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Overall project goal – develop monitoring 
technique for batch processes involving slurries
• Extend kinetic modeling approach to a prototypical slurry 

reaction at DuPont: sulfonylurea coupling reaction for 
monitoring purposes

• Make optical measurements in light-scattering medium
• Modify kinetic models to include:

• Dissolution of starting material A & flow-in of reagent B
• Nucleation and crystallization of product, P

• Develop low-theory models for dissolution, nucleation and 
crystallization

• Kinetic models with reagent flow-in impose strict mass balance 
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Background
What is a slurry? 

• a suspension formed when a 
quantity of powder is mixed into a 
liquid in which the solid is only 
slightly soluble (or insoluble)

• contain large amounts of solid and 
are more viscous and dense than 
the liquid from which they are 
formed

• Many batch industrial processes 
use slurries

Abebe S. B., Wang X. Z. et al. (2008). Powder Technology 179: 176-183
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Background (cont.)
What has been done before?

• The Gemperline group has developed models for 
homogenous reactions

• chemical reactions in which the reactants are in the solution phase

• Kinetic model fitting used for process control
• detect processes upset
• deduce reasons for processes upset
• detect endpoint
• forecast changes
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Prior work – apparatus setup

Batch Titration Reactor
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Prior work – apparatus setup

Batch Titration Reactor
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• Experimental details
– Circulator system: Julabo

F25-HD
– Reactor type: 50 mL glass 

reactor
– Initial charge:

• 3.0 g salicylic acid
• 15 mL acetonitrile
• 0.2 mL H2SO4

– Reagent addition
• 0.75 mL acetic anhydride 

@ 0.75 mL/min.
• 5 additions @ 25 min intervals

– Calorimeter settings:
• Const temp power comp 

mode
• Jacket temp: 55oC
• Reactor temp: 60oC

UV/Vis spectra
Equitech CCD

3 bounce ATR probe

Spectra recorded @ 30 s intervals

Typical batch reaction spectra: 
acetylation of salicylic acid
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Calorimetry profiles from batch reaction
• Composition profiles 

estimated from SMCR

– Fast rate of reaction observed 
in early steps

– Small amt product formed in 
early steps

– Large reaction exotherm in 
early steps
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Kinetic Fitting Algorithm
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Kinetic Fitting Algorithm

1. Postulate model
2. Write system of ordinary differential equations
3. Integrate system of simultaneous ODE’s
4. Interpolate profiles to match acquisition times
5. Fit profiles to spectra and temperature, R=D(I – CC-1)
6. Adjust model parameters to minimize R using nonlinear 

least-squares (Levenberg/Marquardt)
7. Repeat steps 3, 4, 5, and 6 until no further improvement is 

observed in R or maximum number of steps exceeded.
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The reactions and model parameters

SA: salicylic acid
AA: acetic anhydride
I: reactive intermediate
ASA: acetyl salicylic acid
ASAA: acetylsalicylic anhydride
W: water
HA: acetic acid 

Estimated model parameters:
CW k1, k2 , k3 , k4

Reactor is filled with SA and
AA is injected in the reactor

AA + SA               I            ASA + HA

AA + W               2 HA

AA + ASA                   ASAA + HA

k1 k2

k3

k4
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Kinetic fitting – details for step 5
5. Fit kinetic profiles to measured spectra using linear least-

squares
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Kinetic fitting – details for step 5
5. Fit kinetic profiles to measured spectra using linear least-

squares
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Motivation - application to a DuPont 
batch slurry process
• Develop a kinetic model for a DuPont’s sulfonylurea coupling 

reaction (heterogeneous reaction) for monitoring purposes
• Modify kinetic models to include:

• Dissolution of starting material A & flow-in of reagent B
• Nucleation and crystallization of product, P
• Make optical measurements in light-scattering medium

• Kinetic models with flow-in impose strict mass balance
• Develop low-theory models for dissolution, nucleation and 

crystallization
• avoid high-theory and medium-theory models (e.g. population balance 

equation)
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High-theory model: population balance 
equations
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Project 1: modeling of dissolution of 
salicylic acid

Develop a kinetic model for the dissolution of 
salicylic acid in a solvent mixture (52% ethanol, 
48% water), based on a power law equation

simpler system, easily controlled
help gain understanding about kinetic of dissolution 
and crystallization in general
Precisely controlled conditions will facilitate model 
validation

Optimize the rate constant (k) and the 
exponent (n) of the power law equation

Salicylic acid
M.W. 138.12 g mol-1
pKa 2.97
Monoclinic

n
sat cckr )( −=
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Instrumentation – making optical 
measurements in light scattering systems

ATR UV-vis Spectroscopy

Total Internal Reflection

NIR Diffuse Reflectance 
Spectroscopy 

Diffuse Reflectance
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Principle of attenuated total reflectance (ATR)
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Principle of attenuated total reflectance (cont.)

2
2

22
1

0

1

)(sin)(2

)()(

)log(

sin

nn
d

zdl

ClA

I
IA

nn

p

p

crit

−
=

=

=

=

=

θπ
λ

λελ

θCritical Refractive Index

Absorbance (attenuated)

Beer Lambert’s Law

Depth of penetration



East Carolina University

Spectroscopic probes
NIR Spectroscopy

Diffuse Reflectance Probe
ATR UV-vis Spectroscopy

ATR Probe (sapphire crystal)

1100 nm - 2500 nm 200 nm - 1020 nm
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In-house miniature semi-batch reactor

Magnetic stir bar Dosing tube from automated syringe pump

Thermocouple

Jacketed oil bath

ATR UV-vis probe

NIR reflectance probe

Full description of the reactor in Gemperline et al, Analytical Chemistry 76 (2004) 2575-2582
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Dissolution of salicylic acid

Addition 1 Addition 2 Addition 3 Addition 4 Seeding
Dilution 1

Dilution 2

Dilution 3
Dilution 4

Dilution 5

Dilution 6

Saturated Supersaturated Undersaturated
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Kinetic modeling of dissolution (UV-vis)
At 307 nm
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Original model

Problems:
1.Significant offset for the dilution steps when the real flow rate data is applied
2.Inconsistencies of SA mass profile between modeled and measured profiles 
3.Worse result when 5th and 6th dilution steps are included

n
sat cckr )( −=

Initial conditions:

1.Initial volume (V0)
2.Initial concentration (C0)
3.Initial mass (m0)
4.Saturation limit (Csat)
5.Flow rate (F)
6.Dosing time (tdos)

Adjusted parameters:

1.Rate constant (k)
2.Power coefficient (n)
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Approaches
Combined soft-hard modeling

•Singular Vector Decomposition 
(SVD)

•Problems:
1. The result was too good, 

received a perfect fit every 
single time! 

2. Soft modeling  portion of the 
model dominated over hard 
modeling portion of the  model

Modified Beer’s Law

•Investigated the shielding effects 
(e.g. surface enhancement effects) 
on ATR sapphire crystal surface by 
introducing term into Beer’s Law 

•Problems:
1. Huge offset still remained for all 

six dilution steps

n
sat cckr )( −= n

sm∫+⋅= ACY
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Modified kinetic model

Costa P. et al. (2001) Euro J. Pharm Sci 13: 123-133

Problems:
1.Poor fitting for dilution steps 1, 4 and 5. It got worse when 6th (pure dilution) step 
is included
2.Optimized rate constant (k) and power coefficient (n) weren’t realistic

k >= 1000 Ln-1/(moln-1min), n = 6.85

rd = kd ⋅m⋅(csat − c)n

Initial conditions:

1.Initial volume (V0)
2.Initial concentration (C0)
3.Initial mass (m0)
4.Saturation limit (Csat)
5.Flow rate (F)
6.Dosing time (tdos)

Adjusted parameters:

1.Rate constant (k)
2.Power coefficient (n)
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Combined mass transfer and dissolution model

kd = 1.1168 Ln-1/(moln-1min), n = 1.80
km= 0.0146 Ln-1/(moln-1min),  m = 1.00

• Poor fitting for 4th and 5th dilution 
and dissolution steps

• Sharp decrease around 130 min

r = m⋅kd(csat − c)n + km(csat − c)m
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New results
Modified kinetic model

Optimized Parameters:

Dissolution rate constant (kd) = 16.2759 Ln-1/(moln-1min)
Order parameter (n) = 1.7367
Undissolved SA mass (m) = 2.40293 g
Initial volume (V0) = 20.8 mL

Initial conditions:

Dissolution rate constant (kd) = 16.2106 Ln-1/(moln-1min
Order parameter (n) = 1.7357
Undissolved SA mass (m0) = 2.3452 g
Initial volume (V0) = 22.7 mL

Hessian matrix

1.0000 -0.9802 0.0360 0.0120
-0.9802 1.0000 0.0385 0.0369
0.0360 0.0385 1.0000 0.8358
0.0120 0.0369 0.8358 1.0000

n
sat ccmkdrd )( −⋅⋅=
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Dissolution seen from solid phase (NIR)
At 1100 nm

At 1100 nm
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Project 2: modeling of sulfonylurea 
coupling reaction

Develop a combined kinetic model for the reaction, dissolution 
and crystallization for the slurry-based sulfonylurea coupling 
reaction.
Use NIR diffuse reflectance spectroscopy3 and kinetic model for 
monitoring purpose, and to perform endpoint and fault 
detections.
Use High Performance Liquid Chromatography (HPLC) samples 
taken from the reaction mixture to validate kinetic models

Barrett P., Smith B. et al. (2005). Organic Process Research & Development 9: 348-355.
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Sulfonylurea coupling reaction

Model System T6376 Reagents & Product

A4098 (reactant) - 2-amino-4-methoxy-6-
methyl-1,3,5-triazine 
Y6266 (CMBSI) - benzoic acid 2-
[(Isocyanato)sulfonyl]-methyl ester
D8055 (derivative form of CMBSI)
T6376 (product) - Metsulfuron Methyl 

Slurry-based synthesis of sulfonylureas
A4098 and T6376 both have limited 
solubility in xylene
Temperature: 80 ~ 85 Celsius
Total Reaction Time: approx. 140 min
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Kinetic model of DuPont slurry coupling 
reaction (proposed)
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Apparatus setup at DuPont

NIR reflectance probe

Thermocouple

Oil bath

Overhead stirrer

Recirculation tube

Peristaltic Pump

Balance

Sampling valve
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Experimental protocol
Description Real Time Target Time Exp. Time Spectra # B/A Temp C CMBSI R. wt. (g) Total CMBSI Added (g) 

No CMBSI 0% Reaction 

Started Collecting NIR Spectra 10:28 AM 5 0 2 ~ 12 79 470.42 -
Sampling Time 10:33 AM 4 5 12 ~ 20 79.6 470.42 -

25% of Coupling Rxn
Pump On Time 10:37 AM 11 9 20 ~ 42 80 470.42 -
Pump Off Time 10:48 AM - 20 42 ~ 82 79.6 354.95 115.47

Equilibrium Time 10:48 AM 20 20 - - - -
Sampling Time 11:08 AM 2 40 82 ~ 86 80.7 354.95 115.47

50% of Coupling Rxn
Pump On Time 11:10 AM 11 42 86 ~ 108 80.8 354.95 115.47
Pump Off Time 11:21 AM - 53 108 ~ 148 81.1 238.44 231.98

Equilibrium Time 11:21 AM 20 53 - - - -
Sampling Time 11:41 AM 2 73 148 ~ 152 82.8 238.44 231.98

75% Coupling Rxn
Pump On Time 11:43 AM 11 76 152 ~ 174 82.5 238.44 231.98
Pump Off Time 11:54 AM - 87 174 ~ 214 81.5 122.07 348.35

Equilibrium Time 11:54 AM 20 87 - - - -
Sampling Time 12:14 PM 3 107 214 ~ 220 84.4 122.07 348.35

100% Coupling Rxn
Pump On Time 12:17 PM 11 110 220 ~ 242 83.7 122.07 348.35
Pump Off Time 12:28 PM - 121 242 ~ 282 81.8 15.9 454.52

Equilibrium Time 12:28 PM 20 121 - - - -
Sampling Time 12:48 PM 4 141 282 ~ 290 83.3 15.9 454.52
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High performance liquid chromatography

Specifications
LC System Agilent 1100 with DAD detector
LC Column Zorbax Eclipse C-18 (25 cm x 4.6 mm, 5um)

Column Temp 40 C
Inj. Volume 10 uL
Flow Rate 1.5 mL/min

Detector Wv. 230 nm for A4098 and D8055, 270 nm for T6376
Retention Time 5.65 min (A4098), 10.73 min (T6376), 10.91 min (D8055)
Mobile Phase Acetonitrile (Solvent B), pH 3 Water (Solvent A)

Gradient Method
Time (min) Solvent B % (ACN) Solvent A % (Water) 

0 0 100
6 12 78
9 70 30

15 70 30
10 (Post Time) 0 100

Chromatogram

D8055

T6376

A4098

DuPont’s HPLC methods Y6266.220.01.BE (Nov. 1, 2000), T6376.220.01.ES (Feb. 25, 1999), T6376.220.05.ES (Sep 21, 2004).



East Carolina University

Comparison of two sampling methods
Sampling method (1) Sampling method (2)

1. Transfer 20 µL out of 3 to 3.5 mL of the slurry sample (with a 
stir-bar) into a 25 mL glass vial.

2. Dilute the transferred amount with 20 mL of a 90% ACN and 
10% IPA solution (Dilution Ratio 1:1000).

3. Sonicate for 10 min at 25°C.

1. Transfer 3 mL out of 3 to 3.5 mL of the slurry sample (without 
a stir-bar) into a 100 mL or 200 mL volumetric flask.

2. Dilute the transferred amount with 90% ACN and 10% IPA 
solution.

3. Sonicate for 15 min to 2 hours with a temperature between 
25 to 60°C.

4. Transfer 333 µL out of the 100 mL volumetric flask or 666 µL 
out of the 200 mL volumetric flask into a 10 mL of volumetric 
flask.

5. Dilute the transferred amount with a 90% ACN and 10% IPA 
solution (Dilution Ratio 1:1000).

Slurry Sample # A4098 D8055 T6376

SS 1 – Average 9.42% 9.81% 0.30% 0.57% 8.95% 9.37%
SS 1 – STD 0.0773% 0.0460% 0.019% 0.057% 0.671% 0.450%

SS 2 – Average 5.31% 5.73% 0.29% 0.55% 16.85% 16.89%
SS 2 – STD 0.0879% 0.0577% 0.044% 0.038% 0.5666% 0.2788%

SS 3 – Average 2.08% 1.94% 0.30% 0.62% 23.60% 23.47%
SS 3 – STD 0.0192% 0.0319% 0.0077% 0.11% 0.1659% 0.7028%

SS 4 – Average 0.13% 0.70% 1.57% 0.46% 29.81% 25.53%

SS 4 - STD 0.10% 0.014% 0.0117% 0.014% 0.2247% 0.7819%

3 mL 20 uL 3 mL 20 uL 3 mL 20 uL
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Sulfonylurea coupling reaction (NIR)
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Summary & future work
Project 1

(dissolution of salicylic acid)

ATR UV-vis and NIR diffuse reflectance 
spectroscopy  were used to monitor liquid 
and solid fractions of the dissolution of 
salicylic acid in a solvent mixture

A power law equation was successfully 
used to model all six dissolution steps for 
the liquid phase, with k = 16.2759
Ln-1/(moln-1min) and n = 1.7367

Integrate NIR measurements into our 
model to validate and improve the 
estimated solid fraction 

Attempt to model the crystallization of 
salicylic acid 

Project 2 
(sulfonylurea coupling reaction)

Fitting combined kinetic model to the 
batch reaction data to estimate the kinetic 
of the reaction, dissolution and 
crystallization

Intentionally introduce perturbation into 
the batches and see if our monitoring 
method can quantify the degree of 
perturbation 
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