Soft- \& Hard Modelling of Kinetic Data

An introduction to the basic principles for the analysis of calorimetric \& spectroscopic data

Kinetic Data Structures

Kinetic Data Structures

- Spectroscopy: Beer's law in elegant matrix notation, absorbance (Y) is proportional to the concentrations (C)

Y

A

\mathbf{R}

Kinetic Data Structures

- Spectroscopy: Beer's law in elegant matrix notation, absorbance (Y) is proportional to the concentrations (C)

Y

C

A

\mathbf{R}

Kinetic Data Structures

- Spectroscopy: Beer's law in elegant matrix notation, absorbance (Y) is proportional to the concentrations (C)

Y

C

A

\mathbf{R}
- Calorimetry: heat release (q) is proportional to the change in the reaction extent ($\mathrm{d} \xi / \mathrm{dt}$)

Kinetic Data Structures

- Spectroscopy: Beer's law in elegant matrix notation, absorbance (Y) is proportional to the concentrations (C)

Y

C

A

\mathbf{R}
- Calorimetry: heat release (q) is proportional to the change in the reaction extent ($\mathrm{d} \xi / \mathrm{dt}$)

Soft- \& Hard Modelling of Kinetic Data

Soft- \& Hard Modelling of Kinetic Data

Soft Modelling (Part 1)

- Modelling experimental kinetic data based only on simple 'a priory' knowledge on the data structure and the results
- Multivariate (multi wavelength spectroscopic) data and linear dependence of concentrations and data signal (Beer's law)
- non-negativity of concentrations and species spectra
- closure, unimodality, etc
- cannot be applied to calorimetry data (power signal is univariate)

Soft- \& Hard Modelling of Kinetic Data

Soft Modelling (Part 1)

- Modelling experimental kinetic data based only on simple 'a priory' knowledge on the data structure and the results
- Multivariate (multi wavelength spectroscopic) data and linear dependence of concentrations and data signal (Beer's law)
- non-negativity of concentrations and species spectra
- closure, unimodality, etc
- cannot be applied to calorimetry data (power signal is univariate)

Hard Modelling (Part 2)

- Modelling experimental kinetic data based on a parameterised physicalchemical 'hard' model
- rate law defines the concentration profiles of the contributing species as a function of the rate constants
- applicable to both, calorimetry \& spectroscopy (univariate \& multivariate)

Soft- \& Hard Modelling of Kinetic Data

Part 1: Soft Modelling

Soft Modelling of Spectroscopic Kinetic Data

Topics

- Absorption spectroscopy
- Beer's law in elegant matrix notation $(\mathbf{Y}=\mathbf{C} \times \mathbf{A})$
- Non-unique factorisation of Y/rotational ambiguity
- Principal Component Analysis (PCA)
- Abstract Factor analysis (AFA) by Singular Value Decomposition (SVD)
- Chemical rank of the measurement matrix
- The number of absorbing species
- Evolving Factor Analysis (EFA)
- Evolutionary rank analysis by repeated SVD of sub matrices of Y
- The 'Appearance' \& 'Disappearance' of absorbing species
- Multivariate Curve Resolution by Alternating Least-Squares (MCR-ALS)
- Model-free iterative decomposition of $\mathbf{Y}=\mathbf{C} \times \mathbf{A}+\mathbf{R}$
- Ideas, principles, limitations

Absorption Spectroscopy - Beer's Law

Absorbance y at wavelength λ :

$$
y_{\lambda}=-\log \left(I / I_{0}\right)_{\lambda}
$$

- Absorbance signal y_{λ} is linearly dependent on contributing species concentrations c_{k}, the corresponding coefficients are the molar absorptivities $a_{k, \lambda}$ that form the pure species spectra

$$
y_{\lambda}=\sum_{k=1}^{N_{c}} c_{k} a_{k, \lambda} \times l
$$

For simplicity: path length $l=1$

Beer's law in elegant matrix notation

$$
y_{t, \lambda}=\sum_{k=1}^{N_{c}} c_{t, k} a_{k, \lambda}+r_{t, \lambda}
$$

Rotational Ambiguity

Rotational Ambiguity

Goal: Find concentration profiles C and species spectra A such that the residuals $\mathbf{R}=\mathbf{Y}-\mathbf{C A}$ become small only using a 'soft model', i.e. by linear factorisation

Rotational Ambiguity

Goal: Find concentration profiles C and species spectra A such that the residuals $\mathbf{R}=\mathbf{Y}-\mathbf{C A}$ become small only using a 'soft model', i.e. by linear factorisation

> Problem: Factorisation is not unique (rotational ambiguity)

Major Soft-Modelling Classes

- By using appropriate 'soft' restrictions on C and A, e.g. non-negativity, windows of existence, closure, unimodality, known spectra, the number of possible solutions can be reduced, sometimes can even lead to a unique solution for $\mathbf{C} \& \mathbf{A}$

Major Soft-Modelling Classes

- By using appropriate 'soft' restrictions on C and A, e.g. non-negativity, windows of existence, closure, unimodality, known spectra, the number of possible solutions can be reduced, sometimes can even lead to a unique solution for C \& A
- There are 2 major classes

Factor Analysis
(AFA) based

$$
\mathbf{Y}=\overline{\mathbf{U}} \overline{\mathbf{S}} \overline{\mathbf{V}}=\overline{\mathbf{U}} \mathrm{TT}^{-1} \overline{\mathbf{S}} \overline{\mathbf{V}}=\mathbf{C A}
$$

Find T such that

$$
\mathbf{C}=\overline{\mathbf{U}} \mathbf{T}, \text { and } \mathbf{A}=\mathbf{T}^{-1} \overline{\mathbf{S}} \overline{\mathbf{V}}
$$

Alternating Least
Squares (ALS) based

Start from some guessed \mathbf{C}, then recalculate \mathbf{A} and \mathbf{C} until satisfied:

$$
\begin{aligned}
& \mathbf{A}=\left(\mathbf{C}^{\mathrm{t}} \mathbf{C}\right)^{-1} \mathbf{C}^{\mathrm{t}} \mathbf{Y}=\mathbf{C}^{+} \mathbf{Y} \\
& \mathbf{C}=\mathbf{Y A}^{\mathrm{t}}\left(\mathbf{A} \mathbf{A}^{\mathrm{t}}\right)^{-1}=\mathbf{Y} \mathbf{A}^{+}
\end{aligned}
$$

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

- One very well defined solution is the one received from Abstract Factor Analysis (AFA) using Singular Value Decomposition (SVD)

Principal Component Analysis (PCA)

- One very well defined solution is the one received from Abstract Factor Analysis (AFA) using Singular Value Decomposition (SVD)

Principal Component Analysis (PCA)

- One very well defined solution is the one received from Abstract Factor Analysis (AFA) using Singular Value Decomposition (SVD)

in Matlab:

$$
[\mathrm{U}, \mathrm{~S}, \mathrm{Vt}]=\operatorname{svd}(\mathrm{Y}, 0) ;
$$

- Some properties of \mathbf{U}, \mathbf{S} and \mathbf{V}

$$
\begin{aligned}
& \mathbf{Y} \mathbf{Y}^{\mathrm{t}} \mathbf{U}=\mathbf{U} \boldsymbol{\Lambda} \\
& \mathbf{Y}^{\mathrm{t}} \mathbf{Y V}^{\mathrm{t}}=\mathbf{V}^{\mathrm{t}} \boldsymbol{\Lambda} \\
& \mathbf{\Lambda}=\mathbf{S}^{2} \\
& \mathbf{U}^{\mathrm{t}} \mathbf{U}=\mathbf{V} \mathbf{V}^{\mathrm{t}}=\mathbf{I}
\end{aligned}
$$

columns of \mathbf{U} (rows of \mathbf{V}) are eigenvectors of $\mathbf{Y Y}^{\mathrm{t}}\left(\mathbf{Y}^{\mathrm{t}} \mathbf{Y}\right)$
\mathbf{S} is a diagonal matrix with the square root of their eigenvalues
\mathbf{U} and $\mathbf{V}^{\mathbf{t}}$ are orthonormal

Chemical rank - number of absorbing species

Chemical rank - number of absorbing species

- Eigenvectors in \mathbf{U} (columns) and \mathbf{V} (rows) are arranged in decreasing order of magnitude of their corresponding singular values in \mathbf{S}

Chemical rank - number of absorbing species

- Eigenvectors in \mathbf{U} (columns) and \mathbf{V} (rows) are arranged in decreasing order of magnitude of their corresponding singular values in \mathbf{S}
- Many of them just represent 'noise' and can be neglected; the significant 'factors', the Principal Components, are retained in $\overline{\mathbf{U}}$ and $\overline{\mathbf{V}}$ and form 'abstract' concentration profiles and spectra

Chemical rank - number of absorbing species

- Eigenvectors in \mathbf{U} (columns) and \mathbf{V} (rows) are arranged in decreasing order of magnitude of their corresponding singular values in \mathbf{S}
- Many of them just represent 'noise' and can be neglected; the significant 'factors', the Principal Components, are retained in $\overline{\mathbf{U}}$ and $\overline{\mathbf{V}}$ and form 'abstract' concentration profiles and spectra
- The diagonal elements of $\overline{\mathbf{S}}$, the singular values, can be seen as normalisation coefficients for $\overline{\mathbf{U}}$ or $\overline{\mathbf{V}}$

Chemical rank - number of absorbing species

- Eigenvectors in \mathbf{U} (columns) and \mathbf{V} (rows) are arranged in decreasing order of magnitude of their corresponding singular values in \mathbf{S}
- Many of them just represent 'noise' and can be neglected; the significant 'factors', the Principal Components, are retained in $\overline{\mathbf{U}}$ and $\overline{\mathbf{V}}$ and form 'abstract' concentration profiles and spectra
- The diagonal elements of $\overline{\mathbf{S}}$, the singular values, can be seen as normalisation coefficients for $\overline{\mathbf{U}}$ or $\overline{\mathbf{V}}$

- The number of significant singular(eigen) values and -vectors is the chemical rank of \mathbf{Y} and a $1^{\text {st }}$ estimate on the number of absorbing species

Chemical rank - number of absorbing species

Chemical rank - number of absorbing species

$$
\mathbf{Y}\left(N_{t} \times N_{\lambda}\right)
$$

$\log \left(s_{i, j}\right)$ vs i

The noise level in the data matrix \mathbf{Y} determines the drop in the magnitude from significant to insignificant singular values

Chemical rank - number of absorbing species

The noise level in the data matrix \mathbf{Y} also determines the remaining noise in the significant singular vectors

The signs of the singular vectors can interchange between \mathbf{U} and \mathbf{V})

Geometric interpretations

Geometric interpretations

- e.g. 2 species, $A \rightarrow B$
- the (significant) eigenvectors $\mathbf{v}_{1, \text { : }}$ and $\mathbf{v}_{2, \text { : }}$ form an orthonormal base in the same 'plane' as the pure species
spectra $\mathbf{a}_{1,:}$ and $\mathbf{a}_{2, \text { : }}$

Geometric interpretations

- e.g. 2 species, $A \rightarrow B$
- the (significant) eigenvectors $\mathbf{v}_{1, \text {, }}$ and $\mathbf{v}_{2, \text { : }}$ form an orthonormal base in the same 'plane' as the pure species spectra $\mathbf{a}_{1,:}$ and $\mathbf{a}_{2, \text { : }}$

Geometric interpretations

- e.g. 2 species, $A \rightarrow B$
- the (significant) eigenvectors $\mathbf{v}_{1, \text { : }}$ and $\mathbf{v}_{2, \text { : }}$ form an orthonormal base in the same 'plane' as the pure species spectra $\mathbf{a}_{1,:}$ and $\mathbf{a}_{2, \text { : }}$

Some noise reduction

Some noise reduction

Some noise reduction

$$
\mathbf{Y}=\overline{\mathbf{Y}}+\mathbf{R}_{P C A}=\sum_{i=1}^{N_{e}} \mathbf{u}_{:, i} \mathbf{s}_{i, i} \mathbf{v}_{i,:}+\sum_{j=N_{e}+1}^{N_{\lambda}} \mathbf{u}_{:, j} \mathbf{s}_{j, j} \mathbf{v}_{j,:}=\sum_{k=1}^{N_{c}} \mathbf{c}_{:, k} \mathbf{a}_{k,:}+\mathbf{R}_{n o i s e}
$$

More precise statements on the chemical rank

More precise statements on the chemical rank

- the chemical rank of the spectral data matrix \mathbf{Y} is determined by the number of its significant singular vectors

More precise statements on the chemical rank

- the chemical rank of the spectral data matrix \mathbf{Y} is determined by the number of its significant singular vectors
- the number of significant singular vectors of \mathbf{Y} is determined by the number of linearly independent columns or rows in the matrix of pure species spectra (A) and corresponding concentration profiles (C)

More precise statements on the chemical rank

- the chemical rank of the spectral data matrix \mathbf{Y} is determined by the number of its significant singular vectors
- the number of significant singular vectors of \mathbf{Y} is determined by the number of linearly independent columns or rows in the matrix of pure species spectra (A) and corresponding concentration profiles (C)
- linear dependencies in \mathbf{C} due to the kinetic model are common and sometimes difficult to predict (e.g. $A+B \rightarrow C$)

More precise statements on the chemical rank

- the chemical rank of the spectral data matrix \mathbf{Y} is determined by the number of its significant singular vectors
- the number of significant singular vectors of \mathbf{Y} is determined by the number of linearly independent columns or rows in the matrix of pure species spectra (A) and corresponding concentration profiles (C)
- linear dependencies in \mathbf{C} due to the kinetic model are common and sometimes difficult to predict (e.g. $A+B \rightarrow C$)
- linear dependencies in A are less common

Evolving Factor Analysis (EFA)

Evolving Factor Analysis (EFA)

- sequential rank analysis of the data matrix along its time domain by repeated SVD

Evolving Factor Analysis (EFA)

- sequential rank analysis of the data matrix along its time domain by repeated SVD
- can be performed in a forward and backward way

Evolving Factor Analysis (EFA)

- sequential rank analysis of the data matrix along its time domain by repeated SVD
- can be performed in a forward and backward way
- indicates the rise of new singular vectors and thus gives an estimate for the appearance \& disappearance of new absorbing species

Evolving Factor Analysis (EFA)

- sequential rank analysis of the data matrix along its time domain by repeated SVD
- can be performed in a forward and backward way
- indicates the rise of new singular vectors and thus gives an estimate for the appearance \& disappearance of new absorbing species
- ideally designed to follow chromatography experiments
- species appear \& disappear sequentially

Evolving Factor Analysis (EFA)

- sequential rank analysis of the data matrix along its time domain by repeated SVD
- can be performed in a forward and backward way
- indicates the rise of new singular vectors and thus gives an estimate for the appearance \& disappearance of new absorbing species
- ideally designed to follow chromatography experiments
- species appear \& disappear sequentially
- capable of roughly following kinetic profiles
- species can appear \& dissappear simultaneously

Evolving Factor Analysis (EFA)

Forward EFA

- Repeated rank analysis by SVD in forward direction
- The appearance of a new 'species' is indicated by a gradual rise of a new singular value

Evolving Factor Analysis (EFA)

Chromatography

Forward EFA

Evolving Factor Analysis (EFA)

Backward EFA

- Repeated rank analysis by SVD in backward direction
- A 'disappearing species' is indicated by a gradual rise of a new singular value

Evolving Factor Analysis (EFA)

Matlab script using a function for forward/backward EFA

```
[t,lam, Y, C,A]=Data_Chrom2;
[ns,nc]=size(C);
ne=nc+1; % one extra sing. val.
[EFA_f,EFA_b]=EFA(Y,ne);
```

```
function [EFA_f,EFA_b]=EFA(Y,ne)
[ns,nl]=size(Y);
EFA_f=NaN(ns,ne);
EFA_b=NaN(ns,ne);
for i=1:ns
    s_f=svd(Y(1:i,:));
    % forward sv
    s_b=svd(Y(ns-i+1:ns,:)); % backward sv
    EFA_f(i,1:min(i,ne))=s_f(1:min(i,ne))';
    EFA_b(ns-i+1,1:min(i,ne))=s_b(1:min(i,ne))';
end
```


Backward EFA

Evolving Factor Analysis (EFA)

Forward and backward EFA

Combined forward/backward EFA results can be used as reasonable initial guesses of concentration profiles for subsequent iterative refinement e.g. by ALS

[^0]
Evolving Factor Analysis (EFA)

$A \rightarrow B \rightarrow C$, Forward and backward EFA

- Combined forward/backward EFA results are not as accurate as in chromatography regarding the appearance and disappearance of species
- But they can still be used as initial guesses of concentration profiles for subsequent iterative refinement e.g. by ALS

Multivariate Curve Resolution by Alternating LeastSquares (MCR-ALS)

- conceptually very simple

Multivariate Curve Resolution by Alternating LeastSquares (MCR-ALS)

- conceptually very simple

The pseudo inverse and the linear least-squares solution

The pseudo inverse and the linear least-squares solution

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{C} \times \mathbf{A}+\mathbf{R} \\
& \mathbf{R}=\mathbf{Y}-\mathbf{C} \times \mathbf{A}
\end{aligned}
$$

$\mathbf{R}:=f(\mathbf{Y}, \mathbf{C}, \mathbf{A})$
The residuals \mathbf{R} are a function of \mathbf{Y} and the two linear parameters C \& A

The pseudo inverse and the linear least-squares solution

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{C} \times \mathbf{A}+\mathbf{R} \\
& \mathbf{R}=\mathbf{Y}-\mathbf{C} \times \mathbf{A}
\end{aligned}
$$

$\mathbf{R}:=f(\mathbf{Y}, \mathbf{C}, \mathbf{A})$
The residuals \mathbf{R} are a function of \mathbf{Y} and the two linear parameters C \& A

1) $\mathbf{Y} \& \mathbf{C}$ known: $\quad \min \left\|\Sigma \Sigma r_{i, j}^{2}(\mathbf{A})\right\|$
\mathbf{R} is minimal in the least squares sense if

$$
\mathbf{A}=\left(\mathbf{C}^{\mathrm{t}} \mathbf{C}\right)^{-1} \mathbf{C}^{\mathrm{t}} \times \mathbf{Y}=\mathbf{C}^{+} \times \mathbf{Y}
$$

The pseudo inverse and the linear least-squares solution

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{C} \times \mathbf{A}+\mathbf{R} \\
& \mathbf{R}=\mathbf{Y}-\mathbf{C} \times \mathbf{A}
\end{aligned}
$$

$\mathbf{R}:=f(\mathbf{Y}, \mathbf{C}, \mathbf{A})$
The residuals \mathbf{R} are a function of \mathbf{Y} and the two linear parameters C \& A

1) $\mathbf{Y} \& \mathbf{C}$ known: $\quad \min \left\|\Sigma \Sigma r_{i, j}^{2}(\mathbf{A})\right\|$
\mathbf{R} is minimal in the least squares sense if

$$
\mathbf{A}=\left(\mathbf{C}^{t} \mathbf{C}\right)^{-1} \mathbf{C}^{\mathrm{t}} \times \mathbf{Y}=\mathbf{C}^{+} \times \mathbf{Y} \quad \begin{aligned}
& \text { Matlab: } \mathbf{A}=\mathbf{C} \backslash \mathbf{Y} \\
& \text { to use the left pseudo inverse of } \mathbf{C}
\end{aligned}
$$

The pseudo inverse and the linear least-squares solution

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{C} \times \mathbf{A}+\mathbf{R} \\
& \mathbf{R}=\mathbf{Y}-\mathbf{C} \times \mathbf{A}
\end{aligned}
$$

$\mathbf{R}:=f(\mathbf{Y}, \mathbf{C}, \mathbf{A})$
The residuals \mathbf{R} are a function of \mathbf{Y} and the two linear parameters C \& A
2) $\mathbf{Y} \& \mathbf{A}$ known: $\quad \min \left\|\Sigma \Sigma r_{i, j}^{2}(\mathbf{C})\right\|$
\mathbf{R} is minimal in the least squares sense if

$$
\mathbf{C}=\mathbf{Y} \times \mathbf{A}^{\mathrm{t}}\left(\mathbf{A} \mathbf{A}^{\mathrm{t}}\right)^{-1}=\mathbf{Y} \times \mathbf{A}^{+}
$$

The pseudo inverse and the linear least-squares solution

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{C} \times \mathbf{A}+\mathbf{R} \\
& \mathbf{R}=\mathbf{Y}-\mathbf{C} \times \mathbf{A}
\end{aligned}
$$

$\mathbf{R}:=f(\mathbf{Y}, \mathbf{C}, \mathbf{A})$
The residuals \mathbf{R} are a function of \mathbf{Y} and the two linear parameters C \& A
2) $\mathbf{Y} \& \mathbf{A}$ known: $\quad \min \left\|\Sigma \Sigma r_{i, j}^{2}(\mathbf{C})\right\|$
\mathbf{R} is minimal in the least squares sense if

$$
\mathbf{C}=\mathbf{Y} \times \mathbf{A}^{\mathrm{t}}\left(\mathbf{A} \mathbf{A}^{\mathrm{t}}\right)^{-1}=\mathbf{Y} \times \mathbf{A}^{+}
$$

Matlab: $\mathbf{C}=\mathbf{Y} / \mathrm{A}$
to use the left pseudo inverse of \mathbf{C}

Multivariate Curve Resolution by Alternating LeastSquares (MCR-ALS)

```
for it=1:100
    C=norm_max(C) ;
                            % normalisation
    [C,A]=Constraints_nonneg(Y,C);
    R=Y-C*A; % residuals
    ssq(it)=sum(sum(R.*R));
end
```

Normalisation to the maximum in each conc. profile

$$
\mathbf{C}_{\mathrm{n}}=\square \mathbf{C} \times \square \quad \begin{aligned}
& \text { and } \\
& \operatorname{diag}(\max (\mathbf{C}))^{-1} \\
& \mathbf{A}_{\mathrm{n}}=\operatorname{diag}(\max (\mathbf{C})) \times \mathbf{A}
\end{aligned}
$$

```
function [Cn,An]=norm_max(C,A)
```

```
coef=1./max(C); % norm coeff
```

coef=1./max(C); % norm coeff
Cn=C*diag(coef); % apply to C
Cn=C*diag(coef); % apply to C
if nargin==2
if nargin==2
An=diag(1./coef)*A; % apply inv coeff to A
An=diag(1./coef)*A; % apply inv coeff to A
end

```
end
```

```
function [C,A]=constraints_nonneg(Y,C)
A=nonneg(Y',C')'; % pos spectra (Andersson)
C=nonneg(Y,A); % pos conc. (Andersson)
```


$A \rightarrow B \rightarrow C$

constraints: $\mathbf{C}, \mathbf{A}>0$

Multivariate Curve Resolution by Alternating LeastSquares (MCR-ALS)

```
for it=1:100
    C=norm_max(C); % normalisation
    [C,A]=constraints_known_spec_B(Y,C,A_sim);
    R=Y-C*A; %residuals
    ssq(it)=sum(sum(R.*R));
end
```

```
function [C,A] =
    constraints_nonneg_known_spec_B(Y,C,A_sim)
A=nonneg(Y',C')'; % pos spectra (Andersson)
A(2,:)=A_sim(2,:); % known spectrum of B
C=nonneg(Y,A); % pos conc. (Andersson)
```


$A \rightarrow B \rightarrow C$

constraints: $\mathbf{C}, \mathbf{A}>0$, known spectrum of B

Multivariate Curve Resolution by Alternating LeastSquares (MCR-ALS)

$$
A \rightarrow B \rightarrow C
$$

constraints: $\mathbf{C}, \mathbf{A}>0$, known spectrum of $A \& C$

Multivariate Curve Resolution by Alternating LeastSquares (MCR-ALS)

```
for it=1:100
    C=norm_closure(C,[],c_tot); % norm. C to Ctot
    [C,A]=constraints_nonneg_known_spec_B(Y,C,A_sim);
    R=Y-C*A; % residuals
    ssq(it)=sum(sum(R.*R));
end
[C_n,A_n]=norm_closure(C,A,C_tot);
```

Normalisation to the total conc. $\left(\mathrm{c}_{\mathrm{tot}}=[A]+[B]+[C]=[A]_{0}\right)$

$$
\mathbf{C}_{\mathrm{n}}=\mathbf{C}_{\text {diag(coef) }}^{\times}
$$

and

$$
\mathbf{A}_{\mathrm{n}}=\operatorname{diag}(\mathbf{c o e f})^{-1} \times \mathbf{A}
$$

```
function [Cn,An]=norm_closure(C,A,c_tot)
coef=C\(ones(size(C,1),1)*C_tot); % norm. coeff.
Cn=C*diag(coef); % apply to C
if ~isempty(A)
    An=diag(1./coef)*A; % apply inv. to A
```

end
$A \rightarrow B \rightarrow C$
constraints: $\mathbf{C}, \mathbf{A}>0$, known spectrum of B, closure

Multivariate Curve Resolution by Alternating LeastSquares (MCR-ALS)

As full conversion is not reached for intermediate B and product C, corresponding known spectra are required for full resolution!

$$
A \rightarrow B \rightarrow C
$$

constraints: $\mathbf{C}, \mathbf{A}>0$, known spectrum of $B \& C$

Conclusions: ‘Soft’-Modelling

- Advantages
- No prior knowledge on the chemical system required
- Estimation of the number of linearly dependent absorbing species and their approximate evolution from PCA, EFA \& ALS
- Info for the development of a 'hard' model
- 'Better than nothing'
- Drawbacks
- No physical model
- No predictions for other exp. conditions possible
- Uniqueness of the result is rarely given and difficult to validate

Reading Material

- Factor Analysis in Chemistry
E.R. Malinowski, $3^{\text {rd }}$ ed., Wiley, New York 2002
- Practical Data Analysis in Chemistry
M. Maeder, Y.M. Neuhold, Elsevier, Amsterdam 2007
- Practical Guide to Chemometrics
P. Gemperline (editor), $2^{\text {nd }}$ ed., CRC Press, Boca Raton 2006
- The Investigation of Organic Reactions and their Mechanisms
H. Maskill (editor), Blackwell Publishing, Oxford 2006
- Evolving factor analysis for the resolution of overlapping chromatographic peaks
M. Maeder, Anal. Chem. 59 (1987), 527-530
- Nonlinear Least-Squares Fitting of Multivariate Absorption Data
M. Maeder, A. Zuberbühler. Anal. Chem. 62 (1990), 2220-2224
- Analyses of 3-way data from equilibrium and kinetic investigations
R. Dyson , M. Maeder, Y.M. Neuhold, G. Puxty. Anal. Chim. Act. 490 (2003), 99-108
- Empirical kinetic modelling of on-line simultaneous infrared and calorimetric measurement using a pareto optimal approach and multi-objective genetic algorithm
S.I. Gianoli, G. Puxty, U. Fischer, M. Maeder, K. Hungerbühler. Chemom. Int. Lab. Syst. 85 (2007), 47-62
- Tutorial on the Fitting of Kinetic Models to Multivariate Spectroscopic Measurements with Non-Linear Regression
G. Puxty, M. Maeder, K. Hungerbühler. Chemom. Int. Lab. Syst. 81 (2006), 149-164
- Data Oriented Process Development: Determination of Reaction Parameters by Small-Scale Calorimetry with in situ Spectroscopy
G. Puxty, U. Fischer, M. Jecklin, K. Hungerbühler. Chimia 60 (2006), 605-610

Soft- \& Hard Modelling of Kinetic Data

Part 2: Hard Modelling

Introduction

- You follow the reaction between BuOH and the Acetic Acid in the IR range and you get the following absorbance profile :

Introduction

- You follow the reaction between BuOH and the Acetic Acid in the IR range and you get the following absorbance profile :

Introduction

- You follow the reaction between BuOH and the Acetic Acid in the IR range and you get the following absorbance profile :

UNIVARIATE approach

UNIVARIATE approach

You determine the extinction coefficients of all species with known concentrations

UNIVARIATE approach

You determine the extinction coefficients of all species with known concentrations
\Rightarrow all ε_{λ}

UNIVARIATE approach

1. You determine the extinction coefficients of all species with known concentrations

$$
\Rightarrow \text { all } \varepsilon_{\lambda}
$$

2. You integrate the set of differential equations (2 $2^{\text {nd }}$ order reaction) with the used initial concentrations

UNIVARIATE approach

1. You determine the extinction coefficients of all species with known concentrations

$$
\Rightarrow \text { all } \varepsilon_{\lambda}
$$

2. You integrate the set of differential equations (2 $2^{\text {nd }}$ order reaction) with the used initial concentrations
\Rightarrow all $c(t, k)$

UNIVARIATE approach

1. You determine the extinction coefficients of all species with known concentrations

$$
\Rightarrow \text { all } \varepsilon_{\lambda}
$$

2. You integrate the set of differential equations (2 $2^{\text {nd }}$ order reaction) with the used initial concentrations

$$
\Rightarrow \text { all } c(t, k)
$$

You apply Beer's law at one wavelength

UNIVARIATE approach

1. You determine the extinction coefficients of all species with known concentrations

$$
\Rightarrow \text { all } \varepsilon_{\lambda}
$$

2. You integrate the set of differential equations (2 $2^{\text {nd }}$ order reaction) with the used initial concentrations

$$
\Rightarrow \text { all } c(t, k)
$$

You apply Beer's law at one wavelength

$$
\begin{aligned}
a b s_{\lambda}(t)= & c_{\text {ВиоН }}(t, k) \cdot \varepsilon_{\text {Вион }, \lambda}+c_{A A, \lambda}(t, k) \cdot \varepsilon_{\text {AA }, \lambda} \\
& +c_{\text {ВиоА }}(t, k) \cdot \varepsilon_{\text {ВиОА }, \lambda}+c_{\text {НА }}(t, k) \cdot \varepsilon_{\text {НА }, \lambda}
\end{aligned}
$$

UNIVARIATE approach

1. You determine the extinction coefficients of all species with known concentrations

$$
\Rightarrow \text { all } \varepsilon_{\lambda}
$$

2. You integrate the set of differential equations (2 $2^{\text {nd }}$ order reaction) with the used initial concentrations

$$
\Rightarrow \text { all } c(t, k)
$$

3. You apply Beer's law at one wavelength

$$
\begin{aligned}
a b s_{\lambda}(t)= & c_{\mathrm{BuOH}}(t, k) \cdot \varepsilon_{\mathrm{BuOH}, \lambda}+c_{\mathrm{AA}, \lambda}(t, k) \cdot \varepsilon_{\mathrm{AA}, \lambda} \\
& +c_{\mathrm{BuOA}}(t, k) \cdot \varepsilon_{\mathrm{BuOA}, \lambda}+c_{\mathrm{HA}}(t, k) \cdot \varepsilon_{\mathrm{HA}, \lambda}
\end{aligned}
$$

4. You find k that best approximate the measured $a b s_{\lambda}(t)$ in the least squares sense

UNIVARIATE approach

2. You integrate the set of differential equations
($2^{\text {nd }}$ order reaction) with the used initial concentrations

$$
\Rightarrow \text { all } c(t, k)
$$

You apply Beer's law at one wavelength

$$
\begin{aligned}
a b s_{\lambda}(t)= & c_{\mathrm{BuOH}}(t, k) \cdot \varepsilon_{\mathrm{BuOH}, \lambda}+c_{\mathrm{AA}, \lambda}(t, k) \cdot \varepsilon_{\mathrm{AA}, \lambda} \\
& +c_{\mathrm{BuOA}}(t, k) \cdot \varepsilon_{\mathrm{BuOA}, \lambda}+c_{\mathrm{HA}}(t, k) \cdot \varepsilon_{\mathrm{HA}, \lambda}
\end{aligned}
$$

4. You find k that best approximate the measured $a b s_{\lambda}(t)$ in the least squares sense

CALIBRATION mation coefticients

of all specles with boum concentrations

\Rightarrow alles

UNIVARIATE approach

2. INTEGRATION OF THE KINETIC MODEL

You apply Beer's law at one wavelength

$$
\begin{aligned}
a b s_{\lambda}(t)= & c_{\text {Ви०H }}(t, k) \cdot \varepsilon_{\text {ВиОН }, \lambda}+c_{A A, \lambda}(t, k) \cdot \varepsilon_{A A, \lambda} \\
& +c_{\text {ВuОА }}(t, k) \cdot \varepsilon_{\text {Вu०A }, \lambda}+c_{H A}(t, k) \cdot \varepsilon_{H A, \lambda}
\end{aligned}
$$

4. You find k that best approximate the measured $a b s_{\lambda}(t)$ in the least squares sense

UNIVARIATE approach

2. INTEGRATION OF THE KINETIC MODEL

APPLICATION OF BEER'S LAW IN A UNIVARIATE FORM (= ONE WAVELENGTH)

You find k that best approximate the measured $a b s_{\lambda}(t)$ in the least squares sense

UNIVARIATE approach

CALIBRATION
of all species with known concentrations

INTEGRATION OF THE KINETIC MODEL

APPLICATION OF BEER'S LAW IN A UNIVARIATE FORM (= ONE WAVELENGTH)

FITTING
(= NONLINEAR OPTIMISATION)

UNIVARIATE approach

1. CALIBRATION

of all species with known concentrations
2. INTEGRATION OF THE KINETIC MODEL

APPLICATION OF BEER'S LAW IN A UNIVARIATE FORM (= ONE WAVELENGTH)

4. FITTING
(= NONLINEAR OPTIMISATION)

KINETIC HARD-MODELING !!!

UNIVARIATE approach

1. CALIBRATION

of all species with known concentrations
2. INTEGRATION OF THE KINETIC MODEL
3. APPLICATION OF BEER'S LAW IN A UNIVARIATE FORM (= ONE WAVELENGTH)

4. FITTING
(= NONLINEAR OPTIMISATION)

KINETIC HARD-MODELING !!!

Question :
Which wavelength do you follow?
What about the rest of the spectrum ?

CALMBRATIOH

WITH A
 MULTIVARIATE APPROACH
 THE WHOLE SPECTRUM IS USED TO FIT k

Presentation of a typical kinetic-modeling algorithm

Presentation of a typical kinetic-modeling algorithm

The following topics will be addressed :

Presentation of a typical kinetic-modeling algorithm

The following topics will be addressed :

- Typical fitted signals
- Multivariate Spectroscopy (Beer's law)
- Univariate Calorimetry

Presentation of a typical kinetic-modeling algorithm

The following topics will be addressed :

- Typical fitted signals
- Multivariate Spectroscopy (Beer's law)
- Univariate Calorimetry
- Generalisation of the Rate Law

Presentation of a typical kinetic-modeling algorithm

The following topics will be addressed :

- Typical fitted signals
- Multivariate Spectroscopy (Beer's law)
- Univariate Calorimetry
- Generalisation of the Rate Law
- Numerical integration

Presentation of a typical kinetic-modeling algorithm

The following topics will be addressed :

- Typical fitted signals
- Multivariate Spectroscopy (Beer's law)
- Univariate Calorimetry
- Generalisation of the Rate Law
- Numerical integration
- Separation of parameters

Presentation of a typical kinetic-modeling algorithm

The following topics will be addressed :

- Typical fitted signals
- Multivariate Spectroscopy (Beer's law)
- Univariate Calorimetry
- Generalisation of the Rate Law
- Numerical integration
- Separation of parameters
- Newton-Gauss method

Presentation of a typical kinetic-modeling algorithm

The following topics will be addressed :

- Typical fitted signals
- Multivariate Spectroscopy (Beer's law)
- Univariate Calorimetry
- Generalisation of the Rate Law
- Numerical integration
- Separation of parameters
- Newton-Gauss method

Two common problems will also be treated :

Presentation of a typical kinetic-modeling algorithm

The following topics will be addressed :

- Typical fitted signals
- Multivariate Spectroscopy (Beer's law)
- Univariate Calorimetry
- Generalisation of the Rate Law
- Numerical integration
- Separation of parameters
- Newton-Gauss method

Two common problems will also be treated :

1. Divergence problems (Levenberg-Marquardt modification)

Presentation of a typical kinetic-modeling algorithm

The following topics will be addressed :

- Typical fitted signals
- Multivariate Spectroscopy (Beer's law)
- Univariate Calorimetry
- Generalisation of the Rate Law
- Numerical integration
- Separation of parameters
- Newton-Gauss method

Two common problems will also be treated :

1. Divergence problems (Levenberg-Marquardt modification)
2. Rank deficiency (methods of annihilation)

SPECTROSCOPY and CALORIMETRY

- Spectroscopy (IR, UV, Raman, fluorescence ...)

SPECTROSCOPY and CALORIMETRY

- Spectroscopy (IR, UV, Raman, fluorescence ...)

Measurement
(Multivariate)

SPECTROSCOPY and CALORIMETRY

- Spectroscopy (IR, UV, Raman, fluorescence ...)

Physical model (Beer's law)

SPECTROSCOPY and CALORIMETRY

- Spectroscopy (IR, UV, Raman, fluorescence ...)

SPECTROSCOPY and CALORIMETRY

- Spectroscopy (IR, UV, Raman, fluorescence ...)

SPECTROSCOPY and CALORIMETRY

- Spectroscopy (IR, UV, Raman, fluorescence ...)

- Calorimetry

SPECTROSCOPY and CALORIMETRY

- Spectroscopy (IR, UV, Raman, fluorescence ...)

- Calorimetry

Measurement
(Univariate)

SPECTROSCOPY and CALORIMETRY

- Spectroscopy (IR, UV, Raman, fluorescence ...)

- Calorimetry

$\times \quad 43 \mathrm{~kJ} / \mathrm{mol}$

SPECTROSCOPY and CALORIMETRY

- Spectroscopy (IR, UV, Raman, fluorescence ...)

- Calorimetry

SPECTROSCOPY and CALORIMETRY

- Spectroscopy (IR, UV, Raman, fluorescence ...)

- Calorimetry

$$
\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}}=\mathbf{V}(t) \cdot \mathbf{r}(t)
$$

Definition of the optimisation problem

- The residuals are defined as the difference between the measurement and the model

$$
\mathbf{Y}=\mathbf{C} \cdot \mathbf{A}+\mathbf{R}_{\text {spec }}
$$

$$
\mathbf{q}=\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}} \cdot\left(-\Delta \mathbf{H}_{\mathrm{R}}\right)+\mathbf{r}_{\mathrm{cal}}
$$

Definition of the optimisation problem

- The residuals are defined as the difference between the measurement and the model

$$
\mathbf{R}_{\text {spec }}=\mathbf{Y}-\mathbf{C} \cdot \mathbf{A}
$$

$$
\mathbf{r}_{\text {cal }}=\mathbf{q}-\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}} \cdot\left(-\Delta \mathbf{H}_{\mathrm{R}}\right)
$$

Definition of the optimisation problem

- The residuals are defined as the difference between the measurement and the model

$$
\mathbf{R}_{\text {spec }}=\mathbf{Y}-\mathbf{C} \cdot \mathbf{A}
$$

$$
\mathbf{r}_{\text {cal }}=\mathbf{q}-\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}} \cdot\left(-\Delta \mathbf{H}_{\mathrm{R}}\right)
$$

- As the mass balance part is :

$$
\mathbf{C}=f(\text { model }, \mathbf{p})
$$

$$
\frac{\mathbf{d} \xi_{\text {mol }}}{\mathbf{d t}}=g(\text { model }, \mathbf{p})
$$

Definition of the optimisation problem

- The residuals are defined as the difference between the measurement and the model

$$
\mathbf{R}_{\text {spec }}=\mathbf{Y}-\mathbf{C} \cdot \mathbf{A}
$$

$$
\mathbf{r}_{\mathrm{cal}}=\mathbf{q}-\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}} \cdot\left(-\Delta \mathbf{H}_{\mathrm{R}}\right)
$$

- As the mass balance part is :

$$
\mathbf{C}=f(\text { model }, \mathbf{p})
$$

$$
\frac{\mathbf{d} \xi_{\text {mol }}}{\mathbf{d t}}=g(\text { model }, \mathbf{p})
$$

- The optimisation problem is :

$$
\begin{gathered}
\text { minimize } \mathbf{R}_{\text {spec }}=f(\mathbf{Y}, \text { model, } \mathbf{p}) \\
\text { in the least square sense } \\
\text { by changing } \mathbf{p}
\end{gathered}
$$

$$
\operatorname{minimize} \mathbf{r}_{\text {cal }}=f(\mathbf{q}, \text { model }, \mathbf{p})
$$

in the least square sense by changing \mathbf{p}

Kinetic modeling algorithm

Kinetic modeling algorithm

Kinetic modeling algorithm

Settings

Kinetic modeling algorithm

Setup the kinetic model

$$
\begin{aligned}
& A+B \xrightarrow{k_{1}} C \\
& 2 C \xrightarrow{k_{2}} D
\end{aligned}
$$

Setup the kinetic model

$A+B \xrightarrow{k_{1}} C$	$\mathrm{X}_{\mathrm{r}}=k_{1}$	nc				
		A	B	c	D	
		1	1	0	0	
$2 C \xrightarrow{k_{2}} D$		0	0	2	0	

Setup the kinetic model

$A+B \xrightarrow{k_{1}} C$	$\mathrm{x}_{\mathrm{r}}=$		B	c			$\mathrm{X}_{\mathrm{P}}=k_{1}$$k_{2}$		A	A b c D			
		1	1	0	0				0	0		1	0
		0	0	2	0				0	0		0	1

Setup the kinetic model

Setup the kinetic model

Setup the kinetic model

Rate laws

$$
r_{j}=k_{j} \prod_{i=1}^{n c} c_{i}^{\mathbf{x}_{\mathrm{t}, \mathrm{i}}} \quad \text { for } j=1: n p
$$

$$
\begin{aligned}
& r_{1}=k_{1} \cdot[A]_{t} \cdot[B]_{t} \\
& r_{2}=k_{2} \cdot[C]_{t}^{2}
\end{aligned}
$$

Derivatives

$$
\frac{d c_{i}}{d t}=\sum_{j=1}^{n p} \mathbf{X}_{j, i} \cdot r_{j} \quad \text { for } i=1: n c
$$

$$
\begin{aligned}
& \frac{d[A]_{t}}{d t}=\frac{d[B]_{t}}{d t}=-r_{1} \\
& \frac{d[C]_{t}}{d t}=r_{1}-2 \cdot r_{2} \\
& \frac{d[D]_{t}}{d t}=r_{2}
\end{aligned}
$$

Setup the kinetic model

Most of the time : no analytical solution for this system of ODEs \rightarrow Numerical integration

Dosing events

$A+B \xrightarrow{k_{1}} C$
$2 C \xrightarrow{k_{2}} D$
In case of dosing, the set of ODEs is modified accordingly :

Dosing events

$A+B \xrightarrow{k_{1}} C$
$2 C \xrightarrow{k_{2}} D$

Rate laws

In case of dosing, the set of ODEs is modified accordingly :

$$
r_{j}=k_{j} \prod_{i=1}^{n s} c_{i}^{\mathbf{x}_{\mathrm{r} j, i}} \quad \text { for } j=1: n p
$$

$$
\begin{aligned}
& r_{1}=k_{1} \cdot[A]_{t} \cdot[B]_{t} \\
& r_{2}=k_{2} \cdot[C]_{t}^{2}
\end{aligned}
$$

Dosing events

$A+B \xrightarrow{k_{1}} C$
$2 C \xrightarrow{k_{2}} D$

Rate laws

$$
r_{j}=k_{j} \prod_{i=1}^{n s} c_{i}^{\mathbf{X}_{\mathrm{r}}^{\mathrm{r}, i}} \quad \text { for } j=1: n p \quad \begin{aligned}
& r_{1}=k_{1} \cdot[A]_{t} \cdot[B]_{t} \\
& r_{2}=k_{2} \cdot[C]_{t}^{2}
\end{aligned}
$$

In case of dosing, the set of ODEs is modified accordingly :

Dosing events

$A+B \xrightarrow{k_{1}} C$
$2 C \xrightarrow{k_{2}} D$

Rate laws

$$
r_{j}=k_{j} \prod_{i=1}^{n s} c_{i}^{\mathbf{x}_{\mathrm{r} j, i}} \quad \text { for } j=1: n p
$$

$$
\frac{d c_{i}}{d t}=\left(\sum_{j=1}^{n p} \mathbf{X}_{j, i} \cdot r_{j}\right)+\frac{F}{V_{t}} \cdot\left(c_{i}^{\text {feed }}-c_{i}\right)
$$

$$
\frac{d V}{d t}=F \quad \text { for } i=1: n c
$$

The dosing event adds an additional ODE and a term to the ODEs of all species
$N B: \quad+\frac{F}{V_{t}} \cdot A_{\text {in }}=$ added material
$-\frac{F}{V_{t}} \cdot A=$ dilution phenomenon

Numerical integration of the model

- First Approach : Euler's method

$$
c_{i}(t+\Delta t) \approx c_{i}(t)+\left(\frac{d c_{i}}{d t}\right)_{t} \cdot \Delta t
$$

Numerical integration of the model

- First Approach : Euler's method

$$
c_{i}(t+\Delta t) \approx c_{i}(t)+\left(\frac{d c_{i}}{d t}\right)_{t} \cdot \Delta t
$$

Applied to our specific example without dosing

$$
\begin{aligned}
& A+B \xrightarrow{k_{1}} C \\
& 2 C \xrightarrow{k_{2}} D
\end{aligned}
$$

$$
\begin{aligned}
{[C]_{t+\Delta t} \approx } & \approx[C]_{t}+\left(\frac{d[C]_{t}}{d t}\right)_{t} \cdot \Delta t \\
& =[C]_{t}+\left(k_{1} \cdot[A]_{t} \cdot[B]_{t}-k_{2} \cdot[C]_{t}^{2}\right) \cdot \Delta t
\end{aligned}
$$

Numerical integration of the model

- First Approach : Euler's method

$$
c_{i}(t+\Delta t) \approx c_{i}(t)+\left(\frac{d c_{i}}{d t}\right)_{t} \cdot \Delta t
$$

Applied to our specific example without dosing

$$
A+B \xrightarrow{k_{1}} C
$$

$$
2 C \quad \xrightarrow{k_{2}} D
$$

$$
\begin{aligned}
{[C]_{t+\Delta t} \approx } & \approx C]_{t}+\left(\frac{d[C]_{t}}{d t}\right)_{t} \cdot \Delta t \\
& =[C]_{t}+\left(k_{1} \cdot[A]_{t} \cdot[B]_{t}-k_{2} \cdot[C]_{t}^{2}\right) \cdot \Delta t
\end{aligned}
$$

- Nowadays, more sophisticated integration methods exist (e.g. ode45) with a stepsize control

Stepsize control and stiff problems

- In stepsize controlled ODE solvers, the stepsize is adjusted at each step to meet the user-specified accuracy

Stepsize control and stiff problems

- In stepsize controlled ODE solvers, the stepsize is adjusted at each step to meet the user-specified accuracy
- The accuracy is measured with absolute (AbsTol) and relative (ReITol) tolerance's values.

Stepsize control and stiff problems

- In stepsize controlled ODE solvers, the stepsize is adjusted at each step to meet the user-specified accuracy
- The accuracy is measured with absolute (AbsTol) and relative (Re/Tol) tolerance's values.
- For some kinetic models, the slopes of the concentration profiles are dramatically different (stiff problem) and require the use of a stiff ODE solver (eg. ode15s)

Kinetic modeling algorithm

Kinetic modeling algorithm

Linear and Nonlinear parameters

GENERAL CONSIDERATION

Linear and Nonlinear parameters

GENERAL CONSIDERATION

- If $S(\mathbf{p})$ is a measured signal depending on the parameters vector \mathbf{p}

Linear parameters are defined as: $\quad\left(\frac{\partial S(\mathbf{p})}{\partial p_{i}}\right)_{p_{p f i}} \neq f\left(p_{i}\right)$
and Nonlinear parameters defined as: $\quad\left(\frac{\partial S(\mathbf{p})}{\partial p_{i}}\right)_{p_{j f i}}=f\left(p_{i}\right)$

Linear and Nonlinear parameters

GENERAL CONSIDERATION

- If $S(\mathbf{p})$ is a measured signal depending on the parameters vector \mathbf{p}

Linear parameters are defined as: $\quad\left(\frac{\partial S(\mathbf{p})}{\partial p_{i}}\right)_{p_{j f f}} \neq f\left(p_{i}\right)$
and Nonlinear parameters defined as: $\quad\left(\frac{\partial S(\mathbf{p})}{\partial p_{i}}\right)_{p_{\text {阥 }}}=f\left(p_{i}\right)$

APPLIED TO KINETIC MODELING :

- \mathbf{C} and \mathbf{A} are LINEAR parameters with respect to \mathbf{Y} (Beer's law)

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{C} \cdot \mathbf{A} \\
& \mathbf{q}=\frac{\mathbf{d} \xi_{\mathbf{m o l}}}{\mathbf{d t}} \cdot\left(-\Delta \mathbf{H}_{\mathrm{R}}\right)
\end{aligned}
$$

- $\mathbf{d} \xi_{\text {mol }} / \mathrm{dt}$ and $\Delta \mathbf{H}_{\mathrm{r}}$ are LINEAR parameters with respect to q (Reaction heat balance)
- Rate constants are NONLINEAR parameters with respect to \mathbf{C} and $\mathbf{d} \xi_{\text {mol }} / \mathbf{d t}$
so are they for \mathbf{Y} and for \mathbf{q}

Separation of linear parameters - LINEAR REGRESSION

- At each iteration, the linear parameters are calculated in one step as the best linear estimate in the least squares sense

Separation of linear parameters - LINEAR REGRESSION

- At each iteration, the linear parameters are calculated in one step as the best linear estimate in the least squares sense

Pure spectra

$$
\mathbf{A}=\mathbf{C}^{+} \cdot \mathbf{Y} \quad=\left(\mathbf{C}^{\mathrm{t}} \cdot \mathbf{C}\right)^{-1} \cdot \mathbf{C}^{\mathrm{t}} \cdot \mathbf{Y}
$$

(from Spectroscopy)

Enthalpies
(from Calorimetry)

$$
\Delta H_{R}=-\left(\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}}\right)^{+} \cdot \mathbf{q}=-\left(\left(\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}}\right)^{t} \cdot\left(\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}}\right)\right)^{-1} \cdot\left(\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}}\right)^{t} \cdot \mathbf{q}
$$

Remarks :

- The above formula is a multidimensional linear regression in a matrix notation
- The superscript + is meant for the PSEUDO-INVERSE.

As the matrices are not square, the inverse is not defined.

Separation of linear parameters - LINEAR REGRESSION

- At each iteration, the linear parameters are calculated in one step as the best linear estimate in the least squares sense

Pure spectra
(from Spectroscopy)

Enthalpies
(from Calorimetry)

$$
\mathbf{A}=\mathbf{C}^{+} \cdot \mathbf{Y} \quad=\left(\mathbf{C}^{\mathrm{t}} \cdot \mathbf{C}\right)^{-1} \cdot \mathbf{C}^{\mathrm{t}} \cdot \mathbf{Y}
$$

$$
\Delta H_{R}=-\left(\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}}\right)^{+} \cdot \mathbf{q}=-\left(\left(\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}}\right)^{\mathrm{t}} \cdot\left(\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}}\right)\right)^{-1} \cdot\left(\frac{\mathbf{d} \xi_{\mathrm{mol}}}{\mathbf{d t}}\right)^{t} \cdot \mathbf{q}
$$

THIS LINEAR REGRESSION MAKES ANY CALIBRATION OF THE ABSORPTIVITIES REDUNDANT!

The Residuals and the sum of squares

- The residuals are defined as the difference between the measurement and the model (matrix !)
- By the sum of squares we mean the sum of all squared residuals (scalar !)

The Residuals and the sum of squares

- The residuals are defined as the difference between the measurement and the model (matrix!)
- By the sum of squares we mean the sum of all squared residuals (scalar !)

Residuals

Spectroscopy :
Calorimetry :

$$
\mathbf{R}_{\text {spec }}=\mathbf{Y}-\mathbf{Y}_{\text {calc }}=\mathbf{Y}-\mathbf{C} \cdot \mathbf{A}
$$

Sum of squares

$$
\mathbf{r}_{\text {cal }}=\mathbf{q}-\mathbf{q}_{\text {calc }}=\mathbf{q}-\frac{d \xi_{\text {mol }}}{d t} \cdot\left(-\Delta H_{R}\right)
$$

$$
\begin{aligned}
& s s q_{\text {spec }}=\sum_{i=1}^{n t} \sum_{j=1}^{n \omega} \mathbf{R}_{\text {spec }}(i, j) \\
& s s q_{\text {cal }}=\sum_{i=1}^{n t} \mathbf{r}_{\text {cal }}(i)
\end{aligned}
$$

The Residuals and the sum of squares

- The residuals are defined as the difference between the measurement and the model (matrix!)
- By the sum of squares we mean the sum of all squared residuals (scalar !)

Residuals

Spectroscopy :

$$
\mathbf{R}_{\text {spec }}=\mathbf{Y}-\mathbf{Y}_{\text {calc }}=\mathbf{Y}-\mathbf{C} \cdot \mathbf{A}
$$

Sum of squares

$$
\mathbf{r}_{\text {cal }}=\mathbf{q}-\mathbf{q}_{\text {calc }}=\mathbf{q}-\frac{d \xi_{\text {mol }}}{d t} \cdot\left(-\Delta H_{R}\right)
$$

$$
\begin{aligned}
& s s q_{\text {spec }}=\sum_{i=1}^{n t} \sum_{j=1}^{n \omega} \mathbf{R}_{\text {spec }}(i, j) \\
& s s q_{\text {cal }}=\sum_{i=1}^{n t} \mathbf{r}_{\text {cal }}(i)
\end{aligned}
$$

ADVANCED PROBLEM :

- Combination of the signals: $\quad s s q_{\text {total }}=w \cdot s s q_{\text {spec }}+(1-w) \cdot s s q_{c a l} \quad, w=$?

Vectorisation (Unfolding)

Vectorisation (Unfolding)

- The residuals of Spectroscopy and Calorimetry do not have the same dimension (How to combine a matrix with a vector?)

Vectorisation (Unfolding)

- The residuals of Spectroscopy and Calorimetry do not have the same dimension (How to combine a matrix with a vector?)

AND

- For practical reasons in the Newton-Gauss algorithm (see later)

Vectorisation (Unfolding)

- The residuals of Spectroscopy and Calorimetry do not have the same dimension (How to combine a matrix with a vector ?)

AND

- For practical reasons in the Newton-Gauss algorithm (see later)

```
|
```


VECTORISATION :

$\mathbf{R}_{\text {spec }}$ and $\mathbf{r}_{\text {cal }}$ are unfolded into a long column vector \mathbf{r}

Vectorisation (Unfolding)

- The residuals of Spectroscopy and Calorimetry do not have the same dimension (How to combine a matrix with a vector ?)

AND

- For practical reasons in the Newton-Gauss algorithm (see later)

VECTORISATION :

$\mathbf{R}_{\text {spec }}$ and $\mathbf{r}_{\text {cal }}$ are unfolded into a long column vector \mathbf{r}

Vectorisation (Unfolding)

- The residuals of Spectroscopy and Calorimetry do not have the same dimension (How to combine a matrix with a vector?)

AND

- For practical reasons in the Newton-Gauss algorithm (see later)

Kinetic modeling algorithm

Kinetic modeling algorithm

The Newton-Gauss algorithm

- To find the direction towards the minimum, the residuals are approximated by a Taylor series expansion truncated after the first derivative

The Newton-Gauss algorithm

- To find the direction towards the minimum, the residuals are approximated by a Taylor series expansion truncated after the first derivative

$$
\mathbf{r}(\mathbf{p}+\Delta \mathbf{p})=\mathbf{r}(\mathbf{p})+\frac{\partial \mathbf{r}(\mathbf{p})}{\partial \mathbf{p}} \cdot \Delta \mathbf{p}
$$

The Newton-Gauss algorithm

- To find the direction towards the minimum, the residuals are approximated by a Taylor series expansion truncated after the first derivative

$$
\begin{aligned}
\mathbf{r}(\mathbf{p}+\Delta \mathbf{p}) & =\mathbf{r}(\mathbf{p})+\frac{\partial \mathbf{r}(\mathbf{p})}{\partial \mathbf{p}} \cdot \Delta \mathbf{p} \\
& \Downarrow \\
\mathbf{r}(\mathbf{p}) \quad & \text { Rearranging for } \mathbf{r}(\mathbf{p}) \\
= & \mathbf{J} \cdot \Delta \mathbf{p}+\mathbf{r}(\mathbf{p}+\Delta \mathbf{p})
\end{aligned}
$$

The Newton-Gauss algorithm

- To find the direction towards the minimum, the residuals are approximated by a Taylor series expansion truncated after the first derivative

$$
\begin{aligned}
\mathbf{r}(\mathbf{p}+\Delta \mathbf{p}) & =\mathbf{r}(\mathbf{p})+\frac{\partial \mathbf{r}(\mathbf{p})}{\partial \mathbf{p}} \cdot \Delta \mathbf{p} \\
& \Downarrow \\
\mathbf{r}(\mathbf{p}) \quad & \text { Rearranging for } \mathbf{r}(\mathbf{p}) \\
& -\mathbf{J} \cdot \Delta \mathbf{p}+\mathbf{r}(\mathbf{p}+\Delta \mathbf{p}) \approx 0!
\end{aligned}
$$

The Newton-Gauss algorithm

- To find the direction towards the minimum, the residuals are approximated by a Taylor series expansion truncated after the first derivative

$$
\mathbf{r}(\mathbf{p}+\Delta \mathbf{p})=\mathbf{r}(\mathbf{p})+\frac{\partial \mathbf{r}(\mathbf{p})}{\partial \mathbf{p}} \cdot \Delta \mathbf{p}
$$

\Downarrow Linear regression to minimize $\mathbf{r}(\mathbf{p}+\Delta \mathbf{p})$ and rearranging for $\Delta \mathbf{p}$

$$
\Delta \mathbf{p} \quad=-\mathbf{J}^{+} \cdot \mathbf{r}(\mathbf{p})
$$

The Newton-Gauss algorithm

- To find the direction towards the minimum, the residuals are approximated by a Taylor series expansion truncated after the first derivative

$$
\mathbf{r}(\mathbf{p}+\Delta \mathbf{p})=\mathbf{r}(\mathbf{p})+\frac{\partial \mathbf{r}(\mathbf{p})}{\partial \mathbf{p}} \cdot \Delta \mathbf{p}
$$

	\Downarrow
$\mathbf{r}(\mathbf{p}) \quad$	Rearranging for $\mathbf{r}(\mathbf{p})$
$=-\mathbf{J} \cdot \Delta \mathbf{p}+\mathbf{r}(\mathbf{p}+\Delta \mathbf{p})$	$\approx 0!$

\Downarrow Linear regression to minimize $\mathbf{r}(\mathbf{p}+\Delta \mathbf{p})$ and rearranging for $\Delta \mathbf{p}$

The Jacobian
 $$
\mathbf{J}=\frac{\partial \mathbf{r}(\mathbf{p})}{\partial \mathbf{p}}
$$

The Jacobian is a derivative of a matrix with respect to a vector

The Jacobian

$$
\mathbf{J}=\frac{\partial \mathbf{r}(\mathbf{p})}{\partial \mathbf{p}}
$$

The Jacobian is a derivative of a matrix with respect to a vector

Without vectorisation

(only spectroscopy)

The Jacobian

$$
\mathbf{J}=\frac{\partial \mathbf{r}(\mathbf{p})}{\partial \mathbf{p}}
$$

The Jacobian is a derivative of a matrix with respect to a vector

Without vectorisation

(only spectroscopy)

TENSOR :

The Jacobian

$$
\mathbf{J}=\frac{\partial \mathbf{r}(\mathbf{p})}{\partial \mathbf{p}}
$$

The Jacobian is a derivative of a matrix with respect to a vector

To compute the Jacobian, one needs to vectorise the residuals \mathbf{R} into a long vector \mathbf{r}

The Jacobian

$$
\mathbf{J}=\frac{\partial \mathbf{r}(\mathbf{p})}{\partial \mathbf{p}}
$$

The Jacobian is a derivative of a matrix with respect to a vector
 Without vectorisation

(only spectroscopy)

TENSOR *

To compute the Jacobian, one needs to vectorise the residuals \mathbf{R} into a long vector \mathbf{r}

With vectorisation

(Spectroscopy + Calorimetry)

The Jacobian

$$
\mathbf{J}=\frac{\partial \mathbf{r}(\mathbf{p})}{\partial \mathbf{p}}
$$

The Jacobian is a derivative of a matrix with respect to a vector

Without vectorisation

(only spectroscopy)
 TENSOR :

To compute the Jacobian, one needs to vectorise the residuals \mathbf{R} into a long vector \mathbf{r}

With vectorisation

(Spectroscopy + Calorimetry)

MATRIX ©

The Jacobian

$$
\mathbf{J}=\frac{\partial \mathbf{r}(\mathbf{p})}{\partial \mathbf{p}}
$$

The Jacobian is a derivative of a matrix with respect to a vector

Without vectorisation

(only spectroscopy)

TENSOR :

To compute the Jacobian, one needs to vectorise the residuals \mathbf{R} into a long vector \mathbf{r}

With vectorisation

(Spectroscopy + Calorimetry)

nt x 1

MATRIX ©

$$
\frac{\partial \mathbf{r}(\mathbf{p})}{\partial p_{i}}=\frac{\mathbf{r}\left(\mathbf{p}+\delta p_{i}\right)-\mathbf{r}(\mathbf{p})}{\delta p_{i}} \quad \text { with } \delta p_{i} \approx 10^{-6} \cdot p_{i}
$$

The Hessian (statistics)

$$
\mid \mathbf{H}=\mathbf{J}^{\mathrm{t}} \cdot \mathbf{J}
$$

- Knowing that $\mathbf{H}=\mathbf{J}^{\mathbf{t}} \cdot \mathbf{J}$ the shift vector can be re-written as:

$$
\Delta \mathbf{p}=-\mathbf{H}^{-1} \cdot \mathbf{J}^{\mathbf{t}} \cdot \mathbf{r}(\mathbf{p})
$$

The Hessian (statistics)

$$
\mid \mathbf{H}=\mathbf{J}^{\mathrm{t}} \cdot \mathbf{J}
$$

- Knowing that $\mathbf{H}=\mathbf{J}^{\mathbf{t}} \cdot \mathbf{J}$ the shift vector can be re-written as:

$$
\Delta \mathbf{p}=-\mathbf{H}^{-1} \cdot \mathbf{J}^{\mathbf{t}} \cdot \mathbf{r}(\mathbf{p})
$$

The Hessian \mathbf{H} is a square matrix ($n p \times n p$) and is the inverse of the variance/covariance matrix of p !

The Hessian (statistics)

$\mathbf{H}=\mathbf{J}^{\mathbf{t}} \cdot \mathbf{J}$

- Knowing that $\mathbf{H}=\mathbf{J}^{\mathbf{t}} \cdot \mathbf{J}$ the shift vector can be re-written as:

$$
\Delta \mathbf{p}=-\mathbf{H}^{-1} \cdot \mathbf{J}^{\mathbf{t}} \cdot \mathbf{r}(\mathbf{p})
$$

The Hessian \mathbf{H} is a square matrix ($n p \times n p$) and is the inverse of the variance/covariance matrix of p !

This allows the calculation of the
Standard Error of each parameter :

$$
\sigma_{\mathrm{p}}=\sigma_{\mathrm{r}} \cdot \sqrt{\operatorname{diag}\left(H^{-1}\right)} \quad \text { with } \sigma_{\mathrm{r}}=\sqrt{\frac{s s q}{d f}} \approx \sigma_{\mathrm{Y}}
$$

Kinetic modeling algorithm

Pemmes

Kinetic modeling algorithm

Divergence in the NG algorithm

PROBLEM: The NG algorithm DIVERGES if the Taylor series expansion is not a good approximation for the residuals function (eg. poor initial guesses)

Divergence in the NG algorithm

PROBLEM: The NG algorithm DIVERGES if the Taylor series expansion is not a good approximation for the residuals function (eg. poor initial guesses)

SOLUTION : Do not use a Taylor series expansion but move in the steepest direction (opposite direction given by the Jacobian)

Divergence in the NG algorithm

PROBLEM: The NG algorithm DIVERGES if the Taylor series expansion is not a good approximation for the residuals function (eg. poor initial guesses)

SOLUTION : Do not use a Taylor series expansion but move in the steepest direction (opposite direction given by the Jacobian)
$\Delta \mathbf{p}=-\mathbf{H}^{-1} \cdot \mathbf{J}^{\mathbf{t}} \cdot \mathbf{r}(\mathbf{p})$

[^1]Inverse Hessian method (Newton-Gauss)
$\Delta \mathbf{p}=-\mathbf{J}^{\mathbf{t}} \cdot \mathbf{r}(\mathbf{p})$

Divergence in the NG algorithm

PROBLEM: The NG algorithm DIVERGES if the Taylor series expansion is not a good approximation for the residuals function (eg. poor initial guesses)

SOLUTION : Do not use a Taylor series expansion but move in the steepest direction (opposite direction given by the Jacobian)

$$
\Delta \mathbf{p}=-\mathbf{H}^{-1} \cdot \mathbf{J}^{\mathbf{t}} \cdot \mathbf{r}(\mathbf{p})
$$

$$
\Delta \mathbf{p}=-(\mathbf{H}+m p \cdot \mathbf{I})^{-1} \cdot \mathbf{J}^{\mathbf{t}} \cdot \mathbf{r}(\mathbf{p})
$$

$\Delta \mathbf{p}=-\mathbf{J}^{\mathbf{t}} \cdot \mathbf{r}(\mathbf{p})$

Inverse Hessian method (Newton-Gauss)

Levenberg-Marquardt modification

Divergence in the NG algorithm

PROBLEM: The NG algorithm DIVERGES if the Taylor series expansion is not a good approximation for the residuals function (eg. poor initial guesses)

SOLUTION : Do not use a Taylor series expansion but move in the steepest direction (opposite direction given by the Jacobian)

\[

\]

Inverse Hessian method (Newton-Gauss)

Levenberg-Marquardt modification

The Marquardt parameter (mp) is a scalar added to the diagonal elements of \mathbf{H} to decrease its influence on $\Delta \mathbf{p}$ and shorten the magnitude of Δp

Steepest Descent Method

Geometrical interpretation on the response surface

The NG/LM algorithm

Current method :

The NG/LM algorithm

Current method :
 Newton-Gauss method

The NG/LM algorithm

Current method :
 Newton-Gauss method

The NG/LM algorithm

Current method :
 Newton-Gauss method

The NG/LM algorithm

Current method :

Newton-Gauss method

The NG/LM algorithm

Current method :

Newton-Gauss method

The NG/LM algorithm

Current method :

Newton-Gauss method

The NG/LM algorithm

Current method :

Newton-Gauss method

The NG/LM algorithm

Current method :

Newton-Gauss method

The NG/LM algorithm

Current method :
 Newton-Gauss method

The NG/LM algorithm

Current method :

Newton-Gauss method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method:

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

$\frac{10.500-10.499}{10.500}=9.523 \cdot 10^{-5}<10^{-4}$

Current method :
 NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

Command History Workspace
Command History Workspace

The NG/LM algorithm

Current method :

NG/Levenberg-Marquardt method

The NG/LM algorithm

Current method :

Newton-Gauss method

The NG/LM algorithm

The NG/LM algorithm

The NG/LM algorithm

Current method :

Newton-Gauss method

The NG/LM algorithm

Current method :

Newton-Gauss method

The NG/LM algorithm

Current method :

Newton-Gauss method

The NG/LM algorithm

Current method :

Newton-Gauss method

The NG/LM algorithm

Current method :

Newton-Gauss method

Kinetic modeling algorithm

Settings

Rank Deficiency
 of the concentration profile

$n c$

The maximum rank of \mathbf{C} is :

$$
\operatorname{rank}_{\max }(\mathbf{C})=\min (n t, n c)
$$

Rank Deficiency

of the concentration profile

$\mathbf{C}=$	$n t$	The maximum rank of \mathbf{C} is :		$\operatorname{rank}_{\max }(\mathbf{C})=\min (n t, n c)$
		The pseudo inverse (\mathbf{C}^{+}) only exists if : $\operatorname{rank}(\mathbf{C})=\operatorname{rank}_{\max }(\mathbf{C})$	\Leftrightarrow	$\operatorname{rank}_{\text {max }}(\mathbf{C})$ columns or rows are linearly independant

Rank Deficiency

of the concentration profile

Example : $A+B \xrightarrow{k} P+S$ (in batch conditions)

Rank Deficiency
 of the concentration profile

Example : $A+B \xrightarrow{k} P+S$ (in batch conditions)

- Maximum possible rank?
- Number of independant species in stoichiometric conditions $\left(A_{0}=B_{0}=1\right)$?
- And in non-stoichiometric conditions ($A_{0}=1, B_{0}=0.5$) ?

Rank Deficiency

of the concentration profile

Example : $A+B \xrightarrow{k} P+S$ (in batch conditions)

- Maximum possible rank?

4 species $\Rightarrow \operatorname{rank}_{\max }(\mathbf{C})=4$

- Number of independant species in stoichiometric conditions $\left(A_{0}=B_{0}=1\right)$?
- And in non-stoichiometric conditions $\left(A_{0}=1, B_{0}=0.5\right)$?

Rank Deficiency
 of the concentration profile

Example : $A+B \xrightarrow{k} P+S$ (in batch conditions)

- Maximum possible rank?

$$
4 \text { species } \Rightarrow \operatorname{rank}_{\max }(\mathbf{C})=4
$$

- Number of independant species in stoichiometric conditions $\left(A_{0}=B_{0}=1\right)$?

$$
\operatorname{rank}(\mathbf{C})=2 \quad(\text { only }!)
$$

- And in non-stoichiometric conditions ($A_{0}=1, B_{0}=0.5$) ?

Rank Deficiency
 of the concentration profile

Example : $A+B \xrightarrow{k} P+S$ (in batch conditions)

- Maximum possible rank?

- And in non-stoichiometric conditions

$$
\begin{aligned}
& \left(A_{0}=1, B_{0}=0.5\right) ? \\
& \operatorname{rank}(\mathbf{C})=2
\end{aligned}
$$

Annihilation of Rank Deficiency

5 ways to break the rank deficiency :

Annihilation of Rank Deficiency

5 ways to break the rank deficiency :

- Model Reduction : set the dependant species as colorless (non-absorbing)
\Rightarrow Rates constants will be correct
Absorption spectra will be wrong (mixed pure spectra)

Annihilation of Rank Deficiency

5 ways to break the rank deficiency :

- Model Reduction : set the dependant species as colorless (non-absorbing)
\Rightarrow Rates constants will be correct
Absorption spectra will be wrong (mixed pure spectra)
- Provide Known Spectra

Annihilation of Rank Deficiency

5 ways to break the rank deficiency :

- Model Reduction : set the dependant species as colorless (non-absorbing)
\Rightarrow Rates constants will be correct
Absorption spectra will be wrong (mixed pure spectra)
- Provide Known Spectra
- Work under Semi-Batch Conditions

Annihilation of Rank Deficiency

5 ways to break the rank deficiency :

- Model Reduction : set the dependant species as colorless (non-absorbing)
\Rightarrow Rates constants will be correct
Absorption spectra will be wrong (mixed pure spectra)
- Provide Known Spectra
- Work under Semi-Batch Conditions
- Use concentration dependant measurements (Second Order Global Analysis)

Annihilation of Rank Deficiency

5 ways to break the rank deficiency :

- Model Reduction : set the dependant species as colorless (non-absorbing)
\Rightarrow Rates constants will be correct
Absorption spectra will be wrong (mixed pure spectra)
- Provide Known Spectra
- Work under Semi-Batch Conditions
- Use concentration dependant measurements (Second Order Global Analysis)
- Extend the wavelength-time domain to resolve linear dependencies (Tri-linear Measurements)

Example : Coupling chromatrography to UV

Annihilation of Rank Deficiency

5 ways to break the rank deficiency :

- Model Reduction : set the dependant species as colorless (non-absorbing)
\Rightarrow Rates constants will be correct
Absorption spectra will be wrong (mixed pure spectra)
- Provide Known Spectra
- Work under Semi-Batch Conditions
- Use concentration dependant measurements (Second Order Global Analysis)
- Extend the wavelength-time domain to, sed here.
(Tri-linear Measurements) is not addressed hereear dependencies
This last method it ishly
because

Reduced model

Simulated absorption spectra

$$
A(1)+B(0.5) \xrightarrow{k=0.5} P+S
$$

Reduced model

Simulated absorption spectra

$$
A(1)+B(0.5) \xrightarrow{k=0.5} P+S
$$

Fitted absorption spectra (mixed)

B, P
$k_{\text {fitted }}=0.5$

B, S
$k_{\text {fitted }}=0.5$

Reduced model

Simulated absorption spectra

$$
A(1)+B(0.5) \xrightarrow{k=0.5} P+S
$$

Fitted absorption spectra (mixed)

Add known spectra

$$
A(1)+B(0.5) \xrightarrow{k=0.5} P+S
$$

Simulated absorption spectra

Add known spectra

Simulated absorption spectra
$A(1)+B(0.5) \xrightarrow{k=0.5} P+S$

2 species are dependent

Add known spectra

Simulated absorption spectra

$$
A(1)+B(0.5) \xrightarrow{k=0.5} P+S
$$

2 species are dependent
Let's provide 2 pure spectra : those of B and S

Add known spectra

Simulated absorption spectra

$$
A(1)+B(0.5) \xrightarrow{k=0.5} P+S
$$

2 species are dependent
Let's provide 2 pure spectra : those of B and S
All species are set colored

Add known spectra

Simulated absorption spectra

$$
A(1)+B(0.5) \xrightarrow{k=0.5} P+S
$$

2 species are dependent
Let's provide 2 pure spectra : those of B and S
All species are set colored

Fitted absorption spectra :

$k_{\text {fitted }}=0.5$

Add known spectra

Simulated absorption spectra

$$
A(1)+B(0.5) \xrightarrow{k=0.5} P+S
$$

2 species are dependent
Let's provide 2 pure spectra : those of B and S
All species are set colored

Fitted absorption spectra :
RRESOLVED

Work under semi-batch conditions

Simulated absorption spectra

$$
A+B \xrightarrow{k=0.5} P+S
$$

Work under semi-batch conditions

Simulated absorption spectra

$$
A+B \xrightarrow{k=0.5} P+S
$$

Dose A into B will break the rank deficiency between A and B but not between P and S !!!

Work under semi-batch conditions

Simulated absorption spectra

$$
A+B \xrightarrow{k=0.5} P+S
$$

Dose A into B will break the rank deficiency between A and B but not between P and S !!!

To break both rank deficiencies, one has to dose :

- A and P into B or
- A and S into B or
- B and P into A or
- B and S into A

Work under semi-batch conditions

Simulated absorption spectra

$$
A+B \xrightarrow{k=0.5} P+S
$$

Dose A into B will break the rank deficiency between A and B but not between P and S !!!

To break both rank deficiencies, one has to dose :

- A and P into B or
- A and S into B or
- B and P into A or
- B and S into A

Work under semi-batch conditions

Simulated absorption spectra

$$
A+B \xrightarrow{k=0.5} P+S
$$

Dose A into B will break the rank deficiency between A and B but not between P and S !!!

To break both rank deficiencies, one has to dose :

- A and P into B or
- A and S into B or
- B and P into A or
- B and S into A

Fitted absorption spectra :

$N B$: in practice, one dose A in B or B in A and set one of the two products (P or S) as uncolored. In such case, one spectrum of the two products is unresolved

Second Order Global Analysis

$$
A+B \xrightarrow{k=0.5} P+S
$$

Second Order Global Analysis

$$
A+B \xrightarrow{k=0.5} P+S
$$

Let's make 3 Concentration dependent measurements

	A_{0}	$\mathrm{~B}_{0}$
\# 1	1	1
\# 2	0.5	1
\# 3	1	0.5

Simulated absorption spectra

Second Order Global Analysis

$$
A+B \xrightarrow{k=0.5} P+S
$$

Let's make 3 Concentration dependent measurements

	A_{0}	$\mathrm{~B}_{0}$
\# 1	1	1
\# 2	0.5	1
\# 3	1	0.5

Hypothesis of Global Spectra :
The 3 sets of experiment share the same pure spectra

$$
\begin{array}{|c|}
\hline \mathbf{Y}_{\# 1} \\
\hline \mathbf{Y}_{\# 2} \\
\hline \mathbf{Y}_{\# 3} \\
\hline \mathbf{C}_{\# 2} \\
\hline \mathbf{C}_{\# 3} \\
\hline
\end{array} \begin{array}{|c|c|}
\hline \mathbf{C}_{\# 1} \\
\hline \mathbf{R}_{\text {global }} & +\begin{array}{|c|}
\hline \mathbf{R}_{\# 2} \\
\hline
\end{array} \\
\mathbf{R}_{\# 3} \\
\hline
\end{array}
$$

Second Order Global Analysis

$$
A+B \xrightarrow{k=0.5} P+S
$$

Let's make 3 Concentration dependent measurements

	A_{0}	$\mathrm{~B}_{0}$
\# 1	1	1
\# 2	0.5	1
\# 3	1	0.5

Hypothesis of Global Spectra :

Simulated absorption spectra

Second Order Global Analysis

$$
A+B \xrightarrow{k=0.5} P+S
$$

Let's make 3 Concentration dependent measurements

	A_{0}	$\mathrm{~B}_{0}$
\# 1	1	1
\# 2	0.5	1
\# 3	1	0.5

Hypothesis of Global Spectra :
The 3 sets of experiment share the same pure spectra

Simulated absorption spectra

Fitted absorption spectra :

Second Order Global Analysis

$$
A+B \xrightarrow{k=0.5} P+S
$$

Let's make 3 Concentration dependent measurements

	A_{0}	$\mathrm{~B}_{0}$
\# 1	1	1
\# 2	0.5	1
\# 3	1	0.5

Hypothesis of Global Spectra :
The 3 sets of experiment share the same pure spectra

Simulated absorption spectra

Fitted absorption spectra :

RESOMLVED

End of the Tutorial

That is « already » the end of this Tutorial

Thank you for your attention !

Case study overview

The aims of these case studies are :

- Identify the number of detectable species
- Know the phenomenon of parameter interchange
- Identify and break rank deficiency
- Use residuals for model validation

Using the following techniques:

- PCA
- EFA
- ALS
- Hard-modeling

On simulated data from different types :

- Spectroscopy
- Calorimetry

Under batch and semi-batch conditions

- $A \xrightarrow{k=0.5} P$
- $A \xrightarrow{k_{1}=0.5} B \xrightarrow{k_{2}=0.3} P$
- $A+B \xrightarrow{k=0.5} P$
- $A+B($ dosed $) \xrightarrow{k=0.5} P$
- $A+B($ dosed $) \xrightarrow{k_{1}=10} C$ $B($ dosed $)+C \xrightarrow{k_{2}=5} P$

Case study 1

Mechanism : $A \xrightarrow{k=0.5} P$
Signal
: Spectroscopy
Process
: Batch
Conversion
: 99\%

- PCA/EFA
: 2 species \Rightarrow Full rank
- ALS
: Easily resolved
with non-negativity constraint
- Hard-modeling $: k$ does not depend on $\mathrm{c}_{0}(\mathrm{~A})$ for a $1^{\text {st }}$ order reaction

Case study 2

Mechanism : $A \xrightarrow{k=0.5} P$
Signal
: Spectroscopy
Process
: Batch
Conversion
: 63\%

- PCA/EFA
: 2 species \Rightarrow Full rank
- ALS
: Resolved under constraints
with non-negativity constraint and known spectrum of P
- Hard-modeling $: k$ does not depend on $\mathrm{c}_{0}(\mathrm{~A})$ for a $1^{\text {st }}$ order reaction

Case study 3

Mechanism	$: A \xrightarrow{k=0.5} P$
Signal	$:$ Calorimetry
Process	$:$ Batch
Conversion	$: 99 \%$

- PCA/EFA/ALS : NA
- Hard-modeling $: k$ does not depend on $c_{0}(A)$ for a $1^{\text {st }}$ order reaction

Case study 4

Mechanism
: $A+B \xrightarrow{k=0.5} P$
Signal
: Spectroscopy
Process
: Batch

Fitted mechanism: $A \longrightarrow P$

- PCA/EFA
: 2 species \Rightarrow Full rank
- ALS
: Apparently resolved under constraints with non-negativity constraint and known spectrum of P
- Hard-modeling : $1^{\text {st }}$ order mechanism is wrong!

Case study 5

Mechanism : $A \xrightarrow{k_{1}=0.5} B \xrightarrow{k_{2}=0.3} P$
Signal
Process
: Spectroscopy
: Batch
Conversion
: 99\%

- PCA/EFA
: 3 species \Rightarrow Full rank
- ALS
: Resolved under constraints
with non-negativity constraint and known spectrum of B
- Hard-modeling : Parameter interchange
k_{1} and k_{2} swap depending on the initial guess

Case study 6

Mechanism : $A \xrightarrow{k_{1}=0.5} B \xrightarrow{k_{2}=0.3} P$
Signal
Process
Conversion
: Spectroscopy
: Batch
: 77\%

- PCA/EFA
- ALS
: 3 species \Rightarrow Full rank
: Hardly resolved
with non-negativity constraint and known spectrum of B and P
- Hard-modeling
: Parameter interchange
k_{1} and k_{2} swap depending on the initial guess

Case study 7

Mechanism : $A \xrightarrow{k_{1}=0.5} B \xrightarrow{k_{2}=0.3} P$
Signal
: Calorimetry
Process
: Batch
Conversion
: 99\%

- PCA/EFA/ALS : NA
- Hard-modeling : 1. Less robust than multivariate fitting

2. Parameter interchange

Case study 8

$$
\begin{array}{|ll}
\hline \text { Mechanism } & : A \xrightarrow{k_{1}=0.5} B \xrightarrow{k_{2}=0.3} P \\
\text { Signal } & \text { : Spectroscopy } \\
\text { Process } & \text { : Batch } \\
\text { Fitting } & : \text { Univariate }(\lambda=400) \\
\hline
\end{array}
$$

- PCA/EFA/ALS : NA
- Hard-modeling : 1. Less robust than multivariate fitting

2. Parameter interchange

Case study 9

> | Mechanism | $: A \xrightarrow{k_{1}=0.5} B \xrightarrow{k_{2}=0.3} P$ |
| :--- | :--- |
| Signal | : Spectroscopy |
| Fitting | : Univariate $(\lambda=400)$ |

Fitted mechanism: $A \longrightarrow P$

- PCA/EFA/ALS : NA
- Hard-modeling : 1. Less robust than multivariate fitting

2. Parameter interchange
3. Structured residuals
\Rightarrow The model is slightly wrong but hard to validate at this single wavelength

Case study 10

Mechanism : $A+B \xrightarrow{k=0.5} P$
 Signal
 : Spectroscopy
 Process
 : Batch
 Colored species : A and P (model reduction)

- PCA/EFA $\quad: 2$ species \Rightarrow Rank deficiency
- ALS
: NA
- Hard-modeling : Species B set as non-absorbing
$\Rightarrow 1 . k$ is correct

2. The fitted pure spectra are wrong (linear combinations of the true pure spectra)

Case study 11

> | Mechanism | $: A+B \xrightarrow{k=0.5} P$ |
| :--- | :--- |
| Signal | $:$ Spectroscopy |
| Process | $:$ Batch |
| Known spectrum : Species B | |

- PCA/EFA
- ALS
- Hard-modeling
: 2 species \Rightarrow Rank deficiency
: NA
: The pure spectrum of B is provided
$\Rightarrow 1 . k$ is correct

2. The fitted pure spectra are resolved

Case study 12

Mechanism : $A+B($ dosed $) \xrightarrow{k=0.5} P$
Signal
: Spectroscopy
Process
: Semibatch
Conversion
: 68\%

- PCA/EFA
: 3 species \Rightarrow Full rank
- ALS
: Resolved under strong constraints
non-negativity constraint and known spectrum of B and P !
- Hard-modeling : The pure spectra are resolved

Case study 13

> | Mechanism | $: A+B($ dosed $) \xrightarrow{k=0.5} P$ |
| :--- | :--- |
| Signal | $:$ Calorimetry |
| Process | $:$ Semibatch |
| Conversion | $: 68 \%$ |

- PCA/EFA/ALS : NA
- Hard-modeling : Fitting calorimetric data is more robust in semibatch than in batch conditions !

Case study 14

$$
\begin{array}{ll}
\text { Mechanism }: & A+B(\text { dosed }) \xrightarrow{k_{1}=10} C \\
& B(\text { dosed })+C \xrightarrow{k_{2}=5} P
\end{array}
$$

Signal
Process

- PCA/EFA
- ALS
: 4 species \Rightarrow Full rank
: Spectroscopy
: Semibatch
: Resolved under very strong constraints non-negativity constraint and known spectrum of B, C and P !
- Hard-modeling : The pure spectra are resolved

Case study 15

$$
\begin{array}{ll}
\text { Mechanism }: & A+B(\text { dosed }) \xrightarrow{k_{1}=10} C \\
& B(\text { dosed })+C \xrightarrow{k_{2}=5} P
\end{array}
$$

Signal Process

: Calorimetry
: Semibatch

- PCA/EFA/ALS : NA
- Hard-modeling : Fitting calorimetric data conditions is more robust in semibatch than in batch conditions !

Summary on the Case studies (1)

- PCA/EFA
- These two techniques provide information on the number of observable species and therefore the maximum rank of \mathbf{Y}
- ALS
- Non-negativity constraint alone only resolves $\quad A \rightarrow P$
- Pure spectra of the products are required if they are not fully formed
- Pure spectra of the intermediates are generally required for complete resolution
- Without a priori knowledge on mechanisms and/or spectra, rank deficiency is undetectable

Summary on the Case studies (2)

- HARD-MODELING

BATCH CONDITIONS

- Multivariate fitting of spectrocopy data is more reliable than univariate fitting
- Fitting of calorimetric data is not very stable in batch conditions
- Rank deficiency due to the model can be easily broken by :
- Model reduction (some species are set non-absorbing)

Fitted pure spectra are wrong (linear combination of the true ones)
but nonlinear parameters are correct !

- Known spectra provided

Fitted pure spectra and nonlinear parameters are in this case both correct

SEMIBATCH CONDITIONS

- Fitting of calorimetric data is more robust in semibatch conditions
- The dosing completely breaks simple rank deficient problems and partially highly complex mechanisms (eg. 2 intermediates, 2 products ...)

FIRST ORDER MECHANISMS

- With $1^{\text {st }}$ order mechanisms, rates are independent on initial concentrations and rate constants can swap without differences in fitting (Parameter Interchange)

Appendix 1 : List of the Matlab files

\#	Simulated Mechanism	Fitted mechanism	Process	Model rank	Rank deficiency	Conversion	Fitted signal	Fitting	PCA / EFA	ALS	Hard-modeling	File
1	A -> P	same	Batch	2	No	99.3\%	Spec	Multivariate	2	[>0]	$\begin{aligned} & \mathrm{C}_{0}(\mathrm{~A})=1 \text { and } \\ & 10 \end{aligned}$	main_AtoP_X99
2	A \rightarrow P	same	Batch	2	No	63.2\%	Spec	Multivariate	2	[$>0, \mathrm{P}$]	NA	main_AtoP_X60
3	A \rightarrow P	same	Batch	2	No	99.3\%	Cal	Univariate	NA	NA	NA	main_AtoP_cal
4	$A+B \rightarrow P$	A \rightarrow P	Batch	2	Yes	90.9\%	Spec	Multivariate	2	NA	Structured residuals	main_ApBtoP_1st_order
5	$A \rightarrow B \rightarrow P$	same	Batch	3	No	99.9\%	Spec	Multivariate	3	[$>0, B$]	Swap of k's	main_AtoBtoP_X99
6	$A \rightarrow B \rightarrow P$	same	Batch	3	No	77.7\%	Spec	Multivariate	3	$[>0, B, P]$	NA	main_AtoBtoP_X75
7	$A \rightarrow B \rightarrow P$	same	Batch	3	No	99.9\%	Cal	Univariate	NA	NA	Less robust than Case 5	main_AtoBtoP_cal
8	A \rightarrow B \rightarrow P	same	Batch	3	No	99.9\%	Spec	Univariate	NA	NA	Less robust than Case 5	main_AtoBtoP_univar1
9	$A \rightarrow B \rightarrow P$	$A \rightarrow B$	Batch	3	No	99.9\%	Spec	Univariate	NA	NA	Structure in the residuals	main_AtoBtoP_univar2
10	$A+B->$	same	Batch	2	Yes	90.9\%	Spec	Multivariate	2	NA	B not absorbing	main_ApBtoP_batch
11	$A+B \rightarrow P$	same	Batch	2	Yes	90.9\%	Spec	Multivariate	2	NA	Pure spectrum of B provided	main_ApBtoP_batch_Bknown
12	A +B (dosed) $->$ P	same	Semibatch	3	No	68.2\%	Spec	Multivariate	3	[$>0, B, P$]	NA	main_ApBtoP_semi_Y
13	$\mathrm{A}+\mathrm{B}$ (dosed) \rightarrow P	same	Semibatch	3	No	68.2\%	Cal	Univariate	3	NA	NA	main_ApBtoP_semi_cal
14	$\begin{aligned} & \mathrm{A}+\mathrm{B}(\text { dosed }) \rightarrow \mathrm{C} \\ & \mathrm{~B}(\text { dosed })+\mathrm{C} \rightarrow \mathrm{P} \end{aligned}$	same	Semibatch	4	No	99.8\%	Spec	Multivariate	4	[$>0, B, C, P$]	NA	main_ApBtoC_BpCtoP_semi_Y
15	$\begin{aligned} & A+B(\text { dosed })->C \\ & B(\text { dosed })+C-P \end{aligned}$	same	Semibatch	4	No	99.8\%	Cal	Univariate	4	NA	NA	main_ApBtoC_BpCtoP_semi_cal

[^0]: \% combined SV curves
 $C=m i n\left(E F A _f(:, 1: n c), f l i p l r\left(E F A _b(:, 1: n c)\right)\right)$;

[^1]: Is there a way to switch progressively from one method to the other?

