
Bayesian Inference from Composite Likelihoods, with an

Application to Spatial Extremes

Mathieu Ribatet†,∗ Daniel Cooley‡ Anthony C. Davison§

June 25, 2011

† Department of Mathematics, Université Montpellier II
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Abstract

Composite likelihoods are increasingly used in applications where the full likelihood is analytically un-

known or computationally prohibitive. Although some frequentist properties of the maximum composite

likelihood estimator are akin to those of the maximum likelihood estimator, Bayesian inference based

on composite likelihoods is in its early stages. This paper discusses inference when one uses composite

likelihood in Bayes’ formula. We establish that using a composite likelihood results in a proper poste-

rior density, though it can differ considerably from that stemming from the full likelihood. Building on

previous work on composite likelihood ratio tests, we use asymptotic theory for misspecified models to

propose two adjustments to the composite likelihood to obtain appropriate inference. We also investigate

use of the Metropolis Hastings algorithm and two implementations of the Gibbs sampler for obtaining

draws from the composite posterior. We test the methods on simulated data and apply them to a spatial

extreme rainfall dataset. For the simulated data, we find that posterior credible intervals yield appropri-

ate empirical coverage rates. For the extreme precipitation data, we are able to both effectively model

marginal behavior throughout the study region and obtain appropriate measures of spatial dependence.
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1 Introduction

1.1 Motivation

The likelihood function is central to both frequentist and Bayesian inference, but in many modern settings

it may be infeasible to calculate it, either because no analytical form is available, or because such a form

is known but is computationally prohibitive. The first difficulty arises with max-stable processes, which

are used to construct probability models for complex rare events, but for which closed forms are typically

available only for the bivariate marginal densities [Smith, 1990; Schlather, 2002; de Haan and Pereira, 2006;

Kabluchko et al., 2009], though Genton et al. [2011] show that substantial efficiency gains are possible if

trivariate margins can be used. The second difficulty may be experienced when dealing with Gaussian random

fields on large lattices. Both of these problems and many other similar ones can be tackled using composite

likelihoods. Padoan et al. [2010] and Gholamrezaee [2010] propose the use of composite likelihood based on

marginal events to fit max-stable processes, and Rue and Tjelmeland [2002] have used composite likelihoods

based on omitting components of the full likelihood in approximating Gaussian random fields. Rydén and

Titterington [1998] describe the use of pseudo-likelihood, a form of composite likelihood, in simulation-based

inference involving missing data, and show that their approach leads to a valid Markov chain simulation

algorithm.

Frequentist methods for composite likelihoods have been used for some time (for an overview, see Varin

[2008]), but little work has been done to explore how composite likelihoods could be employed in a Bayesian

framework. The motivating application for this work is the spatial modelling of extremes. Recently authors

(e.g., Padoan et al. [2010] and Gholamrezaee [2010]) have used composite likelihoods to fit max-stable models,

enabling the researchers to successfully model dependence between observations. However, the frequentist

methods they employ may not be flexible enough to accurately fit the marginal behavior across the study

region. Cooley et al. [2007] and Sang and Gelfand [2009] have used Bayesian hierarchical spatial models to

capture the marginal effects for spatial extremes, but have not used the max-stable process models suggested

by extreme value theory to describe the dependence in the data. The goal of this work is combine these two

approaches, and this entails appropriately deploying a composite likelihood within a Bayesian framework.

1.2 Likelihood asymptotics for composite likelihoods

Although it has numerous antecedents, the notion of a composite likelihood was crystallized by Lindsay

[1988], who defined it as a combination of valid likelihood entities. Consider a random vector Y ∈ R
K with
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probability density function f(y; θ) where θ ∈ R
p is an unknown parameter vector. Let {Ai : i ∈ I}, I ⊂ N,

be a set of marginal or conditional events for Y and let {wi, i ∈ I} be a set of non-negative weights. A

composite likelihood is defined as

Lc(θ; y) =
∏

i∈I

f(y ∈ Ai; θ)
wi , (1)

with corresponding log-composite likelihood

ℓc(θ; y) =
∑

i∈I

wi log f(y ∈ Ai; θ). (2)

Below we assume that n independent replicates Y 1, . . . , Y n of Y are available, yielding a total composite

likelihood and log likelihood of the form

Ltot
c (θ; y) =

n
∏

j=1

∏

i∈I

f(yj ∈ Ai; θ)
wi , ℓtotc (θ; y) =

n
∑

j=1

∑

i∈I

wi log f(yj ∈ Ai; θ),

and consider asymptotics as n → ∞, with a fixed number of observations K in each replicate. The devel-

opment below is simpler if we work with quantities that remain of order one as n→∞, and we shall do so

wherever possible.

If the true likelihood is unavailable or difficult to work with, θ is often estimated by the maximum

composite likelihood estimator θ̂c. Let θ0 denote the true value of the parameter. As each term on the

right-hand side of equation (2) is a valid loglikelihood, the composite score function ∇ℓtotc (θ; y) is a linear

combination of unbiased estimating functions and so has mean zero. Under appropriate regularity conditions,

therefore, the maximum composite likelihood estimator θ̂c converges in distribution as follows,

√
n{H(θ0)J(θ0)

−1H(θ0)}1/2(θ̂c − θ0) d−→ N (0, Idp) , n→∞, (3)

where M1/2 denotes a matrix square root, i.e., {M1/2}TM1/2 = M , Idp denotes the p× p identity matrix,

H(θ0) = −E[∇2ℓc(θ0;Y )] and J(θ0) = Var[∇ℓc(θ0;Y )], where the expectations are with respect to the full

density. Both H(θ0) and J(θ0) are positive definite in a regular model, and both are of order one as n→∞.

Essentially the usual regularity conditions for the asymptotic normality of the maximum likelihood es-

timator as n → ∞ apply [Davison, 2003, Sec. 4.4.2], but the parameter θ must be identifiable from the

densities appearing in (2). The limiting distribution in equation (3) also stems from the behavior of the

maximum likelihood estimator under mis-specification [Kent, 1982]. The maximum composite likelihood
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estimator may thus be viewed as resulting from a mis-specified, or, more accurately, under-specified, statis-

tical model, leading to consistent estimation but with a “sandwich” variance estimator of the type arising in

longitudinal data analysis and many other domains.

1.3 Bayesian inference with a composite likelihood

Bayesian inference based on composite likelihoods has been little explored. Motivated by the spatial extremes

problem mentioned above, Smith and Stephenson [2009] use a pairwise likelihood and Markov chain Monte

Carlo simulation to fit a max-stable model for rainfall at five sites in South-West England. They obtain a

posterior by replacing the unavailable full likelihood with the pairwise likelihood, but although they mention

that this substitution may lead to overly precise inferences, they do not describe how to correct this. Pauli

et al. [2011] independently suggest the adjustment to the composite likelihood called by us the magnitude

adjustment in Section 2.1, establish the asymptotic normality of the corresponding composite posterior and

apply the method to a five-dimensional data set on air pollution.

Related to Bayesian inference with composite likelihoods is work in Bayesian methods when one lacks

or wishes to avoid using the true likelihood. Monahan and Boos [1992] explore the validity of a posterior

when the likelihood is not the conditional density of the data given the parameter, and propose both an

alternative definition based on the coverage of posterior sets and a test that can be used to invalidate a

particular replacement likelihood. Lazar [2003] applies this test when an empirical likelihood is used in

place of a parametric one. Other work on Bayesian methods with conditional or pseudo likelihoods (e.g.,

Efron [1993], Chang and Mukerjee [2006] and Ventura et al. [2009]) is typically motivated by a desire to avoid

specifying a full likelihood when there are nuisance parameters, and thus focuses on Bayesian implementation

using a pseudo-likelihood, which is often a marginal, conditional or profile likelihood for the parameters of

interest. Like Monahan and Boos, our ultimate aim is the practical one of using a composite likelihood to

provide valid inferences; for example, the resulting posterior confidence sets should be correctly calibrated.

Provided that
∫

Ltot
c (θ; y)π(θ)dθ is finite, we use (1) to define a composite posterior density as

πc(θ | y) =
Ltot
c (θ; y)π(θ)

∫

Ltot
c (θ; y)π(θ)dθ

, (4)

where π(·) is the prior density. The first question arising is under what circumstances
∫

Ltot
c (θ; y)π(θ)dθ <∞,

so that (4) is well-defined. In Bayesian analysis, integrability questions usually arise when discussing improper

priors; but here we suppose that π(·) is proper. Then a sufficient condition for (4) to be proper is that for
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each i there exists a finite bi such that supθ f(y ∈ Ai; θ) ≤ bi, since in that case

∫

Ltot
c (θ; y)π(θ)dθ =

∫

∏

j

∏

i∈I

f(yj ∈ Ai; θ)
wiπ(θ)dθ ≤

∏

i∈I

bnwi

i <∞. (5)

The boundedness of f(y ∈ Ai; θ) holds in many cases, and in cases of doubt it can be imposed by recalling that

in practice continuous observations are always rounded to some extent. The correct likelihood is therefore a

product of probabilities obtained as differences of cumulative distribution functions, for which bi ≡ 1. The

rounding is often ignored so that simpler density function approximations to the correct likelihood may be

used, but if these approximations lead to difficulties, then we may choose to work with the correct likelihood;

see, e.g., Copas [1972]. As this rounding argument applies to any probability elements in (1), and, with minor

changes, also applies to the modified composite likelihoods used below, in practice we may always arrange

that
∫

Ltot
c (θ; y)π(θ)dθ <∞ and thus that (4) is proper.

Since the composite likelihood is not the likelihood believed to have generated the data, the naive imple-

mentation of a composite posterior may give misleading inferences, as we now illustrate.

Example 1. Let {Y (x)} be a stationary Gaussian process with unknown mean µ ∈ R and with covari-

ance function γ(h) = τ exp(−h/ω), where the sill τ > 0 is unknown but the scale ω > 0 is known. Let

{y(x1), . . . , y(xK)} be one realisation of this process at locations x1, . . . , xK ∈ R. Now consider a prior

density of the form π(θ) = π(µ)π(τ), where π(µ) ∼ N(a, b) and π(τ) ∼ IG(c, d), i.e., an inverse Gamma

distribution with shape c and scale d.

Here the prior densities are conjugate for π(θ | y), so the full conditional distributions needed for Gibbs

sampling are easily found to be

π(µ | · · · ) ∼ N
(

µ̃, σ̃2
)

, π(τ | · · · ) ∼ IG

{

c+
K

2
, d+

1

2
(y − µ1)TΣ−1(y − µ1)

}

,

where σ̃2 =
(

b−1 + τ−11TΣ−11
)−1

, µ̃ = σ̃2
(

ab−1 + τ−11TΣ−1y
)

and Σ is the correlation matrix derived

from γ(·).

The full conditional pairwise distributions are also readily available, and are

πp(µ | · · · ) ∼ N
(

µ̃p, σ̃
2
p

)

, πp(τ | · · · ) ∼ IG

{

c+
K(K − 1)

2
, d+

1

2
(yp − µ1)TΣ−1

p (yp − µ1)

}

,

where σ̃2
p =

(

b−1 + τ−11TΣ−1
p 1

)−1
, µ̃p = σ̃2

p

(

ab−1 + τ−11TΣ−1
p yp

)

, Σp is a block diagonal matrix with
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blocks






1 τ−1γ(xi − xj)

τ−1γ(xi − xj) 1






, 1 ≤ i < j ≤ K,

and yp = (y1, y2, y1, y3, . . . , y1, yK , y2, y3, . . . , y2, yK , . . . , yK−1, yK)T . �

Example 1 shows that, as might be expected, the full conditional densities derived from the pairwise

likelihood differ from those derived from the full likelihood. Since 1TA1 is the sum of all entries of the

matrix A and Σp is block diagonal, it is not difficult to show that

1TΣ−1
p 1 = 2

K−1
∑

i=1

K
∑

j=i+1

{

1 + τ−1γ(xi − xj)
}−1 ≥ τK(K − 1)

1 + τ
, 1TΣ−11 ≤ K,

so, in particular,
σ̃2
p

σ̃2
≤ (1 + τ)(τ + bK)

(1 + τ)τ + bτK(K − 1)
,

and when τ is fixed, σ̃2
p/σ̃

2 ↓ 0 as K →∞.

To illustrate this discussion, Figure 1 shows posterior marginal density estimates for µ and τ based on

the composite and full likelihoods, found using a Gibbs sampler. These densities were obtained by taking

the same setting as in Example 1 with µ = 0, τ = 1 and ω = 3, the last taken as constant in the sampling

algorithm, with K = 20, and with the locations x1, . . . , xK taken uniformly at random in [0, 20]. There are

n = 50 independent replicates of these data. A Gaussian prior with mean 0 and variance 100 was placed on

µ, and independently an inverse gamma prior with shape 1/10 and scale 1 was placed on τ . The marginal

composite posterior densities are much too concentrated, because the pairwise likelihood treats the pairs of

observations as though they were mutually independent and thus uses each observation repeatedly—see the

definition of yp in Example 1.

The aim of this paper is to propose a framework for approximate Bayesian inference from composite

likelihoods when the full likelihood is not available. Our aim is to obtain composite posterior distributions

that give credible intervals with reasonable coverage. Section 2 introduces two adjustments to the composite

likelihood that are intended to retrieve some of the desirable properties given by the usual likelihood. Sec-

tion 3 shows how these adjustments can be incorporated into Markov chain Monte Carlo samplers, and their

performance in simulation studies is discussed in Section 4. Section 5 gives a case study on the modelling of

extreme rainfall around Zurich. The paper closes with a brief discussion and two technical appendices.
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2 Adjustment of the composite likelihood

We ultimately wish to perform a Bayesian analysis, in which setting there is no “true” parameter value θ0.

However, we use asymptotic relationships developed under the frequentist paradigm to adjust the likelihood

to obtain appropriate inference for the composite posterior, and thus speak of θ0 throughout this section.

The theory of unbiased estimating functions applied to the score functions of composite likelihood implies

that under suitable regularity conditions, the modes of a composite posterior and of the full posterior density

will approach one another as the sample size increases; see Figure 1. However, the figure also shows that

the composite posterior density can differ significantly in spread from the true one, because the composite

likelihood treats the events {Ai, i ∈ I} as though they were mutually independent. Below we seek to modify

the composite likelihood in order to mitigate this.

Suppose that the parameter θ = (φT , ψT )T has true value θ0 = (φT0 , ψ
T
0 )T and that ψ contains q elements.

Let θ̃ be the restricted maximum likelihood estimator, obtained by maximizing the full log likelihood ℓ(θ;Y )

over θ with ψ held fixed at ψ0 and let θ̃c be the restricted maximum composite likelihood estimator, which

maximizes (1) with ψ held fixed at ψ0. Then as n→∞,

Λ(ψ0) = 2{ℓ(θ̂;Y )− ℓ(θ̃;Y )} d−→ χ2
q (6)

whereas for the composite likelihood,

Λc(ψ0) = 2{ℓc(θ̂c;Y )− ℓc(θ̃c;Y )} d−→
q

∑

i=1

λiXi (7)

where X1, . . . , Xq are independent χ2
1 random variables, λ1, . . . , λq are the eigenvalues of the q × q matrix

{H(θ0)
−1J(θ0)H(θ0)

−1}ψ[{H(θ0)
−1}ψ]−1, and Aψ denotes the sub-matrix of a matrix A corresponding to

the elements of ψ [Kent, 1982]. These relationships have previously been exploited to provide likelihood

ratio tests [Rotnitzky and Jewell, 1990; Chandler and Bate, 2007] suitable for misspecified models. Here we

aim to recover convergence in distribution to the usual χ2 distribution through two different modifications

of the composite likelihood: a magnitude adjustment and a curvature adjustment. The reasons for such

modifications is to make the composite likelihood ratio, which appears in the Metropolis–Hastings algorithm

but is hidden in the Gibbs sampler, behave in distribution as it would if a full likelihood were available. In

the remainder of this section we consider only the case where ψ has dimension zero, but in Section 3.2.2 we

will show how partitioning θ can yield better coverage.
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2.1 Magnitude adjustment

The magnitude adjustment to the composite log likelihood is inspired by Rotnitzky and Jewell [1990], who,

in the context of hypothesis testing in longitudinal studies, estimate λ1, . . . , λq from estimates of H(θ0) and

J(θ0), and use them to calculate the appropriate rejection region for the χ2 test based on (7).

We define the magnitude adjustment by

ℓmagn(θ; y) = kℓtotc (θ; y), θ ∈ Θ, (8)

where k is a positive constant; (8) was also suggested by Pauli et al. [2011]. With this modification and as

n→∞ we have

Λmagn(ψ0) = 2{ℓmagn(θ̂c;Y )− ℓmagn(θ̃c;Y )} d−→ k

q
∑

i=1

λiXi (9)

and

E[Λmagn(ψ0)] −→ k

q
∑

i=1

λi, Var[Λmagn(ψ0)] −→ 2k2

q
∑

i=1

λ2
i .

Setting k = q/
∑q
i=1 λi therefore ensures that E[Λmagn(ψ0)] converges to E[χ2

q ] = q, but the higher moments

of (9) will not match those of χ2
q unless all the λi’s are equal or q = 1. For our purposes, we consider the

case where φ has dimension zero, i.e., k = p/
∑p
i=1 λi where λ1, . . . , λp are the eigenvalues of H(θ0)

−1J(θ0).

Varin [2008] proposes a Satterthwaite adjustment to match the first two moments of Λmagn(ψ0) and χ2
q,

though their higher moments would still differ.

2.2 Curvature adjustment

Another strategy is to modify the curvature of the composite likelihood around its global maximum θ̂c by

considering the adjustment given by

ℓcurv(θ; y) = ℓtotc (θ∗; y), θ∗ = θ̂c + C(θ − θ̂c), (10)

for some constant p× p matrix C. Clearly θ̂c is also a global maximum for ℓcurv, and

∇ℓcurv(θ; y) = CT∇ℓtotc (θ; y)|θ=θ∗ , ∇2ℓcurv(θ; y) = CT∇2ℓtotc (θ; y)|θ=θ∗C.

Under mild conditions, Taylor expansion of the usual log-likelihood and the asymptotic normality of the
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maximum likelihood estimator θ̂ yield convergence of the likelihood ratio statistic in distribution to a χ2

variable [Davison, 2003, Sec. 4.5]. More precisely, the facts that

Λ(θ0)
d−→ n(θ̂ − θ0)TΣ(θ̂ − θ0), n→∞,

for some q × q covariance matrix Σ depending only on E[∇2ℓ(θ0;Y )] and

√
nΣ1/2(θ̂ − θ0) d−→ N(0, Idp), n→∞,

ensure that Λ(θ0) converges in distribution to a χ2
p variable. This occurs because −n−1∇2ℓ(θ̂; y) converges al-

most surely to the rescaled inverse of the asymptotic covariance matrix of the maximum likelihood estimator,

the Fisher information in a single Y .

This suggests that we should try to ensure that −n−1∇2ℓcurv(θ̂c; y) converges almost surely to the inverse

of the asymptotic covariance matrix of the maximum composite likelihood estimator, i.e.,H(θ0)J(θ0)
−1H(θ0),

by taking any semi-definite negative matrix C such that

CTH(θ0)C = H(θ0)J(θ0)
−1H(θ0). (11)

One possible choice, C = M−1MA, where MT
AMA = H(θ0)J(θ0)

−1H(θ0) and MTM = H(θ0), corresponds

to a suggestion of Chandler and Bate [2007] for hypothesis testing for clustered data using the independence

log-likelihood. However, the matrix square roots M and MA are not unique, and although the choice is

immaterial for composite likelihoods that are quadratic in the neighborhood of θ̂c, it might be necessary to

ensure that the mapping (10) preserves any directions of asymmetry. For this reason we use singular value

decompositions for M and MA for the curvature adjustments in this paper.

2.3 Properties of the adjustments

Although both adjustments rely on the idea of recovering the usual convergence to a χ2 variable, they express

different aspects of this. The magnitude adjustment (8) is an “overall” adjustment, intended to scale the

composite likelihood down to the appropriate magnitude; in Figure 1 it amounts to raising the narrower

curve to a power and thus giving a nonlinear transformation of the vertical axis. Therefore all (local)

extrema are left unchanged, because ∇ℓmagn(θ; y) = 0 implies that ∇ℓtotc (θ; y) = 0, and the composite and

full posterior modes should be approximately the same, because the composite score function has mean zero.
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The curvature adjustment (10), on the other hand, stretches the horizontal axis linearly so that the curvature

of ℓcurv(θ; y) at θ̂c matches that of the large-sample log-density of θ̂c; thus this changes the locations of any

local maxima other than the global maximum at θ̂c. Therefore the magnitude adjustment might be more

appropriate if the full posterior distribution is multi-modal.

However only the curvature adjustment ensures that the convergence to a χ2 distribution is met; the

magnitude adjustment only gets the first moment correct. This may have a strong impact on the shape of

the composite likelihood around θ̂c, and therefore on the composite posterior density.

2.3.1 Asymptotic posterior distributions

We now derive the asymptotic properties of the composite posterior distributions, both adjusted and unad-

justed. Provided that the unadjusted composite posterior is a valid distribution, it can be shown under the

usual regularity conditions that when n is large enough (Appendix A),

πc(θ | y) ·∼ N
{

θ0, n
−1H(θ0)

−1
}

. (12)

Here and below we abuse notation; (12) means that θ has the stated distribution, conditional on y, not

that the posterior density has a distribution. Unlike in the usual case, the unadjusted composite posterior

distribution does not converge to the asymptotic distribution of the composite likelihood estimator, given

by (3).

In their investigation of the asymptotic distribution of the the magnitude-adjusted posterior, Pauli et al.

[2011, page 8] state that the posterior has approximately the correct variance “by the χ2 approximation

for the null distribution.” Further Pauli et al. [2011, pages 8 & 9] state that the approximation is asymp-

totically correct when p = 1, and argue that the approximation represents an improvement over the naive

composite posterior when p > 1. To expand on this, as the scaling constant estimate k̂ = p/
∑p
i=1 λ̂i used

for the magnitude adjustment converges almost surely to p/tr{H(θ0)
−1J(θ0)} as n→∞, we conclude that

(Appendix A),

πmagn(θ | y) ·∼ N
{

θ0, (np)
−1tr{H(θ0)

−1J(θ0)}H(θ0)
−1

}

. (13)

Thus unless θ0 is scalar, i.e., unless p = 1, πmagn will differ from the asymptotic distribution given by (3).

Compared to (12), the asymptotic variance is inflated, because tr{H(θ0)
−1J(θ0)} ≥ p; see Appendix B.
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Since the curvature adjustment obtains the correct curvature, it is straightforward to see that

πcurv(θ | y) ·∼ N
{

θ0, n
−1H(θ0)

−1J(θ0)H(θ0)
−1

}

, (14)

which is exactly the asymptotic distribution of the maximum composite likelihood estimator.

2.3.2 Comparison of the Adjusted Likelihood to the Full Likelihood

The magnitude or curvature adjustment will ensure only that the distribution of the corresponding adjusted

composite likelihood ratio, Λadj(θ0) = 2{ℓadj(θ̂c; y)− ℓadj(θ0; y)}, will approximate the χ2
p distribution of the

true likelihood ratio, Λ(θ0). However, since the composite likelihood should contain some of the information

in the full likelihood, one would hope that Λadj(θ0) ≈ Λ(θ0), i.e., that the values of these ratios should be

related. Figure 2 compares values of Λcurv(θ0) and Λ(θ0) for 200 datasets simulated as described in §1.3.

Their correlation is r̂ = 0.64 when the number of replicate Gaussian processes is n = 50, and r̂ = 0.79 when

n = 500: reasonable correlations, but not overwhelming.

Our aim in adjusting the likelihood is not to approximate the true likelihood—and in turn, approximate

the full posterior—but rather to obtain appropriate inference from a composite posterior. If we did wish to

approximate ℓ(θ1) at θ1 ∈ Θ, then it can be shown using the curvature-adjusted likelihood that 2{ℓcurv(θ̂c)−

ℓcurv(θ1)} d→ XTX , where X ∼ N({H(θ0)J
−1(θ0)H(θ0)}1/2(θ1 − θ0), Idp), whereas 2{ℓ(θ̂)− ℓ(θ1)} d→ Y TY ,

where Y ∼ N{I(θ0)1/2(θ1− θ0), Idp} and I(θ0) is the Fisher information matrix based on the full likelihood.

Obviously, the approximation will degrade as (θ1−θ0) grows. Since the true likelihood and information about

I(θ0) would not be available in a realistic application, it seems unclear how to improve the approximation to

the true likelihood away from θ0. Simply put, by not having the full likelihood available, we lose information.

3 Markov chain Monte Carlo samplers

This section describes implementations of Markov chain Monte Carlo basing Bayesian inference on com-

posite likelihoods. One must take care to show that MCMC algorithms will converge to the correct target

distributions, as composite likelihoods, adjusted or not, are not valid likelihoods. We describe the adjusted

Metropolis–Hastings algorithm and the Gibbs sampler in turn.
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Figure 2: Comparison of 200 likelihood ratios for the Gaussian process simulation with n replicates:
Λcurv(θ0) for the curvature-adjusted composite likelihood (y-axis) versus Λ(θ0) (x-axis). Left: n = 50.
Right: n = 200.

3.1 Adjusted Metropolis–Hastings algorithm

In Section 2 we suggested two adjustments intended to provide approximations to the full likelihood ratios.

We now discuss an adjusted Metropolis–Hastings algorithm, given in Algorithm 1, and verify that it has the

desired stationary distribution.

Algorithm 1: Adjusted Metropolis–Hastings algorithm.

Input : θ̂c, Ĥ(θ̂c), Ĵ(θ̂c), θ1 ∈ Θ, a proposal distribution q(· | θ) and an adjusted composite
likelihood Ladj(·; y)

Output: A realisation of length N + 1 from a Markov chain

for t← 1 to N do

θ(p) ∼ q(· | θ(t));
αadj(θ

(t), θ(p))← min
{

1,
Ladj(θ

(p);y)π(θ(p))q(θ(t)|θ(p))

Ladj(θ(t);y)π(θ(t))q(θ(p)|θ(t))

}

;

U ∼ U(0, 1);
if αadj(θ

(t), θ(p)) ≤ U then

θ(t+1) ← θ(p);
else

θ(t+1) ← θ(t);
end

end

return {θ(t)}t=1,...,N+1;

Implementation with one of the adjusted likelihoods, Lmagn(θ; y) or Lcurv(θ; y), requires only a preliminary

maximisation of the composite likelihood to estimate the matrices H(θ0) and J(θ0) for the adjustment.

The argument that establishes detailed balance for the original Metropolis–Hastings algorithm [Robert and
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Casella, 2005, Theorem 7.2] applies to Algorithm 1, and it can be shown that apart from normalizing

constants, the stationary distribution of the Markov chain is given by

Ltot
c (θ; y)kπ(θ), k = p/

p
∑

i=1

λ̂i, (15)

for the magnitude adjustment and

exp{ℓcurv(θ; y)}π(θ) (16)

for the curvature adjustment. The stationary distributions (15) and (16) should provide better coverage

than if an unadjusted composite likelihood was used.

3.2 Gibbs sampling

When the unknown parameter θ has low dimension, Algorithm 1 should provide approximate inference for θ

without too much Monte Carlo effort. For models in which θ is of high dimension, however, the probability of

acceptance may be too low for Algorithm 1 to be viable, and then the parameter vector is often partitioned

and Gibbs sampler employed. Let us write θ = (θT1 , . . . , θ
T
G)T , where θj ∈ R

pj and
∑G

j=1 pj = p, and suppose

that we wish to draw from

π(θ | y) ∝ L(θ; y)π(θ). (17)

A typical implementation of a Gibbs sampler will successively draw from

π(θj | θ−j , y) ∝ L(θj | θ−j , y)π(θj), j = 1, . . . , G, (18)

where θ−j is the parameter vector θ with the elements of θj removed. In this section we propose two Gibbs

samplers for use with composite likelihoods.

3.2.1 Overall Gibbs sampler

Since the true likelihood is unobtainable, we use the Gibbs sampler with an adjusted composite likelihood.

We could replace L(θ; y) in (17) with Ladj(θ; y), where Ladj is either the magnitude- or the curvature-adjusted

composite likelihood. To perform Gibbs sampling, θ̂c, Ĥ(θ̂c) and Ĵ(θ̂c) can be estimated once prior to running

the algorithm, and Ladj(θ; y) can be calculated. Gibbs sampling then proceeds as usual.

As the Gibbs sampler is a special case of the Metropolis–Hastings algorithm [Robert and Casella, 2005, sec

10.2.2] and it was shown in Section 3.1 that the latter could accommodate an adjusted composite likelihood,
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this overall Gibbs sampler algorithm converges to the stationary distributions given by (15) or (16).

3.2.2 Adaptive Gibbs sampler

In real problems, the dimensions of θ, and hence of θ̂c, can be quite large. By finding θ̂c, Ĥ(θ̂c) and Ĵ(θ̂c)

only once before implementing the algorithm, the overall Gibbs sampler loses the ‘spirit’ of Gibbs sampling,

which is to sample the lower-dimensional θj given the current value of θ−j .

An alternative to adjusting the likelihood in (17) is to replace the likelihood in (18) by an adjusted

composite likelihood. That is, the likelihood for θj can be adjusted based on the current values of θ−j .

Since this adjustment requires knowledge of the maximum composite likelihood estimates, the value of

θ̂j,c | θ−j = θ
(t)
−j must be found at each step. This approach has the advantage that the adjusted composite

likelihood approximation using the current value of θ−j should be more accurate, as the approximation is

made in a lower-dimensional parameter space. In particular if θj is scalar, then the magnitude adjustment of

the composite likelihood ratio statistic is exact; see (9). This adaptive Gibbs sampler is given in Algorithm 2.

Algorithm 2: Adaptive adjusted Gibbs sampler.

Input : θ(1) ∈ Θ
Output: A realisation of length N + 1 from a Markov chain

for t← 1 to N do

for j ← 1 to G do

Get the restricted maximum composite likelihood estimate θ̂j,c with θ−j held fixed at θ
(t)
−j ;

Get Ĥj,j(θ̂j) = ∇2ℓc(θ̂j,c | θ(t)−j , y) and Ĵj,j(θ̂j), the sample covariance matrix of

∇ℓc(θ̂j,c | θ(t)−j , yi), i = 1, . . . n, and define the adjusted composite log-likelihood ℓadj(θj | θ(t)−j , y)
from either (8) or (10);

Draw θ
(t+1)
j from Ladj(θj ; y, θ

(t)
−j)π(θj | θ−j) (using Metropolis–Hastings updates if necessary);

end

end

return {θ(t)}t=1,...,N+1;

It can be shown that Algorithm 2 corresponds to a well-defined posterior by considering the completion

[Robert and Casella, 2005, section 10.1.2]:

π(θ̂, θ | y) =

G
∏

j=1

π(θ̂j | θ, y)π(θ | y),
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where π(θ | y) represents the target density. Note that

π(θ | y) =

∫ G
∏

j=1

π(θ̂j | θ, y)π(θ | y)dθ̂

as required for a completion, provided that π(θ̂j | θ, y) is a valid density. Define

π(θ̂j | θ, y) = δarg maxLc(θj|θ−j ,y)(θ̂j),

that is, a Dirac measure on the value of θj that maximizes the composite likelihood given the current values

of θ−j . If the maximum composite likelihood estimates θ̂j could be found analytically, then Algorithm 2

would simply be a Gibbs sampler on the completion. Since θ̂j must be obtained numerically, convergence of

the Markov chains must be carefully checked by examining the output.

In the context of the adaptive Gibbs sampler, both the magnitude and curvature adjustments must be

understood as adjusting the conditional likelihood Lc(θj | θ−j , y). That is, k in equation (8) now becomes

pj/
∑pj

i=1 λ̂i where λ̂i are the eigenvalues of the matrix defined by Ĥ(θ̂j) and Ĵ(θ̂j). Similarly, the matrix C

in (11) is defined by Ĥ(θ̂j) and Ĵ(θ̂j).

It is instructive to tie each of the Gibbs samplers to the asymptotic distribution of the posterior. Let

π(θ | y) denote the composite posterior distribution evaluated at θ ∈ R
p and further assume that the

asymptotic posterior distribution corresponds with that of the maximum composite likelihood estimator,

log π(θ | y) ∝̇ − 1

2
(θ − θ0)TH(θ0)J

−1(θ0)H(θ0)(θ − θ0), (19)

where ∝̇ means ‘asymptotically proportional to’. Gibbs sampling for a given partition θ = (θj , θ−j)
T , where

θ ∈ R
pj and θ−j ∈ R

p−pj , would involve drawing from π(θj | θ−j , y), the conditional posterior distribution

of θj given some fixed value for θ−j .

In the overall Gibbs sampler, one begins by approximating (19) with

log πadj(θ | y) ∝̇ −
1

2
(θ − θ̂c)THadj(θ̂c)(θ − θ̂c). (20)

where Hadj(θ̂c)
−1 is the covariance matrix in (13) or (14) for the magnitude- and curvature-adjusted poste-

riors respectively.
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Let θ̂c = (θ̂c,j, θ̂c,−j)
T and partition

Hadj(θ̂c) =







Hadj
j,j (θ̂c) Hadj

j,−j(θ̂c)

Hadj
−j,j(θ̂c) Hadj

−j,−j(θ̂c)






.

Since (20) implies that πadj{(θj , θ−j)T } is approximately a Gaussian density with mean (θ̂c,j , θ̂c,−j)
T and

covariance matrix Σ = Hadj(θ̂c)
−1, we see that πadj(θj | θ−j , y) is approximately Gaussian, with mean

θ̂c,j + Σj,−jΣ
−1
−j,−j(θ−j − θ̂c,−j) = θ̂c,j −Hadj

j,j (θ̂c)
−1Hadj

j,−j(θ̂c)(θ−j − θ̂c,−j) (21)

and covariance matrix

Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j = Hadj

j,j (θ̂c)
−1. (22)

The adaptive Gibbs sampler makes its approximation later in the algorithm. Starting from (19), let θ−j

be given and consider log π(θj | θ−j , y). By partitioning θ0 and H(θ0)J
−1(θ0)H(θ0), it is straightforward to

show that the asymptotic conditional posterior is

log π(θj | θ−j , y) ∝̇ (θj − µj|−j)TΣ−1
j|−j(θj − µj|−j), (23)

where

µj|−j = θ0,j −
{

H(θ0)J
−1(θ0)H(θ0)

}−1

j,j

{

H(θ0)J
−1(θ0)H(θ0)

}

j,−j
(θ−j − θ0,−j), (24)

and

Σj|−j =
{

H(θ0)J
−1(θ0)H(θ0)

}−1

j,j
(25)

analogous to (21) and (22) above. The adaptive Gibbs sampler makes its approximation to the conditional

distribution, estimating the conditional mean by finding θ̂c,j|−j , the value which maximizes the, lower-

dimensional, conditional composite log-likelihood ℓc(θj,c | θ(t)−j , y), and then adjusting this lower-dimensional

likelihood to obtain an estimate for
{

H(θ0)J
−1(θ0)H(θ0)

}

j,j
.

The advantage of the overall Gibbs sampler is computational and in its simplicity; the adaptive Gibbs

sampler’s need to estimate θ̂j at every step slows it tremendously. The potential gain from the latter is that

the approximation made by employing a composite likelihood is made only for the subvector θj and is done

with knowledge of the current values of the other parameters. In the next section we explore by simulation

whether the adaptive Gibbs sampler improves overall estimation.
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4 Simulation study

In this section, we use simulation to assess the performance of the magnitude and the curvature adjustments.

Following Monahan and Boos [1992], we assess whether our adjustments yield posteriors that are valid by

coverage, i.e., whether Pr[θ ∈ CIα(Y )] = α, under some probability measure for θ defined on Θ and some

credible intervals CIα with level 0 ≤ α ≤ 1.

We first apply the proposed adjustments to the stationary isotropic Gaussian process of Section 1.3 and

compare the results obtained using the adjusted composite likelihood to those using both the full likelihood

and the naive composite likelihood. We then focus on spatial extremes by considering a Bayesian hierarchical

model involving max-stable processes.

4.1 Gaussian processes

We again consider a one-dimensional stationary Gaussian process with mean µ ∈ R and an exponential

covariance function γ(h) = τ exp(−h/ω), τ > 0, ω > 0. We examine two different forms of dependence,

allowing ω to equal 3 and 1.5, which respectively yield effective ranges for the covariance of roughly 9 and

4.5. The priors on µ, τ are those reported in Section 1 while an inverse Gamma density with shape 1/10

and scale 1 is assumed on ω. The stochastic process is replicated n = 50 times in each simulation and is

observed at K = 20 locations uniformly generated in the interval [0, 20]. The simulation was repeated 500

times to assess coverage, with µ = 0 and τ = 1 in each case.

Figure 3 compares the posterior densities obtained from the full likelihood, the unadjusted pairwise poste-

rior, and the adjusted composite posterior distributions using the magnitude and the curvature adjustments

from a single simulation. There is a large improvement due to the adjustment. Owing to the asymptotic

unbiasedness of the maximum composite likelihood estimator, the modes of the marginal composite posterior

distributions are close to those obtained from the full likelihood. The use of the adaptive Gibbs sampler

for the magnitude adjustment seems to improve the approximation to the full posterior, particularly for the

range parameter ω; recall from Section 3.2 that this is not an overall magnitude adjustment. The adaptive

sampler used here has three blocks each comprising a single parameter.

Table 1 summarizes the empirical coverages based on 500 replicate data sets. Overall, the adjustments

give reasonable credible intervals, whereas the naive composite posterior has poor coverage. The Metropolis–

Hastings algorithm and overall Gibbs sampler have the same stationary distribution and give the same cover-

ages for each adjustment. The curvature adjustment performs better overall than the magnitude adjustment,
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Figure 3: Comparison between the marginal full posterior (black), the marginal pairwise posterior (red)
and the marginal adjusted pairwise posterior densities based on the magnitude (green) and curvature (blue)
adjustments. The posterior distributions are derived from n = 50 realisations of a Gaussian process having
an exponential covariance function with µ = 0, τ = 1 and ω = 3 and observed at K = 20 locations. Top
row: Metropolis–Hastings algorithm. Bottom row: Adaptive adjusted Gibbs sampler.

Table 1: Empirical coverages (%) for nominal 95% credible intervals based on 500 Gaussian process simula-
tions. “Full” denotes coverage with the full posterior, “Magnitude” corresponds to the magnitude adjusted
posterior, “Curvature” to the curvature adjusted posterior, and “Unadjusted” to the naive composite pos-
terior.

Metropolis–Hastings
Full Magnitude Curvature Unadjusted

µ τ ω µ τ ω µ τ ω µ τ ω
ω = 3 96 94 94 89 92 100 94 93 94 16 21 37
ω = 1.5 94 95 96 85 93 100 94 94 93 19 22 53

Overall Gibbs sampler
Full Magnitude Curvature Unadjusted

µ τ ω µ τ ω µ τ ω µ τ ω
ω = 3 95 96 95 87 93 100 94 94 90 19 16 41
ω = 1.5 96 96 96 87 94 100 94 94 94 23 21 55

Adaptive Gibbs sampler
Full Magnitude Curvature Unadjusted

µ τ ω µ τ ω µ τ ω µ τ ω
ω = 3 96 94 95 95 92 93 95 94 93 20 24 39
ω = 1.5 95 96 95 95 95 95 94 97 95 17 24 55
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Figure 4: Variation of the empirical coverages with the credible level α, based on 500 replicates of the
Gaussian process simulation with µ = 0, τ = 1 and ω = 3, for the full, the non adjusted pairwise and the
magnitude/curvature adjusted posteriors. Top row: Overall Gibbs sampler. Bottom row: Adaptive Gibbs
sampler.

particularly for the mean and range parameters µ and ω. The improvement in coverage due to using the

adaptive Gibbs sampler appears greater for the magnitude adjustment than for the curvature adjustment,

partly because there is more room for improvement, and because the latter was already adjusting each

element of θ differently. The curvature and adaptive magnitude adjustments yield the best coverages.

Figure 4, which complements Table 1 by showing how the empirical coverages depend on the credible level

for the overall and adaptive Gibbs samplers, corroborates the conclusions drawn from Table 1. Compared

to the unadjusted composite posterior, the proposed adjustments clearly improve the coverages and seem

to yield essentially the same coverages as the full posterior, though the latter provides shorter intervals, if

it is available. The adaptive Gibbs sampler for the magnitude adjustment performs better than its overall

counterpart, indicating that the latter might not be flexible enough to provide the correct coverages for each

element of the parameter vector. The curvature adjustment again seems to be improved less by the adaptive
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Figure 5: Boxplots of the sample centered moments of the estimated posterior distribution for each of the
500 simulations (µ = 0, τ = 1, ω = 3) for the full posterior (full), the unadjusted pairwise posterior (pair),
the magnitude adjusted composite posterior (magn) and the curvature adjusted composite posterior (curv).
Red boxplots: Overall Gibbs sampler. Green boxplots: Adaptive Gibbs sampler.

version of the Gibbs sampler.

Figure 4 shows that the proposed adjustments have good coverage properties, but it is also interesting

to check to what extent the composite posterior distributions share common features with the full posterior.

Figure 5 shows boxplots of the first four centered moments of the estimated posterior distributions. As

one would expect from the fact that the composite likelihoods give unbiased estimating equations, the first

moments of the composite posterior distributions, including the unadjusted one, match those of the full

posterior. The variance of the unadjusted pairwise posterior distribution is much too small, but those of the

adjusted posterior distributions are closer to that of the full posterior. The magnitude adjustment combined

with the overall Gibbs sampler has a smaller variance for the mean µ and a larger one for the range ω; this

clarifies why Table 1 shows that this particular adjustment tends to undercover µ and overcover ω. Except
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for µ, none of the adjustments gives the correct skewness and kurtosis, though the magnitude adjustment

is slightly better. Nevertheless, both adjustments can capture the first two moments well, and despite the

degradation of the approximation with distance from θ0, yield coverage rates which are very comparable to

those obtained using the full likelihood.

Finally, we investigate the difference between the magnitude- and curvature-adjusted posteriors and the

effect of the dimension of the blocks used in the adaptive Gibbs sampler. As noted in Section 2.1, the

magnitude adjustment will recover the χ2 null distribution only if the dimension of θj is one. In addition to

running the adaptive Gibbs sampler with µ, τ, and ω each serving as its own block, we also ran a two-block

version of the adaptive Gibbs sampler with θ1 = µ and θ2 = (τ, ω)T . For the individual block version of the

adaptive Gibbs sampler, there is virtually no difference in the estimates of the magnitude- and curvature-

adjusted posteriors, reflecting that both adjustments adequately capture the information contained in the

composite likelihood. However, for the two-block version of the sampler, the empirical posterior correlations

of τ and ω differ: the curvature-adjusted posterior gives Cov(τ, ω) ≈ 0.69, whereas the magnitude-adjusted

posterior gives Cov(τ, ω) ≈ 0.33. It is difficult to estimate both the sill and range parameters of a Gaussian

process [?], whose ratio τ/ω is important for applications such as interpolation. The 95% credible intervals

for this ratio have an empirical coverage rate of 96% for the curvature-adjusted posterior, but a coverage

rate of 100% for the magnitude-adjusted posterior. This suggests that for the two-block Gibbs sampler,

the magnitude adjustment fails to fully capture the relationship between these two parameters, thus giving

further evidence that the curvature adjustment is to be preferred, since it seems to provide output that can

be used more flexibly.1

4.2 Bayesian hierarchical model for spatial extremes

Let Ym(x), x ∈ D, m ≥ 1 be independent replications of a stochastic process. Asymptotic theory for extremes

implies that, provided the limit exists and is non-degenerate, the process

max
m=1,...n

an(x)
−1{Ym(x)− bn(x)}

converges weakly to a max-stable process Z(x) as n → +∞ [de Haan, 1984]. Given observations that arise

as block (e.g., annual) maxima, it is therefore natural to approximate their joint distribution using such a

process. The univariate marginal distributions for such a process will be generalised extreme-value (GEV)

1Dan: please see tex code which includes the reference for Zhang.
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distributions, which depend on three parameters.

Although the general methodology we propose could be applied with any max-stable model [Smith, 1990;

Schlather, 2002; Kabluchko et al., 2009], we focus here on the Gaussian extreme value process of Smith

[1990],

Z(x) = max
k≥1

ζkϕ(x− sk) (26)

where {(ζk, sk)}k≥1 are the points of a Poisson process on (0,∞) × D, with D ⊂ R
d, having intensity

dΛ(ζ, s) = ζ−2dζds, and ϕ is the zero mean d-variate normal density with covariance matrix Σ. As formu-

lated, Z(x) has unit Fréchet margins and its bivariate and trivariate marginal distributions can be used to

construct a composite likelihood [Padoan et al., 2010; Genton et al., 2011].

A simple approach to fitting max-stable models is to employ a pairwise likelihood [Padoan et al., 2010;

Gholamrezaee, 2010]. To account for non-stationarity in the marginal distributions, it is convenient to assume

that the GEV parameters follow response surfaces that depend on location and on covariates such as altitude.

Often, however, the available covariates do not fully explain the variation of the marginal distribution over

the study region. One approach to capturing the regional effects is to construct a hierarchical model in which

the marginal parameters of the extreme value distribution follow a stochastic process, such as a Gaussian

process, over the study region.

Our approach is to use a max-stable process model within a hierarchical framework; the max-stable

model provides a theoretically justified model for the local dependence, i.e., the spatial dependence of the

extremes, and the hierarchy allows for flexibility in modeling how the regional effects influence the marginal

behavior. The difficulty is that the full likelihood is unavailable, and so fully Bayesian inference cannot be

performed. Instead we employ one of the adjusted MCMC samplers suggested in Section 3.

Our chosen model has the data-process-prior framework of most hierarchical models:

Z | µ,σ, ξ,Σ ∼ Smith’s max-stable model,

µ | βµ, τµ, ωµ ∼ GP
(

Xµβµ, γµ
)

,

log σ | βσ, τσ, ωσ ∼ GP(Xσβσ, γσ)

ξ | βξ, τξ, ωξ ∼ GP
(

Xξβξ, γξ
)

,

where µ, σ, ξ represent the three GEV parameters, GP(m, γ) denotes a Gaussian process with mean m and

covariance function γ, the γ·’s represent exponential covariance functions with corresponding sill and range
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parameters τ· and ω·, and the β· are regression coefficients associated to the design matrices X·.

The prior level places independent priors on all parameters introduced at the process level. We take

conjugate normal priors for all regression parameters β·, conjugate inverse gamma priors for the τ·, gamma

priors for the range parameters ω· and a Wishart prior for the covariance matrix Σ appearing in the Smith

model. In all cases, the prior variance is set to be large so that the prior densities, though proper, are

relatively flat.

We performed a simulation study to evaluate our approach. Gaussian processes were simulated for µ(x),

σ(x), and ξ(x), with µ(x) and σ(x) dependent, and with values similar to those found for annual maximum

rainfall data. Then, 50 max-stable processes with marginals given by µ(x), σ(x), and ξ(x) were simulated

according to the Smith model. Fifty locations were chosen and the 50 observations at each location were

used to fit four models:

M1 the hierarchical model with a conditional independence assumption in the data layer, yielding a product

of K independent GEV densities, analogous to Cooley et al. [2007] or Sang and Gelfand [2009];

M2 the max-stable process hierarchical model with no adjustment;

M3 the max-stable process hierarchical model with an adaptive curvature-adjusted Gibbs sampler; and

M4 the max-stable process model where the marginals are described by a response surface in the covariates

x, as proposed by Padoan et al. [2010].

The left panels of Figure 6 show boxplots of the differences between the true GEV parameters and all

the states of the Markov chains for four different stations, with the asymptotic 95% confidence intervals for

the max-stable response surface model. The right panels of Figure 6 display the coverage rates, for all 50

stations, of the 95% posterior credible intervals for the three hierarchical models, with the 95% confidence

intervals for the max-stable response surface model. As expected, the unadjusted max-stable hierarchical

model produces a posterior that is too concentrated and yields very poor coverages, and the max-stable trend

surface model is not flexible enough to account for the complicated regional behavior of the GEV parameters,

as evidenced by the poor point estimates in the box plots and the corresponding poor coverage rates. The

adjusted max-stable hierarchical model and the conditionally independent hierarchical model produce very

similar posterior distributions and have similar coverage rates, although the max-stable model does slightly

less well.

The advantage of the max-stable hierarchical model over the conditional independence model is that the

former can account for local dependence; even with only 50 locations in the region, it seems to be able to
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Figure 6: Boxplots of the difference between the true GEV parameters and all the states of the Markov
chains for four stations (left panel). For each of the stations the boxplots are (from left to right) the
conditional independence model (M1, red), the non-adjusted hierarchical model (M2, green), the hierarchical
model with the curvature adjustment within an adaptive Gibbs sampler (M3, blue), and the asymptotic
95% confidence limit from the max-stable response surface model (M4, grey). The right panel shows the
proportion of the credible intervals at level α = 95% containing the true GEV parameters.

detect the true pattern of local dependence. The 95% credible intervals for the elements σ11, σ12 and σ22 of

Σ are (5.39, 8.76), (−1.28, 0.67) and (5.58, 8.37), which include the true values 6, 0, and 6. The fitted max-

stable model provides a mechanism for producing realistic draws from the spatial process. As Figure 7 shows,

a draw from the posterior distribution of the conditional independence model would be inappropriate and

unrealistic for spatial phenomena such as rainfall or temperature, annual maxima of which would produce

smoother surfaces.

These results are obtained from a (near) perfect model simulation; that is, the max-stable hierarchical

model fitted to the data was nearly identical to that from which the data were simulated. Nevertheless,

this simulation exercise shows that the adjusted max-stable hierarchical model can flexibly model marginal

behavior that captures regional spatial effects and can capture local dependence through the max-stable
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Figure 7: Comparison between one realization of the observed field and one realization of the different mod-
els analyzed. From left to right: observed field; conditional independence model; and max-stable hierarchical
model with adjustment. The same seed was used for each simulation.
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Figure 8: Map of the study region. The stations used for inference/validation are depicted by cir-
cles/triangles.

process model. Despite the approximation due to employing a composite likelihood, the inference obtained

appropriately captures the uncertainty associated with the estimation. In the next section we show that it

also seems to perform well on real data.

5 Application

We analyze data on maximum daily rainfall amounts for the years 1962–2008 at 51 sites in the Plateau

region of Switzerland; see Figure 8. The area under study is relatively flat, the altitudes of the sites varying

from 322 to 910 meters above mean sea level. Data from 16 of the stations were were kept aside for model

validation and not used for fitting.

Figure 9 compares the annual maxima over the 16 validation stations, which we term the “groupwise

maxima”, and the simulated groupwise maxima from the different models. All the max-stable based mod-

els seem able to model the distributions of the groupwise maxima, though the simple max-stable model
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Figure 9: QQ-plots to compare the observed maxima of the annual maxima from the validation locations
and those simulated from various models. From left to right: simple max-stable, conditional independence,
unadjusted Bayesian hierarchical, adjusted Bayesian hierarchical models. The 95% confidence/credible en-
velopes are shown as dashed lines.

badly overestimates the largest value, perhaps due to inaccurate trend surfaces for the GEV parameters,

particularly the shape parameter. The conditional independence model shows systematic underestimation,

confirming that this model is inappropriate. The unadjusted and adjusted Bayesian hierarchical models yield

similar credible envelopes, which seem principally to reflect the variability of simulated conditional Gaussian

processes and GEV realizations.

Figure 10 shows three simulated random fields for each model, taken from a large number of such fields.

To rank these we took a disk VZurich of radius 6 km and centered near the Zurich gauging station, and ordered

the random fields according to their suprema SZurich = supx∈VZurich
Y (x). This allows us to summarize the

intensity of a particular realization of a random field. The three rows of Figure 10 correspond to the situation

where Pr[SZurich ≤ zcrit] = α, where α = 0.05, 0.50, 0.95 respectively and the level zcrit depends on the model

considered. Roughly speaking, the three rows show patterns for which SZurich is expected to be exceeded

once every 1.05, 2 and 20 years.

The conditional independence model leads to unrealistic realizations of extreme rainfall fields, but because

of the deterministic trend surfaces for the marginal parameters, the simple max-stable model produces fields

that are too smooth to be realistic. The unadjusted and adjusted hierarchical models seem to produce the

most plausible realizations.

Figure 11 plots return level curves, i.e., graphs of the estimated pth quantile of SZurich and a similar

quantity SDOB for the DOB gauging station, against 1/(1 − p), and smaller disks of radius 0.3. For the

smallest neighborhood, the return level curves are compared to the observations available at the Zurich and

DOB gauging stations; see Figure 8.

As the neighbourhoods of radius 0.3km are very small, the return level curves should be close to the

empirical curves computed from the data available at the Zurich and DOB gauging stations. This is indeed
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Figure 10: Three realizations of random fields over the study region for the conditional independent
model (M1), hierarchical models without any adjustment (M2) and with the curvature adjustment (M3)
and a simple max-stable model with deterministic trend surfaces (M4). The three rows show realizations
corresponding to different risk scenarios according to the values of SZurich expected to be exceeded once
every 1.05, 2 and 20 years (from top to bottom).

the case for Zurich, where all the models apparently reproduce the distribution of extreme rainfall quite well.

The results are less convincing for the DOB gauging station where, apart from the adjusted hierarchical

model, all the models seem to overestimate the largest extremes. This situation is similar to that seen

in Section 4.2: the unadjusted hierarchical model produces a posterior that is too concentrated, while the

max-stable trend surface model might not be flexible enough. Both models fail to capture the complicated

spatial behavior of the GEV parameters.

For the neighbourhoods of radius 6km, the central panel of the figure shows a very strong discrepancy

between the models, because of their different spatial assumptions. The conditional independence model

yields unrealistically high return levels, of around 2m for 10-year values, for example. All the max-stable

based give approximately the same return levels for return periods shorter than 10 years. For larger return

periods, the unadjusted hierarchical model gives the largest estimates. The same plots for 20 other gaug-

ing stations depicted the same patterns, suggesting that the unadjusted hierarchical model systematically

overestimates the distribution of the supremum in a given neighborhood.
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Figure 11: Comparison between the return level curves (cm) computed on neighborhoods centered at the
Zurich (top) and DOB gauging stations (bottom) and having radius 0.3 and 6 km (left and middle panels)
for the conditional independent model (M1), the hierarchical models without any adjustment (M2) and with
the curvature adjustment (M3) and a simple max-stable model with deterministic trend surfaces (M4). The
left panels compares the return level curves to the observations available at the gauging stations. The right
panel is the same as the middle one but shows only the max-stable based models.

6 Conclusion

In this paper, motivated by a real problem in which Bayesian inference seems natural but a full likelihood

is unavailable, we investigate the usefulness of composite likelihood within a Bayesian framework. The

posterior distribution obtained from a naive implementation of a composite likelihood can have very poor

coverage properties, owing to its inappropriate re-use of the data.

To bypass this hurdle, we propose two modifications of the composite likelihood to recover the usual

asymptotic distribution of the likelihood ratio statistic at the true value of the parameters θ0. We show

how these adjustments can be implemented in Markov chain Monte Carlo algorithms and propose two ways

of integrating them into the Gibbs sampler. Although the approximation degrades with distance from the

parameter underlying the data, simulation studies show that the proposed framework has coverage properties
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similar to those obtained using the full posterior.

The work was motivated by a need to flexibly model the marginal distributions when modeling spatial

extreme phenomena. We construct a Bayesian hierarchical model whose data layer is driven by a max-stable

process while the marginal parameters are modeled as realizations of a stochastic process. A spatial extreme

simulation study showed that this framework is able to capture complex marginal behavior as well as the

spatial dependence in the data. An application to extreme rainfall around Zurich shows that the approach can

capture both local dependence due to individual storms and regional dependence due to similar climatologies,

thus broadening the scope of max-stable modelling beyond its current limits.
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A Asymptotic distributions of the posterior distributions

The derivation of the asymptotic normality of the posterior distribution heavily relies on Taylor expansions.

Let θ̂c denote the maximum composite likelihood estimate, let θprior denote the mode of the prior distribution

π(θ), and let

htot
c (θ̂c) = −∇2

θℓ
tot
c (y; θ̂c), hprior(θprior) = −∇2

θ log π(θprior).

For n large enough we have

πc(θ | y)
·∝ exp

{

ℓtotc (y; θ̂c)−
1

2
(θ − θ̂c)Thtot

c (θ̂c)(θ − θ̂c) + log π(θprior)−
1

2
(θ − θprior)

Thprior(θprior)(θ − θprior)

}

·∼ N
{

θ̃, h̃(θ̂c, θprior)
−1

}

,

where h̃(θ̂c, θprior) = htot
c (θ̂c) + hprior(θprior) and θ̃ = h̃(θ̂c, θprior)

−1{htot
c (θ̂c)θ̂c + hprior(θprior)θprior}.

Provided the contribution of the prior distribution π(θ) vanishes as n → ∞, the strong law of large
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numbers implies that

n−1h̃(θ̂c, θprior) =

{

htot
c (θ̂c)

n
+
hprior(θprior)

n

}

−→ −E[∇2ℓc(θ0;Y )] = H(θ0),

θ̃ =

{

h̃(θ̂c, θprior)

n

}−1 {

htot
c (θ̂c)

n
θ̂c +

hprior(θprior)

n
θprior

}

−→ θ0,

almost surely, and thus πc(θ | y) ·∼ N
{

θ0, n
−1H(θ0)

−1
}

.

The derivation of the asymptotic distribution for the magnitude adjustment uses the same argument,

with a slight modification. As n→∞,

k̂ −→ p/tr
{

H(θ0)
−1J(θ0)

}

almost surely. Since k̂ is estimated prior to running the MCMC algorithm, we can assume that k̂ is a (tuning)

constant that does not depend on θ. Therefore the analogue of hc(θ̂c) when using ℓmagn in place of ℓtotc is

hmagn(θ̂c) = −k̂∇2
θℓmagn(y; θ̂c) −→ tr{H(θ0)

−1J(θ0)}H(θ0), n→∞,

almost surely, from which we conclude that πmagn(θ | y) ·∼ N
{

θ0, (np)
−1tr{H(θ0)

−1J(θ0)}H(θ0)
−1

}

.

We conclude with the derivation of the asymptotic distribution of the curvature adjusted composite

likelihood. By construction we have

n−1hcurv(θ̂c) = −n−1∇2
θℓcurv(y; θ̂c) −→ H(θ0)J(θ0)

−1H(θ0), n→∞,

almost surely from which we get that πcurv(θ | y) ·∼ N
{

θ0, n
−1H(θ0)

−1J(θ0)H(θ0)
−1

}

.

B Asymptotic variance inflation

In this appendix we argue that in many cases in which the densities appearing in the composite likelihood are

correct, so that they satisfy the first two Bartlett identities, E[∇ log f(Y ∈ Ai; θ0)] = 0 and E[∇2 log f(Y ∈

Ai; θ0)] + Var[∇ log f(Y ∈ Ai; θ0)] = 0 for all i ∈ I, then tr{H(θ0)
−1J(θ0)} ≥ p = dim(θ0). This agrees with

our empirical experience, which is that in many cases tr{H(θ0)
−1J(θ0)} ≫ p.
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We first note that

tr{H(θ0)
−1J(θ0)} − p = tr{H(θ0)

−1J(θ0)− Idp} = tr[H(θ0)
−1{J(θ0)−H(θ0)}] ≥ 0.

Since H(θ0)
−1 is positive semi-definite, the result follows if J(θ0)−H(θ0) is positive semi-definite, because

tr{AB} ≥ 0 when both A and B are positive semi-definite.

On the one hand we have

H(θ0) = −E

[

∇2
∑

i∈I

log f(Y ∈ Ai; θ0)
]

= −
∑

i∈I

E
[

∇2 log f(Y ∈ Ai; θ0)
]

=
∑

i∈I

Var [∇ log f(Y ∈ Ai; θ0)] ,

because the variance of the score equals the Fisher information for each individual summand. On the other

hand we have

J(θ0) = Var

[

∑

i∈I

∇ log f(Y ∈ Ai; θ0)
]

=
∑

i∈I

Var [∇ log f(Y ∈ Ai; θ0)] +
∑

i,j∈I,i6=j

E
[

∇ log f(Y ∈ Ai; θ0)∇ log f(Y ∈ Aj ; θ0)T
]

.

Thus

J(θ0)−H(θ0) =
∑

i,j∈I,i6=j

E
[

∇ log f(Y ∈ Ai; θ0)∇ log f(Y ∈ Aj ; θ0)T
]

=
∑

i,j∈I,i<j

E(UiU
T
j + UjU

T
i ),

say; clearly these expectations are symmetric. To see that they will often be positive definite, let Ai and

Aj correspond to the events Y ∈ Ai and Y ∈ Aj . If these events are independent, then E(UiU
T
j ) = 0,

but if not, suppose that that we may write let Ai = A′
i ∩ Aij , Aj = A′

j ∩ Aij , for some event Aij such

that A′
i and A′

j are independent conditional on Aij . This arises if, for example, in a Markov chain Y ∈ Ai
corresponds to {Y1 = y1, Y2 = y2}, Y ∈ Aj corresponds to {Y2 = y2, Y3 = y3}, and we take A′

i ≡ {Y1 = y1},

Aij ≡ {Y2 = y2} and A′
j ≡ {Y3 = y3}. If we write pr(Ai) = pr(A′

i | Aij)pr(Aij), then the corresponding log

likelihood derivative may be written as Ui = U ′
i + Uij in a natural notation, and

E(UiU
T
j ) = E{(U ′

i + Uij)(U
′
j + Uij)

T } = E(U ′
iU

′T
j ) + Var(Uij) = E{Cov(U ′

i , U
′
j | Aij)}+ Var(Uij),

because the cross terms E(U ′
iUij) = E(U ′

jUij) = 0, as may be seen by conditioning on Aij . If U ′
i and

U ′
j are independent conditional on Aij , then E(UiU

T
j ) = Var(Uij) is positive semi-definite; this would be
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the case in the Markov chain example mentioned above. If they are not independent, but are sufficiently

weakly correlated conditional on Aij that the term Var(Uij) is dominant, then E(UiU
T
j ) will also be positive

semi-definite, and hence so will be J(θ0)−H(θ0). This will be the case in typical applications of composite

likelihood, as terms that correspond to dependent events Ai, Aj will tend to be positively correlated, because

they are proximate in space or time, or both.
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