Named and default arguments for polymorphic
object-oriented languages

A discussion on the design implemented in the Scala language

Lukas Rytz
Programming Methods Laboratory

Ecole Polytechnique Fédérale de Lausanne

lukas.rytz@epfl.ch

ABSTRACT

This article describes the design and implementation of named
and default arguments in the Scala programming language.
While these features are available in many other languages
there are significant differences in the actual implementa-
tions. We present a design that unifies the most reason-
able properties for an object-oriented language and provides
new possibilities by allowing default arguments on generic
and implicit parameters. We also present a solution for the
problem of writing a lightweight generic update function for
algebraic datatypes.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features— Procedures, functions, and subroutines

General Terms

Languages, Design

Keywords

Named arguments, default arguments, Scala

1. INTRODUCTION

When applying a method to a set of arguments, every ar-
gument expression has to be mapped to one of the method’s
parameters. In most programming languages this mapping
is defined by the position of the argument expressions in
the argument list (i.e. the n'" argument defines the n'" pa-
rameter of the method), in which case the arguments are
called positional. An alternative is using named arguments,
where the programmer explicitly mentions the parameter
name that an argument expression defines.

The additional verbosity of named arguments is worth-
while in applications of methods with a large number of
parameters or with multiple parameters of the same type.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’10 March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

Martin Odersky
Programming Methods Laboratory

Ecole Polytechnique Fédérale de Lausanne

martin.odersky@epfl.ch

The use of named arguments improves code readability by
making the role of an argument explicit, and it eliminates
the risk of confusing the positions of parameters of the same
type, an error which cannot be caught by a type system
otherwise. Compare the following method applications:

frame.setSize(200, 300) // which one is the height?
frame.setSize(height = 200, width = 300)

Another important application for named arguments comes
up when using them in conjunction with default arguments,
the second concept discussed in this article. A language
with default arguments allows specifying default values for
the parameters of a method. These defaults are used when-
ever a method application leaves some of the parameters
undefined.

With positional arguments, the only possibility to use de-
faults is to leave some parameters at the end undefined.
With named arguments it is possible to provide a value for
an arbitrary subset of the parameters and use the defaults
for the others.

Named and default arguments are very common features
and can be found in a large number of programming lan-
guages (see section 4). We investigate how they are im-
plemented in other languages and analyze how the different
design choices affect the interaction with other language fea-
tures such as method overriding, virtual method calls and
overloading resolution. We present two new use cases for
default arguments by allowing to use them on parameters of
a generic type and on implicit parameters.

The rest of this paper is structured as follows. Section
2 discusses the design choices for implementing named and
default arguments. In section 3 we explain the compilation
technique used in Scala. Section 4 compares our implemen-
tation with other languages, and section 5 concludes.

2. DESIGN CHOICES

A central constraint when extending an existing language
with named and default arguments is source compatibility:
the new feature should not invalidate any existing code. But
even with this restriction there are a number of design deci-
sion to be made.

While this section provides a qualitative discussion on
Scala’s design of named and default arguments, a more pre-
cise description of the semantics, defined by a translation
into equivalent code without parameter names or defaults,
can be found in the Scala language specification [11].

2.1 Flexibility

Our implementation of named and default arguments is
designed to provide a high degree of flexibility for the pro-
grammer. A first fundamental decision is whether the use
of named arguments should be optional or not. We decided
to make them optional because this gives the programmer
more flexibility when calling a method, and it does not force
him to chose which parameters should be named when defin-
ing a method. It also allows using named arguments when
calling a method that was written before named arguments
were available in the language, because there is no change
in the way parameters are defined.

A disadvantage of enabling named arguments on all pa-
rameters is that parameter names immediately become part
of the public interface of a method, and changing them can
invalidate client code. This is also true for source code which
was written before named arguments were available in the
language. Presumably, programmers were less careful in
choosing parameter names in the past because they expected
them to be private.

When using named arguments, Scala allows to specify the
parameters in a different order than in the method defini-
tion. We also allow mixing positional and named arguments,
in this case all positional arguments have to appear left of
the named arguments. Unlike for instance C# 4.0 [4] where
only the last parameters of a method are allowed to have de-
faults, any parameter can have a default argument in Scala.

2.2 Evaluation order

Unlike OCaml [10] or ADA95 [8], Scala has a definite eval-
uation order for method arguments. Thus, we need to define
an evaluation order in the presence of named and default
arguments. Given that positional arguments are evaluated
left-to-right, the same is done for named arguments. So in
the following example, a() is always evaluated before b(),
no matter what the order of parameters in the method def-
inition is.

m(y = a(), x = b))

When an argument list of an application is completed with
default arguments, the default expressions are evaluated af-
ter the specified arguments of that parameter list. The de-
fault arguments which are used in a particular application
behave just like specified arguments: they are evaluated ex-
actly once, except if the corresponding parameter is a by-
name parameter, in which case they are evaluated every time
the method body refers to the parameter. Default expres-
sions which are not used in a method application are not
evaluated.

If an application has multiple argument lists (see 2.3.1),
these are always evaluated left-to-right. This implies that
default expressions used in the first argument list are evalu-
ated before any arguments of the second argument list.

The following, slightly tricky example illustrates evalu-
ation of default arguments. First, the default expression
{i += 1; i} is evaluated, then the specified argument i, and
finally the default expression {i += 2; i}.

var i =1
def f(x: Int = {i += 1; i})

(v: Int = {i += 2; i}, z: Int) = (x, v, 2)
f()(z = 1) // returns (2, 4, 2)

2.3 Interaction with other features

This section describes how an elaborate integration of
named and default arguments with other language features
enables a number of useful programming patterns.

2.3.1 Curried method definitions

In Scala, methods can have multiple parameter lists. Method

definitions with more than one parameter list are called cur-
ried because they allow partial application.

When writing a curried method definition, default argu-
ments can depend on earlier parameters of the same method.
In other words, the parameters are visible not only in the
method body, but also in all subsequent parameter lists.
This enables the programmer to specify meaningful default
arguments in some additional situations:

def resizeImage(i: Image)(h: Int
w: Int

i.height,
i.width) = { .. }

To solve the ambiguity between a partially applied method
and a method application using default arguments, Scala
uses default arguments only for completing underspecified
arguments lists. In order to use the default arguments of the
above definition, an empty argument list has to be provided,
i.e. resizeImage (myImage) ().

2.3.2 Overriding and virtual method calls

When a method is being overridden in a subclass, the pa-
rameter names of the overriding method do not need to be
the same as in the superclass. For type-checking an appli-
cation which uses named arguments, the static type of the
method determines which names have to be used. However
the actual method which is called is still resolved dynam-
ically: even if an application uses the parameter names of
a superclass, an implementation of a subclass with different
parameter names might be called. The following example
illustrates this behavior:

trait A {
def f(a: Int, b: Int): Int =a + b
}
class B extends A {
override def f(x: Int, y: Int) =x -y
}
val a: A = new B
a.f(b =2, a=3) // returns 1

With the ability to choose parameter names freely it is
possible to re-use a parameter name from the superclass for
a different parameter in the subclass. Doing so should be
avoided because it can can lead to unexpected errors when
changing a type to a more specific one:

trait A { def f(a: Int, b: Int): Int }
class B extends A { def f(b: Int, a: Int) =b - a }

val b = new B
(b: A).f(a =3, b=2) // returns 1
b.f(a =3, b =2) // returns -1

Default arguments behave very similarly to methods them-
selves with respect to subclassing and overriding.

When a method with default arguments is overridden or
implemented in a subclass, the parameters of the overriding
method inherit the defaults from their counterparts in the

superclass. It is also possible to override default arguments
and to add new ones to parameters which do not have a
default in the superclass. For type-checking an application,
the static type of the method determines which parameters
have a default value.

Since all method calls in Scala are virtual, the most sys-
tematic approach is to apply dynamic dispatch to default ar-
guments as well. In other words, just like the actual method
code which is executed, the default value which is used at
run-time is determined by the dynamic type of the receiver
object. The following example shows how this design is more
intuitive:

class Office {
def call(to: Number, encrypt = false) { .. }
}
class CIA extends Office {
override def call(to: Number, encrypt = true) { .. }

}
val office: Office = new CIA
office.call(president) // will be encrypted

2.3.3 Overloading resolution

In Scala methods can be owerloaded, which means that
multiple methods with the same name but with differing ar-
gument types can be defined in a class. When the method
name in an application references several members of a class,
the process of overloading resolution is applied to identify a
unique member. The integration of named and default ar-
guments affects this process and brings up additional design
choices.

Overloading resolution is performed in two phases: first,
the set of applicable members is determined, then the most
specific alternative among them is selected. A member m is
applicable to a given argument list if the application of m to
these arguments can be successfully type-checked. Clearly,
the presence of named and default arguments affects the
definition of applicability. For instance, the method

def f(a: String, b: Int = 1) = { .. }

is applicable in the expressions £("str") and £f(b = 2, a =
"str"), but not in f(c = "str").

The selection of a most specific alternative on the other
hand is solely based on the method signature, named or
default arguments have no influence on this process. Assume
there are two applicable methods A and B with parameter
types (T's) and (Us) respectively. Method B is more specific
than A if A can be successfully applied to arguments (us)
of type (Us), but not vice versa, i.e. B is not applicable to
arguments (ps) of type (T's). In the following example the
second method is more specific than the first.

def f(a: Int, b: Object) = { .. }
def f(a: Int, b: String) { ..}

The two methods in the next example are not related,
none is more specific than the other.

def g(a: Int, b: Object) { ..}
def g(b: String, a: Int) = { .. }

One could argue that named arguments should affect the
definition of a method being more specific than another.

Given the expression
g(a =1, b = "text")

both methods are applicable and the second one could be
seen as being more specific in the context of that partic-
ular application. This design would make the definition of
more specific depend on the context of the application, which
complicates both the specification an implementation of the
language. We think that this additional complication is not
worth its limited benefit because it affects only method in-
vocations which use named arguments to actually re-order
the parameters. So in Scala, the application in the above
example is ambiguous because none of the methods is more
specific than the other.

Note that this restriction is correct: if a method is more
specific than another under the restriction, the same is true
in the unrestricted case. In other words, it can only make
less application expressions applicable, never more.

A more formal and complete definition of overloading res-
olution in Scala can be found in [11].

2.3.4 Generic parameters

In existing systems it is not possible to specify a default
argument on parameters with a generic type. We solve this
problem in Scala by type-checking default arguments with
a special expected type, which is obtained by replacing all
occurrences of type parameters in the parameter type with
the undefined type. In the following example, the default
argument 1 is type-checked with an undefined expected type.
When the default argument is used in an application, its
type has to conform to the actual instantiation of the type
parameter T'.

def f[T](x: T =1) =x
fO // returns 1: Int
£("2") // returns "s": String
f[String]l() // error: type mismatch.
// found: Int, required: String

2.3.5 Functional update for algebraic datatypes

Programming languages with algebraic datatypes often
provide a language construct for cloning instances of datatypes
and optionally updating specific fields in the clone. For in-
stance in Haskell [9] datatypes with field labels can be non-
destructively updated using a special syntax.

It turns out that with the ability to specify default ar-
guments on generic parameters, no further language exten-
sion is required to write a functional update method for
datatypes. For example in a datatype for tuples, such an
update method called copy would look like this:

case class Tuple[A, B](a: A, b: B) {
def copy[Al, Bl](a: Al = this.a, b: Bl = this.b) =
Tuple[Al, Bl](a, b)
}

val tl: Tuple[Int, String] = Tuple(1l, "a")
val t2: Tuple[Int, Int] = tl.copy(b = 2)

In its current version, the Scala compiler automatically
generates these copy methods for every case class, so the

above example also works without the manually defined method

in class Tuple.

2.3.6 Implicit parameters

Methods in Scala can have parameters marked as ‘im-
plicit’. When an implicit parameter is omitted in a method
application an argument is automatically provided: the com-
piler searches in the environment of the method call for a
value marked as ‘implicit’ with a matching type. It is a
compile-time error if no matching value can be found.

We generalized this design by allowing default arguments
on implicit parameters. If a method invocation does not
specify a value for an implicit parameter with a default, the
compiler will first try to find a matching implicit value. If
no such value can be found, the default argument is used
instead. This enables a convenient new programming pat-
tern, as illustrated by the following example from the Scala
standard library.

package scala.io
object Source {
def fromURL(url: URL)
(implicit codec: Codec = Codec.default) =
fromInputStream(url.openStream()) (codec)

}

Users can define an implicit Codec value once in their code
and from then on omit the second parameter of the method.
The default argument is used only as a fallback value if no
implicit is available.

class User {

implicit val userCodec = [...]

val s = Source.fromURL("file:///path/to/file")
}

3. SCALA’S COMPILATION TECHNIQUE

The compilation of method applications with named argu-
ments is very simple, it just has to make sure that the argu-
ments are evaluated in the order they appear in the source
code. This is achieved by creating a local value for every
argument and then calling the method with a permutation
of these local values. A method call f(ei, ..., em, lm+1
= €m+1, ..., In = €p) with m positional and n —m named
arguments is transformed to a block of the form

{

val 1 = e1
val =, = e,
f@, ..y Tm, 0(Tmit1y.-,Tn))

}

where o is a permutation mapping the named arguments to
the corresponding parameter positions.

The compilation of default arguments is a bit more in-
volved. For every default argument expression the compiler
generates a method computing that expression. In order
to support defaults depending on other parameters, these
methods are parametrized by the type parameters of the
original method and by the value parameter sections preced-
ing the corresponding parameter. The curried method def-
inition def f[T](a: Int = 1)(b: T = a+1l)(c: T = b) gener-
ates the following three methods:

def f$default$1[T]: Int = 1

def f$default$2[T](a: Int): Int = a + 1

def f$default$3[T](a: Int)(b: T): T=Db

For constructor defaults, these methods are added to the
companion object of the class (which makes them similar
to static methods in Java). For other methods, the default
methods are generated at the same location as the original
method definition.

Method applications using default arguments are trans-
formed in a similar fashion as named arguments. A local
value is generated for every specified argument and for every
default argument which is used. These local values are used
not only for calling the actual method, but also for calling
the methods computing the default arguments. For exam-
ple, the application f[String] () ("str")() is transformed to
the following block:

{
val x$1 = f$default$1[String]
val x$2 = "str"
val x$3 = f$default$3[String](x$1) (x$2)
f[String] (x$1) (x$2) (x$3)
}

When a default argument is overridden in a subclass,
the method computing the default will simply override the
one from the superclass. This compilation technique makes
sure that default arguments are resolved dynamically, as de-
scribed in the previous section.

3.1 Limitations

In order to make the result of the compilation stable across
multiple execution, we decided to choose a deterministic
naming scheme for the compiler-generated methods com-
puting the default argument expressions. The name of these
methods is composed of the original method name, the string
$default$ and an number indicating the parameter position.

When defining overloaded methods, this naming scheme
does not allow to use default arguments in more than one of
the overloaded alternatives. We consider this limitation as
acceptable because default arguments eliminate the need for
arity-based overloading and type-based overloading is a non-
central and sometimes even risky [2] feature which should
not be used too extensively.

4. NAMED AND DEFAULT ARGUMENTS
IN OTHER LANGUAGES

Most of the features of named and default arguments
we implemented in Scala can also be found in other lan-
guages. However, every language implements a slightly dif-
ferent combination of them, which results in differing de-
signs. This section reviews the implementations of named
and / or default arguments in the most important languages
in this area and compares them with our design.

4.1 OCaml, F# and Common Lisp

In OCaml [5] the parameter types of a function type can
either be annotated with a label or not. When applying
a function, all labeled parameters have to be specified us-
ing a labeled (named) argument'. This restriction allows

10Caml allows omitting argument labels in total applica-
tions

mixing positional and named arguments freely, but in turn
it requires the programmer to decide for every parameter
whether it should be labeled or not when writing a func-
tion.

In F# [15] parameters also have to be named explicitly,
but it is allowed to specify a named parameter using a po-
sitional argument when applying the method. Accordingly
the positional arguments have to be provided first in an ar-
gument list, just as in Scala.

Default arguments in OCaml support the same features
as in Scala, they can be arbitrary expressions which can
also depend on earlier parameters of the function. However,
since arguments with defaults are represented with a differ-
ent type (T option) an overriding definition cannot inherit
or add defaults to a function.

F# only supports optional arguments without syntactic
support for defaults. However, defaults can be implemented
using simple pattern matches on optional arguments, which
provides exactly the same functionality as in OCaml.

Even though Lisp [13] is not a statically typed language,
named and default arguments in Lisp are to some extent
similar to OCaml. Lisp supports keyword parameters which
optionally can have a default value, an arbitrary expression
which can depend on other parameters. Keyword parame-
ters have to be specified at the end of a parameter list, and
they can only be applied using a named arguments, not with
positional ones.

4.2 C#4.0 and VB.NET

Starting with version 4.0, C# supports named and default
arguments [4]. The implementation of named arguments is
similar to ours: using named arguments is optional, overrid-
ing methods can chose different parameter names and the
static type of the method defines which names have to be
used. Default arguments on the other hand are limited to
compile-time constants such as numbers, strings or enumer-
ation values. When a virtual method call uses a default
argument, the static type of the method determines which
default value is used, so the phone call in the example of
section 2.3.2 would not be encrypted.

The implementation of named and default arguments in
Visual Basic is similar to C#.

4.3 Smalltalk and Objective-C

In Smalltalk [6] and Objective-C [1] all parameter names
are part of the method name and therefore need to be speci-
fied at call-site in the same order. When overriding a method
in a subclass the parameter names cannot be changed.

Neither language supports default arguments, even though
they can be emulated in Smalltalk using call patterns.

44 ADA and C++

Except for the argument evaluation order which is left
unspecified, named arguments in ADA [8] are the same as
in our implementation or in C#. C++ [14] does not support
named arguments.

ADA and C++ allow specifying default arguments on any
method parameter. Defaults are arbitrary expressions, how-
ever they cannot depend on other parameters. Default ar-
guments are not fully integrated with subclassing and over-
riding: defaults can be overridden but not inherited. Similar
to C#, the static type of the method defines which default
argument expression is evaluated, even if the method call

is virtual. So the phone call of the example in 2.3.2 would
again not be encrypted.

4.5 Python, Ruby, Groovy and Clojure

While Python [12] supports built-in named arguments,
they can be emulated using an additional hash map param-
eter in Ruby, Groovy and Clojure [16, 3, 7] which simply
maps names to values. This latter technique forces the use
of named arguments for these parameters, it is not possible
to specify them using a positional argument.

Python, Ruby and Groovy support method overriding,
and they allow to change the parameter names in a sub-
class. However, doing so can lead to unexpected errors as
the following Python example shows:

class A:
def f(self, a): return a

B is a subclass of A

class B(A):
override ’f’, choose a different parameter name
def f(self, b): return b

def withA(a): print a.f(a = 100)

withA(B()) # TypeError: f() got an unexpected
keyword argument ’a’

The method withA expects an instance of A as argument, but
it will fail to execute when passing it an instance of B, even
though B is a subclass of A.

Regarding the implementation of default arguments, there
are some differences between the four languages. In Python
all default argument expressions are evaluated exactly once,
namely when evaluating the method definition. Ruby is
closer to our design, defaults are re-evaluated every time
they are being used, and they can depend on other param-
eters of the method. In Groovy, default arguments are just
syntactic sugar for creating overloaded methods with differ-
ent arities. This technique allows only using the rightmost
n default arguments of a method, leaving arbitrary param-
eters unspecified is not possible. In Clojure finally, defaults
can be emulated using so-called map-bindings and the :or
operator®. All default argument expressions are evaluated
on every function application, even if no defaults are being
used.

S. SUMMARY

When adding named and default arguments to an existing
object-oriented programming language there is a number of
possibilities for the new features to cooperate with existing
parts of the language. We tried to optimize this integra-
tion with respect to currying, subclassing, method overrid-
ing and overloading resolution. Allowing named arguments
on generic and implicit parameters enables new program-
ming patterns which are useful in everyday-programming.

The design presented in this article is fully implemented
in the current development version of the Scala language, in-
cluding the compiler-generated copy methods for case classes.
It will be included in the 2.8.0 release, nightly builds can be
downloaded from the web-site?.

25ee http://clojure.org/special_forms
3http://www.scala—lang.org/node/ZlZ

6.
1]

REFERENCES

Apple Inc. The Objective-C 2.0 Programming
Language — Objects, Classes, and Messaging.
http://developer.apple.com/mac/library/
documentation/Cocoa/Conceptual/ObjectiveC/Articles/
ocObjectsClasses.html, 2009.

G. Bracha. Systemic Overload. http://gbracha.
blogspot.com/2009/09/systemic-overload.html, 2009.
Codehaus Foundation. Groovy User Guide.
http://groovy.codehaus.org/User+Guide.

M. Corporation. C# Version 4.0 Specificaiton Draft.
http:
//msdn.microsoft.com/en-us/vcsharp/dd819407 . aspx,
2009.

J. Garrigue. Labeled and optional arguments for
Objective Caml. In JSSST Workshop on Programming
and Programming Languages, 2001.

A. Goldberg and D. Robson. Smalltalk-80: the
language and its implementation. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1983.

R. Hickey. Clojure Reference.
http://clojure.org/Reference.

Intermetrics, Inc. Ada 95 Reference Manual.
http://www.adahome.com/rm95, 1994.

S. P. Jones, editor. Haskell 98 Language and Libraries:
The Revised Report. Cambridge University Press,
2003.

X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and

J. Vouillon. The Objective Caml system release 3.11,
Documentation and user’s manual.
http://caml.inria.fr/pub/docs/manual-ocaml, 2008.
M. Odersky. The Scala Language Specification.
http://www.scala-lang.org/node/198, 2009.

Python Software Foundation. The Python Language
Reference.
http://docs.python.org/3.1/reference/index.html.
G. L. Steele. Common LISP: The Language. Digital
Press, 1984.

B. Stroustrup. The C++ Programming Language.
Addison-Wesley, 1986.

D. Syme. The F# draft Language Specification.
http://research.microsoft.com/en-us/um/cambridge/
projects/fsharp/manual/spec.pdf, 2009.

D. Thomas, C. Fowler, and A. Hunt. Programming
Ruby. The Pragmatic Programmer’s Guide. Pragmatic
Programmers, 2004.

