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Kinetic Data Structures

» Spectroscopy: Beer’s law in elegant matrix notation, absorbance
(Y) is proportional to the concentrations (C)
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» Calorimetry: heat release (q) is proportional to the change in the
reaction extent (d§/dt)
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Kinetic Data Structures

» Spectroscopy: Beer’s law in elegant matrix notation, absorbance
(Y) is proportional to the concentrations (C)
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Soft Modelling (Part 1)

e Modelling experimental kinetic data
based only on simple ‘a priory’
knowledge on the data structure
and the results

— Multivariate (multi wavelength
spectroscopic) data and linear

dependence of concentrations and
data signal (Beer’s law)

e non-negativity of concentrations
and species spectra

e closure, unimodality, etc

e cannot be applied to calorimetry
data (power signal is univariate)
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Soft Modelling (Part 1) Hard Modelling (Part 2)

e Modelling experimental kinetic data e Modelling experimental kinetic data
based only on simple ‘a priory’ based on a parameterised physical-
knowledge on the data structure chemical ‘hard’ model
and the results e rate law defines the concentration

- Multivariate (multi wavelength profiles of the contributing species
spectroscopic) data and linear as a function of the rate constants

dependence of concentrations and : _
data signal (Beer’s law) e applicable to both, calorimetry &

e non-negativity of concentrations speqtros_copy (unlva”ate &
and species spectra multivariate)
e closure, unimodality, etc

e cannot be applied to calorimetry
data (power signal is univariate)
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Part 1: Soft Modelling



Soft Modelling of Spectroscopic Kinetic Data
S

Topics

Absorption spectroscopy
— Beer’s law in elegant matrix notation (Y = C x A)
— Non-unique factorisation of Y / rotational ambiguity
Principal Component Analysis (PCA)
- Abstract Factor analysis (AFA) by Singular Value Decomposition (SVD)
— Chemical rank of the measurement matrix
— The number of absorbing species
Evolving Factor Analysis (EFA)
- Evolutionary rank analysis by repeated SVD of sub matrices of Y
- The ‘Appearance’ & ‘Disappearance’ of absorbing species
Multivariate Curve Resolution by Alternating Least-Squares (MCR-ALS)
— Model-free iterative decompositionof Y =C x A+ R
- ldeas, principles, limitations



Absorption Spectroscopy — Beer’s Law

cuvette

Absorbance y at wavelength A: | intensity
I I
= — I 0
yk log (ﬁo )x > >
«— ] —>
path length

e Absorbance signal y, is linearly dependent on contr

ibuting species

concentrations c,, the corresponding coefficients are the molar
absorptivities a, , that form the pure species spectra

For

simplicity:

NC
Beer’s Law: Y = Z Ckak,k X1 path length (=1

k=1



Beer’s law in elegant matrix notation
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Rotational Ambiguity
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e.g. A>B->C
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Rotational Ambiguity
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e.g. A>B->C

time 0 400

wavelength

Goal: Find concentration profiles C and species spectra A such that
the residuals R=Y-CA become small only using a ‘soft model’, i.e. by
linear factorisation




Rotational Ambiguity
c . ]

e.g. A>B->C

time 0 400

wavelength

Goal: Find concentration profiles C and species spectra A such that
the residuals R=Y-CA become small only using a ‘soft model’, i.e. by
linear factorisation

Problem: Factorisation is not unique (rotational ambiguity)




Major Soft-Modelling Classes

e By using appropriate ‘soft’ restrictions on C and A, e.g. non-negativity,
windows of existence, closure, unimodality, known spectra, the number of
possible solutions can be reduced sometimes can even lead to a unique

solution for C & A



Major Soft-Modelling Classes
]

e By using appropriate ‘soft’ restrictions on C and A, e.g. non-negativity,
windows of existence, closure, unimodality, known spectra, the number of
possible solutions can be reduced sometimes can even lead to a unique

solution for C & A
e There are 2 major classes

Factor Analysis Y=USV=UTT 'SV=CA
(AFA) based Find T such that
C=UT,and A=T 'SV

Alternating Least Start from some guessed C,
Squares (ALS) based then recalculate A and C until satisfied:

A=(C'Cc)'Cc'Y=C"'Y ~N
C=YA'(AA')' =YA" \ Y/
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Principal Component Analysis (PCA)
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e One very well defined solution is the one received from Abstract Factor
Analysis (AFA) using Singular Value Decomposition (SVD)
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Principal Component Analysis (PCA)

e One very well defined solution is the one received from Abstract Factor
Analysis (AFA) using Singular Value Decomposition (SVD)
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U

S

\"

A
US Vv N/1 = | C
in Matlab:

[U,S,Vt]=svd(Y,0) ;




Principal Component Analysis (PCA)
c . ]

e One very well defined solution is the one received from Abstract Factor
Analysis (AFA) using Singular Value Decomposition (SVD)

N, N, N, N, N, N, N, N,
A
N Y |=| U S V |[N, =| US V [N, =|C
in Matlab:
e Some properties of U, S and V [U,S,Vt]l=svd(Y,0);
YY'U=UA

columns of U (rows of V) are eigenvectors of YY! (YY)

Y'YV =VA | | o _
S is a diagonal matrix with the square root of their

2
A=S eigenvalues
u'u=vv'=1 U and V! are orthonormal
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Chemical rank — number of absorbing species

e Eigenvectors in U (columns) and V (rows) are arranged in decreasing
order of magnitude of their corresponding singular values in S
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e Eigenvectors in U (columns) and V (rows) are arranged in decreasing
order of magnitude of their corresponding singular values in S

e Many of them just represent ‘noise’ and can be neglected; the
significant ‘factors’, the Principal Components, are retained inU andV
and form ‘abstract’ concentration profiles and spectra
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Chemical rank — number of absorbing species

e Eigenvectors in U (columns) and V (rows) are arranged in decreasing
order of magnitude of their corresponding singular values in S

e Many of them just represent ‘noise’ and can be neglected; the
significant ‘factors’, the Principal Components, are retained inU andV
and form ‘abstract’ concentration profiles and spectra

e The diagonal elements of S, the singular values, can be seen as
normalisation coefficients for U or V
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Chemical rank — number of absorbing species

e Eigenvectors in U (columns) and V (rows) are arranged in decreasing
order of magnitude of their corresponding singular values in S

e Many of them just represent ‘noise’ and can be neglected; the
significant ‘factors’, the Principal Components, are retained inU andV
and form ‘abstract’ concentration profiles and spectra

e The diagonal elements of S, the singular values, can be seen as
normalisation coefficients for U or V

N, N, N, N, N, N, N, N
B} S v [N, [ |[L¥v v A
N| Y |=|0 - [US ~ |C

* The number of significant singular(eigen) values and —vectors is the
chemical rank of Y and a 15t estimate on the number of absorbing species




absorbance

Chemical rank — number of absorbing species

e.g. A>B->C
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Chemical rank — number of absorbing species
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The noise level in the data matrix Y determines the drop in the magnitude
from significant to insignificant singular values




Chemical rank — number of absorbing species

-0.4

0 0 a0 ED 50 100

-0.4

0 20 a0 EO 50 100

The noise level in the data matrix Y also determines
the remaining noise in the significant singular vectors

The signs of the singular vectors can interchange
between U and V)
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e e.g. 2 species, A> B

e the (significant) eigenvectors v, . and
v, . form an orthonormal base in the
same ‘plane’ as the pure species
spectraa, . and a, .
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Geometric interpretations

® e.g. 2 species, A> B

e the (significant) eigenvectors v, . and
v, . form an orthonormal base in the
same ‘plane’ as the pure species
spectra a, . and a, .

Yi,: = (l—lg)l,‘—’ ~ C; A

i,

i1
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Some noise reduction

Y =

Y +

PCA—Z“ SVt Z . iS5V,

Jj=N_+1

Vl,
Yi,:

_ noise
real noise [ removed
Ytruei .

. J
noise left Y.

plane v, , v, .

ZC kak +Rnozse
k=1



Some noise reduction

Y=Y+Rp, = Z“ S; iV T Z u. 8V chak + R ise
k=1

Jj=N_+1
v&;
) noise
real noise /' removed
Ytruei:
. J
noise left Y.. plane v, , v,
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the number of its significant singular vectors
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e the chemical rank of the spectral data matrix Y is determined by
the number of its significant singular vectors

e the number of significant singular vectors of Y is determined by
the number of linearly independent columns or rows in the matrix

of pure species spectra (A) and corresponding concentration
profiles (C)



More precise statements on the chemical rank

e the chemical rank of the spectral data matrix Y is determined by
the number of its significant singular vectors

e the number of significant singular vectors of Y is determined by
the number of linearly independent columns or rows in the matrix
of pure species spectra (A) and corresponding concentration
profiles (C)

e linear dependencies in C due to the kinetic model are common
and sometimes difficult to predict (e.g. A+B->C)



More precise statements on the chemical rank

e the chemical rank of the spectral data matrix Y is determined by
the number of its significant singular vectors

e the number of significant singular vectors of Y is determined by
the number of linearly independent columns or rows in the matrix
of pure species spectra (A) and corresponding concentration
profiles (C)

e linear dependencies in C due to the kinetic model are common
and sometimes difficult to predict (e.g. A+B->C)

e linear dependencies in A are less common
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e indicates the rise of new singular vectors and thus gives an
estimate for the appearance & disappearance of new absorbing
species
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— Species appear & disappear sequentially



Evolving Factor Analysis (EFA)
|

e sequential rank analysis of the data matrix along its time domain
by repeated SVD

e can be performed in a forward and backward way

e indicates the rise of new singular vectors and thus gives an
estimate for the appearance & disappearance of new absorbing
species

e ideally designed to follow chromatography experiments

— Species appear & disappear sequentially

e capable of roughly following kinetic profiles
— Species can appear & dissappear simultaneously



Evolving Factor Analysis (EFA)
|

Forward EFA

N,

* Repeated rank analysis by SVD in forward direction
» The appearance of a new ‘species’ is indicated by a
gradual rise of a new singular value



Evolving Factor Analysis (EFA)
]

Chromatography
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Forward EFA
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Evolving Factor Analysis (EFA)
|

Backward EFA

N-i+1 Sy

» Repeated rank analysis by SVD in backward direction
* A ‘disappearing species’ is indicated by a gradual rise of a new singular value



Evolving Factor Analysis (EFA)
]

Backward EFA

2xlO ‘ ‘ ‘ ‘
Matlab script using a function for O
forward/backward EFA €1 \ ]
(8]
[t,lam,Y,C,A] =Data Chrom2; \\
[ns,nc] =size (C) ; 0 = —
ne=nc+1; % one extra sing. wval. ° 80 100
[EFA_f,EFA b]=EFA (Y, ne) ; 2
function [EFA f,EFA b]=EFA(Y,ne) G R |
[ns,nl]=size (Y) ; 5’-2 ————— \v————Q:i;zié;Qf
EFA f=NaN (ns,ne) ;
EFA b=NaN (ns,ne) ; “o 20 40 60 80 100
for i=1:ns
s f=svd(Y(1:1,:)); % forward sv 4
s _b=svd(Y(ns-i+1l:ns, :)) ; % backward sv R
EFA f(i,1:min(i,ne))=s f£(1l:min(i,ne))"'; § 2 scccsooenx A
EFA b(ns-i+l,1:min(1,ne))=s b(l:min(i,ne)) '; | | s
end 0 ‘ ‘ ‘ ‘
0 20 40 60 80 100




Evolving Factor Analysis (EFA)
]

Forward and backward EFA

log(s
o f) conc.

Iog(sb)

conc. window

x 10
7N
\

0 80 100

_ e
0 20 40 60 80 100
0 20 40 60 80 100

,,,,,,, T T T
%Il .
0 20 40 60 80 100
time

Combined forward/backward EFA results can
be used as reasonable initial guesses of
concentration profiles for subsequent iterative
refinement e.qg. by ALS

concentraion

80 100




Evolving Factor Analysis (EFA)
]

A->B

Iog(sb) Iog(sf) conc.
o o

conc. window
H

 Combined forward/backward EFA results are

—->C, Forward and backward EFA :
not as accurate as in chromatography
£ 10° regarding the appearance and disappearance
=TT of species
ST T « But they can still be used as initial guesses
% 20 40 60 80 100 of concentration profiles for subsequent
| | | | iterative refinement e.g. by ALS
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Multivariate Curve Resolution by Alternating Least- -
Squares (MCR-ALS)

Initial guess for C

\4

~

A=C*'Y

Corrections to A — A

C=YA"
® COﬂCeptua”y very CorrectionstoC —» C
simple |
R=Y-CA
y

> do
something

SSqnew > =< Ssqold
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Multivariate Curve Resolution by Alternating Least-
Squares (MCR-ALS)

Initial guess for C

»
)

Corrections to A — A

® COﬂCeptua”y very CorrectionstoC —» C
simple |
R=Y-CA
y

> do
something

Ssqnew > =< SSqold
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R=Y-CxA The residuals R are a function of Y
and the two linear parameters C &
A



S
The pseudo inverse and the linear least-squares solution

Y=CxA+R R=f(Y, C, A)

R=Y-CxA The residuals R are a function of Y
and the two linear parameters C &
A

1) Y & C known:  min|szr’(A)
R is minimal in the least squares sense if

A=(C'C)'C'xY=C"xY



S
The pseudo inverse and the linear least-squares solution

Y=CxA+R R=f(Y, C, A)

R=Y-CxA The residuals R are a function of Y
and the two linear parameters C &
A

1) Y & C known:  min|szr’(A)
R is minimal in the least squares sense if

A=(C'C)'C'xY=C'xYy  Matlab: 2 =-CAX
to use the left pseudo inverse of C



S
The pseudo inverse and the linear least-squares solution

Y=CxA+R R=f(Y, C, A)

R=Y-CxA The residuals R are a function of Y
and the two linear parameters C &
A

2) Y & A known:; minHZerj(C)H
R is minimal in the least squares sense if

C=YxA'AA") ' =Y xA"



S
The pseudo inverse and the linear least-squares solution

Y=CxA+R R=f(Y, C, A)

R=Y-CxA The residuals R are a function of Y
and the two linear parameters C &
A

2) Y & A known:; minHZerj(C)H
R is minimal in the least squares sense if

C=YxA'(AA")'=YxA*  Matlab: C =Y /2
to use the left pseudo inverse of C



Multivariate Curve Resolution by Alternating Least-

Squares (MCR-ALS)

for it=1:100
C=norm max (C) ; % normalisation

[C,A] =constraints nonneg(Y,C) ;
R=Y-C*A; % residuals

ssg(it)=sum(sum(R.*R)) ;
end

Normalisation to the maximum in each conc. profile

C | = C>< and

A->B->C

constraints: C, A >0

" diag(max(C))*

A  =diag(max(C))x A

function [Cn,An]=norm max(C,A)

coef=1./max (C) ; % norm coeff
Cn=C*diag (coef) ; % apply to C
if nargin==
An=diag(l./coef)*A; % apply inv coeff to A
end

function [C,A]l=constraints nonneg(Y,C)

o\°

pos spectra (Andersson)
pos conc. (Andersson)

A=nonneg (Y',C')"';
C=nonneg (Y, A) ;

o\°

é\ ° : e%e N
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time
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5 ssq =22 7
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iteration



Multivariate Curve Resolution by Alternating Least-
Squares (MCR-ALS)

A->B->C
constraints: C, A >0, known spectrum of B

1 Ad \.— T
> < \}}\ A
>
for it=1:100 2 05 . |
C=norm max (C) ; % normalisation 2 . .
g eees
. . 0 T e e ees? | he LS
[C,A] =constraints known spec B(Y,C,A sim); 400 450 500 550 600
wavelength
R=Y-C*A; % residuals 1
(it) =sum (sum(R.*R) ) s C
ssqg(it) = . H S /“,
end 8 ) N
§ 0.5 [ \\\ :
function [C,A] = = ’,,’ P
constraints nonneg known spec B(Y,C,A sim) C 0 b ‘ B————
0 20 40 60 80 100
.
A=nonneg(Y',C')'; % pos spectra (Andersson) me
A(2,:)=A sim(2,:); % known spectrum of B
C=nonneg (Y,A) ; % pos conc. (Andersson) = -1r i
3 -15 2 ]
fus ssq= L 37,

20 40 60 80 100
iteration



Multivariate Curve Resolution by Alternating Least-
Squares (MCR-ALS)

A>B->C
constraints: C, A >0, known spectrum of A & C

2 0.8; 1
=
§ 0.6>< % A i
S 0.4 e P :
< 02 . 1
oo oa®? | ° LA o
400 450 500 550 600
wavelength
1 pp——_____
c
o
g - C
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time
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Multivariate Curve Resolution by Alternating Least-

Squares (MCR-ALS)

for it=1:100
C=norm_closure(C, [],c_tot); % norm. C to Ctot

[C,A]l =constraints nonneg known spec B(Y,C,A sim) ;

R=Y-C*A; % residuals
ssq(it)=sum(sum(R. *R) ) ;

end

[C_ n,A n]=norm closure(C,A,c_tot);

Normalisation to the total conc. (c,=[A]+[B]+[C]=[A],)

— coef =C' xc¢
C | coef tot
Ciot
% d
an
= |C . _

Cn _ A_ =diag(coef) ' xA

diag(coef)

function [Cn,An]=norm closure(C,A,c tot)

coef=C\ (ones(size(C,1),1)*c_tot); % norm. coeff.
Cn=C*diag (coef) ; % apply to C
if ~isempty (R)

An=diag(1l./coef) *A; % apply inv. to A

end

A->B->C
constraints: C, A >0,
known spectrum of B, closure

>1 |
e
§ . ha e
m 6 _
N S ‘
400 450 500 550 g
Wave|ength
-3
X 10
e 1 e
8 - |
E 05/
o )
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| o
8 =
0 20 40 60 - )
time
~— _1 \
g 2
& -15¢ | .'
o SS8q z z rl’J
= -2+
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Multivariate Curve Resolution by Alternating Least-

Squares (MCR-ALS)

A>B->C
constraints: C, A >0, known spectrum of B & C

As full conversion is not reached

for intermediate B and product C,
corresponding known spectra are
required for full resolution !

absorptivity

2 @ ¢
(N

concentration

log(ssq)

0.8

o O
~ O =
L

500
wavelength

20

40 60
time

80 100

ssq= ).

20

40 60
iteration

80 100



Conclusions: ‘Soft’-Modelling

e Advantages

— No prior knowledge on the
chemical system required

— Estimation of the number of linearly
dependent absorbing species and
their approximate evolution from
PCA, EFA & ALS

— Info for the development of a ‘hard’
model

— ‘Better than nothing’

e Drawbacks
— No physical model

— No predictions for other exp.
conditions possible

— Uniqueness of the result is rarely
given and difficult to validate
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e You follow the reaction between BuOH and the
Acetic Acid in the IR range and you get the
following absorbance profile :

% 0.6 | - How can the rate constant be
extracted from this profile ?
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§ 0.8
You integrate the set of differential equations Sos
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+CBuOA(t7 k)'£BuOA,1+CHA (t’ k)'gHA,l

You find k that best approximate the measured abs,(t) in the
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CALIBRATION

INTEGRATION OF THE
KINETIC MODEL

You apply Beer’s law at one wavelength
abs, (t) = Cguon (t’ k) "Eguon 1 TCaa s (t' k) “Epni
+ Cguon (tv k) "Epuoa i +Cia (t’ k) “Enai

You find k that best approximate the measured abs,(t) in the
least squares sense
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CALIBRATION .
14 e
INTEGRATION OF THE Bos|
KINETIC MODEL g 041
0.2+
APPLICATION OF BEER’S LAW > g 1500
IN A UNIVARIATE FORM A e EvRNTESEE

(= ONE WAVELENGTH)

You find k that best approximate the measured abs,(t) in the
least squares sense
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(= NONLINEAR OPTIMISATION)
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UNIVARIATE approach

>

CALIBRATION

INTEGRATION OF THE
KINETIC MODEL

APPLICATION OF BEER’S LAW
IN A UNIVARIATE FORM
(= ONE WAVELENGTH)

FITTING
(= NONLINEAR OPTIMISATION)

KINETIC HARD-MODELING !!!

T

71500
2500
x10 . 1
time [s] wavenumber [cmi ']

Question :
Which wavelength do you follow ?
What about the rest of the spectrum ?




WITH A
MULTIVARIATE APPROACH
THE WHOLE SPECTRUM IS

USED TO FIT k
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Presentation of a typical kinetic-modeling algorithm

The following topics will be addressed :

e Typical fitted signals
- Multivariate Spectroscopy (Beer’s law)
- Univariate Calorimetry

e Generalisation of the Rate Law
e Numerical integration
e Separation of parameters

e Newton-Gauss method

Two common problems will also be treated :

1. Divergence problems (Levenberg-Marquardt modification)

2. Rank deficiency (methods of annihilation)
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e Spectroscopy (IR, UV, Raman, fluorescence ...)

nt C nt Rspec

ni nc nA nA -
= X A nc + 44 e ,
nt %0.3- . f
g oo,
e | . )

Measurement — ...
(Multivariate) . 2 2500
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SPECTROSCOPY and CALORIMETRY
.

e Spectroscopy (IR, UV, Raman, fluorescence ...)

ni nA

nc nA
nt nt nt
Y Rspec

Physical model
(Beer’s law)

o
e
n

o
o

=4
w

entration [mol/L]

o
=

absorptivity [L/mol)

=]
(=
&




SPECTROSCOPY and CALORIMETRY
.

e Spectroscopy (IR, UV, Raman, fluorescence ...)

ni nc ni ni
= X A nc + o0
nt nt nt 0.005
Y C N
-0.005 4
-0.014
Unmodelled effects s ==
(Matrix) x10° z S 2500
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e Spectroscopy (IR, UV, Raman, fluorescence ...)
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e Calorimetry
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SPECTROSCOPY and CALORIMETRY

e Spectroscopy (IR, UV, Raman, fluorescence ...)

ni nA

nc nA
W = - X l A nc + -
nt Y nt nt R

spec

e Calorimetry

1 np 1 1 6
5
= X |:| np + )
nt nt nt Z;
(—AHg) i
|
q d&mol Feal o

dt

Measurement

(Univariate)




SPECTROSCOPY and CALORIMETRY

e Spectroscopy (IR, UV, Raman, fluorescence ...)

ni nA

nc nA
W = - X l A nc + -
nt Y nt nt R

spec

e Calorimetry

14

1 np 1 1 i
= X l| np + z '
nt nt (A nt § 5 x 43 kd/mol
q d&mol Feal a: .
dt 1 15 2 25 3

Physical model
(Reaction heat balance)



SPECTROSCOPY and CALORIMETRY
.

e Spectroscopy (IR, UV, Raman, fluorescence ...)

ni nA

nc nA
W = - X l A nc + -
nt Y nt nt R

spec

e Calorimetry

[

! np ! o]

| !
= X |:| np + o |

5 002 1 b kK et Ena o g bl ma

nt nt g ol l.l-l.w iil'll,Ji'lll-ll'h! A I.Illl;r-lrls_ |I Iillll|ll|"-|‘1-,IIL:I..l llI hl r|.'I |

(—AH R) «7-0.02

=0.04 |

~0.06 |

q d&mol Feal ~0.08 |

PR -01 . .

dt 0 05 1. §E 02 1@ 3
ttttttt X'qu

Unmodelled effects
(Vector)



SPECTROSCOPY and CALORIMETRY
.

e Spectroscopy (IR, UV, Raman, fluorescence ...)

ni nA

nc nA
w = - X l A nc + -
nt Y nt nt R

spec

e Calorimetry
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e The residuals are defined as the difference between the
measurement and the model

Rspec:Y_C'A rcal:q_%.(_AHR)

e As the mass balance partis:

C = f (model, p) i

= g(model, p)

dt

e The optimisation problem is :
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C
0 0
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B
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Setup the kinetic model

A+B—55C

2C —% D

Rate laws

X, =

A B C D

0 1 0

0 1
for1=1.1p

X=Xp—Xg =

ki

1 -1 1 0
0 0 -2 1
r.1 - kl[A]t [B]t

r2 = I‘(2 : [C]tz




Setup the kinetic model

A+ B#C X.= ki tlrjofol], — X=k ol 1]0 X=Xp=Xg= ki
°C kZD k20020pk20001 K,
nc X
Rate laws £ = kj HC. = for j=1:np
i=1
. (e O .
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Setup the kinetic model

A+B—55C
2C —% D

Rate laws

Derivatives

X, =

nc
i :ijCer“ for j=1:np
i
g « .
E:ZX“ r for | —1:nc
=1

X=Xp—Xg =

ki

— Numerical integration

Most of the time : no analytical solution for this system of ODEs
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Dosing events

A+B—sC

2C —f2 5D

Rate laws

In case of dosing, the set of ODEs

is modified accordingly :

ns
. X i
r=k]]c
i=1

o =11p




Dosing events

A+B—sC
2C —f D

ns
Xr',i
Rate laws r :kjl_[(‘,I J
i=1
np
Derivatives %: ZX“'r' +E
dt . .
dVv
. |
dt

In case of dosing, the set of ODEs
is modified accordingly :

ar -1
(leeed_Cl)
or |1 ne

r2 = k2 : [C]t
s )
S (1o 01)
d[c] F




Dosing events

A+B—sC

2C —f2 5D

Rate laws

Derivatives

In case of dosing, the set of ODEs
is modified accordingly :

r klle for j=1:np
=1

at for1 —1 nc

The dosing event adds an additional ODE
and a term to the ODEs of all species

F ,
NB : +\7- A, = added material
t

—V- A = dilution phenomenon

t



Numerical integration of the model

e First Approach : Euler’s method
dc

q(t+At)zq(t)+£El-At
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e First Approach : Euler's method
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Numerical integration of the model

e First Approach : Euler's method

¢ (t+At)=c (t){%l At

A+B——C

Applied to our specific example without dosing e D

] ~[c] +[d €], j At

dt

=[C], +(k-[A],-[B], -k, [C])-At

e Nowadays, more sophisticated integration methods exist
(e.g. ode45) with a stepsize control
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Stepsize control and stiff problems

e In stepsize controlled ODE solvers, the stepsize is
adjusted at each step to meet the user-specified accuracy

e The accuracy is measured with absolute (AbsTol) and relative (RelTol)
tolerance’s values.

x107*

e [For some kinetic models, the slopes Tous
of the concentration profiles are T s e
dramatically different (stiff problem) - T e 2
and require the use of a g s
stiff ODE solver (eg. ode15s) = Joor =

Time (s)

Gemperline, P. (2006). Practical Guide to Chemometrics (2nd edition),
Taylor and Francis, Boca Raton, USA.
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ODE SOLVER
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Calculation of
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NEWTON-
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Newton-Raphson
function
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Linear and Nonlinear parameters

GENERAL CONSIDERATION

e If S(p) is a measured signal depending on the parameters vector p

. S(p)|
Linear parameters are defined as: op =1 (p)
! pj;:i
. . oS(p)| _
and Nonlinear parameters defined as: W =f(p)

APPLIED TO KINETIC MODELING :

e C and A are LINEAR parameters with respectto Y (Beer’s law) Y=C-A
e dg,  /dtand AH, are LINEAR parameters with respect to q (Reaction heat balance) q= %-(—AHR)
t

e Rate constants are NONLINEAR parameters with respect to C and d§_/dt
so are they for Y and for q




Separation of linear parameters — LINEAR REGRESSION

e At each iteration, the linear parameters are calculated in one step as the best linear
estimate in the least squares sense



Separation of linear parameters — LINEAR REGRESSION

e At each iteration, the linear parameters are calculated in one step as the best linear
estimate in the least squares sense

Pure spectra A =C"Y =(Ct -C)'1 .C'Y
(from Spectroscopy)
+ t -1 t
Enthalpies AH, :_(%] q =- (hj (&j (%j q
(from Calorimetry) dt dt dt dt
Remarks :

e The above formula is a multidimensional linear regression in a matrix notation

e The superscript + is meant for the PSEUDO-INVERSE.
As the matrices are not square, the inverse is not defined.



Separation of linear parameters — LINEAR REGRESSION

e At each iteration, the linear parameters are calculated in one step as the best linear
estimate in the least squares sense

Pure spectra A =C"Y =(Ct -C)'1 .C'Y
(from Spectroscopy)

+ t -1 t
Enthalpies AH, :_(%] q =- (hj (&j (%j q
(from Calorimetry) dt dt dt dt

THIS LINEAR REGRESSION MAKES ANY CALIBRATION
OF THE ABSORPTIVITIES REDUNDANT !




The Residuals and the sum of squares

e The residuals are defined as the difference between the measurement and the model
(matrix !)

e By the sum of squares we mean the sum of all squared residuals (scalar!)



The Residuals and the sum of squares

e The residuals are defined as the difference between the measurement and the model
(matrix !)

e By the sum of squares we mean the sum of all squared residuals (scalar!)

Residuals Sum of squares

:Y—CA Sgqspeczzzl(spec(i’j)

i=1 j=1

Spectroscopy : R. =Y-Y

spec calc

d L
Calorimetry : Fo =4— Qe =4 —%-(—AH R) S0y = D T (1)
i=1



The Residuals and the sum of squares

e The residuals are defined as the difference between the measurement and the model
(matrix !)

e By the sum of squares we mean the sum of all squared residuals (scalar!)

Residuals Sum of squares
nt nw
Spectroscopy : Ry =Y-Y, =Y-C-A SO0 = 2, 2 Ripec (1111)
i=1 j=1
H dfmol _ S H
Calorlmetry . l.cal :q_qcalc :q_T°(_AHR) Sg]cal _Zrcal(l)
i=1

ADVANCED PROBLEM :
e Combination of the signals : S0yt = W- SSOgpee + (1-W)-850,, , W=7
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Vectorisation (Unfolding)
|

e The residuals of Spectroscopy and Calorimetry do not have
the same dimension

(How to combine a matrix with a vector ?)

AND

VECTORISATION | nAxnt

» For practical reasons in the
Newton-Gauss algorithm (see later)

J

VECTORISATION :
R pec and r , are unfolded into a long column vector r



Vectorisation (Unfolding)

e The residuals of Spectroscopy and Calorimetry do not have
the same dimension
(How to combine a matrix with a vector ?)

AND

VECTORISATION

» For practical reasons in the
Newton-Gauss algorithm (see later)

J

cal

VECTORISATION : j ntx 1
R,,.c and r_, are unfolded into a long column vector r

spec



Kinetic modeling algorithm

Residuals
function

LINEAR REGRESSION

> A(p)
> AH(p)

¥

SUM OF SQUARES ssq

¥

VECTORISATION
R(p) -> r(p)

1
1
I
1
1
1
1
1
1
:
1
{ RESIDUALS R(p)
1
1
1
1
1
1
1
1
1
1
1




Kinetic modeling algorithm

Newton-Gauss function

""""""""""""""""""""""""""""""""""""

Calculation of RESIDUALS, r(p)
and the SUM OF SQUARES, ssq

Calculation of JACOBIAN, J

STATISTICS
STANDARD DEVIATION, o,

Calculation of
SHIFT VECTOR Ap
andp=p +Ap

___________________________________________




The Newton-Gauss algorithm

e To find the direction towards the minimum, the residuals are approximated by a
Taylor series expansion truncated after the first derivative



The Newton-Gauss algorithm

e To find the direction towards the minimum, the residuals are approximated by a
Taylor series expansion truncated after the first derivative

r(p+Ap)=r(p)+



The Newton-Gauss algorithm

e To find the direction towards the minimum, the residuals are approximated by a
Taylor series expansion truncated after the first derivative

or(p)
Jp

U Rearranging for r(p)

r(p+Ap)=r(p)+ -Ap

r(p) =-J-Ap+r(p+Ap)



The Newton-Gauss algorithm

e To find the direction towards the minimum, the residuals are approximated by a
Taylor series expansion truncated after the first derivative

or(p)
Jp

U Rearranging for r(p)

r(p) =—J-Ap=0!

r(p+Ap)=r(p)+ -Ap



The Newton-Gauss algorithm

e To find the direction towards the minimum, the residuals are approximated by a
Taylor series expansion truncated after the first derivative

or(p)
Jp

U Rearranging for r(p)

r(p+Ap)=r(p)+ -Ap 1

np

r(p) =—J-Ap=0!

Ap

U Linear regression to minimize r(p+Ap) and rearranging for Ap

Ap =-J7 'F(p) The SHIFT VECTOR is added to p for the next iteration




The Newton-Gauss algorithm

e To find the direction towards the minimum, the residuals are approximated by a
Taylor series expansion truncated after the first derivative

or(p)
Jp

U Rearranging for r(p)

r(p+Ap)=r(p)+ -Ap 1

np
r(p) =—J-Ap =0!
Ap
U Linear regression to minimize r(p+Ap) and rearranging for Ap
Ap = l’(p) The SHIFT VECTOR is added to p for the next iteration
The Newton-Gauss algorithm or (p)

requires the calculation of the Jacobian
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The Jacobian

or(p)

G - —

The Jacobian is a derivative
of a matrix with respect to a
vector

Without vectorisation

(only spectroscopy)
nA

TENSdR ®

—

Jp

Y

To compute the Jacobian,
one needs to vectorise the
residuals R into a long vector r




Y
The Jacobian r or (p)

Jop
The Jacobian is a derivative To compute the Jacobian,
of a matrix with respect to a : one needs to vectorise the
vector residuals R into a long vector r
Without vectorisation With vectorisation
(only spectroscopy) (Spectroscopy + Calorimetry)
nA np
oR ntxnd | p;
ap,
ntx1

TENSdR ®




The Jacobian

or(p)

G - —

The Jacobian is a derivative
of a matrix with respect to a
vector

Without vectorisation
(only spectroscopy)

ni

TENSdR ®

—

Jp

Y

To compute the Jacobian,
one needs to vectorise the
residuals R into a long vector r

With vectorisation

(Spectroscopy + Calorimetry)
np

o
ap;

ntxnid |

ntx1

MATRIX ©




Y
The Jacobian y Fir

Jp
The Jacobian is a derivative To compute the Jacobian,
of a matrix with respect to a : one needs to vectorise the
vector residuals R into a long vector r
Without vectorisation With vectorisation
(only spectroscopy) (Spectroscopy + Calorimetry)
nA np
or
oR ntxnid | p;
ap,

ntx1

TENSOR ® MATRIX ©

The Jacobian is computed using or(p) r(p+dp)-r(p)
a forward finite difference p 5p,

with §p =10°- p
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The Hessian (statistics)

G, H =J -

e Knowingthat H =J"-Jthe shift vector can be re-written as:

Ap=-H"-J"-r(p)

The Hessian H is a square matrix (np x np) and
IS the inverse of the variance/covariance matrix of p !




The Hessian (statistics)

G, i =J -

e Knowingthat H =J"-Jthe shift vector can be re-written as:

Ap=-H"-J"-r(p)

The Hessian H is a square matrix (np x np) and
IS the inverse of the variance/covariance matrix of p !

This allows the calculation of the
Standard Error of each parameter :

o, =0, -\/diag(H‘l) with o, =\/;§;zog{




Kinetic modeling algorithm

Newton-Gauss function

Calculation of RESIDUALS, r(p)
and the SUM OF SQUARES, ssq

STATISTICS
STANDARD DEVIATION, o,

Calculation of
SHIFT VECTOR Ap
andp=p +Ap

éi
ulation
r1 (p)

z zi

Calc
of
\ \

AT




Kinetic modeling algorithm

Levenberg-Marquardt modificatio o
OPTIMUM
S8qoq <F> SSq

i
FOUND !




Divergence in the NG algorithm

PROBLEM : The NG algorithm DIVERGES if the Taylor series expansion
IS not a good approximation for the residuals function
(eg. poor initial guesses)
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PROBLEM : The NG algorithm DIVERGES if the Taylor series expansion

IS not a good approximation for the residuals function
(eg. poor initial guesses)

SOLUTION : Do not use a Taylor series expansion but move in the
steepest direction (opposite direction given by the Jacobian)



Divergence in the NG algorithm
]

PROBLEM : The NG algorithm DIVERGES if the Taylor series expansion

IS not a good approximation for the residuals function
(eg. poor initial guesses)

SOLUTION : Do not use a Taylor series expansion but move in the
steepest direction (opposite direction given by the Jacobian)

Ap=-H"-J"r(p) Inverse Hessian method
4 (Newton-Gauss)

Is there a way to switch progressively
from one method to the other ?

Steepest Descent Method



Divergence in the NG algorithm
]

PROBLEM : The NG algorithm DIVERGES if the Taylor series expansion

IS not a good approximation for the residuals function
(eg. poor initial guesses)

SOLUTION : Do not use a Taylor series expansion but move in the
steepest direction (opposite direction given by the Jacobian)

Ap=-H"-J"r(p) Inverse Hessian method
4 (Newton-Gauss)
_ o - Levenberg-Marquardt
Ap=—(H+mp-1)~-J"-r(p) modification

Ap = -J'r (P) Steepest Descent Method



Divergence in the NG algorithm
]

PROBLEM : The NG algorithm DIVERGES if the Taylor series expansion
IS not a good approximation for the residuals function
(eg. poor initial guesses)

SOLUTION : Do not use a Taylor series expansion but move in the
steepest direction (opposite direction given by the Jacobian)

Ap=-H"-J"r(p) Inverse Hessian method
4 (Newton-Gauss)
_ o - Levenberg-Marquardt
Ap=—(H+mp-1)~-J"-r(p) modification

The Marqguardt parameter (mp) is a scalar added
to the diagonal elements of H to decrease its
influence on Ap and shorten

the magnitude of Ap

Ap = -J'r (P) Steepest Descent Method
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Geometrical interpretation on the response surface

Response
surface

Taylor’s
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(parabola)

Minimum of the parabola

Newton-Gauss

Po

ssq

I \ N 4 ,‘,:/’/
T Minimum ssq
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Geometrical interpretation on the response surface

Response
surface

Steepest direction

Steepest

S N Steepest descent

Steepest B
directiog_,/—"’

‘ ssq

vV©o

T Minimum ssq

optimum p
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Rank Deficiency
of the concentration profile

nc

The maximum rank of C is ;

The pseudo inverse (C*) only
exists if : rank(C)=rank_,, (C)

Example: A+B——P+S (inbatch conditions)

e  Maximum possible rank ?

4 species = rank,,

e  Number of independant sp
(Ag=B,=1)7?

rank (C)=2 (only!)

(C)=4

ecies in stoichiometric conditions

° And in non-stoichiometric conditions

(A,=1,B,=05)?

[A], and [B], are identical
[P]; and [S]; are identical

0.5

0.0

rank,,, (C)=min(nt,nc)

rank,, (C) columns or rows
are linearly independant

M Concentration
1.0 +

P,S
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1 species
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Rank Deficiency
of the concentration profile

nc

A B P__S
The maximum rank of C is : rank.,,, (C)=min(nt,nc)
C= nt . N C
The pseudo inverse (C*) only rank,, (C) columns or rows
exists if : rank(C)=rank,, (C) = are linearly independant

M Concentration
Example: A+B——P+S (inbatch conditions) 10

. . Distance between A
e  Maximum possible rank ? and B is constant

4 species = rank,, (C)=4

05 e
e  Number of independant species in stoichiometric conditions P.S
(Ap=B,=1)7?
rank (C)=2 (only!)
0.0 B » time
e  And in non-stoichiometric conditions
(Ap=1,B,=0.5)7?
[A], and [B], disappear at the same rate 1 species

[P], and [S], are identical 1 species }" 2 independant species

rank (C)=2 (still!)
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Annihilation of Rank Deficiency
c . ]

5 ways to break the rank deficiency :

Model Reduction : set the dependant species as colorless (non-absorbing)

— Rates constants will be correct
Absorption spectra will be wrong (mixed pure spectra)

* Provide Known Spectra
 Work under Semi-Batch Conditions

» Use concentration dependant measurements
(Second Order Global Analysis)

« Extend the wavelength-time domain to resolve linear dependencies
(Tri-linear Measurements)

Example : Coupling chromatrography to UV
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5 ways to break the rank deficiency :

Model Reduction : set the dependant species as colorless (non-absorbing)

— Rates constants will be correct
Absorption spectra will be wrong (mixed pure spectra)

Provide Known Spectra

Work under Semi-Batch Conditions

Use concentration dependant measurements
(Second Order Global Analysis)
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Reduced model

Simulated absorption spectra
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Reduced model

Simulated absorption spectra

A(1)+B(05)—<% s pis o []

Fitted absorption spectra (mixed)

WARNING - UNRESOLVED I

Colored species : A,S AP B,P B, S A, B
Kfitteg = 0-5 Kfitteg = 0-5 Kfittea = 0-5 Kfitteq = 0-5 Kfitteg = 0-5
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Add known spectra
c . ]

Simulated absorption spectra

M -
1

]
[ j'rh] 2 species are dependent
s f l-\ Let’s provide 2 pure spectra : those of B and S
| II Ir \ '
. All species are set colored
" (ﬂ‘l _
Fitted absorption spectra : - | f;" 'i.

Kfitteq = 0-5



Add known spectra
c . ]

Simulated absorption spectra

A(1)+B(05)—=5P+S i

g b1
= .. I|I !I.i
f Nl '
[ f 2 species are dependent
s f l-\ Let’s provide 2 pure spectra : those of B and S
| | r \
. All species are set colored

Fitted absorption spectra : m

m

Kfitteq = 0-5



Work under semi-batch conditions

Simulated absorption spectra
k=0.5 T '
A+B >P+S A
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Work under semi-batch conditions
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Work under semi-batch conditions

A+B—=">5P+S

Dose A into B will break the rank deficiency between
A and B but not between P and S !!!

To break both rank deficiencies,
one has to dose :

* A and P into B or
A and S into B or
e B and P into A or
e Band S into A

Simulated absorption spectra

Fitted absorption spectra :

Kfitteg = 0-5



Work under semi-batch conditions

Simulated absorption spectra

A+B——">P+S N

Dose A into B will break the rank deficiency between
A and B but not between P and S !!!

Fitted absorption spectra :

To break both rank deficiencies,
one has to dose - RESOLVED _

» A and P into B or

* A and S into B or Kfitreq = 0-5
 Band P into A or
e Band S into A




Work under semi-batch conditions

Simulated absorption spectra

A+ B k=05 sP+ S ' W

AbsaE
& B 5

- :' I'. ,|- -I
Dose A into B will break the rank deficiency between JL X )
A and B but not between P and S !!!

Fitted absorption spectra :
To break both rank deficiencies, -
one has to dose RESOLVED _
* A and P into B or |

* A and S into B or
e B and P into A or
e Band S into A

TIALL
RESOLVED

NB : in practice, one dose A in B or B in A and set one of the two products (P or S)
as uncolored. In such case, one spectrum of the two products is unresolved

4 OR
PAR

Kfitteg = 0-5



Second Order Global Analysis
]

A+ B k=05 > P+ S Simulated absorption spectra

------



Second Order Global Analysis

A+ B k=0.5 > P+ S Simulated absorption spectra
Let’'s make 3 Concentration A, B " = l'.:
dependent measurements #1 1 1

NEREE
#2 0.5 1 | . 1

#3 1 0.5




Second Order Global Analysis
]

A+ B k=0.5 sP+S Simulated absorption spectra
. I I!'-E'|| 8
Let’'s make 3 Concentration A, Bo o .f '.:
dependent measurements #1 1 1 Bl
#2 0.5 1 ‘ | .. | I|I
#3 1 05 I .I,!I II".

Hypothesis of Global Spectra :
The 3 sets of experiment share the same pure spectra

Y Cir| + |Agiobal R,
Y#Z = C#Z + R#2
Y#3 C#S R#g




Second Order Global Analysis
]

A+ B k=0.5 sP+S Simulated absorption spectra
Let’'s make 3 Concentration A, Bo o .f '.:
dependent measurements #1 1 1 Bl
#2 0.5 1 ‘ | .. | I|I
#3 1 05 I .I,!I II".

Hypothesis of Global Spectra :
The 3 sets of experiment share the same pure spectra

Rank deficfency is broken in thL




Second Order Global Analysis

A+ B k=0.5 sP+S Simulated absorption spectra
| -'. ,!I-!'.| —
Let’'s make 3 Concentration A, Bo o .f '.:
dependent measurements #1 1 1 ﬁ' '|
#2 0.5 1 § | . I|I
#3 1 05 T _I.!I II'-.

Hypothesis of Global Spectra :
The 3 sets of experiment share the same pure spectra

Fitted absorption spectra :

Rank deficiency is broken in Ciot TR

Kfitteq = 0-5



Second Order Global Analysis

A+ B k=0.5 sP+S Simulated absorption spectra
Let’'s make 3 Concentration A, Bo o .f '.:
dependent measurements #1 1 1 R "
#2 0.5 1 ‘ f .. | I|I
#3 1 0.5 T _,u'l II';I

Hypothesis of Global Spectra :
The 3 sets of experiment share the same pure spectra

Fitted absorption spectra :

Rank deficiency is broken in C
y t(_)t m

Kfitteq = 0-5



End of the Tutorial
<

That Is « already » the end
of this Tutorial

Thank you for your attention !



Case study overview

The aims of these case studies are :

|dentify the number of detectable species

Know the phenomenon of parameter interchange
|dentify and break rank deficiency

Use residuals for model validation

Using the following techniques :

PCA
EFA
ALS
Hard-modeling

On simulated data from different types :

Spectroscopy
Calorimetry

Under batch and semi-batch conditions

o A k=0.5 P

® A kl=0.5 B k2=0.3 >P

o A+B—2° ,p

o A+B(dosed)—=2>p

. A+B(dosed)&c

B(dosed)+C—<=p




Case study 1
c . ]

Mechanism . A0 . p
Signal . Spectroscopy
Process . Batch

Conversion : 99%

e PCA/EFA . 2 species = Full rank
o ALS . Easlily resolved

with non-negativity constraint

e Hard-modeling : k does not depend on c,(A)
for a 15t order reaction



Case study 2
c . ]

Mechanism - A0S op

Signal . Spectroscopy

Process : Batch

Conversion ' 63%

e PCA/EFA . 2 species = Full rank

e ALS : Resolved under constraints

with non-negativity constraint and known spectrum of P

e Hard-modeling : k does not depend on c,(A)
for a 15t order reaction



Case study 3

Mechanism . A9 .p
Signal . Calorimetry
Process . Batch
Conversion : 99%

o PCA/EFA/ALS : NA

e Hard-modeling : k does not depend on c,(A)
for a 15t order reaction



Case study 4
c . ]

Mechanism T A+B—f%> p
Signal . Spectroscopy
Process . Batch

Fitted mechanism: A——P

e PCA/EFA . 2 species = Full rank

o ALS . Apparently resolved under constraints

with non-negativity constraint and known spectrum of P

e Hard-modeling : 18t order mechanism is wrong !



Case study 5
c . ]

Mechanism . A0S g k=03 . p
Signal . Spectroscopy

Process : Batch

Conversion : 99%

e PCA/EFA . 3 species = Full rank

e ALS : Resolved under constraints

with non-negativity constraint and known spectrum of B

e Hard-modeling : Parameter interchange
k, and k, swap depending on the initial guess



Case study 6
c . ]

Mechanism T A0S g 03 . p
Signal . Spectroscopy

Process : Batch

Conversion 7 T%

e PCA/EFA . 3 species = Full rank

o ALS . Hardly resolved

with non-negativity constraint and known spectrum of B and P

e Hard-modeling : Parameter interchange

k, and k, swap depending on the initial guess



Case study 7
c . ]

Mechanism T A0S g 03 . p
Signal . Calorimetry

Process . Batch

Conversion : 99%

o PCA/EFA/ALS : NA

e Hard-modeling : 1. Less robust than multivariate fitting
2. Parameter interchange



Case study 8
c . ]

Mechanism . Af0> g 03 .p
Signal . Spectroscopy

Process . Batch

Fitting . Univariate (A = 400)

o PCA/EFA/ALS : NA

e Hard-modeling : 1. Less robust than multivariate fitting
2. Parameter interchange



Case study 9
c . ]

Mechanism . A—f9> g k03 .p
Signal . Spectroscopy

Fitting . Univariate (A = 400)
Fitted mechanism: A——P

o PCA/EFA/ALS : NA

e Hard-modeling : 7. Less robust than multivariate fitting
2. Parameter interchange
3. Structured residuals

= The model is slightly wrong but hard to
validate at this single wavelength



Case study 10
c . ]

Mechanism . A+B—*%> ,p

Signal . Spectroscopy

Process . Batch

Colored species : A and P (model reduction)

e PCA/EFA . 2 species = Rank deficiency
o ALS . NA

e Hard-modeling : Species B set as non-absorbing

= 1. kis correct
2. The fitted pure spectra are wrong
(linear combinations of the true pure spectra)



Case study 11
c . ]

Mechanism . A+B—*% ,p
Signal . Spectroscopy
Process . Batch

Known spectrum : Species B

e PCA/EFA . 2 species = Rank deficiency
o ALS . NA

e Hard-modeling : The pure spectrum of B is provided

= 1. kis correct
2. The fitted pure spectra are resolved



Case study 12
c . ]

Mechanism . A+B(dosed) 0> ,p
Signal . Spectroscopy

Process . Semibatch

Conversion . 68%

e PCA/EFA . 3 species = Full rank

o ALS . Resolved under strong constraints

non-negativity constraint and known spectrum of B and P/

e Hard-modeling : The pure spectra are resolved



Case study 13
c . ]

Mechanism . A+B(dosed)—=>p
Signal . Calorimetry

Process : Semibatch

Conversion : 68%

o PCA/EFA/ALS : NA

e Hard-modeling : Fitting calorimetric data is more robust
In semibatch than in batch conditions !



Case study 14
c . ]

Mechanism . A+B(dosed)—+=22C
B(dosed)+C —f=

Signal . Spectroscopy

Process . Semibatch

e PCA/EFA . 4 species = Full rank

o ALS . Resolved under very strong constraints

non-negativity constraint and known spectrum of B, C and P!

e Hard-modeling : The pure spectra are resolved



Case study 15
c . ]

Mechanism . A+B(dosed)—*="—C
B(dosed)+C = .p

Signal . Calorimetry

Process . Semibatch

e PCA/EFA/ALS :NA

e Hard-modeling : Fitting calorimetric data conditions is
more robust in semibatch than
In batch conditions !



Summary on the Case studies (1)

e PCA/EFA

- These two techniques provide information on the number of observable
species and therefore the maximum rank of Y

e ALS

- Non-negativity constraint alone only resolves A—>P

- Pure spectra of the products are required
If they are not fully formed

— Pure spectra of the intermediates are generally
required for complete resolution

- Without a priori knowledge on mechanisms and/or spectra,
rank deficiency is undetectable



Summary on the Case studies (2)

e HARD-MODELING

- Multivariate fitting of spectrocopy data is more reliable than univariate fitting
— Fitting of calorimetric data is not very stable in batch conditions
- Rank deficiency due to the model can be easily broken by :

e Model reduction (some species are set non-absorbing)
Fitted pure spectra are wrong (linear combination of the true ones)
but nonlinear parameters are correct !

e Known spectra provided o
Fitted pure spectra and nonlinear parameters are in this case both correct

SEMIBATCH CONDITIONS

— Fitting of calorimetric data is more robust in semibatch conditions

- The dosing completely breaks simple rank deficient problems and partially
highly complex mechanisms (eg. 2 intermediates, 2 products ...)

FIRST ORDER MECHANISMS

-~ With 1%t order mechanisms, rates are independent on initial concentrations and rate
constants can swap without differences in fitting (Parameter Interchange)



Appendix 1 : List of the Matlab files

# Simulated Fitted Process Model Rank Conversion Fitted Fitting PCA |/ EFA ALS Hard-modeling File
Mechanism mechanism rank deficiency signal

1 A->P same Batch 2 No 99.3% Spec Multivariate 2 [>0] Cy(A) =1 and main_AtoP_X99
10

2 A->P same Batch 2 No 63.2% Spec Multivariate 2 [>0,P] NA main_AtoP_X60

3 A->P same Batch 2 No 99.3% Cal Univariate NA NA NA main_AtoP_cal

4 A+B->P A->P Batch 2 Yes 90.9% Spec Multivariate 2 NA Structured main_ApBtoP_1st_order
residuals

5 A->B->P same Batch 3 No 99.9% Spec Multivariate 3 [>0,B] Swap of k's main_AtoBtoP_X99

6 A->B->P same Batch 3 No 77.7% Spec Multivariate 3 [>0,B,P] NA main_AtoBtoP_X75

7 A->B->P same Batch 3 No 99.9% Cal Univariate NA NA Less robust main_AtoBtoP_cal
than Case 5

8 A->B->P same Batch 3 No 99.9% Spec Univariate NA NA Less robust main_AtoBtoP_univarl
than Case 5

9 A->B->P A->B Batch 3 No 99.9% Spec Univariate NA NA Structure in main_AtoBtoP_univar2
the residuals

10 A+B->P same Batch 2 Yes 90.9% Spec Multivariate 2 NA B not absorbing main_ApBtoP_batch

11 A+B->P same Batch 2 Yes 90.9% Spec Multivariate 2 NA Pure spectrum main_ApBtoP_batch_Bknown
of B provided

12 A + B(dosed) -> P same Semibatch 3 No 68.2% Spec Multivariate 3 [>0,B,P] NA main_ApBtoP_semi_Y

13 A + B(dosed) -> P same Semibatch 3 No 68.2% Cal Univariate 3 NA NA main_ApBtoP_semi_cal

14 A + B(dosed) -> C same Semibatch 4 No 99.8% Spec Multivariate 4 [>0,B,C,P] NA main_ApBtoC_BpCtoP_semi_Y

B(dosed) + C -> P
15 A + B(dosed) -> C same Semibatch 4 No 99.8% Cal Univariate 4 NA NA main_ApBtoC_BpCtoP_semi_cal

B(dosed) + C -> P




