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SoftSoft-- & Hard Modelling of Kinetic Data& Hard Modelling of Kinetic Data

Modelling experimental kinetic data 
based only on simple ‘a priory’
knowledge on the data structure 
and the results

– Multivariate (multi wavelength 
spectroscopic) data and linear 
dependence of concentrations and 
data signal (Beer’s law)

non-negativity of concentrations 
and species spectra
closure, unimodality, etc

cannot be applied to calorimetry 
data (power signal is univariate)

Soft Modelling (Part 1)
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Modelling experimental kinetic data 
based only on simple ‘a priory’
knowledge on the data structure 
and the results

– Multivariate (multi wavelength 
spectroscopic) data and linear 
dependence of concentrations and 
data signal (Beer’s law)

non-negativity of concentrations 
and species spectra
closure, unimodality, etc

cannot be applied to calorimetry 
data (power signal is univariate)

Modelling experimental kinetic data 
based on a parameterised physical-
chemical ‘hard’ model
rate law defines the concentration 
profiles of the contributing species 
as a function of the rate constants
applicable to both, calorimetry & 
spectroscopy (univariate & 
multivariate)

Soft Modelling (Part 1) Hard Modelling (Part 2)
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Part 1: Soft Modelling



Soft Modelling of Spectroscopic Kinetic DataSoft Modelling of Spectroscopic Kinetic Data

Topics
Absorption spectroscopy

– Beer’s law in elegant matrix notation (Y = C × A)
– Non-unique factorisation of Y / rotational ambiguity

Principal Component Analysis (PCA)
– Abstract Factor analysis (AFA) by Singular Value Decomposition (SVD)
– Chemical rank of the measurement matrix
– The number of absorbing species 

Evolving Factor Analysis (EFA)
– Evolutionary rank analysis by repeated SVD of sub matrices of Y
– The ‘Appearance’ & ‘Disappearance’ of absorbing species

Multivariate Curve Resolution by Alternating Least-Squares (MCR-ALS)
– Model-free iterative decomposition of Y = C × A + R
– Ideas, principles, limitations



Absorption Spectroscopy Absorption Spectroscopy –– BeerBeer’’s Laws Law

Absorbance signal yλ is linearly dependent on contributing species 
concentrations ck, the corresponding coefficients are the molar 
absorptivities ak,λ that form the pure species spectra
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BeerBeer’’s law in elegant matrix notations law in elegant matrix notation
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Goal: Find concentration profiles C and species spectra A such that 
the residuals R=Y-CA become small only using a ‘soft model’, i.e. by 
linear factorisation

?

e.g. A B C
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Goal: Find concentration profiles C and species spectra A such that 
the residuals R=Y-CA become small only using a ‘soft model’, i.e. by 
linear factorisation

?

e.g. A B C

Problem: Factorisation is not unique (rotational ambiguity)



Major SoftMajor Soft--ModellingModelling ClassesClasses

By using appropriate ‘soft’ restrictions on C and A, e.g. non-negativity, 
windows of existence, closure, unimodality, known spectra, the number of 
possible solutions can be reduced, sometimes can even lead to a unique 
solution for C & A
There are 2 major classes
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By using appropriate ‘soft’ restrictions on C and A, e.g. non-negativity, 
windows of existence, closure, unimodality, known spectra, the number of 
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One very well defined solution is the one received from Abstract Factor 
Analysis (AFA) using Singular Value Decomposition (SVD)
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[U,S,Vt]=svd(Y,0);

in Matlab:
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One very well defined solution is the one received from Abstract Factor 
Analysis (AFA) using Singular Value Decomposition (SVD)

Y C A
= ==Nt

Nλ

U S V

Nλ Nc NλNλNλ

Nλ US

Nλ

V

Nλ

Nλ

Some properties of U, S and V

=

=

=

= =

t

t t t

2

t t

YY U UΛ
Y YV V Λ
Λ S
U U VV I

columns of U (rows of V) are eigenvectors of YYt (YtY) 

U and Vt are orthonormal

S is a diagonal matrix with the square root of their 
eigenvalues

[U,S,Vt]=svd(Y,0);

in Matlab:
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Eigenvectors in U (columns) and V (rows) are arranged in decreasing 
order of magnitude of their corresponding singular values in S
Many of them just represent ‘noise’ and can be neglected; the 
significant ‘factors’, the Principal Components, are retained in    and     
and form ‘abstract’ concentration profiles and spectra
The diagonal elements of   , the singular values, can be seen as
normalisation coefficients for    or  
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Chemical rank Chemical rank –– number of absorbing speciesnumber of absorbing species

Eigenvectors in U (columns) and V (rows) are arranged in decreasing 
order of magnitude of their corresponding singular values in S
Many of them just represent ‘noise’ and can be neglected; the 
significant ‘factors’, the Principal Components, are retained in    and     
and form ‘abstract’ concentration profiles and spectra
The diagonal elements of   , the singular values, can be seen as
normalisation coefficients for    or  

• The number of significant singular(eigen) values and –vectors is the
chemical rank of Y and a 1st estimate on the number of absorbing species
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Chemical rank Chemical rank –– number of absorbing speciesnumber of absorbing species

The noise level in the data matrix Y determines the drop in the magnitude
from significant to insignificant singular values

Y (Nt × Nλ) log(si,i) vs i



Chemical rank Chemical rank –– number of absorbing speciesnumber of absorbing species

The noise level in the data matrix Y also determines
the remaining noise in the significant singular vectors

The signs of the singular vectors can interchange
between U and V)
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e.g. 2 species, A B
the (significant) eigenvectors v1,: and 
v2,: form an orthonormal base in the 
same ‘plane’ as the pure species 
spectra a1,: and a2,:
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the chemical rank of the spectral data matrix Y is determined by 
the number of its significant singular vectors
the number of significant singular vectors of Y is determined by 
the number of linearly independent columns or rows in the matrix 
of pure species spectra (A) and corresponding concentration 
profiles (C)
linear dependencies in C due to the kinetic model are common 
and sometimes difficult to predict (e.g. A+B C)
linear dependencies in A are less common
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sequential rank analysis of the data matrix along its time domain 
by repeated SVD
can be performed in a forward and backward way
indicates the rise of new singular vectors and thus gives an 
estimate for the appearance & disappearance of new absorbing 
species
ideally designed to follow chromatography experiments

– species appear & disappear sequentially

capable of roughly following kinetic profiles
– species can appear & dissappear simultaneously
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Evolving Factor Analysis (EFA)Evolving Factor Analysis (EFA)

SVD
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Forward EFA

• Repeated rank analysis by SVD in forward direction
• The appearance of a new ‘species’ is indicated by a
gradual rise of a new singular value
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Forward EFA
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Evolving Factor Analysis (EFA)Evolving Factor Analysis (EFA)
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• Repeated rank analysis by SVD in backward direction
• A ‘disappearing species’ is indicated by a gradual rise of a new singular value



Evolving Factor Analysis (EFA)Evolving Factor Analysis (EFA)

Backward EFA
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function [EFA_f,EFA_b]=EFA(Y,ne)
[ns,nl]=size(Y);
EFA_f=NaN(ns,ne);
EFA_b=NaN(ns,ne);
for i=1:ns

s_f=svd(Y(1:i,:));                % forward sv
s_b=svd(Y(ns-i+1:ns,:));          % backward sv
EFA_f(i,1:min(i,ne))=s_f(1:min(i,ne))';
EFA_b(ns-i+1,1:min(i,ne))=s_b(1:min(i,ne))';

end

Matlab script using a function for
forward/backward EFA
[t,lam,Y,C,A]=Data_Chrom2;
[ns,nc]=size(C);
ne=nc+1;           % one extra sing. val.
[EFA_f,EFA_b]=EFA(Y,ne); 



Evolving Factor Analysis (EFA)Evolving Factor Analysis (EFA)

Combined forward/backward EFA results can 
be used as reasonable initial guesses of 
concentration profiles for subsequent iterative 
refinement e.g. by ALS
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% combined SV curves
C=min(EFA_f(:,1:nc),fliplr(EFA_b(:,1:nc)));



Evolving Factor Analysis (EFA)Evolving Factor Analysis (EFA)

• Combined forward/backward EFA results are 
not as accurate as in chromatography 
regarding the appearance and disappearance 
of species

A B C, Forward and backward EFA

• But they can still be used as initial guesses
of concentration profiles for subsequent
iterative refinement e.g. by ALS 
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Multivariate Curve Resolution by Alternating LeastMultivariate Curve Resolution by Alternating Least--
Squares (Squares (MCRMCR--ALSALS))
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1) Y & C known:
R is minimal in the least squares sense if 
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Y C A R

R Y C A

t 1 t( )− += × = ×C C C CA Y Y

2
, ( )i jrmin ΣΣ C

t t 1( )− += × = ×Y A AC YA A

Matlab: A = C \ Y
to use the left pseudo inverse of C

Matlab: C = Y / A
to use the left pseudo inverse of C

: ( , , )f=R Y C A
The residuals R are a function of Y
and the two linear parameters C & 
A
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A B C
constraints: C, A >0

2
,i jssq r= ∑∑

A

C

for it=1:100
C=norm_max(C);         % normalisation

[C,A]=constraints_nonneg(Y,C); 

R=Y-C*A;               % residuals
ssq(it)=sum(sum(R.*R));

end

function  [C,A]=constraints_nonneg(Y,C)

A=nonneg(Y',C')';   % pos spectra (Andersson)
C=nonneg(Y,A);      % pos conc. (Andersson)

function [Cn,An]=norm_max(C,A)

coef=1./max(C); % norm coeff
Cn=C*diag(coef); % apply to C
if nargin==2

An=diag(1./coef)*A; % apply inv coeff to A
end

×
Cn =

diag(max(C))-1

C
n (max( ))diag= ×A C A

and

Normalisation to the maximum in each conc. profile
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,i jssq r= ∑∑

A

C

function [C,A] =
constraints_nonneg_known_spec_B(Y,C,A_sim)

A=nonneg(Y',C')';   % pos spectra (Andersson)
A(2,:)=A_sim(2,:);  % known spectrum of B
C=nonneg(Y,A);      % pos conc. (Andersson)

for it=1:100
C=norm_max(C);         % normalisation

[C,A]=constraints_known_spec_B(Y,C,A_sim); 

R=Y-C*A;               % residuals
ssq(it)=sum(sum(R.*R));

end
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A B C
constraints: C, A >0,
known spectrum of B, closure

A

C

2
,i jssq r= ∑∑

for it=1:100
C=norm_closure(C,[],c_tot); % norm. C to Ctot

[C,A]=constraints_nonneg_known_spec_B(Y,C,A_sim);

R=Y-C*A;              % residuals
ssq(it)=sum(sum(R.*R));

end
[C_n,A_n]=norm_closure(C,A,c_tot);

function [Cn,An]=norm_closure(C,A,c_tot)

coef=C\(ones(size(C,1),1)*c_tot); % norm. coeff.
Cn=C*diag(coef); % apply to C
if ~isempty(A)

An=diag(1./coef)*A;        % apply inv. to A
end

=
C coef

ctot

tot
+= ×coef C c

×
Cn =

diag(coef)
C 1

n ( )diag −= ×A coef A
and

Normalisation to the total conc. (ctot=[A]+[B]+[C]=[A]0)
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A B C
constraints: C, A >0, known spectrum of B & C

2
,i jssq r= ∑∑

A

C
As full conversion is not reached 
for intermediate B and product C, 
corresponding known spectra are 
required for full resolution !



Conclusions: Conclusions: ‘‘SoftSoft’’--ModellingModelling

Advantages
– No prior knowledge on the 

chemical system required
– Estimation of the number of linearly 

dependent absorbing species and 
their approximate evolution from 
PCA, EFA & ALS

– Info for the development of a ‘hard’
model

– ‘Better than nothing’
Drawbacks

– No physical model
– No predictions for other exp. 

conditions possible
– Uniqueness of the result is rarely 

given and difficult to validate
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How can the rate constant be
extracted from this profile ?

You follow the reaction between BuOH and the 
Acetic Acid in the IR range and you get the 
following absorbance profile :
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WITH A 
MULTIVARIATE APPROACH
THE WHOLE SPECTRUM IS 

USED TO FIT k
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The following topics will be addressed :

Typical fitted signals
– Multivariate Spectroscopy (Beer’s law) 
– Univariate Calorimetry

Generalisation of the Rate Law

Numerical integration

Separation of parameters

Newton-Gauss method

Two common problems will also be treated :

1. Divergence problems (Levenberg-Marquardt modification)

2. Rank deficiency (methods of annihilation)
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DefinitionDefinition of the optimisation of the optimisation problemproblem

The residuals are defined as the difference between the 
measurement and the model

As the mass balance part is :

The optimisation problem is :

= − ⋅specR Y C A ( )= − ⋅ −mol
cal R

dξr q ΔH
dt

( ),  f model=C p ( ),  g model=moldξ p
dt

( )minimize , ,  

in the least square sense
by changing 

f model=specR Y p

p

( )minimize , ,  
in the least square sense

by changing 

f model=calr q p

p
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Most of the time : no analytical solution for this system of ODEs  
→ Numerical integration
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First Approach : Euler’s method

Applied to our specific example without dosing
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NumericalNumerical integrationintegration of the modelof the model

First Approach : Euler’s method

Applied to our specific example without dosing

Nowadays, more sophisticated integration methods exist 
(e.g. ode45) with a stepsize control
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StepsizeStepsize control and control and stiffstiff problemsproblems

In stepsize controlled ODE solvers, the stepsize is
adjusted at each step to meet the user-specified accuracy

The accuracy is measured with absolute (AbsTol) and relative (RelTol) 
tolerance’s values.

For some kinetic models, the slopes
of the concentration profiles are 
dramatically different (stiff problem) 
and require the use of a
stiff ODE solver (eg. ode15s)

Gemperline, P. (2006). Practical Guide to Chemometrics (2nd edition), 
Taylor and Francis, Boca Raton, USA.
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LinearLinear and and NonlinearNonlinear parametersparameters

GENERAL CONSIDERATION

If S(p) is a measured signal depending on the parameters vector p

Linear parameters are defined as:

and Nonlinear parameters defined as:

APPLIED TO KINETIC MODELING :

C and A are LINEAR parameters with respect to Y (Beer’s law) 

dξmol/dt and ΔHr are LINEAR parameters with respect to q (Reaction heat balance)

Rate constants are NONLINEAR parameters with respect to C and dξmol/dt
so are they for Y and for q
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estimate in the least squares sense

( )                      

     

= ⋅ = ⋅ ⋅ ⋅

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⋅ = − ⋅ ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

-1+ t t

-1+ t t
mol mol mol mol

R

A C Y C C C Y

dξ dξ dξ dξΔH q q
dt dt dt dt

Pure spectra
(from Spectroscopy)

Enthalpies
(from Calorimetry)

Remarks :
The above formula is a multidimensional linear regression in a matrix notation
The superscript + is meant for the PSEUDO-INVERSE. 
As the matrices are not square, the inverse is not defined.
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Remarks :
The above formula is a multidimensional linear regression in a matrix notation
The superscript + is meant for the PSEUDO-INVERSE. 
As the matrices are not square, the inverse is not defined.

THIS LINEAR REGRESSION MAKES ANY CALIBRATION 
OF THE ABSORPTIVITIES REDUNDANT !
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The The ResidualsResiduals and the and the sumsum of squaresof squares

The residuals are defined as the difference between the measurement and the model 
(matrix !)

By the sum of squares we mean the sum of all squared residuals (scalar !)
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The residuals of Spectroscopy and Calorimetry do not have 
the same dimension 
(How to combine a matrix with a vector ?)

rcal

AND

• For practical reasons in the 
Newton-Gauss algorithm (see later)

⇓

VECTORISATION :
Rspec and rcal are unfolded into a long column vector r
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nλ

1

nt

nλ x nt

r

1
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The NewtonThe Newton--Gauss Gauss algorithmalgorithm

To find the direction towards the minimum, the residuals are approximated by a 
Taylor series expansion truncated after the first derivative

( ) ( )( )
∂

+ Δ = + ⋅ Δ
∂
r p

r p p r p p
p

( )( )        = − ⋅ Δ + + Δr p J p r p p

( )∂
=

∂
r p

J
p

Rearranging for r(p)

( )           +Δ = − ⋅p J r p

Linear regression to minimize r(p+Δp) and rearranging for Δp

The Newton-Gauss algorithm
requires the calculation of the Jacobian

⇓

⇓

The SHIFT VECTOR is added to p for the next iteration

≈ 0 !
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np
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one needs to vectorise the 
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Knowing that , the shift vector can be re-written as:

( )1−Δ = − ⋅ ⋅tp H J r p

= ⋅tH J J

( )1         ssqdiag H with
df

σ σ σ σ−= ⋅ = ≈p r r Y

= ⋅tH J J

The Hessian H is a square matrix (np x np) and 
is the inverse of the variance/covariance matrix of p !

This allows the calculation of the 
Standard Error of each parameter :

1
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( )1−Δ = − ⋅ ⋅tp H J r p

PROBLEM :

SOLUTION :

( )Δ = − ⋅tp J r p

Inverse Hessian method
(Newton-Gauss)

Steepest Descent Method

The NG algorithm DIVERGES if the Taylor series expansion
is not a good approximation for the residuals function
(eg. poor initial guesses)

Do not use a Taylor series expansion but move in the
steepest direction (opposite direction given by the Jacobian)

Is there a way to switch progressively
from one method to the other ?( ) ( )1mp −Δ = − + ⋅ ⋅ ⋅tp H I J r p Levenberg-Marquardt

modification
The Marquardt parameter (mp) is a scalar added 
to the diagonal elements of H to decrease its 
influence on Δp and shorten
the magnitude of Δp
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Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

0

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.53

Newton-Gauss method

10.600



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

0

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.53

Newton-Gauss method

10.600

10.800



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

0

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.53

Newton-Gauss method

10.600

10.800



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

0

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.53

10.600

10.800

DIVERGENCE

NG/Levenberg-Marquardt method



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.53

10.600

10.800

NG/Levenberg-Marquardt method



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.53

10.600

10.800

NG/Levenberg-Marquardt method



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.49

10.600

10.800

NG/Levenberg-Marquardt method



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.49

10.600

10.800

NG/Levenberg-Marquardt method

10.700



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.49

10.600

10.800

NG/Levenberg-Marquardt method

10.700



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.49

10.600

10.800

NG/Levenberg-Marquardt method

10.700

DIVERGENCE



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

5

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.49

10.600

10.800

NG/Levenberg-Marquardt method

10.700



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

5

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.49

10.600

10.800

NG/Levenberg-Marquardt method

10.700



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

5

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.45

10.600

10.800

NG/Levenberg-Marquardt method

10.700



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

5

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.45

10.600

10.800

NG/Levenberg-Marquardt method

10.700

10.500



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

5

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.45

10.600

10.800

NG/Levenberg-Marquardt method

10.700

10.500



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

5

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.45

10.600

10.800

NG/Levenberg-Marquardt method

10.700

10.500

CONVERGENCE



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1.6667

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.45

10.600

10.800

NG/Levenberg-Marquardt method

10.700

10.500



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1.6667

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.45

10.600

10.800

NG/Levenberg-Marquardt method

10.700

10.500



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1.6667

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.45

10.600

10.800

NG/Levenberg-Marquardt method

10.700

10.500



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1.6667

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.412

10.600

10.800

NG/Levenberg-Marquardt method

10.700

10.500



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1.6667

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.412

10.600

10.800

NG/Levenberg-Marquardt method

10.700

10.500
10.499

5 410.500 10.499 9.523 10 10
10.500

− −− = ⋅ <



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1.6667

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.412

10.600

10.800

NG/Levenberg-Marquardt method

10.700

10.500
10.499

5 410.500 10.499 9.523 10 10
10.500

− −− = ⋅ <



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1.6667

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.412

10.600

10.800

NG/Levenberg-Marquardt method

10.700

10.500
10.499

5 410.500 10.499 9.523 10 10
10.500

− −− = ⋅ <

CONVERGENCE



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

1.6667

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.412

10.600

10.800

NG/Levenberg-Marquardt method

10.700

10.500
10.499

5 410.500 10.499 9.523 10 10
10.500

− −− = ⋅ <



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

0

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.412

10.600

10.800

10.700

10.500
10.499

5 410.500 10.499 9.523 10 10
10.500

− −− = ⋅ <

Newton-Gauss method



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

0

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.412

10.600

10.800

10.700

10.500
10.499

5 410.500 10.499 9.523 10 10
10.500

− −− = ⋅ <

Newton-Gauss method



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

0

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.411

10.600

10.800

10.700

10.500
10.499

5 410.500 10.499 9.523 10 10
10.500

− −− = ⋅ <

Newton-Gauss method



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

0

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.411

10.600

10.800

10.700

10.500
10.499
10.498

5 410.499 10.498 9.524 10 10
10.499

− −− = ⋅ <

Newton-Gauss method



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

0

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.411

10.600

10.800

10.700

10.500
10.499
10.498

5 410.499 10.498 9.524 10 10
10.499

− −− = ⋅ <

Newton-Gauss method



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

0

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.411

10.600

10.800

10.700

10.500
10.499
10.498

5 410.499 10.498 9.524 10 10
10.499

− −− = ⋅ <

Newton-Gauss method

CONVERGENCE



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

0

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.411

10.600

10.800

10.700

10.500
10.499
10.498

5 410.499 10.498 9.524 10 10
10.499

− −− = ⋅ <

Newton-Gauss method



The NG/LM The NG/LM algorithmalgorithm

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

Calculation of JACOBIAN, J

≈

>

< yes

no

mp / 3

mp = 0

Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

mp = 0

Y <150 x 250 double> double
t <150 x 1 double> double
w <1 x 250 double> double
mp double
i 1 double
p double

0

Current method :

ssq

# iterations

1 2 3 4 5 6

p = 0.5

0.411

10.600

10.800

10.700

10.500
10.499
10.498

5 410.499 10.498 9.524 10 10
10.499

− −− = ⋅ <

Newton-Gauss method

Minimum ssq

Optimum p 



Calculation of RESIDUALS, r(p) 
and the SUM OF SQUARES, ssq

GUESS parameters p = p0

Calculation of
SHIFT VECTOR Δp

and p = p + Δp

STATISTICS 
STANDARD DEVIATION, σp

Calculation of JACOBIAN, J

Newton-Gauss function

Settings

NG ConvTol NG JTol (δpi)

Kinetic modeling algorithm

INTEGRATION 
of the kinetic model

Integration function

Residuals
function

LINEAR REGRESSION
> A(p)
> ΔH(p)

RESIDUALS R(p)
SUM OF SQUARES ssq

VECTORISATION 
R(p) -> r(p)

AbsTol, RelTol and c0

stepperdriver
ODE SOLVER Calculation of

FAST EQUILIBRIA

Calculation of 
DERIVATIVES dc/dt

Derivative function

NEWTON-
RAPHSON

NRTol and cguess

Newton-Raphson
function

Calculation
of r1(p)

pi = pi + δpi

J(:, i)= (r1(p) - r(p))/δpi

pi = pi - δpi

for i = 1:np

NG JTol (δpi)

Jacobian

ssq const ?

mp = 0

ssqold <≈> ssq

mp · 5

OPTIMUM
FOUND !

≈

>

< yes

no

Levenberg-Marquardt modification

mp = 0

mp / 3
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nt The pseudo inverse        only
exists if :

( ) ( )min ,maxrank nt nc=C

( ) ( )maxrank rank=C C
( )+C

=C

The maximum rank of C is :

columns or rows
are linearly independant

( )maxrank C⇔
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nc

nt The pseudo inverse        only
exists if :
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( ) ( )maxrank rank=C C
( )+C

=C

The maximum rank of C is :

columns or rows
are linearly independant

( )maxrank C⇔

( )  kA B P S in batch conditions+ ⎯⎯→ +Example :



Rank Deficiency Rank Deficiency 
of the concentration profileof the concentration profile

A B P S

nc

nt The pseudo inverse        only
exists if :

( ) ( )min ,maxrank nt nc=C

( ) ( )maxrank rank=C C
( )+C

=C

The maximum rank of C is :

columns or rows
are linearly independant

( )maxrank C⇔

Maximum possible rank ?

Number of independant species in stoichiometric conditions 
(A0 = B0 = 1) ?

And in non-stoichiometric conditions
(A0 = 1, B0 = 0.5) ?

( )  kA B P S in batch conditions+ ⎯⎯→ +Example :



Rank Deficiency Rank Deficiency 
of the concentration profileof the concentration profile

A B P S

nc

nt The pseudo inverse        only
exists if :

( ) ( )min ,maxrank nt nc=C

( ) ( )maxrank rank=C C
( )+C

=C

The maximum rank of C is :

columns or rows
are linearly independant

( )maxrank C⇔

( )4   4maxspecies rank⇒ =C

Maximum possible rank ?

Number of independant species in stoichiometric conditions 
(A0 = B0 = 1) ?

And in non-stoichiometric conditions
(A0 = 1, B0 = 0.5) ?

( )  kA B P S in batch conditions+ ⎯⎯→ +Example :



Rank Deficiency Rank Deficiency 
of the concentration profileof the concentration profile

A B P S

nc

nt The pseudo inverse        only
exists if :

( ) ( )min ,maxrank nt nc=C

( ) ( )maxrank rank=C C
( )+C

=C

The maximum rank of C is :

columns or rows
are linearly independant

( )maxrank C⇔

( )4   4maxspecies rank⇒ =C

Maximum possible rank ?

Number of independant species in stoichiometric conditions 
(A0 = B0 = 1) ?

And in non-stoichiometric conditions
(A0 = 1, B0 = 0.5) ?

( )  kA B P S in batch conditions+ ⎯⎯→ +

[A]t and [B]t are identical
[P]t and [S]t are identical

time

P, S

Concentration
1.0

0.5

0.0

1 species
1 species 2 independant species

( ) 2  ( !)rank only=C

Example :

A, B



Rank Deficiency Rank Deficiency 
of the concentration profileof the concentration profile

A B P S

nc

nt The pseudo inverse        only
exists if :

( ) ( )min ,maxrank nt nc=C

( ) ( )maxrank rank=C C
( )+C

=C

The maximum rank of C is :

columns or rows
are linearly independant

( )maxrank C⇔

( )4   4maxspecies rank⇒ =C

Maximum possible rank ?

Number of independant species in stoichiometric conditions 
(A0 = B0 = 1) ?

And in non-stoichiometric conditions
(A0 = 1, B0 = 0.5) ?

( )  kA B P S in batch conditions+ ⎯⎯→ +

time

Concentration
1.0

0.5

0.0

1 species
1 species 2 independant species

[A]t and [B]t disappear at the same rate
[P]t and [S]t are identical

( ) 2  ( !)rank only=C

Example :

( ) 2  ( !)rank still=C

P, S

B

A

Distance between A 
and B is constant
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• Extend the wavelength-time domain to resolve linear dependencies 
(Tri-linear Measurements)

Example : Coupling chromatrography to UV



Annihilation of Rank Annihilation of Rank DeficiencyDeficiency

5 ways to break the rank deficiency :

• Model Reduction : set the dependant species as colorless (non-absorbing)
⇒ Rates constants will be correct 

Absorption spectra will be wrong (mixed pure spectra)

• Provide Known Spectra

• Work under Semi-Batch Conditions

• Use concentration dependant measurements 
(Second Order Global Analysis)

• Extend the wavelength-time domain to resolve linear dependencies 
(Tri-linear Measurements)

Example : Coupling chromatrography to UV

This last method is not addressed here, 

because it is highly complex
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ReducedReduced modelmodel

( ) ( ) 0.51 0.5 kA B P S=+ ⎯⎯⎯→ +

Colored species :

Simulated absorption spectra

Fitted absorption spectra (mixed) 

B, P A, B A, S A, P B, S

kfitted = 0.5 kfitted = 0.5 kfitted = 0.5 kfitted = 0.5 kfitted = 0.5



ReducedReduced modelmodel

( ) ( ) 0.51 0.5 kA B P S=+ ⎯⎯⎯→ +

Colored species :

Simulated absorption spectra

Fitted absorption spectra (mixed) 

B, P A, B A, S A, P B, S

kfitted = 0.5 kfitted = 0.5 kfitted = 0.5 kfitted = 0.5 kfitted = 0.5

WARNING : UNRESOLVED
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Let’s provide 2 pure spectra : those of B and S
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AddAdd knownknown spectraspectra

( ) ( ) 0.51 0.5 kA B P S=+ ⎯⎯⎯→ +

Simulated absorption spectra

Fitted absorption spectra :

kfitted = 0.5

2 species are dependent

Let’s provide 2 pure spectra : those of B and S

All species are set colored



AddAdd knownknown spectraspectra

( ) ( ) 0.51 0.5 kA B P S=+ ⎯⎯⎯→ +

Simulated absorption spectra

Fitted absorption spectra :

kfitted = 0.5

2 species are dependent

Let’s provide 2 pure spectra : those of B and S

All species are set colored

RESOLVED



WorkWork underunder semisemi--batch conditionsbatch conditions

Simulated absorption spectra
0.5kA B P S=+ ⎯⎯⎯→ +



WorkWork underunder semisemi--batch conditionsbatch conditions

Simulated absorption spectra

Dose A into B will break the rank deficiency between
A and B but not between P and S !!!

0.5kA B P S=+ ⎯⎯⎯→ +



WorkWork underunder semisemi--batch conditionsbatch conditions

Simulated absorption spectra

Dose A into B will break the rank deficiency between
A and B but not between P and S !!!

Fitted absorption spectra :
To break both rank deficiencies, 
one has to dose :

• A and P into B or
• A and S into B or
• B and P into A or
• B and S into A

kfitted = 0.5

0.5kA B P S=+ ⎯⎯⎯→ +



WorkWork underunder semisemi--batch conditionsbatch conditions

Simulated absorption spectra

Dose A into B will break the rank deficiency between
A and B but not between P and S !!!

RESOLVED
Fitted absorption spectra :

To break both rank deficiencies, 
one has to dose :

• A and P into B or
• A and S into B or
• B and P into A or
• B and S into A

kfitted = 0.5

0.5kA B P S=+ ⎯⎯⎯→ +



WorkWork underunder semisemi--batch conditionsbatch conditions

Simulated absorption spectra

Dose A into B will break the rank deficiency between
A and B but not between P and S !!!

RESOLVED
Fitted absorption spectra :

NB : in practice, one dose A in B or B in A and set one of the two products (P or S) 
as uncolored. In such case, one spectrum of the two products is unresolved

To break both rank deficiencies, 
one has to dose :

• A and P into B or
• A and S into B or
• B and P into A or
• B and S into A

PARTIALLY
RESOLVED

OR kfitted = 0.5

0.5kA B P S=+ ⎯⎯⎯→ +
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Simulated absorption spectra0.5=+ ⎯⎯⎯→ +kA B P S
B0A0

# 3

# 2

# 1

0.51

10.5

11

Let’s make 3 Concentration 
dependent measurements

=

Y#1
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Y#3

C#1

C#2

C#3

Aglobal+

+

R#1

R#2

R#3

Hypothesis of Global Spectra :
The 3 sets of experiment share the same pure spectra

Ytot Ctot Rtot



Second Second OrderOrder Global Global AnalysisAnalysis

Simulated absorption spectra0.5=+ ⎯⎯⎯→ +kA B P S
B0A0

# 3

# 2

# 1

0.51

10.5

11

Let’s make 3 Concentration 
dependent measurements

=

Y#1

Y#2

Y#3

C#1

C#2

C#3

Aglobal+

+

R#1

R#2

R#3

Hypothesis of Global Spectra :
The 3 sets of experiment share the same pure spectra

Ytot Ctot Rtot

Rank deficiency is broken in Ctot



Second Second OrderOrder Global Global AnalysisAnalysis

Simulated absorption spectra0.5=+ ⎯⎯⎯→ +kA B P S
B0A0

# 3

# 2

# 1

0.51

10.5

11

Let’s make 3 Concentration 
dependent measurements

=

Y#1

Y#2

Y#3

C#1

C#2

C#3

Aglobal+

+

R#1

R#2

R#3

Fitted absorption spectra :

kfitted = 0.5

Hypothesis of Global Spectra :
The 3 sets of experiment share the same pure spectra

Ytot Ctot Rtot

Rank deficiency is broken in Ctot



Second Second OrderOrder Global Global AnalysisAnalysis

Simulated absorption spectra0.5=+ ⎯⎯⎯→ +kA B P S
B0A0

# 3

# 2

# 1

0.51

10.5

11

Let’s make 3 Concentration 
dependent measurements

=

Y#1

Y#2

Y#3

C#1

C#2

C#3

Aglobal+

+

R#1

R#2

R#3

Fitted absorption spectra :

kfitted = 0.5

RESOLVED

Hypothesis of Global Spectra :
The 3 sets of experiment share the same pure spectra

Ytot Ctot Rtot

Rank deficiency is broken in Ctot



End of the TutorialEnd of the Tutorial

That is « already » the end 
of this Tutorial

Thank you for your attention !



Case Case studystudy overviewoverview

The aims of these case studies are :

Identify the number of detectable species
Know the phenomenon of parameter interchange
Identify and break rank deficiency 
Use residuals for model validation

Using the following techniques :
PCA
EFA
ALS
Hard-modeling

On simulated data from different types :
Spectroscopy
Calorimetry

Under batch and semi-batch conditions

0.5 kA P=• ⎯⎯⎯⎯→

1 20.5 0.3 k kA B P= =• ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

0.5 kA B P=• + ⎯⎯⎯⎯→

( )
( )

1

2

10

5

 

   

k

k

A B dosed C

B dosed C P

=

=

• + ⎯⎯⎯⎯→

+ ⎯⎯⎯→

( ) 0.5 kA B dosed P=• + ⎯⎯⎯⎯→



Case Case studystudy 11

Mechanism :                   
Signal : Spectroscopy
Process : Batch
Conversion : 99%

PCA/EFA : 2 species ⇒ Full rank

ALS : Easily resolved
with non-negativity constraint

Hard-modeling : k does not depend on c0(A) 
for a 1st order reaction

0.5kA P=⎯⎯⎯⎯→



Case Case studystudy 22

Mechanism :                   
Signal : Spectroscopy
Process : Batch
Conversion : 63%

PCA/EFA : 2 species ⇒ Full rank

ALS : Resolved under constraints
with non-negativity constraint and known spectrum of P

Hard-modeling : k does not depend on c0(A) 
for a 1st order reaction

0.5kA P=⎯⎯⎯⎯→



Case Case studystudy 33

Mechanism :                   
Signal : Calorimetry
Process : Batch
Conversion : 99%

PCA/EFA/ALS : NA

Hard-modeling : k does not depend on c0(A) 
for a 1st order reaction

0.5kA P=⎯⎯⎯⎯→



Case Case studystudy 44

Mechanism :                   
Signal : Spectroscopy
Process : Batch
Fitted mechanism:

PCA/EFA : 2 species ⇒ Full rank

ALS : Apparently resolved under constraints
with non-negativity constraint and known spectrum of P

Hard-modeling : 1st order mechanism is wrong !

0.5kA B P=+ ⎯⎯⎯⎯→

A P⎯⎯→



Case Case studystudy 55

Mechanism :                   
Signal : Spectroscopy
Process : Batch
Conversion : 99%

PCA/EFA : 3 species ⇒ Full rank

ALS : Resolved under constraints
with non-negativity constraint and known spectrum of B

Hard-modeling : Parameter interchange
k1 and k2 swap depending on the initial guess

1 20.5 0.3k kA B P= =⎯⎯⎯⎯→ ⎯⎯⎯⎯→



Case Case studystudy 66

Mechanism :                   
Signal : Spectroscopy
Process : Batch
Conversion : 77%

PCA/EFA : 3 species ⇒ Full rank

ALS : Hardly resolved 
with non-negativity constraint and known spectrum of B and P

Hard-modeling : Parameter interchange
k1 and k2 swap depending on the initial guess

1 20.5 0.3k kA B P= =⎯⎯⎯⎯→ ⎯⎯⎯⎯→



Case Case studystudy 77

Mechanism :                   
Signal : Calorimetry
Process : Batch
Conversion : 99%

PCA/EFA/ALS : NA

Hard-modeling : 1. Less robust than multivariate fitting
2. Parameter interchange

1 20.5 0.3k kA B P= =⎯⎯⎯⎯→ ⎯⎯⎯⎯→



Case Case studystudy 88

Mechanism :                   
Signal : Spectroscopy
Process : Batch
Fitting : Univariate (λ = 400)

PCA/EFA/ALS : NA

Hard-modeling : 1. Less robust than multivariate fitting
2. Parameter interchange

1 20.5 0.3k kA B P= =⎯⎯⎯⎯→ ⎯⎯⎯⎯→



Case Case studystudy 99

Mechanism :                   
Signal : Spectroscopy
Fitting : Univariate (λ = 400)
Fitted mechanism: 

PCA/EFA/ALS : NA

Hard-modeling : 1. Less robust than multivariate fitting
2. Parameter interchange
3. Structured residuals

⇒ The model is slightly wrong but hard to 
validate at this single wavelength

1 20.5 0.3k kA B P= =⎯⎯⎯⎯→ ⎯⎯⎯⎯→

A P⎯⎯→



Case Case studystudy 1010

Mechanism :                   
Signal : Spectroscopy
Process : Batch
Colored species : A and P (model reduction)

PCA/EFA : 2 species ⇒ Rank deficiency

ALS : NA

Hard-modeling : Species B set as non-absorbing
⇒ 1. k is correct

2. The fitted pure spectra are wrong 
(linear combinations of the true pure spectra)

0.5kA B P=+ ⎯⎯⎯⎯→



Case Case studystudy 1111

Mechanism :                   
Signal : Spectroscopy
Process : Batch
Known spectrum : Species B

PCA/EFA : 2 species ⇒ Rank deficiency

ALS : NA

Hard-modeling : The pure spectrum of B is provided
⇒ 1. k is correct

2. The fitted pure spectra are resolved

0.5kA B P=+ ⎯⎯⎯⎯→



Case Case studystudy 1212

Mechanism :                   
Signal : Spectroscopy
Process : Semibatch
Conversion : 68%

PCA/EFA : 3 species ⇒ Full rank

ALS : Resolved under strong constraints
non-negativity constraint and known spectrum of B and P !

Hard-modeling : The pure spectra are resolved

( ) 0.5kA B dosed P=+ ⎯⎯⎯⎯→



Case Case studystudy 1313

Mechanism :                   
Signal : Calorimetry
Process : Semibatch
Conversion : 68%

PCA/EFA/ALS : NA

Hard-modeling : Fitting calorimetric data is more robust
in semibatch than in batch conditions !

( ) 0.5kA B dosed P=+ ⎯⎯⎯⎯→



Case Case studystudy 1414

Mechanism :                   

Signal : Spectroscopy
Process : Semibatch

PCA/EFA : 4 species ⇒ Full rank

ALS : Resolved under very strong constraints
non-negativity constraint and known spectrum of B, C and P !

Hard-modeling : The pure spectra are resolved

( )
( )

1

2

10

5

k

k

A B dosed C

B dosed C P

=

=

+ ⎯⎯⎯⎯→

+ ⎯⎯⎯→



Case Case studystudy 1515

Mechanism :                   

Signal : Calorimetry
Process : Semibatch

PCA/EFA/ALS : NA

Hard-modeling : Fitting calorimetric data conditions is
more robust in semibatch than
in batch conditions !

( )
( )

1

2

10

5

k

k

A B dosed C

B dosed C P

=

=

+ ⎯⎯⎯⎯→

+ ⎯⎯⎯→



SummarySummary on the Case on the Case studiesstudies (1)(1)

PCA/EFA
– These two techniques provide information on the number of observable 

species and therefore the maximum rank of Y

ALS
– Non-negativity constraint alone only resolves
– Pure spectra of the products are required 

if they are not fully formed
– Pure spectra of the intermediates are generally 

required for complete resolution
– Without a priori knowledge on mechanisms and/or spectra, 

rank deficiency is undetectable

A P→



SummarySummary on the Case on the Case studiesstudies (2)(2)

HARD-MODELING

BATCH CONDITIONS
– Multivariate fitting of spectrocopy data is more reliable than univariate fitting
– Fitting of calorimetric data is not very stable in batch conditions
– Rank deficiency due to the model can be easily broken by : 

Model reduction (some species are set non-absorbing)
Fitted pure spectra are wrong (linear combination of the true ones)
but nonlinear parameters are correct !

Known spectra provided
Fitted pure spectra and nonlinear parameters are in this case both correct

SEMIBATCH CONDITIONS
– Fitting of calorimetric data is more robust in semibatch conditions
– The dosing completely breaks simple rank deficient problems and partially 

highly complex mechanisms (eg. 2 intermediates, 2 products …)  

FIRST ORDER MECHANISMS
– With 1st order mechanisms, rates are independent on initial concentrations and rate 

constants can swap without differences in fitting (Parameter Interchange)



AppendixAppendix 1 : List of the Matlab files1 : List of the Matlab files

99.8%

99.8%

68.2%

68.2%

90.9%

90.9%

99.9%

99.9%

99.9%

77.7%

99.9%

90.9%

99.3%

63.2%

99.3%

Conversion

No

No

No

No

Yes

Yes

No

No

No

No

No

Yes

No

No

No

Rank 
deficiency

Univariate

Multivariate

Univariate

Multivariate

Multivariate

Multivariate

Univariate

Univariate

Univariate

Multivariate

Multivariate

Multivariate

Univariate

Multivariate

Multivariate

Fitting

Cal

Spec

Cal

Spec

Spec

Spec

Spec

Spec

Cal

Spec

Spec

Spec

Cal

Spec

Spec

Fitted
signal

4

4

3

3

2

2 

3

3

3

3

3

2

2

2

2

Model
rank

main_ApBtoP_1st_orderStructured
residuals

NA2BatchA -> PA + B -> P4

NA

NA

NA

NA

Pure spectrum
of B provided

B not absorbing

Structure in 
the residuals

Less robust
than Case 5

Less robust
than Case 5

NA

Swap of k’s

NA

NA

C0(A) = 1 and 
10

Hard-modeling

4

4

3

3

2

2

NA

NA

NA

3

3

NA

2

2

PCA  / EFA

NA

[ > 0 , B , C , P ]

NA

[ > 0 , B , P ]

NA

NA

NA

NA

NA

[ > 0 , B , P ]

[ > 0 , B ]

NA

[ > 0 , P ]

[ > 0 ]

ALS

Semibatch

Semibatch

Semibatch

Semibatch

Batch

Batch

Batch

Batch

Batch

Batch

Batch

Batch

Batch

Batch

Process

same

same

same

same

same

same

A -> B

same

same

same

same

same

same

same

Fitted
mechanism

main_ApBtoC_BpCtoP_semi_calA + B(dosed) -> C
B(dosed) + C -> P

15

main_ApBtoC_BpCtoP_semi_YA + B(dosed) -> C
B(dosed) + C -> P

14

main_ApBtoP_batch_BknownA + B -> P11

main_AtoBtoP_univar2A -> B -> P9

main_AtoBtoP_univar1A -> B -> P8

main_AtoBtoP_calA -> B -> P7

main_ApBtoP_semi_calA + B(dosed) -> P13

main_ApBtoP_semi_YA + B(dosed) -> P12

main_ApBtoP_batchA + B -> P10

main_AtoBtoP_X75A -> B -> P6

main_AtoBtoP_X99A -> B -> P5

main_AtoP_calA -> P3

main_AtoP_X60A -> P2

main_AtoP_X99A -> P1
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