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We describe a prototype approach to flexible modelling for maxima observed at sites
in a spatial domain, based on fitting of max-stable processes derived from underlying
Gaussian random fields. The models we propose have generalized extreme-value marginal
distributions throughout the spatial domain, consistent with statistical theory for maxima
in simpler cases, and can incorporate both geostatistical correlation functions and random
set components. Parameter estimation and fitting are performed through composite
likelihood inference applied to observations from pairs of sites, with occurrence times
of maxima taken into account if desired, and competing models are compared using
appropriate information criteria. Diagnostics for lack of model fit are based on maxima
from groups of sites. The approach is illustrated using annual maximum temperatures
in Switzerland, with risk analysis proposed using simulations from the fitted max-stable
model. Drawbacks and possible developments of the approach are discussed.
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1. Introduction

(a) Spatial extremes

The prospect of climatic change and its impacts have brought spatial statistics of
extreme events into sharper focus. For example, the European summer heatwave
of 2003 cost the lives of many vulnerable individuals, and affected crops and water
supply. Heatwaves and heavy rainfall are predicted to become more frequent in
some regions of a warming Europe (Beniston et al. 2007), and it is important
to have a mathematically sound and statistically efficient basis for modelling
them and assessing their possible consequences. This paper represents a step
towards this goal, based on data from a number of sites. The key idea is to
use a so-called pairwise likelihood to fit models for spatial extremal processes,
for which standard likelihood or Bayesian inference seem to be out of reach. By
incorporating elements of classical Gaussian geostatistics, we are able to find
flexible formulations for spatial extremes that extend univariate extremal models
in a natural way.
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Statistics of extremes have over the past two decades developed remarkably,
with books now available at various levels of sophistication and a journal,
Extremes, devoted to recent research. The underlying mathematical basis is now
thoroughly established (Leadbetter et al. 1983; Resnick 1987; Embrechts et al.
1997; de Haan & Ferreira 2006) and statistical tools and methods for use with
a single time series of data, or with a few series, are well developed (Coles
2001; Beirlant et al. 2004) and widely used. The main approaches to univariate
extremal analysis are the fitting of the generalized extreme-value distribution to
maxima, and of the generalized Pareto distribution or a related point process
model to exceedances over high thresholds, though many elaborations appear in
applications.
Multi-variate extreme-value models, the springboard for modelling of spatial

aspects of rare events, are surveyed by Beirlant et al. (2004). Key mathematical
elements in this classical theory, which is based on the limiting behaviour of tails
of distributions, are regular variation and point processes, and these also play a
central role in the theory of spatial extremes, as summarized in ch. 9 of de Haan &
Ferreira (2006). There are many published applications of multi-variate extremes,
but the literature on applications of the spatial theory is limited owing to a lack
of flexible statistical models and corresponding inferential tools.
Four main approaches to modelling spatial extremes have been proposed. The

first of these employs underlying latent processes, conditional on which standard
extremal models are applied (Coles & Casson 1998; Casson & Coles 1999; Cooley
et al. 2006, 2007; Fawcett & Walshaw 2006; Sang & Gelfand 2009a). This
approach has the advantages of fitting naturally into Bayesian computational
set-ups using Markov chain Monte Carlo simulation, and being applicable to
large datasets, but because most such models postulate independence of extremes
conditional on the latent process, the spatial modelling may yield unrealistic
estimates of certain risk measures because the spatial clustering of rare events
is not properly accounted for. An exception to this is Sang & Gelfand (2009b),
who use a Gaussian copula model to mitigate the independence assumption, but
this does not admit a max-stable model for extremes (see the next paragraph).
A further difficulty with such models is that the marginal distributions thus
generated are mixtures of standard extremal distributions and so do not fall
naturally into the usual extremal paradigm.
A second approach, sometimes called Gaussian anamorphosis and related to

the use of copulas, involves the transformation of the marginal distributions of
the data to a Gaussian scale, on which standard multi-variate normal models
may be used. This seems unsatisfactory because for any fixed correlation, the
extremes of a bivariate Gaussian distribution occur independently (Sibuya 1960),
and this is unrealistic for many applications. Davison et al. (in press) discuss
these and other types of copula models, and compare them with the approaches
suggested here.
The third potential approach, owing to Heffernan & Tawn (2004) and further

applied by Butler et al. (2007), relies upon a conditional formulation for rare
events. This can be applied to large datasets, but, among other drawbacks, it is
not obvious how to extend it to non-gridded observations.
The present paper builds on the pioneering work of Smith (R. L. Smith 1990,

unpublished data) in discussing a fourth approach, based on representations of
max-stable processes suggested by de Haan (1984) and Schlather (2002), and
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Figure 1. Topographical map of Switzerland showing the sites and altitudes in metres above sea
level of 17 weather stations for which daily maximum temperature data are available.
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Figure 2. Daily temperature anomalies (◦C; solid lines) for the months June, July and August
2001–2005 at 17 sites in Switzerland at differing heights above sea level. The heavy grey lines show
the site-wise averages of the summer data for these 5 years, and the lighter grey lines show intervals
of 5◦C. The annual maxima are shown by the blobs, and the vertical dashed lines show the timing
of the annual maxima. The rugs at the foot indicate the months.
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applied to the modelling of rainfall data by Smith & Stephenson (2009), Padoan
et al. (2010) and Davison et al. (in press); rainfall modelling with max-stable
processes was also described by Buishand et al. (2008), and modelling of maxima
of annual snow heights is described by Blanchet & Davison (in press). The
approach we describe has the advantages of a full integration of classical extremal
results, so that the marginal distributions for maxima are appropriately modelled,
and a treatment of spatial dependence suitable for rare events.
Before describing the methodological content of the paper, we give an example

of the type of data and application that our work is intended to address.

(b)Data

Below, we shall consider annual maximum temperatures from the 17 sites in
Switzerland shown in figure 1. The data are abstracted from daily maximum
temperature time series for the years 1961–2005, part of which are shown
in figure 2 as temperature anomalies, obtained as residuals after subtraction
of the site-wise average summer temperatures for the five years shown.
There are evidently very strong correlations between the different series: many
of the maxima occur simultaneously or as part of the same sequence of a few
successive hot days. If we let Y (x) denote the temperature at site x of the set X ,
then the quantity of ultimate interest might be an integral such as

RX =
∫

X
r(x){Y (x)≥ ydanger}+ dx , (1.1)

where r(x) might represent a population or a crop at risk at site x if Y (x) exceeds
some level ydanger, and {u}+ =max(u, 0). Of course, many other functions might
be of interest; the key point is that joint spatial modelling of Y (x) is required
for useful inference on RX . This entails extrapolation from the points at which
data are available to the whole of X , and estimation of the joint distribution of
{Y (x)}x∈X .
At each individual site x ∈ X , standard arguments imply that if a limiting law

for the maximum exists, then it must be a generalized extreme-value distribution

G(y)=






exp

[

−
{
1+ x(y − h)

t

}−1/x

+

]

, x %= 0,

exp
[
− exp

{
−(y − h)

t

}]
, x = 0,






(1.2)

where h and t are, respectively, real location and positive scale parameters and
the shape parameter x determines the weight of the upper tail of the density.
These parameters may depend on the site x or on covariates indexed by x . For
example, temperature depends strongly on altitude a(x).
In many applications, it would be necessary to take semi-parametric

formulations for dependence on x , but as we have data at relatively few sites,
we use parametric forms. Davison & Ramesh (2000), Hall & Tajvidi (2000),
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Pauli & Coles (2001), Chavez-Demoulin & Davison (2005) and Padoan & Wand
(2008) describe approaches to more flexible modelling, applied by Ramesh &
Davison (2002) and Butler et al. (2007).
Whatever the chosen regression structure, we shall suppose for simplicity of

exposition that it has been used to transform the maxima to have the unit Fréchet
distribution, exp(−1/z), for z > 0. If Ĝd(y) denotes the distribution at site xd ,
estimated from the annual maxima, then the variables Zdj = −1/ log Ĝd(Ydj), for
the sites d = 1, . . . , 17 and the years j = 1, . . . ,n, should possess approximately
the unit Fréchet distribution. The quality of the approximation may be verified
by quantile–quantile plots.

(c)Layout

The following section brings together elements from the statistics of extremes
and from Gaussian geostatistics, and uses them to construct flexible models
for spatial extremes for which pairwise joint density functions are available.
Section 3 outlines how these may be used to perform exploratory analysis, and
how information on the times of the maxima may be incorporated. It appears
impossible to perform full likelihood inference for such models, and in §4, we
discuss how composite marginal likelihood inference may be used for parameter
estimation and model comparison. Section 5 describes its application to the Swiss
temperature data, and some discussion is given in §6.

2. Spatial maxima

(a)Max-stable processes

The generalization of the classical multi-variate extreme-value distributions to the
spatial case is a max-stable process, discussion of which is simplified under
the assumption that all of its univariate marginal distributions are unit Fréchet.
There is no loss of generality in making this assumption, which may be achieved
by the marginal transformation described in §1b.
A max-stable process {Z (x)} for x ∈ X ⊂ R2 with unit Fréchet margins, also

called a simple max-stable process, is a random field, all of whose marginal
distributions satisfy the property of max-stability. That is, pr{Z (x)≤ z} =
exp(−1/z) for z > 0 and every x ∈ X , and if D = {x1, . . . , xD} is a finite disjoint
subset of X , then for k = 1, 2, . . . (de Haan 1984),

pr{Z (x1)≤ kz1, . . . ,Z (xD)≤ kzD}k
= pr{Z (x1)≤ z1, . . . ,Z (xD)≤ zD}, z1, . . . , zD > 0, (2.1)

implying that the exponent measure function (Resnick 1987, ch. 5)

− log pr{Z (x1)≤ z1, . . . ,Z (xD)≤ zD} =VD(z1, . . . , zD)

say, is homogeneous of order −1 and that for each d ∈ {1, . . . ,D},

VD(∞, . . . ,∞, zd ,∞, . . . ,∞)=
1
zd
.
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Max-stable processes provide the natural generalization of models for the
limiting distributions of multi-variate extremes to the process setting, in that
the key property of max-stability is satisfied for all finite-dimensional marginal
distributions, and the appropriate univariate marginal distributions, in this case
unit Fréchet, are obtained.
There are several canonical representations of such processes (Schlather 2002;

de Haan & Ferreira 2006, ch. 9). For our purposes, the most useful has
two elements, a Poisson process P of intensity ds/s2 on R+ and a set of
independent random processes {Ws(x) : x ∈ X , s ∈ R+}, the latter being replicates
of a non-negative process {W (x) : x ∈ X } with measure n onW = RX

+ that satisfies
E{W (x)} = 1 for all x . We then define

Z (x)=max
s∈P
sWs(x), x ∈ X . (2.2)

Following Schlather (2002), it is straightforward to verify that Z (x) is max-
stable, with unit Fréchet marginal distributions, and that for suitable functions
z(x) on X ,

pr{Z (x)≤ z(x), x ∈ X } = exp
(

−E
[
sup
x∈X

{
W (x)
z(x)

}])
. (2.3)

The very general expression (2.2) suggests several specific types of model, and
in particular ‘random storm’ and ‘random process’ formulations. For the first,
suppose that X = R2 and that Ws(x)= f (x −Xs), where f is a density function
on X , and Xs is a point of a Poisson process of unit rate in X . Then, if we regard
sWs(x) as the impact at x of a storm of magnitude s, centred at Xs, and of shape
f , we interpret Z (x) as the impact of the largest storm experienced at x . This
formulation has been exploited by R. L. Smith (1990, unpublished data), Coles
(1993), Coles & Tawn (1996), Coles & Walshaw (1994), Smith & Stephenson
(2009) and Padoan et al. (2010) for the modelling of rainfall and maximum wind
speeds. R. L. Smith (1990, unpublished data) obtained the marginal distribution
for pairs Z (x1),Z (x2) with f taken to be bivariate normal, and de Haan & Pereira
(2006) extended this to Student t and Laplace densities.
A second type of max-stable model arises on taking W (x) to be a stationary

random process on X . When modelling heatwaves, for example, we might take
Ws(x) to represent the temperature over X on the sth independent occasion
of severity s, so that Z (x) represents the overall maximum at x . We discuss
this in §2c.
Difficulties with parametric inference on max-stable processes are immediately

apparent on contemplating equation (2.3). In practice, data will be available at
D = {x1, . . . , xD} ⊂ X , and the joint distribution function for maxima observed on
this set will be given by

pr{Z (x1)≤ z1, . . . ,Z (xD)≤ zD} = exp{−VD(z1, . . . , zD)} (2.4)

and

VD(z1, . . . , zD)=E
[

sup
d=1,...,D

{
W (xd)
zd

}]

, (2.5)

Proc. R. Soc. A (2012)

 on January 3, 2012rspa.royalsocietypublishing.orgDownloaded from 



Geostatistics of extremes 587

obtained from equation (2.3) by taking z(x)= +∞ for x %∈ D. Two difficulties are
associated with these expressions. First, a combinatorial explosion results if a
full likelihood is formed by differentiation of the joint distribution function (2.4)
with respect to z1, . . . , zD: the number of terms is the Dth Bell number, around
8.3× 1010 for D = 17 (Cameron 1994). Direct computation thus seems infeasible.
Second, even if a suitable algorithm for computation of the necessary derivatives
was available, the complexity of analytical computation of equation (2.5) rapidly
mounts with D: it is feasible for a variety of simple random processesW (x) when
D = 2, but is possible only for special processes for larger D (Genton et al. 2011).
Thus, standard likelihood-based inference appears to be out of reach.

(b)Extremal coefficients

A natural way to measure dependence among spatial maxima stems from
considering the distribution of the largest value that might be observed on X .
If this distribution is close to unit Fréchet, then the maxima observed on X will
be close to fully dependent, whereas lower degrees of dependence would yield
stochastically larger distributions. To see the implications of this, we set z(x)≡ z
in equation (2.3) and thus obtain

pr{Z (x)≤ z , for all x ∈ X } = exp
(

−qX
z

)
, (2.6)

where

qX =E
{
sup
x∈X
W (x)

}
(2.7)

is called the extremal coefficient corresponding to the set X . It is more useful
to consider the extremal coefficient qD for a finite subset D = {x1, . . . , xD} of X ,
obtained by taking z(x) to equal z for x ∈ D and infinity elsewhere; thus,

qD =E
{
max
x∈D
W (x)

}
=VD(1, . . . , 1).

If qD = 1, then the maxima at D are perfectly dependent, whereas if qD =D,
they are independent. Thus, qD may be interpreted as the effective number
of independent Frechét variables in the set indexed by D. Schlather & Tawn
(2003) consider the constraints that must be satisfied by the extremal coefficients
corresponding to different subsets of D, and show how the coefficients may be
estimated both with and without these constraints.
Extremal coefficients are useful summaries of the joint tail behaviour of

multi-variate extreme-value distributions, though they do not fully characterize
dependence. We let q(h) denote the extremal coefficient of Z (x),Z (x + h); if the
field is isotropic, then this depends only on the length of h. If replicate data are
available, then the fact that max{Z (x),Z (x + h)} has distribution exp{−q(h)/z}
enables maximum-likelihood estimation of q(h) for each distinct pair of spatial
sites (Schlather & Tawn 2003, §4.2). We use this below to check the fit of
our models.
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There is a close relation between the extremal coefficient and the madogram
proposed by Poncet et al. (2006) and further developed by Naveau et al. (2009), an
extreme-value analogue of the variogram (Cressie 1993, p. 58). The construction
of a madogram requires a relatively large number of sites, and we do not pursue
it here.

(c)Gaussian process models

A special case of equation (2.2) is to suppose, following Schlather (2002),
that Ws(x)=max{0, (2p)1/23s(x)} is proportional to the non-negative part of a
stationary Gaussian process {3s(x)} with zero mean, unit variance and correla-
tion function r(x). In this case, the process {Z (x)} is called an extremal
Gaussian process, and its marginal bivariate distributions are determined by the
exponent measure

V (z1, z2)=
1
2

(
1
z1

+ 1
z2

) (

1+
[
1− 2{r(h)+ 1}z1z2

(z1 + z2)2
]1/2)

, (2.8)

where h = ‖x1 − x2‖. If r(h)> −1, then Z (x1) and Z (x2) are positively related;
the extremal coefficient q(h) for D = {x1, x2} equals 1+ 2−1/2{1− r(h)}1/2, so if the
underlying Gaussian random field has r(h)→ 0 as h→ ∞, then limh→∞ q(h)=
1+ 2−1/2. Moreover, as a positive definite isotropic correlation function on R2 can
given correlations no smaller than −0.403, it follows that q(h)≤ 1.838 for any h
in the case of a spatial process. Thus, it is impossible to produce independent
extremes using such a process, irrespective of the distance of the sites. This
drawback may be overcome by taking

Ws(x)= cmax{3s(x), 0}IBs (x −Xs), (2.9)

where IB is the indicator function of a compact random set B ⊂ X , of which the
{Bs} are independent replicates, and the {Xs} are the points of a homogeneous
Poisson process of unit rate on X , independent of the 3s. Then modulo minor
edge effects, if c−1 =E[max{W (x), 0}]E(|B|), then the process (2.2) is again
max-stable on X . If Ws(x) is an extremal Gaussian process, as above, then
equation (2.8) becomes

V (z1, z2)=
(
1
z1

+ 1
z2

) {

1− a(h)
2

(

1−
[
1− 2{r(h)+ 1}z1z2

(z1 + z2)2
]1/2)}

, (2.10)

where a(h)=E{|B ∩ (h + B)|}/E(|B|) lies in the unit interval. The extremal
coefficient for this model,

q(h)= 2− a(h)[1− 2−1/2{1− r(h)}1/2], (2.11)

can take any value in the interval [1, 2]. Independent extremes can be generated
if the distribution of B is chosen so that B ∩ (h + B)= ∅ with probability one for
large enough h, as in that case a(h)= 0. Thus, equation (2.9) has the appealing
interpretation that the effects of the event corresponding to sWs(x) are felt only
over the set B +Xs.
In §2d,e, we discuss some possible choices of r(h) and a(h). Below, we merely

sketch some generic possibilities for modelling: more plausible forms will be
prompted by consideration of particular applications.
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(d)Geostatistics

Geostatistics is based largely on the theory of Gaussian random processes
(see Cressie 1993; Stein 1999; Wackernagel 2003; Banerjee et al. 2004;
Schabenberger & Gotway 2005; Diggle & Ribeiro 2007; Cressie & Wikle 2011).
For a stationary Gaussian random field {S(x)} defined on x ∈ R2 and having
standard normal marginal distributions, the joint distribution of the field at any
subset of points D = {x1, . . . , xD} must be multi-variate normal. The key element
is the correlation function r(x2 − x1)= cov{S(x1),S(x2)}, which is constrained to
be positive definite. If the field is also isotropic, then the correlation depends only
on the distance h = ‖x2 − x1‖, and for the rest of this subsection we assume this
and write r(x2 − x1)= r(h).
Standard families of correlation functions include the powered exponential

family

r(h)= exp
{
−

(
h
l

)k}
, h ≥ 0, l > 0, 0< k ≤ 2, (2.12)

the Whittle–Matérn family

r(h)= {2k−1G(k)}−1
(
h
l

)k

Kk

(
h
l

)
, h ≥ 0, l, k > 0, (2.13)

in which Kk denotes the modified Bessel function of order k, and the Cauchy
family

r(h)= 1
1+ (h/l)2

, h ≥ 0, l > 0. (2.14)

In all three families, l represents a scale parameter with the dimensions of
distance, and in the first two families, k is a shape parameter that controls the
properties of the random field and in particular the roughness of its realizations.
Visually smooth realizations arise only when r(h) is sufficiently well behaved at
the origin. Rather than trying to estimate the shape parameter based on limited
data, it may be more practicable to choose among a small set of values of k that
represent qualitatively different behaviour of the Gaussian process. The Matérn
correlation family is the more flexible and is strongly advocated by Stein (1999),
but in practice equations (2.12)–(2.14) may be hard to distinguish.
The correlation functions above impose r(h)→ 1 as h→ 0, but this is

unrealistic in many applications. One way to relax this condition is to include
a so-called nugget effect by adding to S(x) an independent Gaussian white noise
random field. The resulting correlation function is

(1− n)d(h)+ nr(h), 0≤ n ≤ 1, (2.15)

where d(h) is the Kronecker delta function, r(h) is a correlation function and
the nugget effect 1− n is the proportion of the variance stemming from the local
variation represented by {e(x)}.
As these correlation functions have r(h)> 0, the extremal coefficient based on

equation (2.8) satisfies 1≤ q(h)< 1.71; as mentioned previously, independence of
the extremal Gaussian processes resulting from using equations (2.12) and (2.13),
either as such or in equation (2.15), cannot be achieved.
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The simplest departure from isotropy, geometric anisotropy, presumes that
there is an invertible matrix V such that the process Z (Vx) is isotropic, and
corresponds to an affine transformation of the plane containing the sites.

(e)The set B
Detailed modelling of the random set B that appears in equation (2.9) will

require data at many sites and appears to be difficult. In practice, it may be
preferable to use flexible parametric shapes that generate simple forms for the
parameter a(h) appearing in equation (2.10). An obvious possibility is to take B
to be a disc of fixed radius r . Then, the area of intersection of B and h + B is

|B ∩ (h + B)| =





2r2

[

cos−1
{ |h|
2r

}
−

( |h|
2r

) {
1− |h|2
2r2

}1/2]

, 0≤ |h| ≤ 2r ,

0, |h| > 2r ,
where |h| is the length of the vector h. This function is close to linear in
|h| over much of its range, and a crude approximation is to replace it by
pr2{1− |h|/(2r)}+. This yields a(h)=E{|B ∩ (h + B)|}/E(|B|) .= {1− |h|/(2r)}+,
a model with one unknown parameter r that ensures the independence of
extremes at sites for which |h| > 2r .
It may be thought to be more realistic to take sets of random size. A simple

possibility is to take the above model, but to suppose that the radius of the disc
is random with a generalized Pareto density function

g(r)=
(
1+ gr

d

)−1/g−1

+
, r > 0. (2.16)

Thus, g is positive only for 0< r < rmax, where rmax = ∞ if g ≥ 0 and rmax = −d/g
otherwise. For g > 0, the density g is heavy-tailed, for g = 0, it is exponential, and
for g < 0, it has a finite upper support point rmax, with g = −1 corresponding to
the uniform distribution, and discs of constant radius rmax appearing as g → −∞.
With the linear approximation to the overlap area mentioned above and with this
choice of g, after some further integration, we find that provided g < 1/2,

a(h)≈






(
1+ |h|
4d

) (
1+ g|h|

2d

)1−1/g

+
, g %= 0,

(
1+ |h|
4d

)
exp

{
− |h|
2d

}
, g = 0.

(2.17)

When g ≥ 1/2, the expectation is infinite, corresponding to a(h)≡ 1.
A natural generalization is to suppose that the set B is the interior of an ellipse

having area pr2 and eccentricity e, and whose major axis subtends an angle u
with the horizontal axis. If |h| and 4 are the polar coordinates of h, then the
elliptical sets B are accounted for by replacing |h| in equation (2.17) by

|h|(1− e2)−1/4{1− e2 cos2(4 − u)}1/2, 0≤ u < p, 0≤ e < 1.

This provides a four-parameter family of sets, whose shapes are determined by e
and u, and the distribution of whose sizes is determined by g and d.
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3. Pairwise analysis

(a)Direct analysis

Before discussing the fitting of the models described above to data from a number
of sites x1, . . . , xD, we consider exploratory data analysis based on data from pairs
of sites.
We suppose that the data have been transformed to have unit Fréchet marginal

distributions. We suppose that data pairs (z1j , z2j) (j = 1, . . . ,n) are available, and
take them to be independent realizations of variables (Z (x1),Z (x2)) from a max-
stable random field. In an environmental context, such data might be annual
maxima recorded at the sites x1 and x2 in n successive years, and for ease of
exposition, we shall use corresponding language.
The marginal pairwise density of variables Z1,Z2 is obtained from

equation (2.4) as

f (z1, z2)=
{

vV (z1, z2)
vz1

vV (z1, z2)
vz2

− v2V (z1, z2)
vz1vz2

}
exp{−V (z1, z2)}, z1, z2 > 0.

(3.1)
Given a parametric form for V such as equations (2.8) or (2.10), the log likelihood
is then readily computed, and standard methods may be used to obtain estimates
and confidence intervals (CIs).
Figure 3a,b shows the results of such fits for the annual maximum temperature

data described in §2b. The parameter estimates when model (2.10) is fitted to
the standardized Fréchet observations from all 136 distinct pairs of sites are
plotted against the inter-site distances, with pairs involving the two southern sites
Locarno-Monti and Lugano in canton Ticino, and the highest, the Jungfraujoch,
indicated differently. The approximate 95% CIs are obtained using profile
likelihood. There is a clear general decline of r with distance, but the values
of a mostly equal unity; the latter is not surprising, as hot days tend to result
from large-scale climatic events. Aberrant pairs involving the Jungfraujoch and
the sites in Ticino are visible in both graphs, though the uncertainty is large.

(b) Inclusion of event times

The approach to estimation of the parameters for each pair sketched in §3a and
based on forming a log likelihood by adding contribution (3.1) may be improved
if the times of maxima are available. In this case, arguments of Stephenson &
Tawn (2005) show that if the maxima at the two sites are known to occur
simultaneously, then the likelihood contribution should be

fsim(z1, z2)= −v2V (z1, z2)
vz1vz2

exp{−V (z1, z2)}, z1, z2 > 0, (3.2)

whereas if they are known to occur at different times, then equation (3.2) should
be replaced by

fsep(z1, z2)=
vV (z1, z2)

vz1
vV (z1, z2)

vz2
exp{−V (z1, z2)}, z1, z2 > 0. (3.3)
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Figure 3. Pairwise analysis of annual maximum temperature data for the sites shown in figure 1.
Maximum-likelihood estimates of parameters (a) r and (b) a plotted against inter-site distance,
with approximate 95% CIs (grey) obtained by profile likelihood. The panels (c,d) are the same,
but with estimation improved by inclusion of the occurrence times. (a–d) Pairs involving the sites
Lugano and Locarno-Monti in canton Ticino, south of the Alps, are shown as plus symbols, and
pairs involving the Jungfraujoch, the highest station, are shown as cross symbols.

Use of these expressions may give improved efficiency relative to use of
equation (3.1). The potential gains are illustrated by comparing figure 3a,b and
figure 3c,d, of which figure 3c,d are constructed using equations (3.2) and (3.3).
When the times are used, there is a general shrinking of the CIs, and it becomes
clearer that the Ticino sites and Jungfraujoch are somewhat disconnected from
the others, though the CIs remain too wide to draw firm conclusions. However,
some degree of disconnection is entirely plausible on general grounds. At an
altitude of 3580m, the Jungfraujoch is above the snow line all year round,
relatively little influenced by human activities, and more than a kilometre higher
than the next highest site, Santis. The Ticino is more strongly influenced by
meterological conditions in northern Italy and the Mediterranean basin than by
those within and north of the Alps.

(c)Model checking

A check on the quality of a parametric model such as equation (2.10) is
to compare its fitted extremal coefficients, obtained by replacing a and r in
equation (2.11) by their maximum-likelihood estimates, with the naive estimator
of Schlather & Tawn (2003) or the madogram-based estimator of Poncet et al.
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Figure 4. Non-parametric and model-based estimates of the extremal coefficients q for all possible
pairs of sites for the temperature data. The non-parametric estimators are (a) q̃ST (Schlather &
Tawn 2003) and (b) q̃madogram (Poncet et al. 2006). The model-based estimates q̂r,a are based on
the model (2.10). Pairs involving the sites Lugano and Locarno-Monti are shown as plus symbols,
and pairs involving the Jungfraujoch are shown as cross symbols.

(2006). The latter two are not based on a specific parametric model. Figure 4,
which shows these comparisons for the maximum temperature data, reveals
nothing to cast doubt on the model (2.10).
One check on the fit of the pairwise model stems from noting from

equation (2.6) that the maximum max(Z1,Z2) of two related variables, each
with the unit Fréchet marginal distribution, has a scaled Fréchet distribution
exp(−q1,2/z), for z > 0, where q1,2 =V (1, 1). This suggests inspecting an
exponential quantile plot of the sample q̂1,2/max(z1j , z2j) (j = 1, . . . ,n), where
q̂1,2 = V̂ (1, 1) is an estimate of q1,2. We have found that the maximum-likelihood
estimate based on the data pairs (Z1,Z2) does not work well; better results are
obtained with the Schlather–Tawn or madogram-based estimators mentioned in
the previous paragraph. In the present case, such plots reveal little untoward.

4. Composite marginal likelihood

(a) Introduction

Statistical inference for parametric models is ideally performed using the
likelihood function, but for multi-variate extremal models, this is generally
difficult for the reasons mentioned at the end of §2a. When the pairwise marginal
distributions are available and identify the model parameters, it therefore seems
natural to use a composite likelihood function (Lindsay 1988; Cox & Reid 2004;
Varin et al. 2011).
Suppose that the distribution of the responses depends on a parameter vector

w, let zY = {zj : j ∈ Y} denote a subset of the overall data, and suppose that
the responses may be split into mutually independent subsets zY1 , . . . , zYn . Also,
let Yj ,1, . . . ,Yj ,mj denote distinct subsets of Yj . In the temperature data of §1b,
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the Yj might denote maxima for different summers j = 1, . . . ,n, which may be
supposed independent, and the Yj ,1, . . . ,Yj ,mj might denote all distinct pairs of
sites for which data are available in summer j . The corresponding composite
marginal log likelihood is

!Y(w)=
n∑

j=1

mj∑

i=1
log f (zYj ,i ;w) (4.1)

in a natural notation. Under regularity conditions like those needed for the
limiting normality of the standard maximum-likelihood estimator, and if w is
identifiable from the marginal densities contributing to !Y , the maximum pairwise
likelihood estimator w̃ has a limiting normal distribution as n→ ∞, with mean w

and covariance matrix of sandwich form estimable by J (w̃)−1K (w̃)J (w̃)−1, where

J (w)= −
n∑

j=1

mj∑

i=1

v2 log f (zYj ,i ;w)
vwvwT

and

K (w)= −
n∑

j=1

mj∑

i=1

v log f (zYj ,i ;w)
vw

mj∑

i=1

v log f (zYj ,i ;w)
vwT

are the observed information and squared score statistic corresponding to !Y .
Corresponding results for comparison of nested models fitted by maximization of
equation (4.1) involve sums of independent c2 variables weighted by eigenvalues
of matrices derived from K (w̃) and J (w̃) (Kent 1982), and so are awkward
to apply in practice. In a similar situation, Chandler & Bate (2007) suggest
modifications which ensure that likelihood ratio statistics retain their usual large
sample distributions.
The marginal composite likelihood (4.1) is useful only for inference on model

parameters that are estimable from the terms appearing therein. Thus, in the case
of a pairwise likelihood, in which each of the subsets Yj ,i corresponds to pairs
of observations, parameters that appear only in the joint densities for triples,
quartets, etc., cannot be estimated. This is not a difficulty with the models
discussed below or in other spatial contexts based on Gaussian distributions,
for which the distribution is specified in terms of its first two moments, but it
could be a drawback in other contexts; in that case, the use of contributions from,
e.g. triplets of observations, might be indicated. There is also a potential gain of
efficiency in using higher order terms (Genton et al. 2011).
Varin & Vidoni (2005) and Varin (2008) discuss model selection based on

composite likelihoods. It is appropriate to select models that minimize the
composite likelihood information criterion, CLIC= −2[!Y(w̃)+ tr{K (w̃)J (w̃)−1}],
an adaptation of the Takeuchi information criterion (Takeuchi 1976) to the
present setting. One minor difficulty with this, and indeed in comparing models
based on !Y , is that even for moderate datasets, the values of !Y tend to be
very large because of the large numbers of terms summed in equation (4.1). It
is therefore helpful to replace !Y by !∗

Y = c!Y , where the scaling constant c is
chosen to give the correct log likelihood, at least approximately, for independent
observations, and to use the corresponding scaled information criterion, CLIC∗.
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Composite likelihood may be seen as the basis for estimating the equation
v!Y(w)/vw = 0, but has the advantage over arbitrarily defined estimating
equations of stemming from an objective function. As Varin et al. (2011) describe,
composite likelihood is increasingly being used in settings where the likelihood
itself is computationally intractable. In cases where the composite maximum-
likelihood estimator w̃ can be compared with the usual maximum-likelihood
estimator, the former is often surprisingly efficient, though if n is fixed, care
must be taken not to allow mj to become too large; if so, the efficiency can drop,
and in extreme cases, w̃ may become inconsistent (Cox & Reid 2004). In our
applications, the number n of independent blocks is typically fairly large, so even
if the mj are large, inconsistency should not usually be an issue.

(b)Efficiency comparison

In the present context, it is natural to use the bivariate marginal densities
corresponding to equations (2.8), (2.10), (3.2) and (3.3), thus forming the pairwise
log likelihood

!2(w)=
n∑

j=1

∑

c,d∈Yj ,i

log f (zj ,c, zj ,d ;w),

in which the Yj ,i comprise all distinct pairs of sites. One natural concern is the
efficiency of the maximum pairwise likelihood estimator w̃, but it is impossible to
assess this directly, because the full log likelihood is unavailable for such models.
Instead, we simulated data from a D-dimensional logistic model for multi-variate
extremes (Tawn 1988), which has the distribution function

exp

{

−
(
D∑

d=1
z1/a
d

)a}

, z1, . . . , zD > 0, 0< a ≤ 1, (4.2)

with zd = {1+ x(yd − h)/t}−1/x; here, h, t and x are location, scale and shape
parameters, all taken equal to 1 for the simulation. The extremal coefficient
of equation (4.2) is Da: the extremes are independent for a = 1, and become
entirely dependent when a → 0. Both pairwise and full likelihood estimation
can be performed for this model, with the likelihoods obtained by symbolic
differentiation of equation (4.2). Table 1 shows the efficiencies for pairwise
likelihood relative to full likelihood estimation for the four parameters, as the
dimension D varies from 3 to 40. When there is appreciable dependence, the
loss of information seems to be slight, but even for weak dependence, it is not
catastrophic. We conclude that pairwise likelihood estimation is a reasonable
option in the present context; in any case, there seems to be no other.

(c)Computation

Composite marginal likelihood fitting of certain of the geostatistical models for
extremes described above and of the Gaussian random storm model of R. L. Smith
(1990, unpublished data) may be performed using Mathieu Ribatet’s R package
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Table 1. Relative efficiency (%) of the pairwise likelihood estimator based on 500 datasets of size
200 simulated from a symmetric logistic distribution of dimension D with dependence parameter
a = 0.1, 0.4, 0.7, 0.9. The parameters h, t and x = 1 are the location, scale and shape parameters
of the common marginal distribution.

a = 0.1 a = 0.4
D h t x a h t x a

3 100 99 91 93 100 100 94 94
5 100 99 84 97 100 100 79 93
10 100 100 74 93 100 99 65 85
20 100 100 70 93 100 98 57 82
40 100 99 68 94 100 98 54 83

a = 0.7 a = 0.9
D h t x a h t x a

3 100 99 94 91 99 97 96 90
5 100 96 76 78 97 92 86 76
10 99 90 59 63 92 82 69 55
20 98 85 43 53 85 70 49 40
40 98 85 37 50 79 61 36 31

SPATIALEXTREMES, which allows flexible formulations of the location, scale and
shape parameters of the marginal generalized extreme-value distributions, and
provides appropriate plots and diagnostics.

5. Temperature data

(a)Model fitting

We now discuss the fitting of model (2.8) to the temperature data described
in §1b. The pairwise analysis in §3a suggests that the sites at Locarno-Monti,
Lugano and the Jungfraujoch have different meteorological behaviour than the
others, and consequently we exclude them from the fitting, thus giving D = 14
sites (see below).
Exploratory analysis for the marginal parameters shows relations between

the location parameter of the generalized extreme-value distribution (1.2) and
latitude, altitude and time. We first fitted various different models with the
powered exponential covariance (2.12) using the scaled pairwise likelihood

!∗
2(w)= (D − 1)−1

n∑

j=1

D−1∑

d1=1

D∑

d2=d1+1
!{g(yd1,j ;w), g(yd2,j ;w);w}, (5.1)

where yd,j represents the maximum at site d in year j , g(y;w)= {1+ x(y − h)/t}1/x

and the marginal parameters h, t and x are functions of the generic parameter
vector w. Some of the many models that we fitted and the values of their
information criteria are shown in table 2. The dependence models incorporate
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Table 2. Values of information criteria CLIC∗ for some dependence models and Akaike information
criteria for an independence model. k is the shape parameter of the powered exponential covariance
function used for the spatial fits.

number of marginal information
model parameters shape k criterion

dependence
h, t, x ∼ time+ alt2 + (lat+ lon)2 27 1.5 2051.0a

h, t, x ∼ alt2 + (lat+ lon)2 24 1.5 2077.7
h, t, x ∼ time+ (lat+ lon)2 21 1.5 3593.5
h, t, x ∼ time+ alt2 + lat2 18 1.5 2079.8
h, t, x ∼ time+ alt2 + lon2 18 1.5 2119.1
h ∼ time+ alt2 + (lat+ lon)2; t, x ∼ 1 11 1.5 2101.4
h ∼ alt2 + (lat+ lon)2; t, x ∼ 1 10 1.5 2125.0
h ∼ time+ alt2 + lat2; t, x ∼ 1 8 0.5 2086.1
h ∼ time+ alt2 + lat2; t, x ∼ 1 8 1.0 2085.7
h ∼ time+ alt2 + lat2; t, x ∼ 1 8 1.5 2073.2b

h ∼ time+ alt2 + lat2; t, x ∼ 1 8 1.9 2085.6
independence

h ∼ time+ alt2 + lat2; t, x ∼ 1 8 — 2347.4
aThe overall best model.
bOur preferred model.

the dependence among the maxima by fitting the log likelihood based on
equation (3.1), whereas the independence model incorrectly treats the spatial
data as independent series. There is a very large reduction in the CLIC∗ owing
to inclusion of quadratic terms in altitude and a smaller one owing to time. The
effect of latitude appears stronger than that of longitude, and this seems natural
in view of the geography of the Alps. The overall best model uses quadratic
terms in longitude, latitude and altitude of the sites, plus a linear term in time,
to explain variation in all three marginal parameters of equation (1.2), but this
seems very complex for a fit to 14 sites, and we prefer a simpler model with just
eight marginal parameters. The other models vary the shape parameter k of the
exponential covariance function used for these fits. Our preferred model, denoted
by superscript ‘b’, has constant scale and shape parameters, and

hd,t = h0 + h1lat(xd)+ h2lat(xd)2 + h3alt(xd)+ h4alt(xd)2 + h5t, (5.2)

where alt(x) and lat(x) are altitude above mean sea level (in kilometres),
and latitude, measured in a coordinate system centred on the former national
observatory in Bern. Time t is measured in centuries since the year 2000.
The corresponding independence model has an appreciably higher information
criterion value, suggesting that, as one might anticipate, the spatial dependence
model better accounts for the data.
Table 3 shows the estimates and standard errors for the model with

margins (5.2), when the data from the 14 sites are treated as independent,
using the max-stable model with likelihood contributions (3.1) not allowing for
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Table 3. Parameter estimates (s.e.) for annual maximum temperature data from 14 sites, treated
both as independent and as dependent. In the latter case, we fit a geostatistical max-stable model
using the powered exponential covariance with k = 1.5, both ignoring event times and taking them
into account, using pairwise likelihood estimation based on likelihood contributions (3.1)–(3.3),
respectively.

dependence

equations
independence equation (3.1) (3.2) and (3.3)

location intercept h0 32.49 (0.34) 32.50 (0.41) 32.79 (0.41)
latitude h1 −0.31 (0.15) −0.20 (0.13) −0.33 (0.13)
latitude2 h2 1.21 (0.29) 1.53 (0.19) 1.46 (0.18)
altitude h3 −1.42 (0.55) −0.84 (0.38) −1.24 (0.36)
altitude2 h4 −2.04 (0.20) −2.26 (0.13) −2.13 (0.12)
time h5 0.49 (0.52) 2.47 (1.44) 2.51 (1.38)

scale t 1.51 (0.05) 1.51 (0.11) 1.61 (0.11)
shape x −0.17 (0.02) −0.15 (0.04) −0.14 (0.04)
dependence scale l — 175.1 (67.1) 189.9 (24.9)

nugget 1− n — 0.37 (0.06) 0.36 (0.04)

the timing of maxima, and allowing for their timing. In the last case, we used
likelihood contributions (3.2) and (3.3), with maxima considered to form part of
the same episode, only if they occurred on the same day; the effect of varying this
by considering that a hot episode could take place over several days was slight.
Most of the estimates are similar for the independence and dependence models,
with the latter giving larger standard errors for the marginal intercept parameters
h0, t, x and smaller standard errors for most of the marginal regression effects.
The exception is the parameter h5 representing dependence on time, the estimate
of which increases and becomes more significant when spatial dependence is
taken into account, though none of the estimates differs significantly from zero.
There is some reduction in uncertainty when information on the synchronicity
of extreme events is included, particularly for the scale parameter l of the
correlation function.
The table provides plausible physical values for the effect of altitude, which

is known to reduce temperatures by around 7◦C for each kilometre of climb; the
gradients implied by the quadratic curve fitted here range from −6◦C to −9◦C
at altitudes of 1–2 km; both the linear and quadratic terms in altitude are highly
significant, but the addition of a cubic term is not. The effect of climatic change
is also consistent with estimates from other sources, suggesting an increase of
around 2.5◦C over the next century. The large uncertainty of this estimate is not
surprising, as the data encompass a small geographical region and are strongly
correlated. The effect of latitude is most likely a surrogate for complex effects of
topography beyond that of altitude.
We also fitted equation (2.8) with correlation function (2.15) and the Whittle–

Matérn correlation family, with results very similar to those described above.
Figure 5 shows the fitted extremal coefficient curves for various models;

there is little to choose between them, though the model with individual
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Figure 5. Fitted extremal coefficients as a function of distance for the pairs of sites, excluding
Jungfraujoch, Locarno-Monti and Lugano, with Schlather–Tawn pairwise estimates and 95% CIs
(shown as circles with grey vertical lines). Shown are curves for the exponential covariance function
with shape k = 1.5 (solid line) and with shape k = 1.9 (dotted-dashed line); for the exponential
covariance with individual marginal parameters for different sites (dotted line), and with 27
marginal parameters (dashed line); and for the Cauchy covariance function (long-dashed line).

marginal parameters at every site is somewhat distinct from the others. This
is unsurprising, but as this model does not allow extrapolation to other sites,
it is of little practical use in risk analysis.

(b)Model checking

The max-stable models are fitted using data from pairs of sites, and it is natural
to assess the quality of the fit by using data from larger subsets. To do so,
we perform a simulation-based test, as follows. We first note that the annual
maxima ZA =maxd∈A Zd are available for any subset A ⊂ D of the sites at which
data are available, and that the distribution of ZA under the max-stable model
is Fréchet with parameter qA. The empirical values of ZA are available for n
independent years of data; call these zA,1, . . . , zA,n . They may be compared either
with the Fréchet distribution with parameter qA or with maxima for datasets
simulated from the fitted model. In the second case, we simulate R independent
sets of data from the fitted max-stable model, and thus obtain R replicates
z∗A,1,r , . . . , z

∗
A,n,r of the original data. Simple graphical tests of fit may be based

on the concordance of the ordered values of zA,1, . . . , zA,n with the ordered values
of z∗A,1,r , . . . , z

∗
A,n,r .

Figure 6 shows the use of R= 5000 simulated max-stable processes to form
simulation envelopes (Davison & Hinkley 1997, section 4.2.4) with six groups
of sites, formed geographically: (a) Jungfraujoch; (b) Western Alps; (c) Ticino;
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Figure 6. Comparison of groupwise annual maxima with data simulated from the fitted model. In
each panel, the outer band is a 95% overall confidence band and the inner one a 95% pointwise
confidence band. The groups of sites are: (a) Jungfraujoch; (b) Engelberg, Grand-St-Bernard,
Montana; (c) Locaro-Monti, Lugano; (d) Bern-Liebefeld, Chateau d’Oex, Montreux-Clarens,
Neuchâtel; (e) Basel-Binningen, Oeschberg-Koppingen, Zurich-MeteoSchweiz; and (f ) Arosa,
Bad-Ragaz, Davos-Dorf, Santis.
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(d) Southern Plateau; (e) Northern Plateau; and (f) Eastern Alps. Since they were
not used to fit the model, the poor fit for the Jungfraujoch and for the Ticino is
not surprising. The fit is broadly satisfactory for the other groups, except perhaps
group (f). Arosa, Davos-Dorf and Santis have altitudes of 1840, 1590 and 2490m,
respectively, but Bad Ragaz is much lower, at 496m, and is unusual in this group
because of its low altitude. This suggests that a more complex model accounting
better for dependence on altitude would be preferable, but since the plotted data
do not lie outside the overall 95% confidence band, this does not appear to be a
critical issue.
Figure 7 shows simulation envelopes with five other groups of sites not in

close proximity. The sites found to be badly fitting have been put together into
group (a), for which the fit is very poor, but for the other groups, it is quite
satisfactory. Similar computations for other groupings showed no other systematic
model failures, even when Bad Ragaz was treated as an ordinary station, and we
conclude that the model appears satisfactory in this respect.

(c)More complex models

We attempted to fit the random set model (2.10) by maximizing the pairwise
likelihood with the best model above and a(h)= {1− |h|/(2r)}+, corresponding
to taking B to be a disc of constant radius r . Fitting this model is delicate, but
a profile likelihood for r is maximized as r→ ∞. This is not surprising in view
of the relatively small area that contains the sites. Quite different results would
be expected with other types of data, such as annual maximum rainfall.
We also allowed for geometric anisotropy of the covariance function by

fitting models in which the plane (x , y) is affinely transformed to (z−1(x cosa +
y sina), z(y cosa − x sina)), but found no evidence that a %= 0 or that z %= 1.
Probably, a much larger number of sites would be needed to detect such effects.

(d)Risk analysis

A traditional approach to risk analysis is based on the pointwise estimation of
high quantiles of a distribution, the so-called return levels or return values. In
the univariate case and when the generalized extreme-value distribution (1.2)
has been fitted to annual maxima, such quantiles are obtained as solutions
to the equation Ĝ(yp)= p, with p= 0.95, 0.98, 0.99 and 0.999 corresponding,
respectively, to 20, 50, 100 and 1000 year return levels. Similar arguments
apply when exceedances over high thresholds are modelled, rather than maxima
(Davison & Smith 1990; Coles 2001). When the extremal data are spatially
indexed, it is now common to make the assumption of an underlying surface,
and thus to obtain a smooth map of the necessary quantiles over the region
of interest (see Cooley et al. (2007) or Sang & Gelfand (2009a)). A cruder
and less satisfactory approach would be kriging of the relevant quantiles at
different sites.
One important benefit of spatial modelling of rare events is the possibility of

simulating unusual episodes, here years with high maximum temperatures, rather
than merely producing pointwise maps of high quantiles, and thus allowing a
more powerful risk analysis. To illustrate this, figure 8 shows four max-stable
processes simulated from our fitted model, ordered by sorting 1000 simulated
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Figure 7. Comparison of groupwise annual maxima with data simulated from the fitted model. In
each panel, the outer band is a 95% overall confidence band and the inner one a 95% pointwise
confidence band. The groups of sites are: (a) Bad Ragaz, Jungfraujoch, Locaro-Monti, Lugano;
(b) Basel-Binningen, Oeschberg-Koppingen, Zurich-MeteoSchweiz; (c) Arosa, Grand-St-Bernard,
Oeschberg-Koppingen; (d) Bern-Liebefeld, Chateau d’Oex, Engelberg, Santis; and (e) Davos-Dorf,
Montana, Neuchâtel.
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Figure 8. Four simulated max-stable processes, using the model in equation (5.2) with parameter
estimates from the last column of table 3. (a–d) Show the simulations on the log Fréchet scale,
and (e–h) show them on the scale of the original data, extrapolated to the year 2020.
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Table 4. Simulated scenarios for years hotter than 2003. Shown are the frequencies (%) for simulated
annual maxima exceeding those observed for the year 2003 at k stations, for k = 1, . . . , 14, for the
max-stable and independence models, for the years 2003, 2010, 2020 and 2050.

model year 1 2 3 4 5 6 7 8 9 10 11 12 13 14

max-stable 2003 99.7 34.9 14.3 5.0 2.8 1.8 1.2 1.0 0.65 0.47 0.29 0.20 0.14 0.05
2010 99.8 39.3 17.0 6.2 3.7 2.4 1.6 1.2 0.87 0.61 0.40 0.27 0.16 0.06
2020 99.8 45.8 21.8 8.6 5.3 3.5 2.5 1.7 1.2 0.87 0.61 0.37 0.21 0.11
2050 99.8 63.8 39.2 20.4 14.1 10.3 7.9 6.0 4.5 3.0 2.1 1.4 0.75 0.30

independence 2003 52.8 15.4 3.0 0.31 0.02 0
2010 60.3 20.7 4.7 0.52 0.06 0
2020 70.6 31.8 8.6 1.73 0.20 0.02 0
2050 96.1 80.1 53.7 27.4 10.6 3.0 0.60 0.07 0.04 0

processes according to their overall averages on the data scale. Figure 8a–d
shows the processes on the unit Fréchet scale, and clearly indicates the extent
of the spatial dependence. Figure 8e–h shows the corresponding processes on
the scale of the original summer maximum temperature data, for the year
2020. The effect of altitude is very strong, but close examination shows clear
annual differences in the possible maximum temperatures, from which a risk
analysis could be extracted using a functional such as equation (1.1). In obtaining
these simulations, we made some allowance for parameter uncertainty for the
parameters in table 3 by generating parameter values randomly from a multi-
variate normal distribution centred on the parameter estimates and with the same
covariance matrix.
Simulations can also be used to estimate the extremal coefficient (2.7) for

the region X , by averaging values of maxx∈X∩GW (x), where G is a grid of
points on which W (x) is simulated. To estimate qX for Switzerland, we used
the fitted model to generate 10 000 random fields W (x) on a grid of side d = 0.25
of the pixels used in figure 1 and then subsampled on grids at 0.25, 0.5, . . . , 2.5 of
the original pixels, giving estimates of qX that were extrapolated to d = 0. The
resulting qX ≈ 9.5 shows the expected high degree of dependence, corresponding
to around 9.5 independent temperature maxima across the entire country. The
same computations gave qD ≈ 5.5 for the 14 sites used for the analysis.
We also used simulations to estimate the frequencies with which the

temperatures observed for the exceptionally hot year 2003 at the 14 stations
would be exceeded in the years 2003, 2010, 2020 and 2050, under the model
of linear trend in time. Table 4 shows that under the independence model, it
would effectively be impossible to observe a year like 2003 or worse at the 14
stations, whereas the probability of this event is around 0.0005 under the max-
stable model: it was about a 2000 year event in 2003 and 2010, dropping to a
1000 year event in 2020, and to roughly a 333 year event in 2050. For a less
extreme event in which just 7 of the 14 values were exceeded, the probability
rises from around 1 per cent in 2003 to around 8 per cent in 2050. Under
a model of independence between the sites, such events are much less likely;
the 2003 event remains effectively impossible, even in 2050 and with the trend
in temperatures.
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6. Discussion

We regard the models and methods described above as a step towards realistic
and flexible modelling of spatial maxima, consistent with the classical paradigm
of max-stable processes and distributions. Our approach involves the following
steps:

(a) construction of a marginal generalized extreme-value model for sitewise
maxima that allows extrapolation to maxima across the entire spatial
domain, and enables the maxima to be transformed from their original
scale to a common unit Fréchet distribution;

(b) construction of a max-stable model for the transformed maxima, taking
into account their spatial dependence through an appropriate covariance
function and, perhaps, inclusion of a random set B and corresponding
overlap probability a(h);

(c) pairwise likelihood fitting of models given by (a) and (b), with model
selection using information criteria;

(d) assessment of model fit using data from pairs and from larger groups of
sites; and

(e) use of the chosen model for risk analysis through simulation, entailing both
extrapolation into the tails of the infinite-dimensional distribution of the
random process, and perhaps extrapolation outside the period or domain
for which data are available.

Below, we discuss some aspects of the approach and outline some further elements
that seem to us particularly important.
Although it arises naturally from the probabilistic construction of max-

stable processes, the transformation in step (a) may appear awkward because
interpretation on the unit Fréchet scale is only indirectly linked to the underlying
physical process. The same might be said of step (b), though the random set
element may have a clear interpretation in cases such as extreme convective
rainfall, where it might correspond to an exceptionally active storm cell.
Our application involved the use of a polynomial response surface for the

marginal parameters in (a), but in principle, we see no difficulty in using broader
classes of functions such as splines, provided the data are rich enough.
For (b), we have used a relatively simple Gaussian process model suggested by

Schlather (2002), but there is wide scope for developing further classes of model
for which the pairwise exponent measures can be computed and whose parameters
are identifiable from the pairwise densities. In separate work, we have found that
such measures for other models both stationary and non-stationary, and the work
of R. L. Smith (1990, unpublished data), de Haan & Pereira (2006), Smith &
Stephenson (2009) and Padoan et al. (2010) on the random storm formulation
are also relevant. Although not an issue for our example, it is a nuisance that
the pairwise extremal coefficient for the simple Gaussian process model cannot
attain its maximal value of 2, and in other applications, more flexible models are
needed (see Davison et al. in press; Wadsworth & Tawn in press).
The fitting at step (c) is sometimes delicate, and it would be useful to have fast

robust algorithms. We have fitted the marginal and joint models simultaneously,
but in some cases alternating algorithms seem to more be stable (Blanchet &
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Davison in press). Perhaps, the fitting would be improved if higher order densities
were available, though there is clearly a trade-off between computational and
statistical efficiency.
Steps (d) and (e) rely on simulation from the fitted model, and therefore rule

out the use of exponent measures that do not correspond to processes that can
be constructed.
The use of max-stable models stems from the stability postulate underlying the

derivation of the basic distributions used for univariate extremes, here generalized
to equation (2.1), which enables mathematically consistent extrapolation beyond
the range of the data. However, such extrapolation is fraught in several dimensions
and great care should be exercised in the present infinite-dimensional situation.
Even for multi-variate extremes, the classical theory has limits in modelling
how dependence changes with events of increasing rarity. Important further
developments to deal with these near-independence cases are owing to Ledford &
Tawn (1996, 1997, 2003), who have, in an important series of papers, described
diagnostics for more subtle dependencies in the joint tails for several variables
than are allowed by the classical theory, and models that accommodate such
dependencies. More recent work on these lines is by Heffernan & Resnick (2005,
2007). It seems important to extend our approach to cater for these more flexible
and realistic forms of asymptotic behaviour (see Wadsworth & Tawn in press).
Under asymptotic independence, extremely rare events would have smaller spatial
extent than less rare ones; thus, our asymptotically dependent approach would
tend to overstate risk if applied to data from an asymptotically independent
spatial process. In order to detect such cases, it is helpful to plot measures of
extremal dependence as in Blanchet & Davison (in press). It would also be helpful
to find an analogue of the spatial madogram (Naveau et al. 2009) suitable for
near-independence cases.

We thank many colleagues, particularly Juliette Blanchet, Philippe Naveau, Simone Padoan,
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National Science Foundation and by the CCES project EXTREMES (http://www.cces.ethz.ch/
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