeding, handling, etc.), then this can result in artefactual measurements,
as pulse oximeters are very sensitive to sudden changes in background signal.
Because SPO; readings are easily subject to artefacts, it is very important to
be able to distinguish between artefactual and true measurements. In NICU,
this is often achieved by comparing the pulse rate from the oximeter with the
heart rate from an ECG monitor, which should be identical if the oximeter is
not subject to artefacts [30]. As artefacts due to movements or loose leads are
easy to detect for the heart rate measurements, they are in general more reliable
than oxygen saturation measurements, and if the two channels differ, the SPO,
values will in general be the wrong ones [21].

The oximeter is highly used in NICU, because it allows efficient detection
of hypoxaemia episodes (defined as SPO2 < 80% ). However, oximeters are
responsible for a very high proportion of false alarms in neonatology units.
Reducing false alarms is a challenging problem, as such reduction should not
be accompanied by reduction of true positives. Table 2.2 displays the most
commonly used NICU alarm limits.

IR LED Scope

¢ B Red LED Scope

Absorption

Figure 2.5: Absorbency of oxygenated and deoxygenated haemoglobin. Maximal light ab-
sorption of deoxygenated haemoglobin occurs between 600 and 750 nm (red band), whereas
maximal absorption of oxygenated haemoglobin occurs between 850 an 1000 nm (infra-red
band). The ratio of oxygenated relative to deoxygenated haemoglobin can be determined
from the ratio of the absorbency of red and infra-red light sent through a tissue. Adapted
from [31].
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Other probes The blood pressure sensor consists of a catheter with a
pressure sensor introduced in the artery to measure systolic and diastolic blood
pressure (respectively maximal and minimal blood pressure) continuously [32].
The blood pressure probe can also be used to measure the heart rate (instead
of using the ECG) [10]. When a blood sample is taken from the baby, a saline
pump acts against the sensor all along the operation, leading to an artefactual
ramp in the blood pressure readings. Moreover, during this event, the blood
from the arterial line containing the pressure sensor will be deviated. Therefore,
if the heart rate is measured using the blood pressure probe, no measurements
can be observed on the heart rate channel during a blood sampling (see section
3.2.2 below) [10].

A transcutaneous probe, attached to the baby’s skin on the chest, moni-
tors the partial pressures of oxygen (‘PTcO>’) and carbon dioxide (‘PTcCO-’)
in the bloodstream.

The PTcO, sensor consist of a fuel cell. Normally, a fuel cell used as a
source of electricity provides as much electrical current as possible as long as
the amount of fuel and oxygen available is sufficient. However, a limitation in
the amount of available oxygen reduces the generated current. In the fuel cell
used here, oxygen is the limiting factor, so that the electrical current produced
by this fuel cell is proportional to the oxygen available. Electrodes in the fuel
cell must be heated to improve oxygen diffusion, which takes 10-15 minutes, and
have to be recalibrated every 4-8 hours [1].

The PTc¢CO4 sensor consists of a pH-sensing electrode and a reference elec-
trode, covered by a hydrophobic CO2-permeable membrane from which they
are separated by a electrolyte solution. The C'O, diffusion across the membrane
causes a change in the pH of the electrolyte solution, which is sensed by the
pH-sensing electrode [1]. As for PTcOsprobes, they have to be recalibrated
regularly. [1]

The core temperature and peripheral temperature are measured by two tem-
perature probes, one placed under the baby’s back (or under the chest if the
baby is prone) and the other attached to a foot [10].

Environmental measurements (ambient temperature and humidity) are
collected directly from the incubator [10].
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| | Lower limit | Upper limit |

Heart rate (1/min) 80 220
Respiratory rate - apnoea duration disabled disabled
SPO5 in pre-term neonates

receiving oxygen (%) 85 95
SPO5 in pre-term not receiving Os,

or in term infants (%) 85 disabled
PtOs in pre-term neonates

receiving oxygen (kPa) 6.0 10.7¢
PtCO; (kPa) 6.0 7.3

Table 2.2: Alarm Limit settings for most NICU Monitors. This table shows that the detec-
tion systems used in NICU are very basic, with the alarm being triggered when a particular
signal goes above or below preset thresholds. The respiratory rate alarm is often disabled,
as an apnoea is not considered as dangerous for the baby as long as the blood gases nor the
heart rate are affected. Adapted from [1].
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Chapter 3

Probabilistic model:
background

The goal of the system built by my host laboratory in the context of the ‘Con-
dition Monitoring in Premature Babies’ project is to infer, from the vital pa-
rameters recorded from the babies (i.e. heart rate), the underlying cause of the
observations - that is, the combination of the current condition of the baby (e.g.
healthy, bradycardia) and the artefacts occurring to the probes (e.g. probe
drop-outs) [8]. To do this, each condition and artefact can be thought of as
a discrete cause - or ‘factor’ - that gives rise to a particular dynamics in the
recorded channels such as heart rate, blood pressure and oxygen saturation. In
the first step, a generative model is built, that describes how each potential
combination of factors generates the data (see Figure 3.1a for an illustration).
A probabilistic model is chosen, as it has the advantages of allowing us to deal
with noise and imperfect knowledge of the world [9]. In the context of condition
monitoring, a probabilistic model is particularly useful, as noise due to probe
inaccuracy often alters the measurements, and the readings of the vital param-
eters recorded from the probes reflect only imperfectly the true physiological
state of the pre-term babies. Specifically, a time-series model is used here, as
the data - i.e. the vital parameters of the babies - consists of variables that
evolve in time. After having learnt the model parameters from the data, the
model is used to infer the combination of physiological and artefactual factors
respousible for the observations at each timestep (see Figure 3.1b for an illus-
tration). The final goal is to be able to fit this system with an alarm which can
be triggered whenever the system detects a clinically significant physiological
problem occurring to the baby.

This chapter aims at describing the system built by my host laboratory in the
context of the ‘Condition Monitoring in Premature Babies’ project. Section 3.1
gives an overview of probabilistic time-series modelling. Section 3.2 is dedicated
to describing the system itself.
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Figure 3.1: Simplified illustration of the FSLDS model. (a) Diagram of the construction
of the model. A certain number of discrete factors - corresponding to physiological (e.g.
bradycardia) or artefactual (e.g blood sample) events - give rise to a specific kind of dynamic
in the measurements recorded from the baby and seen on the monitor. (b) Illustration of the
process of inferring the underlying factors - artefactual or physiological - that are responsible

for the sequence of measurements observed on the monitor.

3.1 Overview on Time Series Modelling

The data used in this project describes the state of the baby as it evolves in time.
In the language of machine learning, it is ‘sequential’. Time series data - where
we observe the evolution of a variable through time - represent a common form of
real-world sequential data. Other examples of time-series data include rainfall or
temperature measurements on successive days, or even recorded speech. Specific
kinds of datasets need specific kinds of models . This section is dedicated to
introducing probabilistic models for sequential data [33, 34].

3.1.1 Auto-regressive model

Auto-regressive (AR) process constitute a useful method to model time series
data [35]. An AR(p) process assumes that the current observation (x41) cor-
responds to a linear function of the observations at p previous time steps with
additive Gaussian noise. Such a process is described by the following equation
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recurrence relation:

P
Tep1 = Zaixtfl + wy (3.1)
i=1
where a < 1 and w; ~ N(0,0?) is a Gaussian random variable with 0 mean
and variance o2. In general, we can find the steady state solutions to an AR(p)
process using the Yule-Walker equations (see section 5.1.2 below).
An AR(p) process can be rewritten in a vector form, replacing the sum in
the recurrence relation with a matrix multiplication. For example the AR(2)
recurrence would be written as:

Tt . a; a2 Tt—1 + 1 0 Wi
Tt—1 o 1 0 T2 0 0 W1
In general, an AR(p) process can be written in a vector AR(1) process with
a p-dimensional state vector.

Finally, the state is not limited to being a scalar value. It can be a vector.
In this case, the original AR(p) recurrence relation can be rewritten as:

P
Xpt1 = ZAz‘(Xt—i) +Gwy, (3.2)

i=1
where A and B are square matrices. For more details about AR process, see
[34, 36].

/ \_/ N _/ N

X(t-2) X(t-1) X)) X(@+1) X(t+2)

Figure 3.2: Graphical illustration of an AR(2) process. The value of the variable at each
timestep, x¢, is a linear combination of the values of the variable at the two previous timesteps,
z¢—1 and x¢_2. Source: [36].

3.1.2 Linear Dynamical System

In many datasets, the observed variables do not correspond directly to the
variables we are interested in. For instance, if our dataset corresponds to a
heart rate recorded using an electro-cardiogram (ECG), the values observed on
the monitor can be different to the real heart rate, because they can have been
altered by noise (for instance due to the probe inaccuracy), or by artefacts (for
instance due to the patient movements). Therefore, many models are composed
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by ‘hidden’ or ‘latent’ variables, which are essential for the model description but
never observed (in the ECG example above, the hidden variable would be the
true heart rate) and by ‘observed’ variables generated by the ‘hidden’ variables
(in the ECG example above, the observed variable would be the heart rate read
on the monitor) [9].

In a linear dynamical system (LDS), each latent variable z,, is a linear func-
tion of the latent variable in the previous state z,,_1. Specifically, the z variables
are governed by an AR(1) process (equation 3.3), with each latent variable gen-
erating an observed variable (equation 3.4).

Zni1 = AZy + Wy, (3.3)
Xp = CZy + vy, (3.4)
z1 = pyt+u, (3.5)

where the noise terms are described by the following Gaussian distributions:

w~ N(w;0,T), (3.6)
v~N(v;0,X), (3.7)
u~ N(u;0, Py). (3.8)

The graphical representation of this process is illustrated in Figure 3.3 [33].
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Figure 3.3: Graphical illustration of a state-space model for time series. Each latent variable
zp is conditioned on the value of the latent variable in the previous state z,_1, via the
transition matrix A (equation 3.3). At each timestep, the observed variable x,, is dependent
on the latent state at that time z,, via the emission matrix C' (equation 3.4). Source: [36].
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3.2 The Factorial Switching Linear Dynamical Sys-
tem

In some cases, time-series data do not follow a single type of regime, but jump
abruptly from one regime to another. In this case, while a single Linear Dynami-
cal System (LDS) may not provide a good description of the data, a combination
of different LDS models, namely a ‘switching linear dynamical system’ (SLDS),
can do better [9]. In an SLDS model, a discrete latent variable s; indicates which
of the LDS sub-models is most appropriate to describe the observations at any
given time. Consequently, for a given switch setting (i.e. conditioned on s;),
the SLDS becomes equivalent to the corresponding LDS for that switch setting
[10]. Switching linear dynamical systems, (SLDS) have been used previously in
various applications such as modelling human motion [37] or creatinine levels in
patients with kidney transplants [38].

The data used in this project are well suited to an FSLDS model. Different
physiological conditions of the baby (e.g. bradycardia), and artefacts that can
alter the recordings (e.g. when the incubator door is opened) are represented
by discrete factors. Collectively, these factors determine which switch setting is
active at any given time. In turn, the switch setting determines the time-series
dynamics of the observed data. This model, with multiple discrete factors de-
termining the switch setting, represents a particular case of the SLDS model
described above: a factorial SLDS (FSLDS). Factorial SLDS have been used
previously in applications such as speech recognition [39] and musical transcrip-
tion [40].

3.2.1 Model description

In an FSLDS model, different discrete factors determine together the dynamic
by selecting between different LDS (see Figure 3.4 for schematic). In this type
of model :

° ft(m) is a discrete ‘factor’ variable corresponding to a physiological or arte-
factual event happening to the baby at time t. For example: ‘bradycardia’,
‘blood sample’ or ‘probe drop-out’.

e s; is the switch variable, which is determined by the combination of factors
that are active at time ¢ . For example: ‘Blood sample AND Transcu-
taneous probe recalibration’ or *Temperature probe disconnection AND
Transcutaneous probe recalibration’. Each switch settings corresponds to
a particular LDS.

e 1, is the hidden continuous state at time t. This contains estimates of the
true state of health of the baby and on the levels of artefactual processes.

e y1. correspond to the observations, that is, the monitored data.

In the non factorial SLDS, the switch variable (s;) selects the dynamics for a
particular combination of factor settings (equations 3.9 & 3.10), while the hidden
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state (z;) and switch settings (s;) determine the dynamics of the observed data
(yt), as follows:

(s¢)

Xy~ ./\/'(A(sdxt,l + d(Sc)7Q ) 5 (39)

vi ~ N(CEOx REY), (3.10)

In these equations, x; and y; are sampled from normal distributions with
mean and covariance dependent on the switch setting s;. For each setting of s,
the predictive distribution of x; can be obtained using standard Kalman filter
equations [10].

The factorial case (FSLDS model) is an extension of the SLDS, where a set
of M discrete ‘factor’ variables, ft(l)... ft(M), determine the state of the switch
variable at a given time (s;). The m'" factor, f(™ can take on L(™) different
values. The state space for the switch variable is dependent on the combination
of factor variables, according to:

As such, the switch variable s; can take K = H L(m different values. The
factors are independent of each other, and depend only on their value at the
previous time step, so that:

M
p(selsi-1) H p(ft(m)|ft(ﬁll)>
m=1

Factor transition probabilities can be estimated from labelled training data
according to the relation:

m) m Mg +C
£ =i = e
( ) Zk 1 ik + ¢
where:

e n;; represents the number of transitions from factor setting i to setting j
observed in the training data.

e The constant term ( is added to prevent the transition probabilities from
being too small. (Source: [10]).

3.2.2 Factors

Specific patterns of physiological measurements are associated with different
conditions, so that the recognition of such patterns can be used to infer the
baby’s state of health. However, how described above, the observations rely
not only on physiological factors, but also, on artefactual factors. When an
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Figure 3.4: TFrom non factorial SLDS to factorial SLDS. (a) Graphical illustration of a
switching linear dynamical system. The hidden switching variable s; selects the dynamics
at time ¢. Given a particular switch setting, the model is equivalent to a linear dynamical
system (LDS) (See section 3.1.2). The observation variable y; depends on the value of the
hidden state variable x; and the switching variable s; at the corresponding time step. The
hidden variable x; is dependent on the value of the hidden variable in the previous timestep
z¢—1 and the value of the corresponding switch setting s;, The switch variable s; depends
on the value of the switch variable at the previous timestep s;—1. (b) Factorial switching
linear dynamical system, illustrating the clinical significance of each of the different model
variables. The switching variable s; is now factorised into two factors fland f2, representing
respectively an artefactual and a physiological factor. Adapted from: [10].

artefact occurs, this leads to changes in the observed data which are not caused
by changes in the baby’s physiology. The main physiological and artefactual
factors considered in this system are explained in the two following paragraphs
and illustrated in Figure 3.5.

Physiological factors: Bradycardia: Bradycardia is a ‘slower than normal’
heart rate. The corresponding pattern can be seen in figure 3.5a. Brief episodes
of bradycardia happen often in premature babies, and can have many causes
(see section 2.2).

Artefactual factors:

e Incubator open/Handling (I0): The opening of the incubator leads to a
drop in incubator humidity. The handling that often accompanies the
opening of the incubator causes increased physiological variations. An
example of such a pattern can be seen in Figure 3.5b. The drop in humidity
at 800 seconds corresponds to the time when the incubator is opened, and
the following episode of heart rate disturbance is related to the baby’s
handling.

e Blood sample (BS): Every few hours, the hospital staff take a blood sam-
ple (BS) from the baby. This implies that the blood from the arterial line
containing the pressure sensor will be deviated. Therefore, no measure-
ments can be observed on the heart rate channel during this event (if the
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heart rate was measured using the blood pressure probe, rather than the
ECG; see section 2.3). Moreover, a saline pump acts against the sensor all
along the operation, leading to an artefactual ramp in the blood pressure
measurements (see Figure 3.5¢).

e Temperature probe disconnection (TPD): This artefact causes the core
temperature measurement to decrease to ambient temperature, which usu-
ally corresponds to the incubator temperature, but can be lower if the
probe is near to the portals, as seen in Figure 3.5d, where the solid line
corresponds to the core temperature, and the dashed line corresponds to
the incubator temperature.

200
P .
180, 180, = 50PN [ et Vo V om o
= Lovessy, 5 <5 \/ ] Uik
AT 10 v IE V’ !
10 [ AN 0 ||
I | 50 . .
£ | | T \‘ ‘ %
%10 | 100 | £ sOF N\~
w0 L a) | Ez =« o o2
\\ {J < —
60 \ 60) 1Y 60
0 20 40_60 80 100 0 50 100 150 0 200 400 600 800 1000 1200 1400 1600
Time () Time (s) Time (s)
(a) Bradycardia (b) Incubator open
60 -
A
E 50 Dia FJ(J
E e g
@ & L
2 40 A ) o
@ I
- ;. 40-
R 58
& g5 % I
20 ‘ : : - ‘ ‘ SES 4 ‘ : ‘ ‘
0 50 100 150 200 250 300 cE=
Time (s) 0 200 400 600 800 1000 1200
Time (s)
(c) Blood sample (d) Temperature probe disconnection

Figure 3.5: Some physiological and artefactual factors that can affect the measurements.
(a) Example heart rate readings during a bradycardia event, labelled by a sharp drop in the
heart rate (to <100 bpm). (b) Example humidity level readings during incubator opening.
Incubator opening leads to a drop in the humidity level (at ~ 800s). (c¢) Example blood
pressure readings during a blood sampling event. The blood sampling leads to a ramp in the
blood pressure measurements (from ~100 - 230s). (d) Example temperature readings during
a temperature probe detachment event, leading to a decay of the temperature measurements
(from ~500-900s). Source: [10].

3.2.3 Novel condition

The list of factors given above is not exhaustive: a number of other factors, in-
cluding sepsis, drugs and neurological conditions, likely influence the observed
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data. However, modelling all potential dynamical regimes is infeasible. There-
fore, an extra factor was added (the ‘X-factor’), to indicate when neither the
‘normal’ regime or any of the known factors could provide a good description
of the data (effectively this corresponded to a setting of “none of the above”).
That is, the X-factor describes abnormal dynamics that cannot be explained by
the model [10].

The benefits of adding the X-factor are twofold. Firstly, it helps us to identify
when we have to deal with a new, unknown regime, which could be potentially
dangerous for the premature baby. Secondly, by indicating which sections of
data are not well described by the model, it can help to inform us how the
model might need to be changed, in order to better fit these sections of data.
For example, when a regime is classified as “none of the above”, it could mean
that extra factors should be added.

We now explain, using a static ‘toy’ model as an example, how the X-factor
is added. In this model one setting of the switch variable s corresponds to the
“normal” mode where the baby’s physiology is stable without artefactual factors
being active. Other settings of the switch variable correspond to abnormal
dynamics, that may result from specific pathologies or artefactual factors being
active. Assuming that s = 1 corresponds to the “normal” mode, and s =
2,3, ..., K to the other known modes, a new mode can be added, indexed by
s = %, to account for unexpected data points. To do this, we can choose a
Gaussian distribution with mean equal to the “normal” mode, but with larger
variance:,

2t = ¢x®) p) =M (3.11)

Here ¢ > 1 represents how far outside the normal range new data points have
to fall before they are considered as “not normal”. The Figure 3.6 (a) shows
the likelihood functions for a normal class (solid line) and for the corresponding
X-factor (dashed line). We clearly see that the X-factor has the same mean,
but a higher variance. This implies that data points which lie far away from
the normal regime are more likely to be considered as belonging to the X-factor
regime. In other words, the high variance regime wins when the normal model
can not, well explain the observations.

Figure 3.6 (b) illustrates how X-factor could be used in conjunction with
known factors (dashed line). In this example, the high variance model, or X-
factor wins when neither the normal mode nor the known modes are able to
well explain the observations.

Now we would like to generalize this ‘static’ example, to the case where the
dynamics of the system evolve in time. The conditional distributions for the hid-
den and observed continuous states were described previously in equations 3.9
and3.10. For the ‘normal’ regime, with switch setting s; = 1, these distributions
are written as,

x; ~ N(AG x4 dE&=D Q=) (3.12)
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Figure 3.6: (a) Class conditional likelihoods in a static 1D ‘toy’ model, for the normal
mode (solid) and the X-factor (dashed). Data points that are far away from the normal range
are more likely under the X-factor regime. (b) Likelihoods of the normal class and X-factor
alongside other known, abnormal regimes (dotted). The X-factor has the highest likelihood
for regions that are far away from any known modes, as well as far away from the normal

range. Source: [10].

yi ~ N(CE=Yx, RE=D)Y, (3.13)

Similar to the static case, the new X-factor mode is obtained by inflating the
noise covariance of the normal mode dynamics by a factor of £ > 1, as follows:

Q™ =¢Q", (3.14)
Again, as with our static example, all of the other parameters for the X-factor
are identical to the normal mode:

{A(*)7C(*)7R(*)7d(*)} _ {A(1)7C(1)7R(1)7d(1)}. (3.15)

3.2.4 LDS model selection

To use the proposed FSLDS model to analyse clinical data, an LDS system must
be specified for each setting of the factors (i.e. for each switch setting). First
the ‘type’ of LDS model must be chosen: for example, for the AR(p) process
described previously, we must select the ‘order’ of the regression (the value of
‘p’). Secondly the model parameters must be learned from the data.

In general, these tasks are made easier if we have access to labelled data. In
this project, obtaining labelled data is facilitated by the fact that the discrete
factors have a ‘real-world’ interpretation: they correspond to known physiolog-
ical and artefactual states. Therefore, domain knowledge (i.e. medical knowl-
edge), can be used to label which factors are likely associated with different
sections of data. This, in turn, allows us to know which LDS model to try and
fit to each section of physiological data.

For example, in the ‘normal’ case (i.e. when the baby is stable and no arte-
factual factors are active) observation channels (heart rate/blood pressure etc.)
generally follow a specific set of dynamics. Therefore, after identifying (using
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annotations obtained from a clinical expert) which sections of data correspond
to the ‘normal case’ we can then attempt to find an LDS model that best fits
these sections of data.

Normal dynamics

We describe how the LDS model was chosen for the ‘normal’ condition. For
concreteness we focus here on the heart-rate measurements, although a similar
approach was used to construct the LDS models for all of the observation chan-
nels. For more details about the construction of the other models, see [10] and
[41].

Initially, the training data for normal dynamics was labelled manually, using
the responses of clinical experts, which was very time-consuming and therefore,
not efficient. Subsequent work performed by a Masters student in my host
laboratory lab permitted automatic labelling of ‘normal’ data segments [42].

Figure 3.7 shows examples of heart rate measurements in the ‘normal’ con-
dition. We see that such measurements follow a recognizable pattern, charac-
terized by a slowly drifting baseline around which the measurements fluctuate.
Therefore, a model with two hidden components can be used consisting of a
signal variable (x;), which fluctuates around a slowly drifting baseline variable
(bt). The dynamics governing the data are fitted using an AR(p = 1) process
for the signal variable, and an AR(p = 2) process for the baseline [10]. This is
described mathematically as follows,

P1

P2
2p—b ~ N a(xik —bex)m), b~ N Bebiok,m2)  (3.16)

k=1 k=1

where 77 and 72 are noise variances. These dynamics can be represented in
state-space form as:

Ty oy ay fr—oay Po— o
| @ 1 0 o 0
Tt = bt y A = 0 0 61 62 y (317)
b, 0 0 1 0
m+n 0 0 0
0 0O 0 O
Q=1 o om0 (3.18)
0 0O 0 O

Abnormal dynamics

In the following, we describe LDS systems that were developed to describe
‘abnormal’ dynamics. We focus here on factors related to artefactual changes.
For more details about the construction of the other models, see [10] and [41].
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Figure 3.7: Example of heart rate measurements when the baby is in a healthy state. These
measurements are characterized by a slowly drifting baseline around which the measurements
fluctuate. Source: [10].

Blood sampling: When a blood sample is taken from the baby, a saline pump
acting against the sensor produces an artefactual ramp in the blood pressure
measurements (see Figure 3.8). The slope of the ramp depends on the rate at
which saline is pumped, which is not the same every time.

To describe the pattern shown in figure 3.8, we construct an LDS model
in which artefactual measurements a; evolve according to a gradient which is
subject to a random walk [10]:

ag NN(at,1+da+ct,1,a§), Ct N./V'(thl,of) (319)
In these expressions, every term is scalar and:
e d, is a positive constant specifying the average drift.

e ¢; corresponds to the gradient of the random walk, which modifies the
average drift d,.

° ag is the variance of the Gaussian noise on a;. This accounts for differences
in slope of blood samples taken at different times.

° af is the variance of the Gaussian noise on ¢;. This accounts for differences
in slope within a single blood sample operations.

In a state-space representation, these dynamics can be written as:

dg 1 1
xt:[if]7 dBS:|:O:|7 ABS:|:O 1:|7
2.0
QBS—[UOa 02},

- 1 0 _ | TSysBP 0
CBS_[l 0}7 RBS_[ 0 TDmBP]'
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A simple way to check if the model is able to explain the data is to sample
from it and check by eye whether its dynamics is similar to a sequence of data
which is known to follow the same regime. This is done in Figure 3.8 (b),
where a sequence of a blood sample measurements has been generated given the
model, and can be visually compared to the real data sequence following the
same regime shown in Figure 3.8 (a). We see that the real sequence and the
sequence drawn from the models show similar behaviour.
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Figure 3.8: Comparison between (a) the blood pressure dynamic generated by a real blood
sample episode and (b) the dynamic generated by a sample drawn from the model, with same
initial value at t = 1 and the switch variable set at ‘blood sample’ being active. We see that
the sampled sequence of blood sampling shows the same characteristics of dynamic than the
real sequence of blood sampling. This confirms that the model has been adequately fitted.
Source: [10].

Drop-outs: A probe drop-out causes the observations of the concerned chan-
nel(s) to go to zero, as shown in figure 3.9. The resulting model is the same
as the “normal” model, except that the appropriate entry of the matrix C in
equation 3.13 are set to zero.
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Figure 3.9: Example of probe drop-out. A probe drop-out occurs during the time sequence
highlighted by the red square. As a result, no more measurements can be read in the channels
TcPCO2 and TcPO3. Adapted from [10].

Temperature probe disconnection: When a temperature probe becomes
disconnected, we observe artefactual measurements which indicate that the core
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temperature measurement decreases to the ambient temperature. The slope
of the decay should be the same for each disconnection. As the same type
of probe is used for each baby, they all share the same thermal inertia (i.e.
they all change temperature at the same rate). This constancy in the observed
temperature changes can be used to differentiate between the dynamics caused
by this artefact and the dynamics due to the baby getting colder. Looking at
examples of such a disconnection (e.g. Figure 3.5d above), permits us to find a
good model. In this case, an exponential decay, equivalent to an AR(1) process
is used and learnt from the data., using the Yule-Walker equations.

Opening of the incubator: Temperature and humidity in incubators are
closely regulated, which means that their variance is kept very low. The opening
of the incubator leads to a significant drop in incubator humidity, as shown in
figure 3.5b . An AR(1) decay constitutes a good model for these drops in
humidity. The fact that the data cannot drop below the ambient humidity and
temperature of the room must also be take into account in the model.

When a incubator is open, this usually means that the baby is being ma-
nipulated, which leads to an increase of the heart rate variance, (Figure 3.5b
above), as well as a faint decrease in peripheral temperature, due to the influx of
room air in the incubator. The resultant dynamic is the same as during normal
dynamics, but with larger variance.

3.2.5 Factor interaction

We need to consider how different factors combine to condition the switch set-
tings. If there are a large number of factors, learning the model parameters
associated with every single combination of factors could require a large quan-
tity of data. However, with multiple measurements channels, it is possible for
some factors to ‘overwrite’ others. In other words, when two factors are active
at the same time, the effects of both factors on a particular channel may often
be the same as if only one of the factors were active. An example of such a case
is shown in figure 3.10, where ‘Bradycardia’ and ‘Blood sample’ occur at the
same time. In this case, the resulting observation on the monitor is the same as
if only the blood sample were occurring, because no measurements of the ‘heart
rate’ can be taken when a blood sample occurs (see sections 2.3 and 3.2.2).

Because of this ‘overwriting’ effect, examples of every combination of factors
do not need to be found in order to train the full factorial model. The Condition
Monitoring in Premature Babies project takes advantage of this fact, by training
the model with individual factors separately, which are then combined together
using simple reasoning about which channels should be overwritten for each
combination of factors [10].
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Neart rate Systolic 8P Diastolic B Caretemp.

Figure 3.10: Illustration of factor interactions. In the case where both the bradycardia and

the blood sample factors are being active at the same time, the resulting observations are
similar to the case where only the blood sample factor is being active. This is because when
the blood sample factor is being active, as a result, no measurements can be observed on the
heart rate channel. Source: [43].

3.2.6 Learning

Given the factors associated with a particular data section, the parameter values
for the corresponding LDS model had to be learned from the data. The learning
algorithms used for the different LDS models differed, depending on their struc-
ture. For example, for heart rate dynamics in the normal condition, parameters
were learned using EM updates, to maximize the log-likelihood. Because the
EM algorithm is not guaranteed to find a global maximum of the log-likelihood,
parameters were initialized using a heuristic procedure, so that they were ini-
tially close to their ‘optimum’ values that were required to fit the data. For
more details of the learning algorithms used to train each of the LDS models
see [10].

In common with the parameters of the LDS models for known factors, the
novelty threshold for the X-factor (£) was directly learned from the data. How-
ever, unlike the other LDS models, the sections of the data that corresponded
to the X-factor could not be labelled a priori. Therefore, this parameter had
to be learned in a semi-supervised fashion, with only parts of the data labelled
[10, 41].

3.2.7 Inference

The purpose of the system was to infer the baby’s state of health at each time
step. For our model this corresponds to inferring the hidden state of the baby
at a time ¢ (s, x), given the data that has been observed up to this point (y1.;):
p(st,%x¢ | y1:t). Unfortunately inference in an FSLDS is formally intractable, be-
cause it scales exponentially with time [9, 10]. Therefore, approximate methods
had to be used to perform inference in this model.
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Why inference is intractable At timestep 1, the posterior distribution,
p(s1,%1 | y1) = p(x1 | y1,51)p(s1]y1) is given by an indexed set of Gaussians
[9]. The posterior distribution at the next timestep, p(s¢, X¢ | y1:¢) is obtained
by taking a weighted sum over the switching states s;—1, giving the recurrence
relation:

P(St+17Xt+1 | Y1:t+1) = Z/ p(St-i-laXt+1|5taxt7y1:t+1)p(Staxt | YI:t)

sy UXt
(3.20)

It follows that if S is the number of switch settings, then the p(s;, %t | y1.t)

is described by a mixture of S‘~! Gaussian at time ¢. Clearly, as the number of
Gaussians required to parametrize the posterior distribution grows exponentially

with time, exact inference is intractable [9].

Gaussian Sum approximation In the project Condition Monitoring in Pre-
mature Babies, in order to address this problem, a method called Gaussian Sum
approximation is used. The main steps of this methods are presented as follows.

First, p(st, Xt | y1.4) can be broken into a continuous and a discrete part,
respectively (equation 3.21) [9]:

p(st,X¢ | y1:6) = p(Xe | Y1, 56)p(se|yi:e) (3.21)

At each time step, an approximation of p(x¢ | y1.t,t) is maintained as a
Gaussian mixture of I components, where I < S*~!. The computation of the
Kalman updates for the next time step will give p(X¢+1 | Y1:t+1, St+1) as a Gaus-
sian mixture of S x I components, due to the summation over all of the switch
settings s;. These S x I components can be collapsed back into I components,
for example by matching means and variances of the distributions for each set-
ting of s;. An illustration of the Gaussian sum approximation is given in Figure
3.11.
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Figure 3.11: Gaussian Sum Approximation. The leftmost column represents the previous
Gaussian mixture approximation of p(x¢ | y1:t, s¢) for two states S = 2 (red and blue) and
three mixture components I = 3. The mixture weight is depicted by the area of each oval.
Each component of the mixture generates two new components through each of the S = 2
dynamic systems, with the colour of the arrow indicating which dynamic system is used.
Therefore, at the next timestep, the joint approximation of p(x¢+1 | ¥y1:t+1,S¢t+1) contains
S x I components (middle column). To keep the representation computationally tractable, the
mixture of Gaussians for each state s¢41 is collapsed back to I components. This means that
each coloured state needs to be approximated by a smaller I component mixture of Gaussians.
One of the many ways to do it is to simply ignore the lowest weight components (see right
column). Source: [9].
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Chapter 4

System evaluation

When a segment of physiological data is classified as belonging to the X-factor, it
means that this particular segment is neither classified by the normal regime, nor
by any of the known abnormal regimes (see section 3.2.3). As it is only possible
to model a limited number of factors, this has the advantage of ensuring that
any novel regime is picked up by the system, which is particularly useful in a
clinical context, for example in order to raise an alarm [10, 41].

Another benefit of the X-factor, is that it highlights segments of physio-
logical data that cannot be explained by the factors explicitly included in the
system, highlighting the existence of structure in the data that is lacking in the
model. Further analysis of the segments classified by the X-factor would there-
fore provide additional knowledge about the different regimes that it claims.
This would give clues of how to ameliorate the system, notably by flagging up
existing factor models that could be improved or new factors that could be
added to the system. My contribution to this project consists in conducting
this investigation.

Experiments undertaken on the X-factor within the framework of the baby
monitoring project have already shown that a significant number of non-normal
regimes in the data have not yet been formally analysed. Notably, it has been ob-
served that deep oxygen desaturations are an abnormal regime that is presently
claimed by the X-factor, but constitute a clear and frequent pattern and could
be usefully learnt as a new factor in the model. Oxygen desaturation seems to
be often followed by a bradycardia, which is explained by the fact that the lack
of oxygen causing the bradycardia slows the heart pulse. This suggest that the
bradycardia factor and the new desaturation factor could be made mathemati-
cally dependent [10].

Finally, it has been seen that bradycardia are frequently linked with a com-
pensatory rise in blood pressure, suggesting that an additional factor, modelling
the blood pressure could be added and made dependent on the bradycardia
factor. Other common patterns have been observed that could be added as
new factors to the system, such as hypotension, hypertension, hypothermia and
pyrexia, as well as more serious conditions, such as pneumothorax intraventric-
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ular haemorrhage [10].

The investigation of physiological data segments highlighted by the X-factor
could have the potential benefit to quantify the recurrence and verify the clinical
significance of these different regimes, confirming or invalidating the relevance
of the addition of these factors to the system. Thus, if a new pattern was high-
lighted by the system that appeared regularly, it would suggest that this pattern
should be modelled and learnt by the system as a new factor. Alternatively, it
could reveal that an existing factor was being regularly missed by the system
and claimed instead by the X-factor, suggesting that the current model for this
factor was not accurate enough.

Medical knowledge is essential to investigate the clinical significance of physi-
ological data segments. Therefore, the study is based on a collaboration between
medical experts and the machine learning lab, where the physiological data seg-
ments are selected by the X-factor to be submitted to clinical experts for medical
interpretation.

A technical part of my contribution to the project consisted in the develop-
ment of communication tools between the neonatology unit of the hospital and
the machine learning lab, in order to gather clinical interpretations of segments
highlighted by the X-factor. I describe this technical contribution in section
1. In section 2, I present the results of the analysis and interpretation of these
feedbacks. This results are then discussed in section 3.

4.1 Methods

In this section, I describe the communication tools set up in order to gather
clinical interpretations of the physiological data segments flagged up by the
X-factor.

4.1.1 Automatic process

In order to obtain clinical feedback on physiological data segments highlighted
by the X-factor, an evaluation system must be set up. This system should
comprise the following stages. Firstly, physiological data from premature babies
in the neonatology unit should be obtained. Secondly, the system should be used
to classify the data segments which are due to the X-factor. These data segments
should then be submitted to the clinical staff for medical interpretation. Finally,
the interpretations of the data given by the clinical staff should be collected for
analysis in a way that is as easy to interpret as possible.

The establishment of such an evaluation system poses several practical prob-
lems. First of all, the data manipulated concern real people protected by the
medical privacy. This implies that the information going out of the hospital
must be anonymized, so that it would be impossible for anyone working with
the anonymized informations to know which data correspond to which person.
Therefore, we work with identification numbers (IDs), and the web-based inter-
face is password protected. Secondly, clinical data if the clinical experts look
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at the output segments of physiological data one or more days after it has been
recorded, it will likely be impossible for them to remember what happened, and
thus, to give precise medical comments. In order to overcome this problem, an
automatic procedure has been set up, consisting of the following steps:

1. Data feed specification

(a) A simple web interface, allowing the medical staff to:
e Create a list of babies to collect data on. This should permit for
the addition and deletion of baby ID entries.
e Specify when to collect this data.
e Specify the number of hours of data to be collected.
(b) Once the changes made by the user have been submitted, a ‘set-

tings.xml’ file containing baby’s ID, duration and time specifications
is produced.

2. Data collection

(a) Based on the updated ‘settings.xml’ file, physiological monitored data
can be recorded for each of the babies, with the period and time
specified in the ‘settings.xml’ file.

3. Data transfer

(a) Once the recording is finished, the data collected is sent to the Uni-
versity of Edinburgh’s School of Informatics.

(b) The data arrives in the University of Edinburgh’s School of Informat-
ics server.

4. Data processing

(a) The arrival of the data at the server is detected automatically. The
system is then run on the data, to infer the probability that the
different factors are activated at each time-step. For the X-factor,
this provides us with a continuous signal, specifying the probability
that the X-factor is activated at any given time.

(b) This continuous signal goes through three steps of processing:

i. Step 1: The continuous signal corresponding to the probability
distribution of the X-factor is then thresholded (with a threshold
of 0.15) to produce a binary output, classifying whether each
section of the data is due to the X-factor (see Figure 4.1).

ii. Step 2: The thresholded X-factor intervals are combined if they
are too close to each other (see Figure 4.1).
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iii. Step 3: If the same segment is flagged up simultaneously by the
X-factor and one of the artefactual known factors (that is, ‘incu-
bator open’; ‘temperature probe detached’; or ‘blood sample’),
the overlapping part is removed from the X-factor segment. Ad-
ditionally, ‘X-factor’ intervals occurring less than three minutes
following an ‘incubator open’ event are removed as well. This is
because we do not want to consider the X-factor intervals that
are due to the recovery of humidity to set level after the incuba-
tor have been opened and closed (see chapter 5 for more details).
Figure 4.1 shows an example of how the X-factor classification is
obtained from the raw output data, illustrating the influence of
each processing step.

(c¢) Finally, the system outputs a list of the physiological data segments
which have been classified as belonging to the X-factor. Only 10 of
the X-factor intervals that last more than 3 minutes are selected in
this list, to be submitted to the clinicians for physiological interpreta-
tions. Each these interval is allocated a score from one to a hundred
quantifying how well it is explained by the X-factor. This score cor-
responds to the average posterior probability of the original X-factor
interval.

5. Web mediated feedback collection

(a) A file with the list of the time intervals for the selected data segments,
is sent to the server and read by a web interface, which outputs
feedback forms to be completed by the clinical experts. Each form
displays the baby’s ID with the date of the recording followed by
the list of data segments selected by the system. Below each time
interval there is a list of questions and a free text box so that the
clinical experts can add their own additional comments.

(b) The forms are completed by the transport fellows in charge of watch-
ing over the babies, and by the doctor responsible for the neonatology
unit.

(¢) The completed forms are recorded in text files indexed by the baby’s
ID and the date.

My contribution to the setting up of this automatic system consisted in the

development of the feed setting web interface (1st step) and the webform appli-
cation (5th step).
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Figure 4.1: Tilustration of how the X-factor classifications are obtained from the raw data.
First, the continuous ‘predicted X’ signal obtained from the model is thresholded, to produce
a binary output (‘thresholded X’). Segments of the ‘thresholded X’ signal are then combined
if they are too close to each other (less than 90 seconds; see red square for an example),
producing the ‘aggregated X signal’. If the same segment of data is flagged up simultaneously
by the X-factor and one of the known artefactual factors (see green square for an example; the
intervals for the posterior probability for the artefactual factor is 0.5), the overlapping part is
removed from the X-factor segment, to produce the ‘Output X’. Also, every ‘X-factor’ interval
occurring during the three minutes following an ‘incubator open’ event is removed as well (see
section 5 below for more details). ‘HR’ corresponds to heart rate, BS and BD corresponds to
systolic and diastolic blood pressure respectively, SO corresponds to oxygen saturation, TC
and TP correspond to central and peripheral temperature.

4.1.2 Feed settings

As mentioned above, it is necessary to have control over which baby to collect
data from, as well as the duration and starting time of the recording. All these
specifications are specified in a xml file called ‘settings.xml’. As shown in Figure
4.2a, this kind of file is not user-friendly. Thus, a more friendly web interface
was built to modify and update this xml file. A screen shot of this web interface
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is displayed in figure 4.2b. The different functionalities are shown in more detail
in Figure 4.3.

="%" davofweek="1,2,3,4,5,6,7" month="+*"/>

processingtime m
dataduration minutes="0" hours="8"/>
channellisth

channel name="Heart rate" code="tr_ heartrate"/>

(a) Snapshot of an extract of the file ‘settings.xml’

Log out ID settings Data collection time settings Data collection duration settings Channels settings

Settings
Do you wish to set the form to defanlt value? /| yes
Current content of settings.xml:

Current list of patient's IDs:

id 1=10001

Do you wish to add new IDs to settings.xml? yes
Do you wish to delete IDs to settings.xml? /] yes

Time at which the data are collected:
The data are collected every day of the week at 12 AM

Do you wish to add time modifications to settings xml? yes
Data duration:

The data are collected during 12 hours

Do you wish to add duration modifications to settings xml? ves

Please click here to see settings.xml Return to the top

(b) Snapshot of the web interface permitting to the user to modify
the file settings.xml

Figure 4.2: Setting specifications (a) directly via the original non user-friendly xml file and
(b) using the user-friendly web interface I built. The xml file specifies the specifications to
apply for the data recordings. More precisely, it specifies the list of patient to record the data
on, when the recording should start (what time, which day of the week, etc..), how much
time must the recording lasts, and finally, which particular channels should be recorded. The
web-interface displayed in (b) allows the user to add and delete entries in the list of patient
to record the data on, to specify and modify when the recording should start and how long it

should last. The list of channels is by default exhaustive.
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Figure 4.3: Tlustrations of the (a) add and (b) delete baby’s ID functionalities in the setting

web application. (c) and (d) illustrate the time modification functionalities in the setting web
application.
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4.1.3 Webform application

The web interface built to collect feedback from the clinicians is displayed in
figure 4.4a. As shown in this Figure, the last version of this webform allows
multiple annotators to comment on the same intervals.

Once the username and the password have been entered, the user is presented
with a web interface where he can choose the baby’s ID he wants to comment
on (Figure 4.4b) as well as the date when the data have been recorded (Figure
4.4c).

Subsequently, after he has chosen the baby he wants to add comment to and
the date when the data were recorded, the user is presented with the webform
interface itself. A screen shot of the last version of this webform is displayed in
figure 4.5. This version of the web interface is the most recent, but has evolved
through time, in response to the requirements of the clinical practitioners, in
order to make it clearer and more user-friendly. As can be seen in this figure
there is a ‘heading’ box at the top of the webpage. The first line of this heading
displays the username of the annotator, the recording date and the baby’s ID.
The second line displays a scroll down menu, which lists all the X-factor intervals
for current date and baby’s ID. By default, the first interval of the list is selected,
although the user is able to choose the interval that he would like to comment
on. The third line of the heading displays the details of the current interval that
has been selected (i.e the exact time of occurrence and the score attributed to
this interval; see section 4.1.1 above).

Further lines within the heading indicate if some bradycardia episodes have
been detected by the FSLDS system during the current interval, and display
the details concerning these episodes (i.e the exact time of occurrence).

The last line of the header asks the annotator: “In which of the following
categories could the event happening during the [current] interval be classified”.
This question refers to the remainder of the form, where the annotator is re-
quired to tick boxes, indicating which of many proposed events are observed
to occur for the selected data interval. These events are separated into two
different types: factors which are included explicitly as ‘known factors’ by the
FSLDS system (‘events known’) , and events which are not included as factors
in the FSLDS system (‘events unknown’).

P e N R G Son o et Please choose the bahy and the day you want to comment
1D:4892 v | Stbmt ID:4834 ~ | Submit
~| [ Submit

Date : 2011-02-03

|Date : 2011-02-04
|Date : 2011-02-07
|Date : 2011-02-08
|Date :2017-02-09

(a) (b) (c)

Figure 4.4: Snapshot of the webpage where, once the users have entered their username and
their password their are presented with a web interface where their can choose (a) the baby’s
ID their want to comment on as well as (b) the date when the data have been recorded.
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This form is currently filled by Camille Joggi and concerns the data collected the 2011-02-07 for baby 4894

List of the current intervais to comment on- interval 03, from 02 2135 (07 Feb)to 02 25 01 (07 Feb) Score: 63 % +
St Carrent interval: interval 03 , from 02 :21 :35 (07 Feb ) to 02 :25 :01 (07 Feb ) Score: 63 %

In which of the following categories could the event happening during the above interval be classified?

— Events known e ) [~ Eventsunknown(2) ————

Events kmown to automatic system butmissed Events unknown to automatic system (part 1) Frvents unknown to automatic system (part 2)

P [/ Beadycardia episode s there a Te-To gap that is clinically significant during the X-factor [/ Loss of variablity in heart rate during the X-factor episode
| Related links episode of
(7] Temperature probe detached B [Tl Loss of vaviability in heart rate before the X-factor episode
. 2 degress
[} + I 21 grcn 7] Other (plesse write comments)
o [ more than 3 degrees
[T incutator opening episode False positive
i [Tl Desaturation epicode
[T Nothing significant happensd
[] Apnosa episode.

Add additional comment
[ Tachyeardia :
Gemment :

[C] Feedback from ward obtained

Submit the commented interval

Figure 4.5: Snapshot of the webform application. The heading displays the username of the
annotator currently filling the form, the date of recording of the data and the ID of the baby
concerned by the data. The second line of the heading displays a scroll down menu, which
lists all the X-factor intervals concerning the current date and baby’s ID. The third line of the
heading displays the details of the current interval selected by the user. The lines following
the headings display the details concerning the potential bradycardia episodes detected by the
FSLDS system during the current X-factor interval. The body of the webform lists different
kind of events the annotator can tick. These events are displayed in two categories. The first
category corresponds to the factors known to the FSLDS system, and the second category
corresponds to the events unknown to the FSLDS system.

Events known to automatic system but missed: Events that are ex-
plicitly included as factors in the FSLDS system are listed in table 4.2. As
described previously, only the X-factor intervals that do not overlap with other
known artefactual factors are selected for evaluation by the clinicians (see Fig-
ure 4.1). Therefore, if the annotator ticks one of the known artefactual factors,
then this implies that this factor has been missed by the FSLDS system, and
wrongly claimed by the X-factor.

The webform was set up to display bradycardia events that were detected
by the FSLDS system. Therefore, the annotators was only required to indicate
bradycardia events that were missed by the system; that is, when none was listed
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in the form. This would imply that the bradycardia event had been wrongly
claimed by the X-factor.

Unfortunately, we only began to display whether bradycardia events were
detected by the FSLDS system on the webform after beginning to collect feed-
back forms from the clinicians. Therefore, for these early feedback forms, a
bradycardia event ticked by the clinician could also correspond to episodes that
were indeed correctly detected by the FSLDS system. In addition, data from
these early recordings, indicating whether bradycardia events had in fact been
detected by the system during each of the intervals was not stored for data
analysis. Because of this, we removed all of these earlier feedbacks from our
analysis.

Events unknown to automatic system The second list of events in the
form includes those that are not explicitly modelled by the FSLDS system.
Because it is impossible to enumerate all of the possible events that could occur
to the baby, a non-exhaustive list is terminated by a tick box labelled as ‘other’.

False positive The box labelled as ‘false positive’ should be be ticked if noth-
ing unusual can be observed in the selected interval. This implies that the
‘X-factor’ has been wrongly triggered.

Free text box At the end of the webform, a free text box can be filled in
by the annotator, so that they can give additional comments about the selected
interval. This is particularly important in the case where the tick boxes do not
allow them to give the complete picture of what is happening. Specifically, if the
label ‘other’ has been ticked, the annotator is expected to explain in detail what
is happening here. If the label ‘false positive’ has been ticked, the annotator
can optionally give an explanation of they belief of what could have wrongly
triggered the X-factor.
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Events known to automatic Bradycardia episode
system but missed: Temperature probe detached
Blood sampling episode
Incubator opening episode

Events unknown to automatic Clinically significant gap between
system: core and peripheral temperature
Oxygen desaturation episode
Apnea episode

Tachycardia

Loss of variability in heart rate
during the X-factor episode

Loss of variability in heart rate
before the X-factor episode

Other
False positive: Nothing significant happened
Additional comment: Free comment

Table 4.2: Lists of events displayed in the webform on the form of labelled events (with a
tick box).

Feedback collection The feedback from the clinicians were recorded in a
text file, as displayed in Figure 4.6. The file was named after the name of the
annotator, the ID of the baby and the date of the recording concerned by the
form. The file had a fixed format: each labelled event that had been ticked by
the annotator was written with the corresponding numbered interval. Follow,
on the next line, the term ’on’ (to indicate that the box was ticked), or, for the
free text box, the full text input of the clinician.
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& Lambrini_Psiour_commentX4952_2011-02-20 bt

respi-desat_04
on
comment_ 04
Comment: desaturation in the context of -normal-variation in heart rate (not bradycardia)

Figure 4.6: Snapshot of the text file in which the online forms filled by the clinicians are
stored. The name of the file corresponds to ‘{Name of the annotator} commentX{baby’s
ID} {date of the recording (in the format YYYY-MM-DD)}.txt’, Each event that has been
ticked by the clinician is written in the file, linked by an underscore to the number of the
corresponding interval. Follow, on the next line, the term ’on’ (to indicate that the box was
ticked), or, for the free text box, the full text input of the clinician. In this example, the
annotator Lambrini Psiouri has commented about the baby 4952, about data recorded on
20th of February 2011. During the fourth X-factor interval, she has detected a desaturation
(‘respi-desat’) and made the following comment about it: “desaturation in the context of -
normal- variation in heart rate (not bradycardia)”.

Categorisation of free text comments In order to analyse the free text
comments provided by the clinicians, I categorised them manually into the fol-
lowing categories:

e Apnoea

e Artefact in heart rate

e Artefact in oxygen saturation

e Baby manipulation

e Bradycardia associated with desaturation
e Drop in heart rate

e Drop in oxygen saturation

o Feed

e Fluctuations in blood pressure

e Fluctuations in oxygen saturation and blood pressure related
e False positive in heart rate

e Normal oxygen saturation variability

e Rise in blood pressure

e Rise in heart rate

e Rise in heart rate variability

e Temperature gap (between central and peripheral temperature).
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4.2 Results

We gathered annotations from 103 different intervals. Some intervals were anno-
tated by more than one clinician, so that we collected 166 annotations in total.
As stated previously, we removed 39 intervals that were commented before the
webform was updated to its current form . This left us with 127 annotations of
103 different intervals, annotated by 5 different annotators.

4.2.1 Known factors performance

If a significant number of X-factor intervals were attributed by the hospital staff
as corresponding to a particular ‘known factor’ (i.e. bradycardia, incubator
open, blood sampling or temperature probe detached), then this would imply
that such events had been repeatedly missed by the system. Consequently,
this would indicate that the LDS model corresponding for this factor was not
accurate enough to detect these events, and needed to be improved. Conversely,
if only a small number of X-factor intervals were attributed by the clinicians as
corresponding to a particular known factor, then this would indicate that the
LDS model for this factor was good enough.

Only two ‘bradycardia’ and two ‘incubator open’ events were found among
the X-factor intervals. Three blood sampling episodes were found by the an-
notators, but blood pressure data were missing for two of these three episodes,
effectively making it impossible for the system to detect this category of event.
Finally, no temperature probe detached events were flagged by the annotators.
These results, summarized in figure 4.1.3a, show that only a very small number
of events corresponding to factors that were explicitly modelled in the FSLDS
system were missed, demonstrating the accuracy of the system for detecting
these known factors.

4.2.2 Main clinical events behind the X-factor

The goal of this evaluation process was to identified recurrent patterns in the
data, which could potentially be added as additional factors to improve the
model. Indeed, out of the many labelled events that could have been attributed
to the X-factor intervals, we found that the annotators responses were dominated
by only a few of the many different labelled events. Therefore, we decided to
restrict the analysis to only the factors that were appearing in more than 5% of
the answers.

Out of the 11 types of event that were labelled in the webform (figure 4.5),
and 16 categories of free comment (see section 4.1.3), nearly all X-factor in-
tervals were attributed by the clinicians as corresponding to only seven main
types of event. The percentage of intervals classified as corresponding to these
seven types of event is shown in figure 4.7b: 26.0% of the intervals included
desaturation events, 9.4% included an SpO2 artefact, 15% included a gap be-
tween central and peripheral temperature (‘Tc-Tp’ gap), 7.9% included a baby
manipulation, 6.3% included a baby feeding event, 45.7% were false positive,
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and 22.8% were classified as due to an unlabelled factor (‘other’; note that each
interval could correspond to more than one type of event).

Clinically, it is known that bradycardia events are often accompanied by
other complications, such as oxygen desaturations (see section 2.2). Our data
is consistent with this: a high proportion of X-factor intervals also included
bradycardia events that were detected by the FSLDS system (32.3 % of X-
factor intervals). This may imply that many of the unknown events that were
missed by the system correspond to complications that arise alongside bradycar-
dia events. Taken together, intervals with bradycardia events detected by the
FSLDS system, and intervals that were categorized by the annotators as due to
one of the 7 main event types (desaturations, SpO2 artefacts, false positive or
other) accounted for 97.6% of X-factor intervals.

More than 5% of events included a gap between core and peripheral tem-
perature (15%). However, from discussion with clinicians, we established that
different annotators used different definitions from this event (see section 4.3 be-
low for details), meaning that their responses where highly ambiguous. Because
of this ambiguity, we decided not to focus on their responses for this category
of event in the following sections.
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(a) Percentage of occurrence of the events (b) Main events flagged by the annotators

known by the FSLDS system

Figure 4.7: Classification of the X-factor episodes by the clinicians. (a) Events known by the
FSLDS system (known factors) but missed. The small proportion of these events that have
been flagged up by the annotators confirm the accuracy of the FSLDS system for detecting the
known factors. (b) 7 main categories of events flagged by the annotators. ‘Artefact in SpO2’,
‘Feed’ and ‘Baby manip’ corresponds to categories that I inferred from the free comments.
The other categories corresponds to events labelled in the webform (with tick boxes).

False positive False positives are the most common category of X-factor
intervals. In order to investigate which clinical events are associated with the
episodes flagged as ‘false positive’ by the annotators, we display in Figure 4.9a
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the main categories of events that occurred simultaneously with false positive
events.

Approximately half (51.7% of false positive episodes) of the episodes clas-
sified as false positive were not commented on in the free text box, making it
difficult to explain what could have wrongly triggered the X-factor in these cases
(figure4.9a). In the following paragraphs, we describe possible causes of these
false positive events.

One possible cause of false positives could have been fluctuations in the
recorded heart rate. Indeed, a large proportion (20.7% of false positive inter-
vals) of intervals labelled as false positive by the annotators were accompanied
by a bradycardia event detected by the FSLDS system. However, many of these
detected bradycardia events (8.6 % of false positive intervals, - i.e. 41.54 % of
bradycardia events detected by the FSLDS system during false positive inter-
vals) were described by the annotators as incorrect (in their free text comments).
In addition, also in their free text comments, the annotators described a signifi-
cant proportion of false positive intervals as due to a ‘drop in heart rate’ (6.9 %
of false positive intervals; figure 4.9a). Therefore, it is likely that many of the
intervals that were labelled as false positive were triggered by higher variability
in the heart rate, including drops in heart rate that were too small to be clas-
sified as clinically significant (i.e. as bradycardia). Example of such an event
is shown in Figure 4.8a. In this figure, we can see that an event identified as
bradycardia by the system is triggered by increased variability in the measured
heart rate, including a small and short dip where it drops to 132 bpm - larger
than the defined threshold for bradycardia (100 bpm or 33% below baseline)
[21]. These results suggest that improving the normality model to account for
these periods of minor instability in the heart rate could significantly reduce the
number of false positives picked up by the system.

It is also possible that some of the false positives could have been due to
variations in oxygen saturation, reflected in the SpOs measurements. In 19 % of
false positive intervals the clinicians indicated in the free text box, that the SpO-
variability was ‘clinically normal’. However, on visual inspection, these com-
mented intervals appeared to feature variations in SpOs that were larger than
average. Therefore, one interpretation is that these comments corresponded to
intervals where the X-factor was triggered by above average changes in SpO2
levels, but which were too small to be clinically significant. Further work will
need to be performed to establish whether this is indeed the case.

As stated previously ‘false positives” were defined to correspond to intervals
that were incorrectly flagged up by the X-factor, when there were no artefacts or
clinically significant physiological changes (i.e. they should have been accounted
for by the ‘normal’ dynamics in the model). However, 13.8 % of the intervals
classified as false positives by the annotators were also classified by them as
featuring artefactual changes in SpOs levels (for example, due to changes in
the pressure applied to the probe; see section 2.3). Instead, according to our
definition of a false positive, these intervals should have been categorised as
artefactual SpOs events, but not false positives (as an artefact was taking place
- the data should not be modelled by ‘normal’ dynamics). Thus it appears that
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we did not explain clearly enough to the annotators what was meant by a ‘false
positive’. As a result, they thought that ‘false positive’ meant ‘no clinically
significant physiological event happened during this interval’, when in fact, we
meant ‘nothing significant happened’. In the future, we could alter the structure
of the webform to overcome this confusion.

Bradycardia Bradycardiais often detected by the system during the X-factor
intervals. This could be because bradycardia is often accompanied by other
clinical events that alter the recordings from other channels in ways that cannot
be accounted for by the model, triggering the X-factor (see section 2.2). The
events that were found to occur most often alongside the bradycardia events
were oxygen desaturation, baby manipulation and feeding. In addition, some
episodes of bradycardia detected by the system were classified by the annotators
as false bradycardia and false positive. In Figure 4.9b we plot a histogram,
showing the proportion of different types of event that occurred simultaneously
to bradycardia. The bradycardia events displayed in this figure include both
those that are detected by the system and those that are flagged up by the
annotators. In total, they add up to 43 bradycardia events.

Unsurprisingly, the main category of events associated with bradycardia
episodes is oxygen desaturation, which occurs for 44.2% of the bradycardia
events. This might be expected from a physiological and a clinical point of
view. As stated earlier, bradycardia and oxygen desaturation often occur to-
gether (section 2.2). This is because they are both consequences of hypoxaemia
(decreased partial pressure of oxygen in the blood) which can be caused by ap-
noea. Oxygen desaturation is a direct consequence of a hypoxaemia episode,
whereas bradycardia is triggered by a reflex that is induced by the hypoxaemia
episode, and reinforced by the cessation of lung inflation [21, 23].

As shown in Figure 4.9b, almost 7 % of bradycardia events occur concur-
rently to body manipulations. Out of these events, around half are associated
with oxygen desaturation (50 % of events where bradycardia and body ma-
nipulations occur together). Clinically, it is known that hypoxaemia episodes,
can be triggered by excessive handling of the baby [27], and that hypoxaemia
leads to both desaturations and bradycardia episodes [23] (see section 2.2). This
could explain why bradycardia episodes are frequently observed alongside body
manipulations.

Bradycardia events often occur during feeding (7% of bradycardia events;
figure 4.9b). Indeed, it is known that feeding is often accompanied by other
physiological complications (section 2.2). This is thought to be due to the im-
maturity of the premature baby’s brainstem, causing problems in coordinating
the acts of sucking, swallowing, and breathing [21].

A large number of bradycardia episodes detected by the FSLDS system
were flagged by the annotators as false positive (27.9% of bradycardia events;
Figures 4.9b), and as false bradycardia (23.3% of bradycardia events; Figures
4.9b). This suggests that some clinically insignificant drops in heart rate are
often mistaken by the system as corresponding to real bradycardia episodes (see
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previous section). Finally, discussions with the hospital staff also showed that
the system was sometimes unable to discriminate between obvious artefacts in
the heart rate, such as when the probe failed to detect a heart beat, and a real
bradycardia. An example of such an event is shown in Figure 4.8b.
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(b) Artefact in heart rate

Figure 4.8: Events wrongly flagged up as bradycardia by the FSLDS system. (a) A non clin-
ically significant drop in heart rate (see top red square) has been picked up by the bradycardia
factor (see inferred distribution of bradycardia factor highlighted by bottom red square). (b)
Artefact in heart rate (top red square) mistaken with a real bradycardia by the FSLDS system

(bottom red square).
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Desaturation Oxygen desaturation is very common during the X-factor in-
tervals (26 % of the X-factor interval; Figure 4.7b). Figure 4.9c displays the
main categories of events occurring simultaneously to the oxygen desaturation
episodes.

Unsurprisingly, given our previous analysis of the bradycardia events, the
main categories associated with oxygen desaturation episodes are bradycardia
(occurring for 57.6 % of the oxygen desaturation intervals - 51.5 % detected
by the system, and 6.1 % annotated by the clinicians) and drops in heart rate
(occurring for 3 % of the oxygen desaturation intervals). As before, this can be
explained by the close association between bradycardia and oxygen desaturation,
which are both consequences of hypoxaemia (low partial pressure of oxygen in
the blood) and often associated with apnoea [21, 23| (see section 2.2).

In common with bradycardia, a significant fraction of the desaturation episodes
occur simultaneously to body manipulations (12.1 % of desaturation intervals,
Figure 4.9¢). Out of these events, approximately half are associated with brady-
cardia episodes as well (50 % of events with both body manipulations and de-
saturation). This is likely explained by the fact that excessive handling of the
baby can trigger hypoxaemia episodes, leading to desaturations and bradycar-
dia episodes [27] (see section 2.2). Also in common with bradycardia, some
of the desaturations occurred during feeding [21] (7.3%, or 3/41 desaturation
episodes).

A small proportion of desaturation episodes are classified by the clinicians
as corresponding to apnoea (9%). We saw in the theoretical section (see section
2.2), apnoea is a very common condition in premature babies, and is most
of the time accompanied by both bradycardia and desaturation. Therefore,
it is perhaps surprising that so small a number of apnoea episodes occurred
during desaturation episodes. However, an apnoea episode is mainly detected
by directly observing the baby, as the respiratory rate reading is unreliable
because it is riddled with body movement artefacts (see section 2.2). Therefore,
the small number of reported apnoea events can be explained by the fact that
it is almost impossible, by just looking at the traces, to tell if the desaturations
and the bradycardia are due to apnoea or to some other reason.

Finally, only one oxygen desaturation episode was classified as a false pos-
itive. This implies that desaturations are almost always clinically significant.
This can be clearly understood clinically, since oxygen desaturation is the marker
of hypoxaemia episodes (see section 2.2), a reduction of partial pressure of oxy-
gen in the blood, that is potentially dangerous for the baby [19].

Other Figure 4.9d displays the main types of event associated with the 30
episodes categorised as ‘other’. These categories were more numerous than for
the other main event types; to reflect this, we plot the 8 types of event that
occurred most frequently when the annotators selected ‘other’.

The large number of events associated with this category (‘other’) comes
from the fact that the annotators, when ticking the ‘other’ category, gave more
details in the free text box about the event occurring at the give interval. There-
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fore, most categories displayed in Figure 4.9d correspond to categories derived
from the free text comments.

The information extracted from the analysis of this category is useful to
determine the events that can be added to the webform in the future.

Baby manipulation In our analysis of the bradycardia and desaturation
events, we found that these episodes often occurred simultaneously with periods
of baby manipulations (7 % of bradycardia episodes and 12.1 % of desaturation
episodes; Figure 4.9b and 4.9¢). Figure 4.9e plots the main categories of events
accompanying the 14 baby manipulation episodes. In addition to the categories
display in Figure 4.9¢, 14.3 % of baby manipulation episodes include a bradycar-
dia detected by the system. We see that bradycardia, oxygen desaturation and
a drop in SpOs (which can be view as a minor desaturation) occur repeatedly
during baby manipulation episodes. This could be explained by the hypothe-
sis suggested in [27], that excessive handling can trigger hypoxaemia episodes,
leading to desaturations and bradycardia episodes (see section 2.2).

Feeding We found that both bradycardia and desaturation episodes often oc-
curred simultaneously with periods of feeding (7 % of bradycardia episodes, 6.1
% of desaturation episodes; Figures 4.9b and 4.9¢). Figure 4.9f plots the main
categories of events accompanying the 9 feeding episodes. In addition to the cat-
egories display in Figure 4.9¢, 33.3 % of feeding episodes include a bradycardia
detected by the system. Similar to baby manipulation events, bradycardia, oxy-
gen desaturation and drops in SpOs occur repeatedly during feeding episodes.
This could be explained by the hypothesis mentioned in section 2.2, that feeding-
related episodes of bradycardia and desaturation can be clinically explained by
the brainstem immaturity in coordinating the acts of sucking, swallowing, and
breathing [21].
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Figure 4.9: Main categories of events that are happening simultaneously with (a) ‘false pos-
itive’, (b) ‘bradycardia’, (c) ‘oxygen desaturation’, (d) ‘other’, (e) ‘baby manipulation’ and
(f) ‘feeding’ events. ‘T°” holds for ‘temperature’. ‘FSLDS bradycardia’ holds for bradycardia
detected by the FSLDS system. ‘False bradycardia’, ‘Drop in HR’, ‘Normal SpOs variabil-
ity’, ‘Rise in HR variability’, ‘Drop in SpO2’, ‘Artefact in SpO2’, ‘False bradycardia’, ‘No
comment’, ‘Baby manip’ and ‘Feed’ correspond to categories that I inferred from the free

comments.
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4.3 Discussion

In previous work, my laboratory constructed a system that can be used to infer
the health of premature babies from collected physiological recordings. In order
to use this system in a clinical setting, as well as to discover what needs to be
improved, it is important to evaluate the performance of the system using real
physiological data. However, such an evaluation requires clinical expertise, so
that the true clinical interpretation of the physiological data can be established.

The goal of the project described here was to set up a process whereby
the system could be evaluated. This involved constructing a webform, which
provided an interface for clinical experts to give feedback about sections of the
data that were deemed to be of interest (i.e. intervals of data that the system
was unable to attribute to either the healthy state, or known physiological or
artefactual factors - ‘X-factor’ intervals). We used the collected clinical feedback
to perform an initial evaluation of the system performance.

We found that the system was able to deal well with the artefactual factors
that were explicitly included in its construction (‘known’ factors). The majority
of X-factor intervals corresponded to a small number of types of event, that
were not explicitly included in the system construction (‘unknown’ factors). We
analyzed these additional unknown factors, using clinical knowledge to explain
why, and in what situations, they might come about. We discuss in the following
sections how this information might be used to improve future versions of the
system.

Improvement of the system

Oxygen saturation The results obtained from our evaluation suggested that
a significant proportion of X-factor episodes flagged as false positive by the
annotators included great variability on the SpO; readings, that was commented
by the clinicians as being clinically normal (see section 4.2.2). If this hypothesis
is confirmed by further quantitative analysis, it means that the normality model
for SpO, reading can be improved by allowing more variability. This would
hopefully result in a decrease in the proportion of false positives.

Previous studies on the FSLDS model have commented on the fact that
oxygen desaturation events constitute an important feature of the clinical data,
forming a very characteristic pattern that can be clearly identified (see Figure
4.10) and appears repeatedly. This work also observed that such events oc-
cur most often during bradycardia events [10]. The results obtained from our
evaluation of the clinical feedback are consistent with these observations. We
found that a significant proportion of X-factor episodes were classified by the
clinical experts as oxygen desaturation (see Figure 4.7b). Moreover, almost no
desaturations were classified as false positive, showing that this type of event
is pratically always clinically significant (see Figure 4.9¢). Consistent with the
previous study, we found that a significant proportion of desaturation episodes
occurred concomitantly with bradycardia events (or smaller drops in the heart
rate; see Figure 4.9¢).
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These results suggest that adding a new oxygen desaturation factor to the
model would greatly reduce the number of X-factor events. Moreover, to reflect
what was reported in the feedbacks, the bradycardia and desaturation factors
could be made depend on each other, so that when one of them was active
the probability of the other being simultaneously active was increased. Hope-
fully, this would also help the model to detect other related clinically significant
events such as apnoea, for which oxygen desaturation closely followed by brady-
cardia events are the strongest markers [21]. Thus, by adding only one factor
to the model, we would be able to account for more than one additional type of
clinically significant event, that could endanger the health of the baby.
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Figure 4.10: Bradycardia episodes accompanied by an oxygen desaturation. In this example,
the bradycardia episodes (top red square) have been correctly picked up by the system (see
bottom red square highlighting the inferred distribution of the bradycardia factor). However,
the drop in oxygen saturation (desaturation; top green square) that accompanies the brady-
cardia episode does not fit with the normality model describing the normal oxygen saturation
dynamic. Therefore, this drop in SpO2 is picked up instead by the X-factor (see bottom green
square highlighting the X-factor interval).

Artefactual and true desaturation Among the feedbacks gathered, a sig-
nificant proportion of X-factor intervals were categorised as due to artefact in
the SpOs readings (Figure 4.7b). Indeed, artefacts in SpOs readings are often
difficult to distinguish from real oxygen desaturations (see section 2.3) [1]. This
was also communicated to us verbally by the hospital staff, during discussions
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about the feedback forms. An example of an interval for which different anno-
tators gave different interpretations (one reporting a true desaturation, and the
other an SpOs artefact) is shown in Figure 4.12b.

In order to distinguish between true oxygen desaturations and artefacts, the
hospital staff compare the pulse rate obtained with the oximeter with the heart
rate obtained with the ECG (see section 2.3). These two readings should be
identical, and if they are not, it strongly suggests that the oximeter reading
is not reliable - probably as an artefact due to body movements is altering
the SpO, readings. In fact, this method of discriminating between artefacts
and true desaturation constitutes the basis of an existing computer algorithm
(Edentec Motion Annotation System) that to is able to efficiently discriminate
between artefactual and true SpOy measurements [30]. This could be incorpo-
rated into our system by including an artefactual SpO, factor, which altered
the pulse rate measurements from the oximeter, without changing the heart rate
readings. Therefore, changes in the oximeter reading that are not accompanied
by a corresponding change in heart rate would be attributed to this artefactual
SpOs factor.

Adding this additional factor should have a large effect on the number of false
alarms triggered by the system. A previous study, investigating false alarm in
neonatology units found that the differences in false alarm rates between differ-
ent systems were mostly due to how the different systems dealt with artefactual
changes in pulse oximeter and PTcC O, readings, each of which contributed at
approximately 40 % to the total number of alarms |7].

Heart rate A significant number of bradycardia events detected by the FSLDS
system were marked as false by the annotators (Figure 4.9b). This indicates
that either an artefact present in the heart rate measurements, or clinically
insignificant changes in the heart rate were mistaken by the system as real
bradycardia episodes. The large proportion of these episodes that were simul-
taneously flagged as false positives by the annotators supports the hypothesis
that a number of bradycardia episodes detected by the system were due to clin-
ically insignificant drops in the heart rate (which should be included within
the ‘normal’ dynamics), rather than some other artefact. These observations
demonstrate that the model could be improved, by either altering the normal-
ity model to account for clinically insignificant changes in the heart rate, or by
altering the bradycardia model so that it was only triggered by large, clinically
significant, changes in the heart rate (defined as < 30% below baseline).

In addition, sometimes artefactual changes in the heart rate occurred when
the probe missed a heart beat. This resulted in a very sudden drop in the
measured rate, which could be falsely detected by the system as a bradycardia
event (Figure 4.8b). The FSLDS model could be easily improved to deal with
this artefact, adding a new factor (‘skipped heart beat’ factor) that would be
triggered by very sharp changes in the heart rate.
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Periodic pattern One clinically significant pattern was encountered very
rarely, but is worth mentioning here because of its very important clinical sig-
nificance. This pattern, displayed in Figure 4.11, consists of periodic waves in
the SpOs, blood pressure and heart rate readings, oscillating concomitantly.
This dynamic reflects the immaturity of the brainstem in premature babies.
Specifically, it can be cause to the immaturity of the respiration control sys-
tem: causing an episode of periodic breathing, a condition where the pre-term
alternates between breathing and apneic episodes (see section 2.1) [18, 44]. Al-
ternatively, this pattern in the sequence of measurements can be caused by the
immaturity of cardiac output regulation system. From discussions with the clin-
icians, it stands out that this pattern always indicates that the life of the baby
is in danger, whatever its exact cause. As it is both clinically important, and
easily identifiable, this pattern could be usefully added as an additional factor
for the model.
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Figure 4.11: Tllustration of a periodic pattern described as clinically dangerous for the
baby’s life. This pattern is characterised by periodic waves in SpOs (red square), blood
pressure (green square) and heart rate (purple square) readings that oscillate concomitantly.

Multiple annotations considerations

Some of the intervals were annotated by more than one clinician. Comparing
annotations obtained from different clinicians for the same interval can provide
useful information. First, it can highlight events that are particularly difficult
to interpret. Second, it shows which questions in the webform are confusing and
should therefore be clarified.

Measuring the variability between the responses from different annotators
tells us how reliable their responses are in identifying different types of event.
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This could help us to determine how closely we should try and make our model
match these individual responses. As an extreme example, it would not make
sense to try and aim for a 100% match between the model and the annotator
responses, if the annotator responses themselves were only 50% reliable. Unfor-
tunately, from our data there were relatively few intervals annotated by more
than one clinician. Therefore, while we can gain some idea about the types
of disagreement that occurred for different events, a more quantitative analysis
will require further data to be collected.

One type of disagreement between annotators occurred when the physiolog-
ical data was ambiguous, and could thus have many different interpretations.
Figure 4.12b shows a good example of this. Here, a single interval has been in-
terpreted differently by the different clinicians, two of them reporting an oxygen
desaturation event and the other reporting an SpO, artefact. This is explained
by the fact that it is extremely difficult to discriminate between a real oxygen
desaturation and an artefactual event (section 2.3)[1].

A second type of disagreement between annotators occurred not because
the physiological data itself was ambiguous, but because different clinicians
disagreed on the definition of a certain event. For example, this was the case
for Tc— T'p gap events (gap between central and peripheral temperature of one
or more degrees). Although these events were flagged up for a relatively large
proportion of X-factor intervals (figure 4.7b), it was extremely difficult for us
to analyse this data, as we were informed by the hospital staff that different
clinicians were not using the same definition to identify this event (see figure
4.12d for an illustration). Such types of confusion could be avoided by providing
the annotators with clear written guidelines on how each of the events should
be defined for the form.

A related issue is the disagreement between different annotators about the
definitions of ‘false positive’ and ‘other’ in the form. In the example shown in
figure 4.12d, we see that one annotator classifies an interval as ‘false positive’
while another annotator classifies the same interval as ‘other’, even though they
both give the same description of the interval (artefact in SpOs). This dis-
agreement appears to be partly due to the weak distinction between ‘clinically
significant’ and ‘not clinically significant’ events in clinical practise. Also it may
partly be due to the lack of clarity in the way the question is asked in the
webform, leading some annotator to think that ‘false positive’ means ‘no clini-
cally significant physiological event happened during this interval’ (which would
mean that each artefact is a ‘false positive’), when in fact, we meant ‘nothing
significant happened’ (which means that an artefact should not be classified as
‘false positive’). Further improvement of the webform, as well as clear written
guidelines, could aim at addressing this problem.
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Figure 4.12: (a) and (b) Ilustration of the difficulty to discriminate between artefact in
SpO2 readings and a true desaturation. In this example, one annotator classified the interval
highlighted by the red square in (a) as a true desaturation, while two other annotators classified
the same interval as an SpOpz artefact). (c) and (d) Hlustration of the confusion of the
annotator about the definition of the events ‘Ic-Tp gap’, ‘false positive’ and ‘Other’. In this
example, the two annotators agree on the fact that an artefact in SpOz is occurring during
the interval highlighted by the red square in (c). However, one annotator also classify this
interval as false positive (rather than ‘other’), showing that the definition of ‘false positive’ is
unclear to the annotators. The same lack clarity stand out for the definition of ‘Tc-Tp gap’
leading one annotator only to tick the ‘“ITc-Tp gap’ box.
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Webform quality considerations

This evaluation relies on a collaboration between the machine learning lab and
the clinical experts who annotate the “X-factor” intervals. Omne of the main
difficulties faced was to set up a form with questions that were clear enough to
be understood by the clinicians, but precise enough so that the answers could be
used to evaluate and improve the system. This is particularly difficult, because
it implies an interaction between two different specialised fields of knowledge
(i.e. medical and mathematical knowledge).

Therefore, it was decided to begin with a very simple webform. We would
then modify the webform, based on the answers obtained from the filled online
forms and from direct feedback received from the clinical staff. The adaptation
and improvement of the webform application required a lot of technical work in
order to make it as user-friendly as possible.

The downside of this method is that we started to get results while the web-
form was still not at its final form. Notably, the bradycardia episodes detected
by the system during the X-factor episodes were not indicated in the webform
to begin with, and data from early recordings, indicating whether bradycardia
events had in fact been detected by the system during each of the intervals was
not stored for data analysis (section 4.1.3). Therefore, all the comments about
bradycardia received during this earlier part of the project had to be removed
from our analysis.

Another problem concerned questions that were considered too confusing for
the clinical staff, and which had to be clarified. For example, the first part of
the form was entitled “Known events” to start with, and listed all the factors
already modelled by the system, such as ‘incubator open’, ‘temperature probe
disconnected’, ‘bradycardia’ or ‘blood sample’. The idea was that the annotators
had to select an event if it was happening during the X-factor interval. But this
title was confusing for the clinical staff, because it seemed to mean that all these
events were in fact detected by the system in the concerned interval. In order
to address this problem, the title has been changed to “Events known by the
system but missed”.

Another example of a question that had to be modified in order to make the
form more clear is related to the temperature of the baby. Originally, the form
included a question asking: “is there a gap between central and core temperature
during the X-factor episode [...]?”. This question was confusing to the annota-
tors, because they did not know whether they had to select this event only if
the temperature gap was new (it had started during the X-factor interval) and
only if it was clinically relevant. This is because the annotators assumed that
we were not wanting to collect feedback about anything that could be easily
established just by looking at the data; that this information would be gathered
by us, and not require medical expertise. Therefore, this question was changed
to the following: “is there a gap between central and core temperature that is
clinically significant during the X-factor episode [...]?”. While hopefully this
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should improve the quality of their responses, this change was made at the end
of the project, and therefore we have not collected enough data to establish
whether this is the case.

One of the weakness of the webform is that it has a very small amount of
relevant categories, and thus, a great proportion of the important information
was acquired from the free text comments. In order to perform quantitative
analysis on these comments, I had to classify each of the free comments man-
ually as corresponding to a set of categories that I determined by myself. As
well as being very laborious, this process introduces a degree of subjectivity to
the results. To reduce this problem, in the future, the most frequent types of
description given in the free comments should be incorporated as labels (with
‘yes/no’ answers) in future version of the webform. Examples of such additional
questions that could be added to the webform are given as follows.

A large number of SpO, artefacts were been described in the free comments
(figure 4.9d), indicating that this event should be added in the list of ‘unknown
events’ in the webform. This would be particularly useful if it is planned to
model the oxygen desaturation factor so that the system is able to discrim-
inate between true desaturations and artefactual SpOy events. Our analysis
indicated that the system was unable to distinguish between small, clinically in-
significant, drops heart rate, and larger drops, associated with bradycardia. To
determine whether this was the case, the webform could be adapted to include
a main question “drop in heart rate?”, followed by two sub-questions, “clinically
insignificant” and “clinically significant (bradycardia)”. Finally as it is thought
that body manipulations and feeding events induce physiological problems, such
as desaturation and bradycardia (section 2.2, 4.2.2 and 4.2.2), it would be in-
teresting to add the events “baby manipulation” and “feeding” to the form, to
confirm whether this is indeed the case. In addition, the annotator could be
asked to give information about whether theses events are related to any con-
comitant bradycardia and/or desaturation event.
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Chapter 5

Incubator open factor
re-modelling

In the previous chapter, we described an automatic way to evaluate the perfor-
mance of the FSLDS system in classifying physiological data from premature
babies, based on expert feedback from clinicians. Early feedbacks from this
evaluation established that the X-factor was often firing just after handling (i.e.
incubator open) episodes, even though the baby was in a normal physiologi-
cal state. This suggested that the X-factor was picking up the recovery of the
humidity readings to set level occurring after the closing of the incubator (see
Figure 5.1). The more likely explanation for this behaviour is that the humid-
ity readings during recovery to set level show values far away from the normal
range of humidity readings (see top green square in Figure 5.1). Therefore, this
recovery phase was not classified by the normality model (describing the nor-
mal regime of incubator humidity readings), and was consequently picked up by
the X-factor (see section 3.2.3). As the recovery of humidity to set level is an
artefactual event (i.e. it does not reflect the physiological state of the baby),
the X-factor should not account for it.

This problem was addressed by better modelling of the incubator open factor
(which is called as well ‘IO’ or ‘handling’ factor, as the incubator is often opened
to handle the baby), so that the re-modelled factor was able to account for
the recovery of the humidity readings to the set value after the closing of the
incubator. Previously, the IO factor was described by two states:

1. Incubator closed - humidity maintained constant (described by the ‘nor-
mality’ model for the humidity channel)

2. Incubator open - humidity declining (described by the ‘incubator open’ /
‘decay’ model)

This factor was extended by adding a third state, the model of which describes
how the humidity recovers to the set level after the incubator has been opened
and closed.

65



In this chapter, I aim at describing the different steps followed to re-model
the I0/handling factor, integrate the new model in the FSLDS system and
evaluate the performance of the extended system.
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Figure 5.1: Example of incubator humidity readings during the opening and closing of
the incubator, with the corresponding probability distribution of the IO /handling factor and
the X-factor inferred by the FSLDS system. The gold panels display the segments labelled
as ‘true’ I0/handling or X-factor episodes by clinical experts. The decay of the incubator
humidity (see top red square) is picked up by the IO factor (see bottom red square). However,
the I0/Handling factor does not account for the recovery of the incubator humidity (see
top green square), and nor does the normality model of incubator humidity. Therefore, this
recovery is picked up instead by the X-factor (see bottom green square).

5.1 Methods

This section describes the different steps that have been followed to choose
the model describing the recovery stage of the new incubator open/handling
factor, estimate the parameters, and evaluate how well the chosen model with
its estimated parameters fits the data. We explain the modifications that have
been done to the system in order to integrate this new model as a new stage
of the I0/handling factor. Finally, we present the tool that has been used to
evaluate the performance of this extended factor in classifying data: the ROC
analysis.

5.1.1 Model construction

Looking at examples of recovery phase segments, such as the one displayed in
Figure 5.2, it can be observed that the humidity recovery curve shows a similar
behaviour than a capacitor charging (Figure 5.3). This motivates the recovery
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phase to be modelled as an inverted exponential decay, where x; is expressed
as:
2t = (Tpmaz — 20)(1 — a®) + g (5.1)

where a < 1, T4, corresponds to the limit value of the process (i.e. the set
humidity value in our case) and x corresponds to the initial value of the process.

Equation 5.2 is expressed in the form of an autoregressive process by follow-
ing the steps described below:
Method:

Starting from the previous equation (equation 5.2), which describes the time
evolution of the humidity :

2y = (Tmaz — 20)(1 — a*) + xg (5.2)
This expression can be rearrange to obtain:

(Tt — Trmaz) = —(T0 — Tmaz)a (5.3)

We can write a similar expression for the next time-step:

(ItJrl - Imaz) = _(IO - Imaz)at+1 (54)

which can be rewritten in the form:

(:Et-i-l - xmaw) = _(:EO - xmam)ata (55)

Substituting (x¢ — Zmas) from equation 5.3 into this expression, gives:

(xt—i-l - xmaw) = (:Et - xmam)a (56)

To simplify this expression we set T4, = 0, so that the expression can be
written in the autoregressive form 5.6:

Ti41 = AT + W41 (57)

where a < 1, w; ~ N(0,s%) , with s = 0 corresponding to a strict exponential
decay, s > 0 allowing for noise.

We can check this result by generalising equation 5.7 through equations 5.8,
5.9 and 5.10:

1 = axo (5.8)

x2 = a(axg) (5.9)
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T = 200" (5.10)

By adding the limit value of the process in 5.10, and rearranging the equa-
tion, we find again equation 5.2:

Ty = (20 — Tmaz) @ + Tmaz (5.11)
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Figure 5.2: Example of incubator humidity recovering to set level after having been closed.
The red square highlights the decay of the incubator humidity readings caused by the incubator
opening. The green square highlights the recovery of the humidity readings after the incubator
has been closed after having been opened. This curve increases exponentially, and stabilizes
at set humidity level.
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(a) Capacitor charging. Source: [45]. (b) Recovery of humidity readings to set level

Figure 5.3: Comparison between (a) a capacitor charging and (b) the humidity recovering
after the incubator has been opened and closed. The two dynamics are similar and consist of
an inverted exponential decay.

5.1.2 Parameter estimation

Once the model has been constructed, some samples of humidity recovery episodes
are selected manually to train the model, in order to estimate the model pa-
rameters. Since the model constitutes an AR(1) process, the parameters can be
obtained by solving the Yule Walker equations (see section 3.1.1), as described
below.

Yule Walker equations
We display again the equation for the AR(1) process (equation 5.7):

Tt41 = ATt + W41 (512)

Equation 5.12 is multiplied by x;:

TtTt41 — AT Tt + Wi41T¢ (513)

Then, we take the expectation of equation 5.13:

(Trxiq1) = a{zxy) + (wip1ay) (5.14)

We use the fact that{w;412¢) = 0, since the noise at the current time is
uncorrelated to the previous value of the process, and obtain equation 5.15:

(Trxi41) = a (Teay) (5.15)
We divide equation 5.15 by N — 1:

1 = acy (5.16)
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Finally, we divide equation 5.16 by cp, to obtain the parameter ‘a’:

C1
— =a 5.17
o (517)
Then, we obtain the variance of the process by subtracting each value to the
value predicted by the model, taking the square, and computing the mean over

all the values as follow:.

1 N
52 = N <Z (It+1 — axt)2> (518)
t=1

5.1.3 Model evaluation

In order to confirm that our model was good enough to be able to explain the
data, the same technique as the one seen in section 3.2.4) was used here. We
sampled from our new model (the recovery model) and verified that the dynamic
followed by these data generated by our model was similar to the dynamic of real
sequences of humidity readings during recovery. In Figure 5.4, we display two
examples with real humidity measurements while recovering to set level (green
curve), humidity measurements sampled from the old model (i.e. normality
model; blue curve) and humidity measurements sampled from the new model
(recovery model; red curve). We can see that the dynamic of the real humidity
readings (green curve) is similar to the dynamic of the data sampled from the
new model (red curve). Moreover, it can be observed that the new model (red
curve) fits better the data then the old model (blue curve).
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Figure 5.4: Comparison between real humidity measurements while recovering to set level
(green curve) and some humidity measurements sampled from the old (blue curve) and new
model (red curve). The new model (red curve) achieves a better qualitative fit to the data

than the old model (i.e the normality model; blue curve).
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5.1.4 Integration of the model in the system

In this section, I describe the modifications that have been made to the system
in order to be able to integrate the new recovery model as a third stage of the
IO factor.

Retraining of ‘normal’ stage parameters

The parameters of the model describing the normal regime of the humidity
readings (the normality model) were hard-coded in the system. This was an
important issue, as both the normality model and the new recovery model are
AR(1) process, and the parameters of the recovery model were found to be very
closed to the hard-coded parameters of the normality model, leading to both
models accounting for similar dynamics (see Figure 5.5).

We addressed this by retraining the normality model parameters. As for the
recovery model, the normality model is an AR(1) process with parameters found
by solving the Yule-Walker equations. The hard coded and learned parameters
are displayed in table 5.1.

80.2 i i i 82
—— Normality model
—— Recovery model
80.1
80
—~
)
=
79.9
/ —— Normality model
79.8 U/
7211/ Recovery model
i
79.7 ' X : 70 X X X
0 200 __ 400 600 800 0 200 _ 400 600 800
Time (s) Time (s)

(@) (b)

Figure 5.5: (a) Example dynamics of the normal regime of incubator humidity readings,
generated by a sample drawn from the normality model (blue) and the recovery model (red)
with initial value equal to set value (zo = 80 = Zmaa). (b) Example dynamics of the recovery
of incubator humidity generated by a sample drawn from the normality model (blue) and the
recovery model (red) with same initial value (zg = 7) and set value (Zmaz = 80). The plots
underline how similar these the dynamics generated by both model are.

71



| Parameters || Non-trained normality model | Trained Normality model |

a 0.988 0.998
o2 =v le-4 le-5

Table 5.1: Normality model parameters. Left: previous hard coded parameters. Right:

retrained parameters.

The three-stage handling factor

Originally, the handling factor was composed of only two states:

1. Incubator open - humidity declining (described by the‘incubator open’ /
‘decay’ model; see top blue squares in Figure5.6)

2. Incubator closed - humidity maintained constant (described by the ‘nor-
mality’ model)

The IO factor is now extended by the addition of the recovery stage as a third
stage as follow:

1. Incubator open - humidity declining (described by the ‘incubator open’ /
‘decay’ model; see top red square in Figure5.6)

2. Recovery to set level (described by ‘recovery’ model; see top green square
in Figure5.6)

3. Incubator closed - humidity maintained constant (described by the ‘nor-
mality’ model; see top blue squares in Figure5.6)
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Figure 5.6: The three states of the new handling factor: 1) The incubator open state (causing
the decay of the humidity readings) is highlighted by the red square. 2) The incubator closed
state (causing the recovery to set level of the humidity readings) is highlighted by the green
square. 3) The normal state of the handling factor (causing the humidity reading to be stable
around the set value) is highlighted by the blue squares.

The transition probability matrix

Transforming the handling factor into a three-stage factor implies that the tran-
sition probability matrix must be changed accordingly. Indeed, the humidity
channel was initially described by only two states, the normal state and the
incubator opening state, which implied the use of a 2 x 2 transition probability
matrix. After integration of the recovery state, the humidity channel is de-
scribed by three states, which leads to a 3 x 3 transition probability matrix,
which is computed by following the steps described below:

Method: Given the following definitions:

e n,; the number of transition from state j to state ¢, and
e 0;; the probability of going to state i, given that we are currently in state
j-
The transition probability matrix can be computed using the following

formula (see section 3.2.1):

i il

0 = =——— 5.19
J Ek nk\j ( )
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In reality, it is only possible to change stages in the order: ‘normality’ (incu-
bator closed - humidity constant at set level) — ‘incubator open’ (humidity
decrease) — ‘recovery’ (humidity increase and stabilize at set level). Every
other sequence transition (except transition from one state to the same state) is
forbidden. These rules are used to compute the different values of the transition
probability matrix, and are written in mathematical language as follow:

e n;; =T; where T; corresponds to the total time passed in state i

® n,;,1); = where N; corresponds to the number of transitions from state i
to state ¢ + 1

e n;; =0forall j#i+1

These rules are presented in diagram form in Figure 5.7.

Normality ~ ——|incubatoropen| . _Fecovery

D

Figure 5.7: Illustration of the state transitions. The state transition reflect the possible
sequences of events in reality, where the incubator is closed (‘normality’ state), than is opened
(‘incubator opening’ state), and than closed (‘recovery state’), leading to the recovery of
the humidity readings to set level. When the set level is reached, the system return in the
‘normality’ state. From each state, the system can either stay in the same state, either follow
the transition described above. All the other transitions are forbidden, as shown by the

crossed-out arrows.

5.1.5 ROC theory

This section describes the theory behind the ROC analysis, tool that has been
used in this project to assess the performance of the re-modelled 10 factor in
classifying handling episodes (including both decay of humidity readings due to
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the incubator opening and humidity recovery to set level caused by the closing
of the incubator). Receiver operating characteristics (ROC) graphs constitute
a useful method to visualise classifiers performance. Table 5.2 displays the
confusion matrix and the common performance matrix calculated from it. The
numbers along the major diagonal represent the correct decisions made, and
the numbers of this diagonal represent the errors—the confusion—between the
various classes [46]. Below are display some basic definitions concerning the
classifiers, necessary at the understanding of the ROC graphs.

e TP: True Positive, corresponds to positives correctly classified

e TN: True Negative, corresponds to negatives correctly classified

e N: Total number of Negative, corresponds to FP+TN.

e FP: False Positive, corresponds to positives incorrectly classified
e FN: False Negative, corresponds to negatives incorrectly classified
e P: Total number of Positive, corresponds to FN+TP.

e The true positive rate of the classifier is:

TP
(FN +TP)

tprate =
e The false positive rate (also called false alarm rate) of the classifier is:

FN

te n ————
Jprate ~ TEp TN

e Specificity:

TN

N g ¢
FP+TN fprate

speci ficity =

e Sensitivity:

sensitivity = = tiprate

TP
FN+TP

| I | Predicted value |

Positive | Negative
Positive TP FN
Negative FP TN

Actual value

Table 5.2: Diagram of a confusion matrix. A confusion matrix is a visualization tool that
gives information allowing to assess the performance of a binary classification system. Each
column of the matrix contains the predicted outcome obtained from the classifier, and each

row contains the real classifications.
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In a ROC curve, the true positive rate (or sensitivity) is plotted in function
of the false positive rate (1-specificity) for different decision threshold values.
Each point on the ROC curve represents a sensitivity/specificity pair corre-
sponding to a particular decision threshold. In fact, a ROC graph depicts rel-
ative trade offs between benefits (true positives) and costs (false positives). A
perfect classifier would have a ROC curve that passes through the upper left
corner (100% sensitivity, 100% specificity). Therefore the closer the ROC curve
is to the upper left corner, the higher the overall accuracy of the classifier [46].

The AUC value corresponds to the area under the ROC curve. In regards
of the theoretical properties of ROC curves, the closer the AUC value to one,
the better the performance of the classifier [46].

The EER value is the error rate corresponding to the threshold for which
false acceptance rate and false rejection rate are equal. The value indicates that
the proportion of false acceptances is equal to the proportion of false rejections.
The lower the equal error rate value, the higher the accuracy of the classifier
[46].

Labelling the new handling episodes for ROC analysis

In order to asses the performance of the 10 factor in classifying handling episodes,
that is, to compute the ROC curve, the AUC and the EER values, we had to
obtained the new ‘true’ handling episodes - that would include, in addition to
the humidity readings decreasing due to the incubator opening, the humidity
readings recovering to set level due to the closing of the incubator. The labelled
data for the humidity readings decreasing due to the incubator opening were
already available (provided by the clinical experts). The labelling of the humid-
ity recovering to set value were obtained automatically, by using the existing
labelled data for humidity decay as follow: for each interval labelled as humidity
decay, the end of the segment was matched to the beginning of the recovery seg-
ment, and the end of the recovery segment was matched to the moment where
the humidity measurements were reaching their maximum value before the next
‘true handling’ interval, or, if this maximum value was above the set humidity
value, the end of the recovery segment was matched to the moment where the
humidity measurements were reaching the set value.

5.2 Results

In the following section, we describe the results obtained from the performance
evaluation of the re-modelled IO factor in classifying the new handling episodes
(including both decay of humidity readings due to the incubator opening and
humidity recovery to set level caused by the closing of the incubator).

Figure 5.8 displays the ROC graph for the IO (handling) factor before and
after re-modelling. Some points of the new model ROC curve (red curve) lie
below the old model ROC curve (blue curve), indicating that, at least for small

76



positive rates, the old model performs slightly better. However, most of the ROC
curve is greater for the new model than for the old model. This is reflected in the
AUC value, a summary statistic relating to the overall classification performance
(see section 5.1.5), which is much higher for the new model than for the old
model (respectively 0.905 and 0.850 for the new and for the old models), as
well as for the EER (respectively 0.184 and 0.209 for the new and for the old
models).
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Figure 5.8: Comparison between the ROC curves for (a) the old and (b) the new handling
factor. Both ROC curves have been computed by comparing the inferred handling intervals
with the new labelled data.

Inspection of inferred distributions of the old and the re-modelled 10 factor
during handling episodes were undertaken, in order to visually compare the
performance of the two factors. Most of these visual inspections confirmed the
ability of the new IO factor to account for the humidity recovery to set level.
One representative example is displayed in Figure 5.9 where we can see the
inferred probability distributions (in grey levels) of the old 10 factor (Figure
5.9a) and the new IO factor 5.9b during two subsequent handling episodes. It
can be seen that when using the old 10 factor (Figure 5.9a), only the decay
of the humidity was picked up by the I0 (handling) factor, whereas after the
re-modelling of the 10 (handling) factor, the inference is almost perfect, with
the recovery segment now being completely picked up by the recovery model.
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Figure 5.9: Representative example of inferred switch settings for the Handling (Incubator
open) factor before the addition of the humidity recovery model (top Figure), and after this
addition (bottom Figure). In (a) (old model of the IO factor), we see that the incubator factor
was only accounting for the decay of the humidity level. In (b) (new model of the IO factor),
we see that the IO factor accounts now for the decay of humidity level, as before, and for the
totality of the recovery of the humidity to set level that follows.

Finally, we inspected the inferred probability distributions of the X-factor
during humidity recovering episodes, in order to see if the fact that the humidity
recovery was now picked up by the new IO factor was stopping the X-factor from
firing during such recovery phases. The result of these inspection suggested that
the likelihood of the X-factor firing during recovery phases were reduced with
the new IO factor, in comparison to the case were the old 10 factor was used. In
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Figure 5.10, we display a representative example of handling episode with the
corresponding probability distributions of the X-factor and the old IO factor
(in Figure 5.10a) and the corresponding probability distributions of the X-factor
and the new IO factor (in Figure 5.10a). In this particular example, we see that
the addition of the humidity recovery model significantly reduced the probability
of the X-factor firing during recovery segments (see red squares).
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Figure 5.10: Comparison of inferred switch settings for handling (incubator open) factor
and X-factor with the (a) old and (b) new IO (handling) factor model. The re-modelling of
the IO (handling) factor reduced the probability of the X-factor firing during the recover of
humidity to set level (see red square highlighting the X-factor inferred distribution in (a) and
(b) for comparison).
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5.3 Discussion

Early feedback from the clinical experts indicated that the system was unable
to deal with the recovery of incubator humidity readings to set level, following
the opening and closing of the incubator door. This was signalled by the X-
factor triggering during these events. As the recovery of humidity reading to
set level does not reflect a change that is related to the true state of the baby,
the X-factor firing for such type of data was unwanted. To address this, the
handling (incubator open) factor was re-modelled, so that it would be able to
account for the recovery of the humidity readings to set level. The new model
was able to better account for sections of the data where the humidity level was
undergoing recovery (quantified via the ROC curves in section 5.2). Moreover,
qualitative observations from the data appeared to suggest that the new model
helped reduce the likelihood that the X-factor is firing during these recovery
periods (see section 5.2).

However, despite the overall good performance of the new incubator open
factor, some undesired behaviour was observed (see Figure 5.11). Specifically,
we sometimes observed that after the humidity decreases that were due to the
opening of the incubator, the humidity stabilised for a while (see top blue square
in Figure 5.11) before recovering to set level. When this stabilisation occurred
for values of humidity that were close to the set level, it was sometimes not
picked up by the new incubator open factor (see bottom blue square in Figure
5.11). This is an important issue, as it could lead to the X-factor firing during
these particular intervals.
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Figure 5.11: Inferred switch settings for handling (Incubator open) factor during the open-
ing of the incubator and its subsequent closing. While the decrease of the humidity level (top
red square) and the recovery of the humidity level to set value (top green square) are being
correctly picked up by the new IO (handling) factor (bottom red and green square respec-
tively), the intermediate segment (top blue square) is not picked up by the handling factor
(bottom blue square).

Further analysis showed that the segment of data during humidity stabilisation
(blue square in Figure 5.11) was more likely under the normality model than
under the model describing the opening of the incubator (incubator open
model). This explains why this segment was wrongly picked up by the
normality model, rather than the incubator open model. From looking at the
data, an easy way to discriminate between normal humidity recordings and the
stabilisation phase after the opening of the incubator (top blue square in
Figure 5.11) is that normally, the humidity is close to a specific ‘set value’,
whereas during the stabilisation phase it exhibits values further away from this
set value. Based on this intuition, we tried to address this issue by multiplying
the likelihood of the normality model by a penalty term; the size of the
penalty increasing with the distance of the humidity level from the set value.
To do this, we used a ‘product of expert’ model: a model that combines
individual component models (the experts) by taking their product and
normalizing the result [47]. In this case, we used two individual component
models. The first component model is the normality model describing the
normal incubator humidity readings, with log-likelihood given by:

- 1
log P(X) =53 :1:%—|—Z(x—aa:t,1)2 +C (5.20)



Note that in this equation, the set value of the humidity level was set to zero.
The second component model corresponds to the penalty model, and was set to
the following log likelihood, so that the further away the data is from the mean
(or set humidity level), the smaller the likelihood (with the mean of the process
set to zero):

2
~ x
log Po(X) = — — +C 5.21
o8 PX) = =3 g+ (5.21)
with the total likelihood of the resulting normality model resulting from the
addition of the two log-likelihoods (minus a normalization term):
log P(X) o log Py (X) + log Po(X) — log Z (5.22)
In order for the resulting model of normality to remain an autoregressive
process, its inverse covariance matrix (equal to the addition of the two inverse
covariance matrix) must satisfy the following property:

1 —a 0 0 1 —a 0
_ 1 —a 14+a*> . 0 1 1 —a 14a?
= — T =—
202 0 . . L +2O'(2) 202
0 0 —a 14+a? 0 0 —a
(5.23)

with @ and ¢ corresponding to the parameters of the new normality model.
Solving equation 5.23 is equivalent to finding the solutions to the following
equations

1 1 1
ﬁ + O’_g = ﬁ (5.24)
a a
5 =37 (5.25)
(1+a%) 1 (1+a?)

To avoid the only solution being a = a and 6 = o, we neglect equation 5.24,
(which only accounts for one term of the covariance matrix).The solution to
these equations can be written as:

A= ((T+a®) X+ X0) A +a’X =0 (5.27)
< =AM1+a? A
s “Alta )2+ Xo + VA (5.28)

(where A= 5, Ao = 5, A= & and A = X2(1 —a®)2 + 2\(1 +a?) Ao + A3 > 0).
0

Finally, it is straightforward to obtain the parameters @ and 62 using equation

5.28.
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After setting up the product of expert model, we looked at how it was
able to infer the incubator open factor events from the physiological data: in
particular, the stabilisation segments. Therefore, we looked at the probability
distribution that the IO factor was firing, during selected data segments, with
varying the penalty term in the model (0g). Although isolated examples showed
that this model could account well for the data segments which had previously
been a problem (the stabilization segments; see figure 5.12), the addition of a
free parameter (og) created additional problems. That is, it was not clear from
our initial work how to best set o, or indeed, learn it from the data. Hopefully
however, future work should be able to address this issue, and successfully utilize
the advantages provided by the presented product of experts model.

In the previous chapter, we set out a system which could gather feedbacks,
on the basis that their can provide expert knowledge which is crucial to improv-
ing the model. This idea is reinforced in this chapter: we were motivated to
build a better model of the incubator opening based on initial feedback gath-
ered informally from the clinicians. This shows the value in developing close
collaborative ties between the machine learning lab and the clinicians; as their
feedback is crucial to the further development of the system. Hopefully, in the
future, gathering such feedback automatically should guide the development of
further extensions to the system.
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(a) Hlustration of the issue: the stabilization segment (see top blue square) is being wrongly
picked up by the normality model (see bottom blue square).
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(b) Issue addressed using a PoE model (o9 = 10)

Figure 5.12: Example of inferred switch settings for each stage of the handling factor
(incubator open (decay) model, the recovery model and the normality model), during an
handling episode. (a) This example illustrates the issue discussed, that is, the stabilization
segment of humidity just before the closing of the incubator (see top blue square) is being
wrongly picked up by the normality model (see bottom blue square). (b) In this example, we
apply the PoE model described in the text, with 08 set to the value of 10. The incubator
open (decay) model picks up now the stabilisation of the humidity readings.
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Chapter 6

Conclusion

In this thesis, I described the system constructed by my laboratory, designed to
infer the real state of health of premature babies, based on the vital parameters
(e.g. heart rate, oxygen saturation) recorded from them in neonatology units.
The goal of this system was to reduce the number of false alarms, which are
very high in the devices currently used in neonatology units, by allowing the
system to discriminate between changes in the recorded vital parameters that
were due to real physiological problems,; and changes caused by artefacts (e.g.
probe drop-out).

In my project, I contributed to this project by setting up a method to evalu-
ate the system using new monitoring data. The aim here was to asses its current
performance, and find where it could be improved. As evaluating this system re-
quires knowing the true clinical interpretation of the physiological data, clinical
expertise had to be used, requiring close collaborations with clinical experts.

An interesting and important feature of the model developed by my host
laboratory is that, as well as attributing each segment of data as due to some
known physiological or artefactual causes (i.e. bradycardia, probe drop out),
it is also able to identify physiological intervals that the model can not classify
well - these intervals are labelled by the ‘X-factor’. This is particularly useful
for evaluating the system performance, allowing us to gain feedback only on
those intervals where the model need to be improved.

The evaluation system constructed in this project takes the form of a feed-
back webform which gathers clinical interpretations of ‘X-factor’ intervals. In
setting up this application, we had to face diverse issues such as making the
form user friendly and clear to the specialised language used by clinicians. The
relatively small number of feedbacks obtained, as well as the biases introduced
by evolving the webform through time means that we have to be careful not to
draw too strong conclusions. Nevertheless, some results stand out.

First, we confirmed that the model was behaving as intended: artefactual
factors known by the system were able to accurately predict the events they were
intended to model. Moreover, the analysis of feedbacks from the clinical experts
suggested that some additional factors could be usefully added to the system,
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particularly to model the heart rate and the oxygen saturation channels. The
fact that the initial feedbacks clearly showed where the model needed improving
are encouraging, and suggest that this approach could help discover new regimes
claimed by the “X-factor” which, as a result, could then be added as factors in
the model.

In the near future, further work should include the adaptation of the web-
form to correct for some of the issues discussed in this report. Notably, the
categories extracted from the free text comments that were flagged repeatedly
should be added in the webform as labelled events with a tick box, whereas
the labelled events with a tick box which have hardly been flagged should be
removed from the list of labelled events in the webform. At the same time,
some clear guidelines should be written for the clinicians answering the feedback
forms, explaining clearly what each question means, with illustrative examples
of physiological data corresponding to each kind of events listed in the webform.

The second part of my project was motivated by early feedbacks form clinical
experts, suggesting that the model was not able to account for the humidity
readings recovering after the opening and closing of the incubator, causing the
X-factor to fire often during these events. As the goal of the FSLDS model was
to reduce the number of false positive, it is important that this kind of data is
accounted for by an artefactual factor rather than the X-factor. To address this,
the re-modelling of the handling factor was undertaken, so that this factor would
be able to account for the recovery of the humidity readings to the set level,
after the incubator is closed. This re-modelling gave reasonably good results,
and seemed to decrease the likelihood of the X-factor episodes for segments of
data just after the incubator was closed. In the discussion, we described how
this model could be extended in the future to account for occasional occurrence
of data segments where the humidity stabilised at steady values far away from
its normal value.
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