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Abstract—In environmental monitoring applications, having
multiple cameras focus on common scenery increases robustness
of the system. To save energy based on user demand, succes-
sive refinement image coding is important, as it allows us to
progressively request better image quality. By exploiting the
broadcast nature and correlation between multiview images, we
investigate a two-camera setup and propose a novel two-encoder
successive refinement scheme which imitates a ping-pong game.
For the bivariate Gaussian case, we prove that this scheme is
successively refinable on the theoretical rate-distortion limit of
distributed coding (Wagner surface) under arbitrary settings. For
stereo-view images, we develop a practical successive refinement
coding algorithm using the same idea. The simulation results
show that this scheme operates close to the distributed coding
bound.

Index Terms—Energy-constrained, error resilient, hazard
monitoring, source channel coding, video coding.

I. INTRODUCTION

HANKS to the availability of low-power image sensor

chips, such as CMOS cameras, wireless sensor net-
works are extending their functionalities to image monitoring.
However, for visual applications to become ubiquitous, we
need to tackle the problem of processing and transmitting
large amounts of data, under the severe energy constraints
of wireless sensor networks. In the context of environmental
monitoring, robustness of the system is also an important con-
cern as the camera itself is experiencing unpredictable weather
conditions and consequently can be affected by surrounding
major events. A multi-camera wireless network can provide a
solution to these two main concerns.

1) Robustness: By placing multiple cameras in different
locations observing a common scene of interest, we
generate correlated multi-view images. In case of camera
failure, as long as there is still one surviving, we will
not lose the visual access to the scene of interest.
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2) Energy saving: Multiple cameras can reduce per-camera
energy consumption by sharing the sampling and com-
munication task among all cameras [1].

Figure 1(a) shows the typical setup of a wireless
camera monitoring network (in this paper we focus on the
two-camera case): two cameras are deployed to monitor an
overlapped scenery, and communicate independently with the
base station (BS) to deliver the captured stereo-view images.
Direct communication between two cameras is not presentl,
but each camera overhears the information transmitted by the
other one.

With this setup, an interesting problem arises: if two cam-
eras need to transmit the stereo-view images X and Y to the
BS, can we separate the transmission into several phases, so
that the BS can recover the image X and Y with progres-
sively increasing quality (see Figure 2). This is particularly
useful in an energy-limited communication scenario, because
we can decide at the receiver whether a high resolution
image is really needed after the low resolution version is
displayed. Such an idea is called successive refinement and
the single source case has been studied extensively in both
theory and practical schemes (see Section II-B). Several
theoretical variants of the multiple source case have been
recently investigated (see Section II-A), but there is hardly
any practical successive refinement schemes for multi-view
images.

In this paper, we develop our prior work [2] and propose a
novel two-encoder successive refinement scheme that imitates
the ping-pong game and takes advantage of the broadcast
nature of wireless communications. The theoretical analy-
sis for the bivariate Gaussian case shows that this scheme
has no loss in coding efficiency as compared to the con-
ventional distributed coding limit, for arbitrary successive
refinement settings (any number of stages and rate com-
binations). We then apply this scheme to real image data
and propose a practical stereo-view image coding algorithm
capable of successive refinement. The simulation results show
that this scheme operates close to the distributed coding
bound.

The paper is organized as follows: In Section II, we review
the background and related work on successive refinement and
distributed coding. In Section III, we describe the broadcast
nature and inter-view correlation model as the main assump-
tions in this paper. In Section IV, we propose a new ping-pong

LIf there is direct communication between the cameras, then we do not have
a distributed scenario anymore.
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Fig. 1. Two cameras X and Y are deployed to monitor an overlapping scenery,
and communicate independently with the BS. When the active camera X is
transmitting an image to the BS, the other camera can overhear the same
information. (a) Illustration of the setup. (b) Abstract model.

R; bitstreams

Fig. 2. Successive refinement of stereo-view images. Bitstreams are trans-
mitted in several stages and the BS can recover X and Y with increasing
quality.

like two-encoder successive refinement scheme and present
the theoretical analysis for the Gaussian quadratic case. This
leads to Theorem 1, which proves the successive refinability of
this scheme on the distributed rate-distortion limit. Section V
applies this idea to stereo-view images and presents a practical
stereo-view image coding algorithm capable of successive
refinement. The simulation results then show the good perfor-
mance of the scheme, close to the distributed coding bound.

II. BACKGROUND AND RELATED WORK

A. Distributed Source Coding

In a typical multi-camera network, two cameras transmit
images independently to the base station (BS), which can
be well modeled as a two-encoder distributed source coding
(DSC2) setup. When broadcast is employed, a passive commu-
nication link exists as well. Then partially separated encoders
provides a better model (see Figure 3).

To deliver images under the severe energy constraints
of wireless networks, multi-terminal source coding has an
important role as it can cut the rate to the theoretical lower
limit. The general multi-terminal source coding problem [3]
has been posed more than thirty years ago. The rate region
for the distributed lossless source coding problem has been
solved by Slepian and Wolf [4]. However, the general lossy
case is not fully determined yet. Wyner and Ziv [5] solved a
special case when one of two sources is entirely known at the
decoder. Recently, Wagner et al. [6] gave the rate-distortion
region for the two-encoder quadratic Gaussian case. To give
an illustration of Wagner’s four-dimensional rate-distortion
region (Ry, Ry, Dx, Dy), we pick the sum-rate Rx + Ry as
a measure of the rate budget and show the coding limits in
a three-dimensional space (Ry + Ry, Dx, Dy). The surface
(Wagner Surface) as defined by Eq. (3) of [6] represents the
rate distortion limits that any distributed coding scheme should
operate on or above.
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Fig. 3. Distributed source coding of two partial separated encoders.

Overhearing provides a passive communication link (dashed line).

Practical distributed single-view video coding schemes
[7], [8], and distributed multi-view video coding schemes [9]
have been developed in recent years. These schemes require
no inter-frame/inter-view communication, but are also very
restricted to strong correlation between frames/views. For
instance, if the video frame rate decreases or there are
occlusion between different views, the coding efficiency
drops very quickly.

Distributed source coding using the broadcast advantage is
a particular form of the source coding problem with partially
separated encoders. The rate-distortion region for two-encoder
case was first addressed in [10], where coding theorems
are determined for two cases: 1) one source is reproduced
perfectly at the receiver; and 2) one source is perfectly revealed
to the other source. [11] and [12] further develop this idea in
a lossless Slepian-Wolf setup when an encoder can observe
the codeword from the other encoder. It is proved that the
admissible rate region is not enlarged. However, the general
rate-distortion region for a lossy setup as in Figure 3 is still
unknown today.

B. Successive Refinement Coding

Comparing with conventional coding methods, successive
refinement splits the single codeword into multiple pieces
and make it possible to gradually send/reconstruct source(s)
with increasing quality. From the rate-distortion perspective,
the rate-distortion R(D) of the given source(s) character-
izes the performance limit of successive refinement coding:
As depicted in Figure 4 for a single source, (Ry, D1) and
(R1 + Ry, Dy) are the R-D pairs achieved at the 1st and 2nd
stage respectively. Generally, for most source types, successive
refinement operates above the R(D) curve. If (Ry, D) and
(R1 + R», Dy) both operate exactly on the R(D) curve of
a source, for any (Rp, R2), then we say that successive
refinement of this source is optimal (successive refinability).

Equitz and Cover [13] gave the necessary and sufficient
condition for a single source to be successively refinable: To
encode source X with rate-distortion function R(D), a coarse
description X 1 with R-D pair (Ry, D;) is refined to a ﬁner
description X2 with a rate of Rp. The distortion of X2 is
denoted as D,. The optimality, or R = R(D1) and Rj+ R, =
R(Dy) are both achievable, is obtained if and only if we can
write X | — }%2 — X as a Markov chain. A Gaussian source
with squared-error distortion is one example that satisfies this
Markovian condition.
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Successive Refinement
operates above R(D) in
general case

Fig. 4. Rate distortion performance: two-stage successive refinement of a
single source.

On the question of successive refinement for multiple
sources, [14] proposes a sequential coding of correlated
sources for video applications, in which the first source is
encoded solely while the subsequent source is encoded based
on both sources. This scheme is a weak version of centralized
coding as it has access to both sources. However, as it does
not fully exploit the joint information due to the first step
encoding, the minimum sum-rate is sometimes worse than
DSC2. Recently, [15] proposed a successive decoding scheme
for the distributed source coding problem (no link between
encoders). They prove that successive decoding following a
linear fusion achieves the rate-distortion region of DSC2 for
the quadratic Gaussian case. However, the final step of fusion
actually breaks the successive decoding structure: all results
have to be reconstructed after everything is received.

In practical scenarios, images are usually not well modeled
by Gaussian sources, thus it is non-trivial to say if a certain
image is successively refinable or not. Most of the contem-
porary single image coders support progressive or scalable
coding (synonyms for successive refinement). In particular, the
JPEG2000 image coding standard is designed to be scalable
in nature [16]: it decomposes the bitstreams into a succession
of layers, and each layer contains additional contributions
optimized for rate-distortion performance. Therefore, the layer
decomposition provides an approximation of successive refine-
ment, as long as the bitstream is truncated at a layer point.

III. MODEL AND ASSUMPTIONS

In this section, we present the image and communication
model which leads to a distributed successive refinement
coding scheme.

A. Inter-View Correlation Model

The correspondence between two stereo-view images can
be completely described by epipolar geometry [17] using the
pinhole camera model. Illustrated in Figure 5, a point P in real
world is projected onto left and right image planes, and the
corresponding projection points are Py and Pg respectively.
The intensities of Py and Pr depend on the intensity of P
(if P lies on a lambertian surface), the light path from P
to the image plane, and the optical system of the camera.
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Fig. 5. [Intensities of point correspondence (P7, and Pg) of a given point P
on stereo-views are statistically linked by a certain distribution with equal
marginal distributions.

Considering the fact that the light path in air is homogeneous
and the imaging system of two cameras are almost identical
under proper calibration, the intensities of P; and Pg are
expected to be highly correlated. Therefore, any correspon-
dence point pair determined by the epipolar geometry can be
statistically modeled by a certain bivariate distribution. Note
that this probability distribution should have equal marginal
distributions due to the symmetry of the left/right views. If
we further assume that such a model is globally stationary
over the entire image, then the inter-view correlation can be
fully described by a single distribution model.

B. Broadcast Advantage

In a typical wireless camera network, inter-camera com-
munication is usually not implemented as it consumes extra
energy, but there are potentially existing passive links [18].
As wireless systems often use omnidirectional antennas, the
cameras within the transmission range of the emitting camera
can actually overhear the transmitted messages. To take advan-
tage of the broadcast nature of wireless communication, our
proposed scheme is based on several assumptions that are often
verified in practice: 1) The scale of the local camera network is
small compared with their distance to the BS (see Figure 1a),
thus the channel capacity between neighboring cameras is
larger than the capacity between the camera and the BS. For
simplicity, we assume that the overhearing camera within the
transmission range can get the message error-free, as long
as this message is received at the BS. 2) Both cameras are
synchronized and use time-division multiplexing so that only
one camera transmits at a time while the other overhears the
broadcast message without interference.

IV. DISTRIBUTED SUCCESSIVE REFINEMENT
OF BIVARIATE GAUSSIAN SOURCES USING
BROADCAST ADVANTAGE

In this section, we investigate a theoretical framework of
distributed successive refinement. Based on the assumptions in
Section III, we propose a coding scheme that imitates the ping-
pong game, and characterize the corresponding rate-distortion
limit when two distributed sources are statistically linked by
a jointly bivariate Gaussian model.
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A. Setup and Coding Procedure

The broadcast nature of wireless communication provides
a free overhearing mechanism that can be exploited to reduce
the transmission rate between the cameras and the BS. For
instance, in a two-encoder setup as in Figure 3, based on the
codeword sent by source X, source Y can be encoded at a
lower rate by exploiting the correlation between X and Y.

Inspired by the ping-pong game, we extend such an idea
to a new distributed source coding scheme, which has a suc-
cessive refinement structure. As Figure 6 shows, the broadcast
messages act like a ping-pong ball, which is flipped back and
forth between the two encoders. We call such a scheme two-
encoder Distributed Successive Approximation Coding using
Broadcast Advantage (DiSAC2), which was initially presented
in [2]. We denote the number of encoding stages in DiSAC2
as n (e.g., Figure 6 illustrates 4 stages), and ENCx and ENCy
as two separate encoders for sources X and Y respectively.

The sketch of the coding procedure for a n-stage DiSAC2
is as follows:

1) At the first stage, ENCx encodes X without any knowl-
edge of Y. A codeword C; is generated and has a
rate of Ry. (X1, Y1) is reconstructed at the BS after
C; is received. The corresponding distortion pair is
(Dx,. Dy,

2) At the second stage, ENCy overhears the codeword
C; while it is being transmitted to the BS, so it only
transmits the refinement which fully exploits the joint
information between the source Y and Ci. C; is the
corresponding codeword sent in the second stage, which
has a rate of Ry. (X3, Y3) is reconstructed at the BS
based on (C1, C2). The corresponding distortion pair is
(DX2 5 DYQ)'

3) Similarly, at the stage k, ENCx or ENCy (depends on if k
is odd or even) encodes X or Y based on the codewords
(C1,---,Cr-1). A codeword Cy is generated and has
a rate of Ry. (Xg, Yx) is reconstructed at the BS based
on (Cy,--+,Ck). The corresponding distortion pair is
(Dx,, Dy,).

If X =Y in Figure 6, it reduces to a successive refinement
of a single source. As we know from Section II-B, this is
successively refinable on the {rate, distortion} curve when
the Markovian condition is satisfied (e.g., Gaussian source).
Similar results can be investigated for the DiSAC2 scheme. In
the following, we specifically discuss the n-stage DiSAC2 with
jointly Gaussian sources and quadratic distortion (DiSAC2-
Gaussian): Let N'(u, ) be a bivariate Gaussian distribution
with mean vector g and covariance matrix X, and assume
(X,Y) ~N(u, X), where

- _(1»r
= (0,0), 2_(/) 1) for |p] < 1.

B. DiSAC2-Gaussian is Successively Refinable
As we know, a Gaussian source with quadratic distortion is

successively refinable on its {rate, distortion} curve. In this

2All distortions are defined as Ed (x, x) where d(-, -) is the quadratic error
measure.
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Fig. 6. Setup of a two-encoder distributed successive approximation coding
using broadcast advantage (DiSAC2). The rate of codeword Cj sent at the
ith stage is Ry. The corresponding reconstruction at the BS has a distortion
pair (Dx, , Dy,). Four stages are depicted.

section, we show that a n-stage DiSAC2 in the quadratic
Gaussian case is also successively refinable on the {sum-rate,
distortion pair} surface characterized by the rate-distortion
region of the DSC2 [6].

Theorem 1 (Successive Refinability): Given two jointly
Gaussian sources (X,Y) ~N(u, ¥), the n-stage two-
encoder Distributed Successive Approximation Coding
using Broadcast Advantage (DiSAC2-Gaussian) with rates
(R1, R2, ..., Ry), and sum-rate distortion pairs

{Rla(DX|9DY|)}9""{R1 +"'+Rn’(DXn’DY,,)}’

achieves the {sum-rate, distortion pair} surface characterized
by the rate-distortion region of DSC2 Rpsc2(Dx, Dy) [6], or
equivalently

Rpsc2(Dx,, Dy,) = Ri1 + ...+ Ry, fork=1,...,n.

Proof: The detailed proof of Theorem 1 is given in the
Appendix together with two preparatory lemmas. To provide
the reader the methodology we used, we sketch the proof

for the simplest two-stage case. In the follzowing, Gu,02(X)
_(X—p) .
represents a Gaussian function e 22 . For brevity, we

do not explicitly write out realizations in a probability density.
For instance, p(Y|X) = gpx,l_pz(y) represents that the
conditional probability of Y given X is a Gaussian distribution
with a mean pX and a variance 1 — p?, where X and Y
are treated as the realizations on the right-hand side of the
equation. The proof for general n-stage case is based on
induction, and employs similar reasoning.
From [6], the minimum sum-rate for DSC2 is

(1-&)(/%““)

2Dx Dy

1

Rpsc2(Dx, Dy) = > log
(D
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For a two-stage DiSAC2 with jointly Gaussian sources and
quadratic distortion, we need to prove

[ R1 = Rpsc2(Dx,, Dy,)

R1 + R> = Rpsc2(Dx,, Dy,),

so that it achieves the {sum-rate, distortion pair} surface
characterized by the rate-distortion region of the DSC2, for
any rate pair (R, Ry).

Following the coding procedure in Section IV-A, at the
first stage, X is encoded to C; using the random codebook
argument with R-D pair

R ! 1
1=5 og Dx,

Then X; is the reconstruction of X after the first stage,
and it can be decoded as: X; = Cj, thus Ed(X, X1) = Dx,.
As p(X) = Go.1(X), the test channel in the first stage is
p(X|Cy) = gcl,Dxl (X). Substituting X = C1q,

p(XIC1) = Gx,,px, (X). )

To decode Y7 (reconstruction of Y at the first stage), we
calculate the conditional probability

, Dx1<1.

+oo
pvic = [ prxicy ax
—0o0
+00
= [pormpicnax. o)
—0o0
where the second equality follows from the fact that C; is

encoded and decoded from X (a definite function of X), thus
p(Y|C1X) = p(Y|X). From the joint distribution of (X, Y),

pY1X) = Gox 12 (Y). )
Substituting (4) and (2) into (3) leads to
pYIC) =G, V), 5)

where u1 = pXi, and 012 = Dxlp2 — p? + 1. Y; can be
decoded as: Y; = uy, and Ed(Y,Y)) = o}.
To sum up, the {sum-rate, distortion pair} in the first
stage is:
1 1

R = =1lo
1=5 ngl

(6)
(DXU DY1) = (DXI’ 0-12) .

Combining (1) and (6) leads to
Ry = Rpsc2(Dx,, Dy,). @)

At the second stage, Cy is known due to the broadcast
advantage, thus according to (5), p(Y — u1) = gojalz (Y).
Y —p1 is encoded to C> using the random codebook argument,
with R-D pair

1 ol
Ry =-log—, Dy, <oi.
2 ) og DY2 > 1, = 0]
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Y> can be decoded as: Yo = C2 + u1, thus
Ed(Y,Y;) = Ed(Y — u1, Y2 — 1)
= Ed(Y — p1, C2)
= Dy,.
Similar reasoning as for the first stage calculation gives
P(XICICr) =G, ,2(X), ®)
where uy = (X (1 — p2) + Dy, sz/Dxlp2 —p?+1), and
Dy, ((P*=1)"=Dx, p* (= Dy, +0*~1))
(Dx,p2=p2+1)?
X5 can be decoded as: X = 2, and Ed(X, X») = 022.
Thus, the {sum-rate, distortion pair} in the second stage is:

2
0y

2 _
0y, =

1
R+ Ry =~ log —L—
1+ R 5 08 Dx, Dy, ©

(DXz, DYz) = (0-22, DY2)~

Combining (9) and (1), we can verify the following after
some calculations:

R1 + R> = Rpsc2(Dx,, Dy,). (10

|

Observe that the coding procedure of DiSAC2-Gaussian
actually suggests a simple algorithm to exploit correlations
between refinement and previously sent codewords: a linear
prediction of previous reconstructions can be used for pre-
dictive coding. We will adapt this idea into the image coding
algorithm in Section V. Note that the correlation p between X
and Y has to be sent to the BS for decoding. In more general
cases where the joint statistics between two sources cannot
be explicitly expressed, we can directly transmit the linear
prediction coefficients of the encoders to the BS for decoding,
which just requires a few bytes.

Figure 7 gives a visual illustration of Theorem 1: We choose
an initial operating point {R1, (Dx,, Dy,)} at the first stage
of DiSAC2-Gaussian, and then send an additional rate R, at
the second stage. As the dashed curve on the gray surface
suggests, {R1 + R, (Dx,, Dy,)} with any R, travels along a
one-dimensional curve on the Wagner Surface. Similarly, after
we send an additional rate R3 at the third stage, {R; + R +
R3, (Dx,, Dy,)} still travels along a one-dimensional curve on
the Wagner Surface. This means that we can split the overall
rate into any number of pieces, send successively, and they
will all operate on the Wagner Surface at each stage.

V. DISTRIBUTED SUCCESSIVE REFINEMENT
OF STEREO-VIEW IMAGES USING
BROADCAST ADVANTAGE

Under the stationary assumption of Section III-A, we
extend the DiSAC2 scheme for bivariate Gaussian source
(DiSAC2-Gaussian) to a practical image coding scheme,
namely DiSAC2 for stereo-view images (DiSAC2-Stereo).
With the help of broadcast, we combine layer decomposition
and predictive coding to achieve successive refinement coding
of stereo-view images. Then, simulation results are given by
applying the algorithm to stereo-view image datasets.
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sumn-—rate

Fig. 7. DiSAC2-Gaussian is successively refinable. The {sum-rate, distortion
pair} travels on the Wagner surface. Three stages are illustrated, further stages
follow a similar pattern.

A. Algorithm

Like in the Gaussian case, we need the correlation between
two sources to perform the distributed successive refinement.
Image registration technique is the conventional tool to estab-
lish point-wise correspondence between two images. At the
initial stage, one camera first transmit a coarse version of its
image to the BS; the other camera overhears the same image
and applies view registration to the stereo-view images’. The
estimated registration parameters are then transmitted to the
BS (a few bytes) and therefore are known at both cameras due
to overhearing. After the raw stereo-view images are properly
registered and aligned with each other, we investigate the
successive refinement coding of the two aligned images X and
Y (same notations as in Section IV). In our algorithm, only
the overlapping parts of left and right views are considered
in the coding process. Non-overlapping parts are encoded
independently using conventional methods because they are
not correlated.

Layer decomposition is the conventional method to achieve
single image successive refinement: Layered bitstreams are
transmitted in an incremental manner from low level layer
to high level layer (see Figure 8a). By extending the idea
of layer decomposition to an interleaved setup, we get an
intuitive approach for the successive refinement of X and Y:
As shown in Figure 8b, two images are encoded in ping-pong
fashion as in the DiSAC2 scheme, and a new incremental
layer is transmitted at each new stage. It is worth mentioning
that, unlike the single image successive refinement as in
Figure 8a, the complete k lowest layers are transmitted at
kth stage (see Figure 8b). This is because the lower layers
between the left view and the right view can be slight
different due to registration error. The images transmitted at
each stage are reconstructed at the BS, and we denote them

3See [19] for details on the image registration algorithm, which performs
robust under unequal image qualities between two images.
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Fig. 8. Successive refinement using layer decomposition (four-stage setup).
(a) Single image case: an incremental layer is transmitted at each stage.
(b) Two correlated images case: incremental layer with lower layers is
transmitted together at each stage. Shadow: Transmitted layers.

by X1, Y2, X3, Y4, ..
Section IV.

However, as X and Y are highly correlated, the lower layers
of X1, Y2, X3, Y4, ..., are also correlated and therefore direct
transmission is inefficient. Based on the coding procedure of
DiSAC2-Gaussian, we propose to use linear prediction of pre-
vious reconstructions to eliminate the redundant information.

For a n-stage DiSAC2-Stereo scheme, at a even stage
2k < n, we need to encode Y of the right-view cam-
era and transmit it to the BS*. Previous reconstructions
(X1, Y2, ..., Yor—2, Xor—1) are fully known to the right-view
camera due to the previous broadcasts. Thus we seek to
maximize the quality of reconstruction:

| PSNR (Y2, Y),

., to be consistent with the notations in

max
ai,ie[l,2k—1

(11)
where Yy, is the reconstruction of Y at the BS, and «; are
2k — 1 variables for predictive coding.

The predictive coding procedure is as follows:

1) Y is decomposed into n layers with increasing quality.
By omitting the highest n — 2k layers, we obtain a coarse
version of Y with the lowest 2k layers, which is denoted
as Temp.

2) Compute the residual using linear prediction of previous
reconstructions:

Cox=Temp — (o1 - X1+ a2 - Yo+ -+ -+ a2k—1 - X2k—1),

3) Encode the residual Cy; with a desired rate Ryg. 62k
is the corresponding decoded reconstruction, and Yo is
obtained by:

Yoo = Cox + (a1 - X1+ o2 - Yo+ 4 a1 - Xok_1).

Based on the layer decomposition and the predictive coding
above, we depict the entire algorithm of a n-stage DiSAC2-
Stereo scheme in Algorithm 1.

B. Simulations

Using the algorithms described in Section V-A, we
show the simulation results of a three-stage DiSAC2-Stereo.

“4For an odd stage, a similar procedure is used.
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Algorithm 1 Algorithm of a n-Stage DiSAC2-Stereo Scheme
1: for stage i =1 — n do
2. if i == 1 (the first stage) then

3: The left camera directly sends the base layer of its
image to the BS.

4: Meanwhile, the right camera overhears the left view
and applies view registration algorithm.

5: The right camera transmits the estimated registration

parameters to the BS.
The left camera overhears the registration parameters.

7: Using the registration parameters, two aligned images
X and Y for the left camera and the right camera are
generated.

8: else

9: Two cameras take turns to send refinements.

10: E.g., at a even stage i = 2k, we solve (11) using
predictive coding procedure.

11: The optimal prediction coefficients and the codewords
are transmitted to the BS.

12: The other camera overhears the same message and

obtains a reconstruction for the coding of the next stage.
13:  end if
14: end for

To investigate the algorithm performance in a comprehensive
way, we choose two experimental stereo-view datasets as
shown in Figure 9: Park is captured by a rotating camera
which is suitable for image registration. In contrast, Church
is captured by two cameras far apart and has complex depth
structure, which potentially brings registration error to the
aligned image pair.

For all the simulations in this section, DiSAC2-Stereo is
evaluated with rate triplet (R, Ry, R3) in the range {R; €
(0.01,0.05), R, € (0.01,0.15), Rz € (0.01,0.1)}, among
which 245 uniformly distributed grid samples are chosen to
reduce the computation burden.

1) Prediction Coefficient Searching: According to (11), for
a three-stage DiSAC2-Stereo, there are one coefficient a1, and
two coefficient &}, a) needed to be optimized for the 2nd and
3rd stage coding respectively:

max PSNR (Y, Y)
aj
max PSNR (X3, X).

(Xl ,(12
Such optimizations can be done with extensive grid searching.
To speed up the searching process, we use the following
strategies:

1) The second optimization problem is simplified to a 1D
searching with constraint a| + a} = 1.

2) First use linear searching with a very sparse grid to find
a good initial point.

3) Starting from the chosen point, we obtain the optimal
coefficient by using a typical sequential quadratic pro-
gramming (SQP) solver”.

5See fmincon function in MATLAB.
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TABLE I
NUMBER OF ITERATIONS TO COVERAGE IN SQP SOLVER
(SToP CONDITION: CHANGE IN THE OBJECTIVE PSNR
VALUE WAS LESS THAN 0.01)

Dataset name Stage | Mean (step) | Standard deviation
Park 2nd 2.5 0.7
3rd 2.5 0.8
Church 2nd 3.1 0.8
3rd 2.6 0.9

By comparing the optimal coefficients obtained by grid
searching, our method is shown to be efficient and accurate in
practice. Table I shows that the SQP solver usually converges
within 3 steps.

2) Successive Refinement: Similar to Figure 7 for DiSAC2-
Gaussian, we verify now how close DiSAC2-Stereo performs
to the performance limit of distributed stereo-view coding. To
the best of our knowledge, currently there is no distributed
stereo-view image coder available. As an alternative, we use
conventional prediction-based centralized image coding to
approximate the distributed coding limit: By enumerating rate
combinations of two encoders, we can obtain the distortion
pairs achieved using centralized image coding. The green
surfaces in Figure 10 show the operating points over all
possible combinations, which represent the performance limits
of centralized coding.

The two curves in Figure 10a or Figure 10b represent the
operating points of a three-stage DiSAC2-Stereo at the 2nd
stage and the 3rd stage, respectively. It can be seen that this
scheme does perform quite close to the limit for the two
datasets. To give a better illustration of coding losses, we
measure the PSNR loss of DiSAC2-Stereo with respect to the
performance limit of centralized coding, both using the same
rate triplet (R1, R2, R3). With the simulation results of 245
rate triplets as mentioned in the experimental setup, Figure 11
shows the distribution (PDF) of coding losses for the 2nd
stage and the 3rd stage, respectively. We can see that the
losses are mostly distributed within the range of 3dB: The
maximum likelihood values of PSNR losses are 0.6dB/0.8dB
at the 2nd/3rd stages for the Park, and 1.2dB/1.4dB at the
2nd/3rd stages for the Church. There are several reasons to
explain these losses:

1) It is well known that a distributed setup has coding loss
with respect to a centralized setup [20]. As a result, the
centralized coding that we used provides an upper bound
for the performance of distributed coding, and thus the
actual coding loss of DiSAC2-Stereo will be smaller.

2) The successive refinability does not generally hold for
any kind of sources. The quadratic Gaussian condition
of Theorem 1 does not necessarily model natural images
very well.

3) The error of stereo-view registration can degrade the
correlation model of Section III-A. Particularly, we can
see from Figure 11 that Park performs better than
Church because it is taken by a fixed rotating camera
and is simpler for registration.
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(©

Fig. 9.

(d)

The stereo-view datasets Park and Church. The yellow box in the left view shows the overlapping part of left and right views detected by the

registration algorithm. (a) Left view of Park. (b) Right view of Park. (c) Left view of Church. (d) Right view of Church.
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Plots for (a) Park and (b) Church. Surface plotted in (Qx, Qy, Sumrate) domain shows the performance limit of distributed stereo-view coding

approximated by centralized coding. Qx, Qy denote the reconstruction quality of stereo images X, Y, in terms of PSNR. The curves with markers show the
operating points of a three-stage DiSAC2-Stereo at the second stage and the third stage, respectively. For clarity, not all samples are plotted in each curve.

We also compare our scheme with an independent intra-
coding scheme where inter-view correlation is not exploited:
If the broadcast is not utilized, each cameras just apply
conventional single image successive refinement coding to
its own image. In contrast, DiSAC2-Stereo takes advan-
tage of the broadcast nature to exploit interview correlation.
Figure 12 shows the distribution (PDF) of coding gains (in

terms of PSNR) of DiSAC2-Stereo with respect to the indepen-
dent intra-coding scheme, at the 2nd stage and the 3rd stage,
respectively. We can see that the coding gains are distributed
over a wide range of 5dB, especially at the 3rd stages. Again,
Park performs better than Church because it has a smaller
registration error. These results show the benefit of exploiting
inter-view correlations by using broadcast advantage.
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Fig. 11.  Probability density (PDF) of PSNR losses of DiSAC2-Stereo

compared to the performance limit of centralized coding, at the second stage
and the third stage for two datasets, respectively. The distribution is obtained
by measuring 245 different rate triplet combinations. The density curves
are smoothed by normal kernel and normalized. The marker on each curve
represents the maximum likelihood value of PSNR loss.
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Fig. 12. Probability density (PDF) of coding gains of DiSAC2-Stereo as
compared to independent intra-coding where the broadcast is not utilized,
at the second stage and the third stage for two datasets, respectively. The
distribution is obtained by measuring 245 different rate triplet combinations.
The density curves are smoothed by normal kernel and normalized. The
marker on each curve represents the maximum likelihood value of coding
gains.

VI. CONCLUSION

We introduced a new successive refinement scheme for
two encoders (DiSAC2), which takes advantage of the free
broadcast nature present in wireless networks. The coding
procedure imitates the ping-pong game, and has a successive
refinement structure. For the quadratic Gaussian case, we
prove that the DiSAC2-Gaussian is successively refinable on
the {sum-rate, distortion pair} surface, which is characterized
by the rate-distortion region of DSC2.

For environmental monitoring purpose, using broadcast
advantage, we apply the same idea to encode stereo-view
images. Based on the layer decomposition and linear predic-
tion method, DiSAC2-Stereo is proposed to achieve successive
refinement of registered stereo-view images. Simulation results
of a three-stage DiSAC2-Stereo show that this scheme operates
close to the distributed coding bound.

Last but not least, although we restrict the discussions to
two cameras case in this paper, the same idea can be readily
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extended to more cameras. One straightforward extension is to
create a “multiple two-camera” system so that any part of the
overall scenery is covered by at least one pair of cameras. In
this case, to avoid the interferences among multiple cameras,
we can use the adaptive synchronization algorithm proposed
in [1] to properly coordinate the cameras.

APPENDIX
PROOF OF SUCCESSIVE REFINABILITY
OF n-STAGE DISAC2-GAUSSIAN

Lemma 1: For a n-stage DiSAC2 with Gaussian sources
and quadratic distortion®, the conditional probability at ith
stage is Gaussian distributed: p(Z|Ci---C;) = gﬂhg’;(Z),
where

X iisodd

Y iis even,

Z = and Z vice versa. (12)

i and aiz can be calculated in a recursive way from G;(Z)
in the following:

+00
Gi(Z)= / H;(X,Y) dZ
o0 (13)
Hi(X, Y) — Hl—l(X9 Y)

G e

where H;(X,Y) denotes p(XY|C;---C;), Gi(Z) denotes

p(Z|Cy ---C;), and the initial condition is
1 _ X2+Y2—§pXY
Ho(X,Y) = me 2(1-p2) (14)
7h,'(X,Y),

Furthermore, H;(X, Y) can be expressed as K; - e
where h; (X, Y) is a polynomial of (X, Y) of degree 2, and K;
is a coefficient that keep H;(X,Y) normalized. The exponent
hi(X,Y) can be calculated recursively by:

(Z —pi-))*  (Z—-2Zi)?
202 2Dy. ’

i—1 i

hi(X,Y) =hi1(X,Y) — 15)

Proof: At the initial stage i = 0, it is immediate to verify
that Hy(X, Y) in (14) is consistent with p(XY) and ho(X, Y)
1s a polynomial of (X Y) of degree 2. From (13), Go(X) =

f Ho(X,Y) dY =

p(X). Thus, Lemma 1 holds when i = 0.
By induction, we first assume that Lemma 1 holds when
i =2k, k>0, from which we know that

Gor(X) = p(X|C1---Co) =G, 52 (X)
Hy (X, Y) = p(XY|Cy -+ Coy) = Kog - e "#00 - (16)
hox (X, Y)is a polynomial of (X, Y) with the degree of 2.

xj
2, which is also consistent with

When i = 2k + 1, the coding procedure is as follows:
(C1, ..., Cy) are already known due to the broadcast advan-
tage. Thus according to (16), p(X —uox) = go,gzzk (X). X—puox

ONotations inherited from Section IV.
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is then encoded to Cpi41 using random codebook argument,
with R-D pair

1 3 2
Roky1 = = log s Dxyyy = 03
2 DX2k+1

Xok+1 can be decoded as: Xogy1 = Coky1 + U2k
As p(X — u|Cy---Co) =G, o2 (X), the fest channel in
this stage is
(X — u2k|Cr -+ CouCoky1) = Geppr. Dy, (X
Thus
PXICr -+ Cott1) = GOy +u2k. Dy, (X) an
= gX2k+l,DX2k+l (X).

To decode Yok+1, the conditional probability
p(Y|Cy - Couq1)

+00
=/ PORCLC) L p(X|Cy -+ Copr) dX,
which follows from a similar argument as (3) and the fact
that Cp41 is encoded and decoded from (X, Cy, - - - , Cox). To
calculate the integral, p(XY|Cy---Cok) and p(X|Cy--- Cax)
are already known from (16) and p(X|Ci---Coy1) =
ngkH;DXZkH (X) due to (17). Therefore,

Hp1(X, Y)7 = p(XY|Cy -+ - Cog+1)
Hy(X,Y)
= on ) GXak11.Dxypy (X)
(18)
+00
Gou+1(Y) = pX|Ci -+ Cors1) =/H2k+1(X, Y) dX.
—0o0

From (16) and (18),

2 _ _ (X—ppp)? X=Xy 1)
K2k0'2k e (th(X,Y) 2022k +— Yot 1

Hoy1(X,Y) = Dy
2k+1

Thus, Hoxy1(X,Y) can be expressed as Koy - e 2kr1(X1)
where

X — 2 (X=X 2
okt (X, V) = hog (x, vy — E 2 X2 X )
Ok 2DX21<+1
(19)

Finally, from (18) and the fact that hy4+1(X,Y) is a
polynomial of (X, Y) with the degree of 2, it is immediate to
+oo

verify that p(Y|Cy--- Coky1) = f Kogy1 - e (X.Y) gx

—00
is Gaussian distributed, and can be denoted as

g > (V).

H2k4+1509) 41

(20)

In conclusion, from (18), (19), and (20), it is proven that
Lemma 1 holds when i = 2k + 1. Similar arguments can be
used to prove the induction from stage 2k + 1 to stage 2k + 2.
Therefore, Lemma 1 is proved. [ |

Given the recursive calculation process for aiz as Lemma 1,
we get the recursive expression of aiz as follows.
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Lemma 2: For a n-stage DiSAC2 with Gaussian sources
and quadratic distortion, al.z at each stage (i > 2) can be
expressed as:

1 p?

=aj_1 —
! 22 2(1_22)2 ’

21
2
20; aj—1 Dz,

L
where a; > 0 and can be computed recursively by

a; = p2 + !
" dai(1-p)? " 2Dz’

i

(22)

The notation for Z is the same as (12).
The initial condition is given by
. 1 1 n 1
2(1—p2% 2 2Dy,
11 p*
202 2(0—p?)  4ai(1—p?)?
Proof: From Lemma 1, we know that A;(X,Y) is a
polynomial of (X, Y) of degree 2. Thus, we rewrite

ai
(23)

MX,Y)=ai(X =Y —c))> + p1(Y —q1)> +51, (24)

where a1, b1, c1, p1, q1, S1 are real-valued coefficients.
From (13):

Gy () = G1(Y)
+00
= / K e (@ X =b1Y =)’ +p1(Y=q1)*+s1) qx
—00

= K| ,e—Pl(Y—ql)z. (25)

By checking the definition of G, ,2(Y), p1 = 2%2, q1 = ui1,
K is the normalized coefficient, and a; > 0 (otherwise (25)

not integrable).
From (14), (15) and po = 0, ¢ = 1, we know that

X2 4+Y2-2pXY X?> (X-X)?
2Dy, '

h(X,Y)= ) >

(26)

By comparing the coefficients of terms X2, XY, Y2 in (24)
and (26),

1 1 1
ag = — —
"T 2052 27 2Dy,
p
alby = ———
2(1 - p?)
1 1 p?
:pl =

207 20— p2)  dar(1—p)?’
which proves the initial condition (23). Using induction, we
first assume that Lemma 2 holds when i = 2k — 1, k > 1,

from which we know that
[ hok—1(X, Y) = ask—1(X — by—1Y — c2k—1)°

+ pou1 (Y — qoi—1)? + s2u—1
I
2(1 - p?)
1

P21 = —5—-
2094

azk—1boy—1 = 27)
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When i = 2k, since h (X, Y) is a polynomial of (X, Y) of
degree 2, we rewrite

hok (X, Y) = ane (Y — by X — ca)* + par(X — qax) + 5ok,
(28)

where axk, bak, ok, P2k, 2k, S2x are real-valued coefficients.

Using similar induction as before, from (13) (15) (27),

1
2
ary = ax—1b5_| + pru—1 — ——+
2%-1T P 2022k_1 2Dy,
p
axyebop = ———<
2(1 — p?)
— = =ay-1—a ,
2022k D2k 2%—1 — a2k by
which can be further reduced by comparing with (27):
2
p 1
azk = +
4’a2k71 (1 - p2)2 2DY2k
anboy = —L—
20— %) (29)
I p?
203, T A e
2k azk—1 Dy,

Thus, (29) proves that Lemma 2 holds when i = 2k. Similar
arguments can be used to prove the induction from i = 2k to
2k + 1. Therefore, Lemma 2 is proved. [ |

Proof of Theorem 1: Due to the ping-pong structure of the
coding procedure, there are some differences between even and
odd stages. Without loss of generality, we prove the induction
from 2k stage DiSAC2 to 2k 4+ 1 stage DiSAC2. Similar
arguments can be used to verify the induction from 2k+1 stage
DiSAC2 to 2k + 2 stage DiSAC2 (omitted here for brevity).

By induction, we first assume that a 2k stage DiSAC2-
Gaussian is successively refinable (k > 1), that is:
Rpsc2(Dxy s Dyy) = Ri + -+ + R, (30)
where Rpsc2(Dyx, Dy) is the rate-distortion region of the
DSC2 [6] as defined by (1).

According to the coding procedure (see the sketch of proof
in Section I'V-B), the rate and the distortion pairs at stage 2k
and 2k + 1 are

2
Rop = O2k—1
Dsz
(Dxy» Dyy) = (0'2210 DYZk)
5 (3D
Ok
Rojy1 = ——
DX2k+1
2
(Dxyy1> Dyyyy) = (DX2k+| > 0'2k+1) >

where al.z is as defined in Lemma 1. Plugging (31) into (30),
it holds at stage 2k that

2 2
O Opp1

_ . (32)
Dx, Dy, - - - Dy,

1
— log

Rpsc2(03,, Dyy,) = >
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To prove the successive refinability at stage 2k + 1, we need
to verify

Rpsc2(Dxyy s 022k+1) =Ri+ -+ Ry

2 2 2
_ llog Of 010k
2 Dx, Dy, "'DszDX2k+1

2 462 Dy,, p? 2
1 (l—p)(/(zlkipzz;z—i-l—i-l)azk

—
2 %%

, (33)
2022kDY2k Dxypy

where the third equality follows from (1) and (32). By expand-
ing the left side of (33) using (1), (33) can be further reduced to

4D 02 p? 462, Dy, p*
/7’(3*‘/)22;;1 LR e e

= . (34
0'22k+1 Dyy
From Lemma 2, we know that
2
2 _ 4
Ok = 1/2 A2k—1 2 2(1—p2)?
az-1 Dy,,
2 —_n2)2
2k+1
2
p 1
@k = + .
4ax—1(1 = p?? * 2Dy,

Clearly, it holds that |p| < 1, Dy, > 0, Dx,,,, > 0, and
azxk—1 > 0 according to Lemma 2. Under these conditions,
by plugging (35) into both sides of (34), we can verify
the equality after some extensive calculations’. Therefore, it
proves that a 2k + 1 stage DiSAC2-Gaussian is successively
refinable.

In Section IV-B, we already proved the initial conditions
(7) and (10). Thus, using the induction above, we can
conclude that any n-stage DiSAC2-Gaussian is successively
refinable. [ ]
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